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A B S T R A C T

Although high strength concrete (HSC) is becoming popular in building construction around the globe, its
performance under high temperature (or fire) exposure is not precisely known. The existing fire-design provi-
sions were developed mostly from the results of fire tests on normal strength concrete (NSC) and thus their
applicability to HSC needs to be evaluated because sufficient HSC data is now available. This paper is aimed at
developing artificial neural network (ANN) based predictive relationships between the statistically significant
parameters and the residual compressive strength of concrete for its application in structural fire design of HSC.
The proposed models are based on a large set of experimental data that was collected through an extensive
survey of the available tests on HSC after high-temperature exposure. The data was carefully examined and
analyzed to identify the statistically significant/sensitive variables and to establish the influence of these vari-
ables on the residual strength of HSC. The database was used to check the validity/applicability of the existing
design models of codes, standards, guidelines and several researchers. New ANN based residual strength design
models for HSC were also proposed.

1. Introduction

The use of high-strength concrete (HSC) for structural components,
is becoming exceedingly common in the Kingdom of Saudi Arabia as
well as the rest of the world. A number of structures including bridges
are being constructed with HSC or high performance concretes (HPC)
with strengths exceeding 60 MPa, due to the number of advantages
offered by such concretes [1]. Although there is no precise point of
separation between HSC and normal-strength concrete (NSC), the ACI
363R-10 [2] defines HSC as concrete with compressive strength over
6000 psi (41.4 MPa). This definition is adopted in this paper to distin-
guish between HSC and NSC data.

HSC has many advantages due to which its use in the construction
industry is ever increasing all over the world. This is due to such better
physico-mechanical properties as compressive strength, stiffness, and
long-term durability and also due to the economic gains, which can be
achieved with reductions in geometrical sections and gain in the ar-
chitectural space to be exploited. Hence, technical, economic as well as
aesthetic criteria favor the use of HSC over NSC [3].

It is well established that the mechanical properties of concrete are
adversely affected by high-temperature exposure [4–14]. Mechanical
properties of concrete at elevated temperature are determined by

testing plain concrete specimens using one of three types of steady-state
temperature tests (see Fig. 1): stressed tests, unstressed tests, and un-
stressed residual property tests [15]. Briefly, in stressed tests, a preload
(20–40% of the room temperature compressive strength) is applied to
the specimen before heating and is sustained during heating. Heat is
applied at a constant rate until a target temperature T is reached, and is
maintained for a time t until a thermal steady state is achieved. Stress or
strain is then increased at a prescribed rate until the specimen fails. In
unstressed tests, the specimen is heated, without preload, at a constant
rate to the target temperature, which is maintained until a thermal
steady state is achieved. Stress or strain is then applied at a prescribed
rate until failure occurs. In unstressed residual property tests, the spe-
cimen is heated without preload at a prescribed rate to the target
temperature, which is maintained until a thermal steady state is
achieved. The specimen is then allowed to cool, at a prescribed rate, to
room temperature. Subsequently, the specimen is tested at room tem-
perature under axial compression until failure.

The studies on the effects of elevated temperature exposure on en-
gineering properties of concrete [16–25] concluded that the behavior of
HSC at high temperature differs from that of NSC under the same
heating condition. NSC typically loses between 10 and 20% of its ori-
ginal compressive strength when heated to 300 °C, and between 60 and
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75% at 600 °C [15]. A review of the state-of-the-art on fire performance
of HSC [26,27] identified two main differences between HSC and NSC
at elevated temperature: (1) the difference in heat-induced relative
strength loss in the intermediate temperature range (100 °C–400 °C)
and (2) the occurrence of explosive spalling failure in HSC specimens at
similar temperatures (200 °C–400 °C). The higher susceptibility of HSC
to explosive spalling is due, in part, to its lower permeability, which
limits the ability of water vapor to escape from the pores. This results in
a build-up of pore pressure within the cement paste. As heating in-
creases, the pore pressure also increases. This increase in vapor pressure
continues until the internal stresses become so large to result in sudden,
explosive spalling. Given the potential benefits of HSC and its increased

usage, questions about its fire performance need to be resolved. In
addition, the applicability of existing fire-design provisions, which were
developed mostly from the results of fire tests on NSC, to HSC needs to
be evaluated.

Many models are available in the literature for predicting the re-
sidual strength of concrete after high temperature exposure
[4–6,28–33]. However, these existing models either deal mostly with
NSC or were developed from very limited number of experimental data
on HSC that was not large enough to cover a wide range of different
variables and their combinations. This work aims to develop predictive
relationships between the most affecting parameters and the resulting
loss in the compressive strength of concrete for use in structural fire
design. The heterogeneous nature of concrete leads to significant
variability in its properties, making a deterministic prediction of its
behavior difficult. This has led to the bulk of the previous research on
the temperature-dependent properties of concrete being experimental.
As a result, a theoretical development is not sought in this study, and
the proposed models will be based on a statistical analysis of the ex-
isting test data from previous research.

Aslani and Bastami [30] proposed constitutive relationships for NSC
and HSC exposed to fire to provide efficient modeling and specify the
fire-performance criteria for concrete structures exposed to fire. These
relationships were developed for unconfined NSC and HSC specimens
that include compressive and tensile strengths, compressive elastic
modulus, and compressive and tensile stress-strain relationships at
elevated temperatures. The proposed relationships at elevated tem-
peratures were compared with the experimental results and previous
existing relationships revealing several advantages and disadvantages
of present stress-strain relationships. These results were used to estab-
lish more accurate and general compressive and tensile stress-strain
relationships. However, the experimental database used to develop the
relationships for HSC is not only very limited (less than 100 specimens
were used) but only covers siliceous aggregate concrete. Authors re-
commended adding more experimental results to the data to cover a
broader range of different variables and their combinations.

The intricate nature of relationships among the variables for pre-
dicting the residual strength of HSC after the exposure to elevated
temperature is a great hindrance for the development of regression-
based models. Moreover, the database of available experiments being
noisy, the adoption of regression models may not be a good choice. The
neural network predictions have been found to greatly improve the
predictions of complex phenomena involved in different disciplines of
engineering including civil engineering problems [34–38]. This is
mainly evident from the employment of many effective features in-
cluding useful automatic search algorithms and adaptation capability
for simulating the multivariate relationships among the causative fac-
tors. However, the use of artificial neural network (ANN) requires a
sufficiently huge data set to cover the possible ranges of various cau-
sative factors and their combinations. Both dimensioned and di-
mensionless variables with the network having a single as well as two
hidden layers were successfully used in the above cited studies [34–38]
for predicting the output with the help of ANN models. Although single
hidden layer was found enough for the ANN models in most of the
studies [34,36–38], two hidden layers were recommended to be used
for predicting the residual strength of non-linear ultrasonically eval-
uated damaged concrete [35], which may have been due to relatively
less amount of data used in this study. It was reported that the increase
in the number of neurons in a layer increases the prediction capability
of the network in the beginning, which subsequently becomes sta-
tionary.

Research conducted since the 1950s has resulted in a considerable
amount of data on the behavior and properties of HSC under elevated
temperatures. However, a comprehensive evaluation of this data is
lacking. The concrete strength models proposed in this study aim to fill
this gap by using a large data set to increase statistical robustness. This
research employs a large test set obtained from the survey of available

Fig. 1. Schematic of temperature and loading histories for the different test
methods: (a) Stressed test: Initially stressed specimen is heated to a target
temperature T, temperature is maintained for exposure duration and then the
load is increased till failure; (b) Unstressed test: Specimen is heated to a target
temperature T. Temperature is maintained for exposure duration and then the
specimen is tested under heated condition till failure; and (c) Residual property:
Specimen is heated to a target temperature T. Temperature is maintained for
exposure duration and then the specimen is cooled and tested till failure.
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test results on HSC after high temperature exposure. The data was
carefully analyzed statistically to ascertain the impact of different in-
dependent variables on the unstressed residual strength of HSC. The
compiled test data was compared with existing design models from
codes, standards, guidelines, and researchers. Finally, new ANN based
models were proposed for predicting the residual strength of HSC after
high temperature exposure. The predicted values of the residual con-
crete strength were then compared with those predicted by the avail-
able models. For predicting the design values of the residual strength of
HSC, new ANN models were also proposed. The proposed design
models are recommended for use in structural fire design.

2. Available design models

The models, available in the literature for predicting the residual
compressive strength of concrete after high temperature exposure, are
listed in Table 1. The models are taken from three codes namely ACI
216.1–07 [5], ASCE Manual [6], and Eurocode 2: EN 1992-1-2 [4].

Table 1 also lists the models proposed by researchers such as Aslani and
Bastami [30], Choe et al. [31], Hertz [33], Kodur et al. [28], Nielsen
et al. [29], and Phan and Carino [32] and for the prediction of residual
compressive strength of concrete. The salient features of the available
models listed in Table 1 are discussed in subsequent subsections.

2.1. Effect of aggregate type

For NSC, the siliceous aggregate has better fire resistance (un-
stressed residual) as compared to the calcareous aggregates [5]. For
HSC, only Aslani and Bastami [30] make a distinction between the type
of aggregates. Whereas, the effect of aggregate type on HSC is not
clearly established in other models:

i) ACI 216.1–07 [5] curves are plotted only for NSC. Therefore, the
effect of aggregate type on the residual strength of HSC is not
known, but the code does not provide any limit on the compressive
strength of concrete for the applicability of these curves.

Table 1
Models for residual compressive strength of concrete after high temperature exposure.

Code/Researcher Compressive strength after high temperature exposure

Eurocode 2: EN 1992-1-2 (2004) Table 3.1 of the code For 41.4 < fc R, < 55.0 MPa

Table 6.1 N of the code For fc R, ≥ 55 MPa

ACI 216.1–07 (2007) Fig. 2.12(a) of the code For siliceous aggregates
Fig. 2.12(b) of the code For calcareous (carbonate) aggregate

ASCE Manual (1992) R= 1 For 20 °C ≤ T≤ 450 °C
R= p + q T For 450 °C ≤ T≤ 874 °C (p= 2.05806, q= −0.002353)
R= 0 For T > 874 °C

Kodur et al. (2004) R= p + q T For 20 °C ≤ T≤ 100 °C (p= 1.0625, q= 0.0625)
R= 0.75 For 100 °C ≤ T≤ 400 °C
R= p + q T For T > 400 °C (p= 1.33, q= -0.00145)

Nielsen et al. (2004) R= p + q T + s T2 For 20 °C ≤ T≤ 810 °C (p= 0.99936, q= 6.4 × 10−5, s= −1.6 × 10−6)

Aslani and Bastami (2011) For siliceous aggregates and 41.4 < fc R, < 55.2 MPa:
R= p + q T For 20 °C ≤ T≤ 100 °C (p= 1.012, q= −0.0005)
R= p + q T + s T2 + u T3 For 100 °C ≤ T≤ 800 °C (p= 0.985, q= 0.0002, s= −2.235 × 10−6, u = 8.0 × 10−10)
R= p + q T For 800 °C ≤ T≤ 1000 oC (p= 0.44, q= −0.0004)
R= 0 For T > 1000 oC
For siliceous aggregates and 55.2 ≤ f'c,R ≤ 80 MPa:
R= p + q T For 20 °C ≤ T≤ 200 °C (p= 1.01, q= −0.00068)
R= p + q T + s T2 + u T3 For 200 °C ≤ T≤ 400 °C (p= 0.935, q= 0.00026, s= −2.13 × 10−6, u = 8 × 10−10)
R= p + q T + s T2 + u T3 For 400 °C ≤ T≤ 800 °C (p= 0.9, q= 0.0002, s= −2.13 × 10−6, u= 8 × 10−10)
R= p + q T For 800 °C ≤ T≤ 1000 oC (p= 0.44, q= −0.0004)
R= 0 For T > 1000 oC
For siliceous aggregates and fc R, > 80 MPa:
R= p + q T For 20 °C ≤ T≤ 500 °C (p= 0.8, q= −0.0005)
R= p + q T + s T2 + u T3 For 500 °C ≤ T≤ 800 °C (p= 0.96, q= −0.0008, s= −5.17 × 10−7, u = 4 × 10−10)
R= p + q T For 800 °C ≤ T≤ 1000 oC (p= 0.44, q= −0.0004)
R= 0 For T > 1000 oC
For calcareous aggregates:
R= p + q T For 20 °C ≤ T≤ 200 °C (p= 1.01, q= −0.0006)
R= p + q T + s T2 + u T3 For 200 °C ≤ T≤ 900 °C (p= 1.0565, q= 0.0017, s= 5 × 10−6, u= −5 × 10−9)
R= 0 For T > 900 °C

Choe et al. (2015) R= 1 For T≤ 20 °C
R= p + q T For 20 °C < T≤ 100 °C (p= 1.0375, q= -0.0019)
R= 0.85 For 100 °C < T ≤ 200 °C
R= p + q T For 200 °C < T≤ 700 °C (p= 1.1, q= -0.0013)
R= p + q T For 700 °C < T≤ 900 °C (p= 0.62, q= -0.0006)
R= p + q T For 900 °C < T≤ 1200 °C (p = 0.32, q= -0.0003)
R= 0 For T > 1200 °C

Phan and Carino (2003) R= 1 For T≤ 50 °C
R= p + q T For 50 °C < T≤ 100 °C (p= 1.28, q= -0.0056)
R= 0.72 For 100 °C < T ≤ 350 °C
R= p + q T For 350 °C < T≤ 778 °C (p= 1.31, q= -0.00168)
R= 0 For T > 778 °C

Hertz (2005) = + + + +( ) ( ) ( )1R
T T T T1

1000 780
2

490
8

100000
64

T = elevated temperature in oC; R = ratio of residual compressive strength to the compressive strength of concrete at room temperature; fc R, = compressive strength
of concrete at room temperature; p, q, s, and u= model parameters.
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ii) ASCE Manual [6] uses the ACI 216.1–07 [5] curves but proposes a
simplified linear model for predicting the residual compressive
strength of concrete irrespective of the type of aggregates.

iii) Eurocode 2: EN 1992-1-2 [4] considers the effect of aggregate type
(siliceous or calcareous) for concrete of fc R, < 55.0 MPa, but it is
not considered for high strength concrete with fc R, ≥ 55.0 MPa.

2.2. Effect of test methods

As per ACI 216.1–07 [5], among the three types of test methods
shown in Fig. 1, the unstressed residual property tests give the lowest
residual strength of concrete. Thus this test method, usually employed
in experiments due to the requirement of the least efforts, is the most
conservative. Other models do not show the effect of different test
methods.

2.3. Limits of applicability

ACI 216.1–07 [5] and ASCE Manual [6] make no distinction be-
tween the normal and high strength concrete due to which there is no
limit imposed on the compressive strength of concrete for using the
curves plotted for normal strength concrete. From the typical values for
which plots are given, it appears that the models of the two codes are
only meant for normal strength concrete. The maximum temperature
covered in these figures is up to 871 °C (i.e., 1600 °F).

The residual strength model of Eurocode 2: EN 1992-1-2 [4] is not
applicable for concrete strength greater than 90 MPa.

2.4. Level of complexity

Most of the code models are either based on the use of graphs or
simplified model. On the other hand, the models proposed by Kodur
et al. [28], Choe et al. [31] and Phan and Carino [32] are piecewise
linear for different temperature ranges. However, Choe et al. [31] used
a maximum of seven temperature ranges thus giving five equations for
predicting the residual compressive strength of concrete.

It is only the models of Nielsen et al. [29] and Hertz [33], which
provide single equation for whole range of T. The model of Nielsen et al.
[29] is quadratic in T. Whereas, Hertz [33] used a complicated rational
function with numerator as unity and the denominator as a 64-degree
polynomial of T.

Aslani and Bastami [30] developed equations to predict the residual
compressive strength of concrete for different ranges of fc and tem-
perature. The proposed equations are either linear or cubic in T.

3. Database used in the study

The experimental data on the residual strength of HSC after

exposure to elevated temperature was collected from accessible litera-
ture such as technical reports, master and Ph.D. theses, journal papers
and conference proceedings. The database covered a wide range of
various variables and their combinations affecting the residual concrete
strength. The selection of data was dome judiciously and only the ex-
periments providing most material and geometric characteristics were
used. The database contains results of 460 specimens. The whole da-
tabase covered 54 experimental studies conducted during the period
from 1965 to 2017 [7,10,11,23,39–50,51-88]. The criteria adopted for
the selection of data were:

i) Data is for plain concrete cylinders, cubes, and stub columns tested
in compression.

ii) Data covers only the high strength concrete specimens with speci-
fied concrete strength exceeding 41.4 MPa, as per the limit set by
the ACI 363R-10 [2].

iii) Ordinary Portland cement was used in all concrete mixes containing
no fibers. Mineral additives in the concrete mix such as silica fume
or fly ash do not exceed 15% of the cement by weight.

iv) The test specimens are exposed to elevated temperature and the
temperature is then held constant to achieve the steady state con-
dition. The specimens are then cooled down naturally (air cooling)
to the room temperature. Subsequently, specimens are tested under
axial compression until failure to measure their residual strength.

v) Sufficient details are provided about different material character-
istics and geometry of specimens to enable the use of the results
with confidence.

vi) The data covers 177 data points (38.5%) for calcareous aggregates,
228 for siliceous aggregates (49.6%), and the aggregate type of the
remaining 55 (11.9%) is either not known or is silico-calcareous.

As the database is for cube and cylinder specimens of different di-
mensions, the conversion factors, proposed by Yi et al. [89], were used
to obtain the specified compressive strength of the standard
150 × 300 mm concrete cylinder.

4. Data analysis

The data was analyzed statistically to calculate quartiles, mean,
standard deviation (SD), coefficient of variation (CV), skewness, kur-
tosis, and Anderson Darling normality test. The values of these statis-
tical parameters are given in Table 2. The skewness was calculated to
check asymmetry in the distribution of the data. The positive skew
indicates that the data has a long tail in the positive direction and
skewness greater than 1 means highly skewed data. The kurtosis of the
data, given in Table 2, was calculated to ascertain the shape of data
distribution. For the data to follow the normal distribution, kurtosis
should be 3. Marginal plots for different pair of variables namely fc,R vs

Table 2
Statistics of input parameters (460 data points).

Statistical parameter Aggregate/binder ratio Water/binder ratio Soaking period, h (h) Heating rate, Hr (°C/min) Elevated Temp., T (°C) fc R, (MPa)

Minimum (Q0) 0.822 0.13 0.5 0.500 50 41.466
First quartile (Q1) 1.940 0.29 1.0 2.500 250 48.442
Second quartile (Q2, median) 2.268 0.32 2.0 4.000 400 66.740
Third quartile (Q3) 2.761 0.45 3.0 8.083 600 82.406
Fourth quartile (Q4, Maximum) 4.588 0.60 11.5 20.000 1200 140.551
Mean 2.293 0.358 2.177 5.973 481.587 67.809
Standard deviation 0.645 0.109 1.786 5.795 263.877 19.757
Coefficient of variation (%) 28.15 30.42 82.04 97.01 54.79 29.14
Skewness 0.232 0.628 2.484 1.446 0.511 0.609
Kurtosis −0.042 −0.443 7.545 1.037 −0.295 0.243
Anderson Darling normality test
A-Squared 1.99 11.27 45.63 37.01 7.26 6.33
P-Value < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005

fc R, = compressive strength of concrete at room temperature.
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w/b; Hr vs ts; fc,T/fc,R vs a/b; and fc,T/fc,R vs T; are plotted in Figs. 2–5
respectively. The pairs are selected for minimizing the duplication and
for getting better insight into the data. The observations made from the
statistical analysis and the marginal plots are:

i) The large values of SD and CV (28.2%–99.4%) for all variables
show that the data is spread on a wide range.

ii) The P-values for all variables are less than 0.005 which means that
the null hypothesis (that the distribution is normal) is rejected and
thus the distribution is not normal. The A-squared value of all
variables is greater than 1.159 (at 0.5% significance level) which
further confirms the non-normality of data distribution.

iii) Generally, the reduction in w/b ratio resulted in an increase in the
compressive strength of concrete at room temperature (Fig. 2).
However, there are some exceptions which may be due to several
factors such as the level of compaction, quantity and type of

superplasticizer, type of mineral admixtures, etc.
iv) Although a wide range of compressive strength of concrete is

covered starting from the lower limit of high strength concrete and
covers even the ultra-high strength concrete (41.5–140.6 MPa),
the data for the ultra-high strength concrete is quite low with only
6.2% data for strength greater than 100 MPa. Most of the data of
compressive strength is in the lower range (Fig. 2) with 27.2%
data for strength less than 50 MPa thus having a positive tail
(Fig. 2) which is also reflected in positive skewness of 0.609
(Table 2).

v) The water to binder ratio shows large variation, varying from 0.13
to 0.6 (Fig. 2 and Table 2), because of the use of mixes prepared
with or without the use of superplasticizers for achieving a wide
range of compressive strengths of concrete. Maximum data is for
w/b ratio close to 0.3 (Fig. 2) which is close to the median (i.e.
0.32 (Table 2). The w/b data also has a longer positive tail (Fig. 2)

Fig. 2. Marginal plot of fc,R vs w/b ratio.

Fig. 3. Marginal plot of heating rate, Hr vs soaking period, ts.
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and thus the distribution is skewed with a skewness of 0.628
(Table 3).

vi) Although the soaking period, h, varies from 0.5 to 11.5 h, most of
the data (about 90%) varies from 1 to 3 h (Fig. 3) with maximum
data (45.9%) having 1 h soaking period. Thus only little data
(8.5%) is for ts more than 3 h. This shows that the data is heavily
skewed with a skewness of 2.484 indicating a long positive tail. In
addition, because of the sharp peak, kurtosis is also very high
(7.545, as shown in Table 2). Moreover, the A-squared of An-
derson Darling normality test is also very high (45.63, as shown in
Table 2), which indicates large deviation from the normal dis-
tribution.

vii) Although the heating rate varies from 0.5 to 20 °C/min, the peak
rate is much lower than that is attained in standard fire [90–92].
However, the peak temperature of many experiments reaches up
to 1200 °C, which corresponds to the peak fire temperature. The

Fig. 4. Marginal plot of fc,T/fc,R vs aggregate to binder ratio, a/b.

Fig. 5. Marginal plot of fc,T/fc,R vs T.

Table 3
Pearson r for correlation between different variables and the residual com-
pressive strength of concrete.

Variable Pearson r P-Value Remark

a/b 0.023 0.625 No correlation
w/b 0.084 0.072 Positive weak and less significant correlation
h 0.270 0.000 Positive weak and significant correlation
Hr −0.060 0.196 No correlation
T −0.870 0.000 Negative strong and significant correlation
f'c,R −0.102 0.028 Negative weak and significant correlation

a/b= aggregate to binder ratio; w/b= water to binder ratio; h= soaking
period; Hr = heating rate; T= elevated temperature; fc R, = compressive
strength of concrete at room temperature.
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distribution of data is erratic (Fig. 3) with most of the data (about
70.9%) for Hr ≤ 5 °C/min and some of the data (15.9%) is in the
range of 5–10 °C/min. Moreover, there is 10.9% data having
Hr = 20 °C/min. Thus the data is highly skewed with a skewness of
1.446 (Table 2). The A-squared of Anderson Darling normality test
is also quite high (37.01, as shown in Table 2) showing non-
normal distribution.

viii) It is observed from the table that the data covers a wide range of
aggregate to binder ratio, a/b, which varies from 0.82 to 4.59
(Fig. 4). The distribution is much better than other variables due to
which the skewness is minimum (0.232, as given in Table 2) and
A-squared of Anderson Darling normality test is also not very high
(1.99, as shown in Table 2). However, the data is not following the
normal distribution. The scatter of the data shown in Fig. 4 does
not apparently show any correlation with the residual strength of
concrete.

ix) Fig. 5 shows the marginal plot of the residual strength of concrete
vs elevated temperature, T. The elevated temperature varies from
the extreme hot weather temperature of 50 °C to the fire tem-
perature of 1200 °C. However, the peak heating rate of 20 °C/min
is much lower than that attained in standard fire [90–92]. The
values of skewness, kurtosis and Anderson Darling normality test
reported in Table 2 show that the data is not following the normal
distribution. The data is positively skewed with a longer positive
peak (skewness = 0.511) and flatter peak as compared to the
normal (kurtosis = −0.295). The scatter plot shows that with the
increase in the elevated temperature, there is initial small increase
in strength of concrete which reduces subsequently and almost
loses its strength at about 1200 °C. Some very low values of

residual strength at relatively low temperature may be due to the
adverse effects of different types of superplasticizers used in con-
crete mixes. Fig. 6 provides the detailed statistical plots of elevated
temperature, T, which is the most significant variable. The figure
covers frequency histogram, frequency polygon, interquartile
ranges, and 95% confidence intervals for mean and median.

x) Although some of the experiments show an increase in compres-
sive strength of concrete after exposure to a relatively low tem-
perature, none of the available models show this trend. As this is
not a consistent trend, it was ignored in the available models and
also in our proposed ANN models. Most of the models show a
decrease in the compressive strength of concrete for temperature
greater than 20 °C or 50 °C [32]. However, ASCE Manual [6]
shows no effect of temperature up to 450 °C.

Besides the above parameters, there are some other parameters such
as the type and quantity of superplasticizer, moisture content at the
time of testing the specimen, that may also affect the residual com-
pressive strength of HSC. But because of the non-availability of their
values, these variables are ignored in this study. These variables are
also ignored in the available models (Table 1).

Besides providing an understanding of the data and its distribution,
the above analysis will be helpful for researchers in designing future
experiments for data augmentation.

5. ANN models

ANN based models have been described by several researchers in
detail [e.g. 34–38]. The basic concept of ANN modeling is based on

Fig. 6. Statistical analysis of elevated temperature, T.
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establishing the relationship between the data of independent and de-
pendent variables by employing training methods [36–38]. The ANN
model used for developing a causal relationship between the residual
concrete strength and independent variables, employs the input
namely, coarse aggregate type, aggregate to binder ratio, a/b, water to
binder ratio, w/b, soaking period in hour, h, heating rate in oC/min, Hr,
exposure temperature in oC, T, compressive strength of concrete at
ambient temperature in MPa, fc R, , and yields the output, which is the
ratio of residual compressive strength of concrete after exposure to
temperature T, fc T, , to fc R, . The data was segregated based on the ag-
gregate types. Out of the total 460 data sets, there were 177 data sets
for calcareous aggregates, 228 data sets for siliceous aggregates, and
the aggregate type of the remaining is either not known or is silico-
calcareous. The models ANN1 and ANN2 were developed for calcareous
and siliceous aggregates and these models employed 177 and 228 data
sets respectively. Another model ANN3 was developed for the total data
set so as to investigate the error introduced in the model when ag-
gregate type is ignored. The three models used in the study are as
under:

=
f
f

g a b w b h H T fModel ANN1: ( / , / , , , , )for calcareous aggregatesc T

c R
r c R

,

,
,1 (1)

=
f
f

g a b w b h H T fModel ANN2: ( / , / , , , , ) for siliceous aggregatesc T

c R
r c R

,

,
,2 (2)

=
f
f

g a b w b h H T fModel ANN3: ( / , / , , , , )for all types of aggregatesc T

c R
r c R

,

,
3 , (3)

As there is no ideal distribution of the data between training and
validation/testing, the training of the neural network in this study was
performed using two-third of the data [34–38]. Thus 118, 152, and 307
data sets were used for the training of models ANN1, ANN2 and ANN3
respectively. The selection of the data set for training purposes was
done randomly. The testing and validation of the networks of the
models were performed using the remaining one-third of the data (i.e.
59, 76, and 153 for the three models respectively), which was not used
in the development of the models.

The neural network architecture of the three models (Eq. (1) to (3)),
is presented in Fig. 7 for the training scheme. The neural network ar-
chitecture of the models employs a single hidden layer. In Fig. 7, n1 is
the number of independent variables involved in the model and n2 is
the number of neurons in the hidden layer. The value of n2 for the
sensitivity analysis (i.e. for Models ANN1, ANN2, and ANN3) was taken
as 12. However, the value of n2 for the final proposed models (i.e.
Models ANN1, ANN2, and ANN3) was optimized by varying it from 9 to
12. The results reported in the paper were obtained after 100 runs of
ANN for each case. Besides passing the input through the hidden layer,
it was also passed directly to the output layer, as shown in Fig. 7.

5.1. Neural network training

The training of the network consists of optimizing the parameters

viz. weights and biases in order to minimize an error function computed
from predicted and target data. Three neuron models namely, tansig,
logsig, and purelin, were used in the architecture of the network with
the back propagation algorithm. In the back propagation algorithm, the
feed-forward (FFBP), cascade-forward (CFBP) and Elman back propa-
gation (EBP) type networks were considered. Levenberg-Marquardt
nonlinear least square fitting method (1963) was employed for training
the networks. Each input is weighted with an appropriate weight and
the sum of the weighted inputs and the bias forms the input to the
transfer function. The neurons employed the following differentiable
transfer function to generate their output:

= = +( )y f z e( ) 1 for log sigmoid transfer functionj j
z

1
1j (4)

= = +( )y f z e( ) 2 1 1 for tan sigmoid transfer functionj j
z

2
2 1j (5)

= =y f z z( ) for linear transfer functionj j j3 (6)

where,

= +z W x bj
i

ij i j
(7)

The weight, W, and biases, b, of these equations are determined in
such a way as to minimize the energy function. The sigmoid transfer
functions generate output between 0 and 1 or -1 and +1 as the neuron's
net input goes from negative to positive infinity depending upon the use
of log or tan sigmoid. When the last layer of a multilayer network has
sigmoid neurons (log or tan) then the output of the network is limited to
a small range (0–1 for log-sigmoid and −1 to 1 for tan-sigmoid),
whereas, the output of linear output neurons can take on any value
varying from –∞ to +∞ [93].

The preprocessing of the network training set was performed by
normalizing the inputs and targets so that their mean is zero and
standard deviations as unity. Similarly, all weights and bias values were
initialized to random numbers. While the numbers of input and output
nodes are fixed, the hidden nodes in the case of FFBP were subjected to
trials and the one producing the most accurate results was selected. The
performance of all neural network model configurations was based on
the mean percent error (MPE), mean absolute percent error (MAPE),
root mean square error (RMSE), and coefficient of determination, R2, of
the linear regression line between the predicted values from the neural
network model and the desired outputs. CFBP is similar to FFBP, but it
includes a connection from the input and all previous layers to the
following layers. The input is directly connected to the output and the
values obtained from the hidden layers and the input layers are com-
pared and weights are adjusted accordingly. The training of these
networks was stopped after reaching the minimum mean square error
between the network yield and true output over all the training patterns
or when the number of iterations exceeded a prescribed maximum. The
process was repeated several times for obtaining the optimal neural
network model configuration.

6. Sensitivity analysis

The sensitivity of different causative factors was investigated using
the ANN as well as the statistical methods such as Pearson correlation
coefficient (or Pearson's r) and Spearman's rank correlation coefficient
(or Spearman's rho).

6.1. Statistical methods

Table 3 shows the Pearson's r values and the corresponding P-values
for a linear correlation between different variables and the residual
strength of concrete after exposure to elevated temperature. The
Pearson's r values vary from −1 to +1. The extreme values of −1 and
+1 show strong negative and positive correlations respectively,
whereas zero value indicates no correlation. A positive correlation

Fig. 7. Neural network models with one hidden layer (w is the weight and b is
the bias; For Model-ANN1, Model-ANN2, and Model-ANN3: n1 = 6 and
n2 = 12; For Model-ANN1-R: n1 = 2 and n2 = 9 to 12; For Model-ANN2-R and
Model-ANN3-R: n1 = 3 and n2 = 9 to 12).
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indicates that an increase in the value of a variable has a positive effect
on the dependent variable i.e. causes an increase in the residual com-
pressive strength of concrete, which is the dependent variable. The P-
value is the probability that the null hypothesis of no correlation is
valid. A small P-value (≤0.05) provides strong evidence for rejecting
the null hypothesis, whereas a large P-value, we fail to reject the null
hypothesis. The values reported in the table show that the variables a/b
and Hr have no correlation, whereas the exposure temperature, T, is the
only variable that has a strong and significant correlation. The corre-
lation for fc’ is negative weak but significant. Although the soaking
period, h, has a significant positive correlation, but logically the vari-
able h cannot have a positive correlation and thus the soaking period
data was ignored for being doubtful. The linear correlation for the re-
maining variables is either weak or less significant. The probability of
accepting the null hypothesis (i.e. no correlation) for the water to
binder ratio, w/b, is 7.2%. Thus, if the significance level is raised from
5% to 10%, w/b also has less a significant, positive but weak correla-
tion.

Pearson's correlation requires that the variables follow the normal
distribution and are equally distributed about a linear regression line.
However, the normality requirement is only an exhaustive measure of
association if the joint distribution is bivariate normal [94]. As these
conditions may not be applicable to the data used in the analysis, the
correlation between different variables and the residual strength of
concrete after exposure to elevated temperature was also assessed using
Spearman rho values presented in Table 4. In line with the three ANN
models, the Spearman rho values are also calculated for the three
groups of the data i.e. two types of aggregates (calcareous and siliceous)
and all aggregate types. It is to be noted here that like Pearson's r va-
lues, the Spearman rho also varies from −1 to 1. The positive rho va-
lues indicate positive correlation i.e. an increase in the value of the
variable increases the residual strength, whereas the negative values
indicate negative correlation. The corresponding P-values are also given
in the table. The variables showing statistically significant correlation

are written in bold. Obviously, T is the most significant variable
showing a strong negative correlation for all the three groups of data.
For all data, after ignoring the soaking period, h, as discussed above, the
variables having correlation in order of decreasing sensitivity are: T, w/
b, and fc’. For calcareous aggregates, T is the lone variable showing
correlation, whereas for siliceous aggregates, the variables showing a
correlation in order of decreasing sensitivity are: T, a/b, and w/b. One
interesting observation from the Spearman rho values for the data of
siliceous aggregates is that the aggregate to binder ratio shows positive
weak and significant correlation indicating that the increase in the
aggregate to binder ratio causes increase in the residual compressive
strength of concrete. This shows that the siliceous aggregates help in
resisting fire, which is in line with the findings of earlier researchers.

6.2. Analysis using ANN

The sensitivity analysis was also performed using ANN by elim-
inating each input neuron in turn from the three models (Eq. (1) to (3)).
The effect of elimination of an input neuron on the prediction of re-
sidual compressive strength of concrete after high temperature ex-
posure was evaluated in terms of MPE, MAPE, RMSE, and R2 criteria.
The desirable value of MPE is zero, whereas its positive and negative
values show over- and under-estimation respectively. The best perfor-
mance of a prediction model is indicated by MPE, MAPE, and RMSE
approaching to zero and R2 approaching to unity. Table 5 shows the
results of sensitivity analysis for the three models given by Eqs. (1)–(3).
The network architecture of the model assumed in the sensitivity ana-
lysis consisted of 12 neurons in the hidden layer for all the three models
(i.e. ANN1, ANN2, and ANN3). The value of epochs was taken as 100 in
the development of the three ANN models because fewer epochs were
enough for training the networks.

The results in Table 5 indicate that for the prediction of residual
compressive strength of concrete after high temperature exposure, ob-
viously, T is the most significant variable for all the three models as its
elimination reduces the value of R2 most significantly. However, there
is a slight difference in the order of sensitivity of other variables in the
three models. After ignoring the soaking period, h, as discussed above,
the variables in the order of decreasing level of sensitivity for the three
models are:

T, w/b, Hr, f'c,R and a/b for Model ANN1

T, w/b, a/b, f'c,R and Hr for Model ANN2

T, Hr, w/b, f'c,R and a/b for Model ANN3

It is observed that w/b is either the second or third most sensitive
variable. Its elimination from the three models reduces R2 from 0.949 to
0.918, 0.958 to 0.955, and 0.933 to 0.919 respectively. Although the
statistical analysis shows no correlation for w/b in calcareous ag-
gregates because of large P-value (Table 4), it has been retained in
ANN1 because of the significant effect of its elimination in ANN sen-
sitivity analysis. The compressive strength of concrete at room tem-
perature, fc R, , is the second least sensitive variable in all the models.
However, it is found to show a less significant correlation (Table 4) for
all aggregates and thus it is retained only in ANN3. Although a/b is the
least significant variable in ANN1 and ANN3, it is the third most sen-
sitive variable in model ANN2 (siliceous aggregates), as its elimination
reduces the value of R2 from 0.958 to 0.955. A similar observation has
already been made based on the Spearman's rho values, where a/b is
found to show a significant correlation (Table 4). Thus a/b need to be
retained only in model ANN2. The variable Hr is the second most sen-
sitive variable ANN3 and third most sensitive in ANN1, whereas in
ANN2 it is the least significant. As the statistical analysis shows no
correlation for Hr in any of the three models because of large P-values
(0.328–0.607, as shown in Table 4) it may be eliminated from all the
models.

Table 4
Spearman rho for correlation between different variables and the residual
compressive strength of concrete.

Variable Spearman rho P-Value Remark

Calcareous aggregates
a/b 0.050 0.509 No correlation
w/b 0.078 0.305 No correlation
h 0.064 0.398 No correlation
Hr −0.074 0.328 No correlation
T −0.782 0.000 Negative strong and significant

correlation
f'c,R −0.005 0.948 No correlation
Siliceous aggregates
a/b 0.142 0.032 Positive weak and significant correlation
w/b 0.124 0.061 Positive weak and less significant

correlation
h 0.102 0.125 No correlation
Hr 0.034 0.607 No correlation
T −0.942 0.000 Negative strong and significant

correlation
f'c,R −0.088 0.183 No correlation
All types of aggregates
a/b 0.020 0.670 No correlation
w/b 0.087 0.062 Positive weak and less significant

correlation
h 0.242 0.000 Positive weak and significant correlation
Hr 0.037 0.433 No correlation
T −0.857 0.000 Negative strong and significant

correlation
f'c,R −0.122 0.009 Negative weak and less significant

correlation

a/b = aggregate to binder ratio; w/b= water to binder ratio; h = soaking
period; Hr = heating rate; T= elevated temperature; fc R, = compressive
strength of concrete at room temperature.
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Most of the available regression models (Table 1) for the prediction
of residual compressive strength only include T except Eurocode 2: EN
1992-1-2 [4] and Aslani and Bastami [30] wherein different models are
proposed for different ranges of the compressive strength of concrete,
fc R, . However, the effect of its elimination in ANN3 has negligible in-
fluence on error estimates with R2 reducing from 0.933 to 0.923 and
RMSE increasing from 0.08 to 0.09. The effect of retaining only T shows
a large reduction in R2 as it reduces from 0.933 to 0.810. Thus the
development of a model based on T alone may not be justified, which is
also supported by the statistical analysis of correlations.

6.3. Effect of aggregate type

It is widely reported that the change in concrete properties due to
the exposure to elevated temperature depends on the type of coarse
aggregate used. For normal weight concrete, the aggregates may be
calcareous or siliceous. The calcareous aggregates are generally from
sedimentary rocks, which may include limestone or dolomite, whereas,
the siliceous aggregates may include granite and sandstone. The dif-
ference in the thermal expansion of the two types of aggregates is
mainly responsible for the difference in the behavior of concrete ex-
posed to elevated temperature. The thermal expansion of calcareous
aggregates starts at a lower temperature due to the dissociation of do-
lomite as compared to the siliceous aggregates (NRC, Canada).

The effect of aggregate type can be ascertained from the ANN sen-
sitivity analysis. The consideration of T alone in the models ANN1 and
ANN2 for the two types of aggregates (calcareous and siliceous), shows

considerably different values of error estimates. For ANN1 and ANN2
models, the values of R2 are 0.734 and 0.924 respectively, whereas the
RMSE for the two models are 0.14 and 0.09 respectively (Table 5). The
statistical analysis also justifies the development of separate models for
the two types of aggregates. The Spearman's rho values of T for cal-
careous and siliceous aggregates are −0.782 and −0.942 respectively
(Table 4), which are significantly different. Thus ignoring the aggregate
type in the development of combined model ANN3 may not be a good
idea. However, besides the development of separate models for the two
types of aggregates (ANN1 and ANN2), the combined model ANN3 is
also retained for the data for which aggregate type is not known.

7. Revised ANN models

Based on the sensitivity analysis, the ANN models are revised by
eliminating the variables which do not show a significant correlation, as
discussed in the previous section. Thus the revised models are:
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The network architecture of the above models is shown in Fig. 7 for
the back propagation training scheme. A single hidden layer was con-
sidered in these models. The number of neurons in the hidden layer
were subjected to trials (varied from 9 to 12) and the one producing the
most accurate results was selected. The trained values of connecting
weights and bias for the three models obtained from the FFBP training
scheme, discussed in earlier sections, are given in Tables 6–8. It is worth
mentioning here that the data of the variables used in the above ana-
lysis is well spread, as discussed in Sec. 4, which justifies its use for
development of ANN model. Moreover, the testing and training errors
also converged to about the same value.

The predicted values of the residual strength of concrete have been
plotted against its observed values in Fig. 8 (Fig. 8(a) and (c) and 8(e))
for the three models. The histogram of error for the three models is
plotted in Fig. 9.

Table 5
Sensitivity analysis of different ANN models with feed-forward back propaga-
tion for different sets of input variables.

Input variables MPE MAPE RMSE R2

Model-ANN1 (n2 = 12)
All (Eq. (1)) 0.75 7.5 0.06 0.951
No a/b 1.81 6.8 0.08 0.952
No w/b 2.85 9.3 0.08 0.918
No h 0.62 8.5 0.07 0.921
No Hr 0.39 8.7 0.07 0.928
No T 20.85 41.2 0.23 0.238
No fc' 1.97 8.1 0.07 0.930
Only T 3.58 17.7 0.14 0.734
Only T and fc' 5.26 15.9 0.12 0.786
Only T, fc’ and w/b 3.09 11.3 0.10 0.850
Model-ANN2 (n2 = 12)
All (Eq. (2)) 2.14 11.5 0.07 0.958
No a/b 1.32 12.2 0.07 0.955
No w/b 2.19 10.8 0.07 0.955
No h 0.73 10.9 0.07 0.956
No Hr 2.16 11.7 0.07 0.957
No T 24.68 47.2 0.23 0.487
No fc' 2.43 11.5 0.07 0.957
Only T 3.80 14.6 0.09 0.924
Only T and fc' 2.59 13.5 0.08 0.934
Only T, fc’ and w/b 1.91 12.0 0.07 0.951
Model-ANN3 (n2 = 12)
All (Eq. (3)) 3.23 12.4 0.08 0.933
No a/b 3.53 13.9 0.08 0.926
No w/b 2.22 13.4 0.09 0.919
No h 3.32 13.6 0.09 0.922
No Hr 2.20 14.0 0.09 0.909
No T 23.4 48.0 0.24 0.396
No fc' 2.19 13.5 0.09 0.923
Only T 5.98 18.8 0.13 0.810
Only T and fc' 4.14 18.5 0.13 0.836
Only T, fc’ and w/b 4.38 16.6 0.11 0.871

a/b = aggregate to binder ratio; w/b= water to binder ratio; h = soaking
period; Hr = heating rate; T= elevated temperature; fc R, = compressive
strength of concrete at room temperature; MPE = mean percent error;
MAPE = mean absolute percent error; RMSE = root mean square error;
R2 = coefficient of determination.

Table 6
Connection weights and biases for Model-ANN1-R used for the prediction of
residual strength of concrete containing calcareous aggregates after exposure to
elevated temperature (Transfer functions: tansig and purelin; Output layer bias,
b2 = 0.1901 for predictive model and 0.1422 for design model and
R2 = 0.842).

Neuron Input hidden layer
weights, W1

Input hidden
layer bias, b1

Output layer weight, W2

w/b T Predictive
model

Design model

1 −0.4466 −0.2878 5.5232 −0.9290 −0.6948
2 2.2171 −2.9698 −5.0495 5.0032 3.7421
3 −3.8614 −6.6438 −8.7686 −0.5292 −0.3958
4 6.7189 −5.9739 −5.2051 1.0264 0.7677
5 3.4807 −3.3420 −0.3145 1.7405 1.3018
6 −4.8072 5.0317 −2.6555 −2.2113 −1.6539
7 1.7104 −1.7856 0.8792 −3.4050 −2.5468
8 2.0091 −1.1153 2.5969 2.2120 1.6544
9 −5.0565 7.4846 −14.6124 −1.0513 −0.7863
10 −2.5997 3.8963 5.7002 2.8384 2.1230
11 4.8363 1.3102 8.8458 0.7530 0.5632
w/b – – – −3.0045 −2.2472
T – – – 1.1755 0.8792

w/b= water to binder ratio; T= elevated temperature; R2 = coefficient of
determination.
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The values of the error estimates for the predictive models are re-
ported in Table 9, which show good correlation for all the three models.
As given in Table 9, the mean errors in neural network models ANN1-R,
ANN2-R, and ANN3-R are 12.5%, 13.1%, and 17.2%, respectively. For
the three models respectively, 71.2%, 66.7% and 61.5% data has error
less than 15%. It is also observed that for 80% of the data, the per-
centage error is less than 19.3%, 22.3%, and 25.5% for the three models
respectively. Additionally, the ANN models featured small RMSE during
training; however, the value was slightly higher during validation. All
the models showed consistently good correlation throughout the
training and testing.

7.1. Proposed ANN design models

The ANN models, given by Eqs. (8)–(10), are transformed into the
design models by incorporating a safety factor (or reduction factor).
Due to the brittle nature of concrete after exposure to elevated tem-
perature, which is to be avoided, the reduction factor for the residual
strength calculations is based on statistical lower bounds of the ratio of
experimental to the predicted shear strength in terms of mean – 2σ,
where σ is the standard deviation [37,38,95]. For deciding the design
safety factor for the residual strength of HSC, two more conditions were
enforced – a maximum of 5% non-conservative data points and a
minimum safety factor of 1.00 for 95% of the data. The reduction
factors obtained by trial for satisfying these conditions for the three

design models ANN1-RD, ANN2-RD, and ANN3-RD corresponding to
the three predictive models (ANN1-R, ANN2-R, and ANN3-R) were
0.748, 0.731, and 0.688 respectively. The incorporation of these factors
in the model causes some changes in the output biases and weights of
the models. The modified values of the output layer weight, W2, and
bias b2, for the three models are reported in Tables 6–8 However, the
hidden layer weight and bias remain unchanged, as given in these ta-
bles.

A comparison of the experimental and predicted values of the re-
sidual strength of concrete for the three recommended ANN design
models is also shown in Fig. 8(b) and (d) and 8(f). The plots without the
employment of the reduction factor are already plotted in this figure
(Fig. 8(a) and (c) and 8(e)) for clearly showing the scatter in their
prediction.

The spread of quartiles of the deviations in the prediction of residual
strength of concrete is depicted in Fig. 10. This plot provides an overall
picture of the scatter in the prediction of residual concrete strength by
different models. The positive deviation indicates non-conservative
prediction because of the prediction being higher than the experimental
value. The bottom and top ends of the bars represent respectively the
lower limit and the upper limit of the deviations. For the best per-
forming model, the full height of deviation bar should lie under the zero
deviation line, and the 2nd and 3rd quartiles as well as the total height
of vertical bar are minimum. All these desired ideal characteristics are
best met by the proposed ANN models.

Table 7
Connection weights and biases for Model-ANN2-R used for the prediction of residual strength of concrete containing siliceous aggregates after exposure to elevated
temperature (Transfer functions: tansig and purelin; Output layer bias, b2 = 0.8969 for predictive model and 0.6555 for the design model and R2= 0.935).

Neuron Input hidden layer weights, W1 Input hidden layer bias, b1 Output layer weight, W2

a/b w/b T Predictive model Design model

1 −1.3225 0.8415 −1.0385 3.2821 −1.0836 −0.7919
2 0.5996 0.8965 0.1891 −1.2902 −0.7241 −0.5292
3 0.9175 1.1825 0.5687 −2.2447 0.3461 0.2530
4 −0.4807 −0.3903 −0.8234 2.1073 −0.2696 −0.1970
5 1.0244 −0.6252 0.9568 0.1243 0.5742 0.4197
6 −0.4295 −1.5036 0.0589 −0.1472 1.1017 0.8052
7 −0.2317 2.0310 0.1115 −1.4814 −0.0818 −0.0598
8 −0.4934 −0.3938 −1.7275 1.9605 0.2357 0.1723
9 −1.4677 0.8105 0.4306 −2.6040 −0.1510 −0.1104
10 0.7792 −0.8443 0.6606 2.7238 0.4578 0.3346
11 0.0912 −1.3044 −1.0103 4.2386 −0.6226 −0.4551
a/b – – – – −0.4018 −0.2936
w/b – – – – 0.4081 0.2983
T – – – – −0.4343 −0.3174

a/b = aggregate to binder ratio; w/b= water to binder ratio; T= elevated temperature; R2 = coefficient of determination.

Table 8
Connection weights and biases for Model-ANN3-R used for the prediction of residual strength of concrete for all aggregate types after exposure to elevated tem-
perature (Transfer functions: tansig and purelin; Output layer bias, b2 = 1.4029 for predictive model and 0.9648 for the design model and R2= 0.868).

Neuron Input hidden layer weights, W1 Input hidden layer bias, b1 Output layer weight, W2

w/b T f c R, Predictive model Design model

1 −0.2894 −0.9246 −0.8526 2.2059 −1.9272 −1.3254
2 0.1861 −3.9572 −2.6736 −7.3501 0.7102 0.4884
3 2.5135 −2.5631 3.4518 −8.5465 0.7539 0.5185
4 0.6275 0.3745 −1.8343 1.2015 −1.2731 −0.8756
5 0.4641 3.0506 5.2060 −1.3363 0.3583 0.2464
6 3.5866 −1.4201 9.8295 −3.0586 0.3896 0.2679
7 −1.6766 0.5765 1.7605 −1.1461 −0.8417 −0.5788
8 0.9762 −0.9718 −0.5809 −1.3730 0.8705 0.5987
9 0.6577 0.1696 3.5961 2.3825 0.7964 0.5477
10 −0.1151 −1.2329 −0.1752 −1.8888 −2.8286 −1.9453
w/b – – – – −1.1571 −0.7958
T – – – – −1.3353 −0.9183
f c R, – – – – −2.0313 −1.3970

w/b = water to binder ratio; T= elevated temperature; fc R, = compressive strength of concrete at room temperature; R2 = coefficient of determination.
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Fig. 8. Comparison of residual strength prediction by proposed ANN models with experiment: (a) Predictive model ANN1-R for calcareous aggregates; (b) Design
model ANN1-RD for calcareous aggregates; (c) Predictive model ANN2-R for siliceous aggregates; (d) Design model ANN2-RD for siliceous aggregates; (e) Predictive
model ANN3-R for all aggregates; and (f) Design model ANN3-RD for all aggregates.

Fig. 9. Histogram of error in the prediction of residual strength of concrete by ANN predictive models.
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The ratio of experimental to the predicted value of residual strength
of concrete was calculated for checking the accuracy of different
models. The models were assessed on the basis of the statistical para-
meters such as coefficient of variation (CV), SD and mean, whose values
are reported in Table 10. The percentage of non-conservative data and
5th percentile of the ratio of experimental to predicted value is also
given in the table. The best model would be one for which, SD and CV
are small, mean is more than 1 but close to unity, 5th percentile is at
least 1.00 and there are almost no non-conservative data points.

All the three models of different codes of practice are non-con-
servative but the non-conservative data for ACI 216.1–07 [5] and
Eurocode 2: EN 1992-1-2 [4] is low which is 17.9% and 25.8%, for the
two models respectively. The prediction model of ASCE Manual [6] is
the most non-conservative in predicting residual concrete strength with
66% non-conservative data points. However, the prediction of ACI
216.1–07 [5] is better among the three models of the codes. On the
other hand, among the six models of different researchers, Phan and
Carino (2003) and Choe et al. (2015) are better than the rest of the
models with the non-conservative data for the two models being 7.6%
and 12.4%, respectively. Although all other models are non-con-
servative, Aslani and Bastami (2011) is the most non-conservative
model with 41.4% non-conservative prediction. It is discernible from
Table 10 that the recommended ANN design models are the best among

all the models presented in the table. The value of the 5th percentile for
all the three recommended ANN based design models is 1.0, thus
meeting the target of its minimum value as 1.0. It is worth mentioning
here that the proposed models are only empirical and not physical.

Since most of the experimental data used in this study is for f'c,R up
to 100 MPa (about 96.0%), it is recommended that the proposed design
models be limited to the compressive strength of concrete not more
than 100 MPa. For concrete strength exceeding 100 MPa, f'c,R should be
taken as 100 MPa. In future, when more data for higher concrete
strength and steel ratio are available, these models may be checked and
revised, if necessary, to increase the limits of their applicability.

8. Conclusions

• The data collected from literature was analyzed statistically to as-
certain the impact of different independent variables on the un-
stressed residual strength of HSC after exposure to elevated tem-
perature.

• ANN based models have been developed for predicting the residual
strength of concrete after exposure to elevated temperature. The
design models were also proposed by modifying the predictive ANN
based models. Separate models are developed for concrete con-
taining calcareous and siliceous aggregates. A combined model by
considering all aggregate types is also developed. This model can be
used when the aggregate type is not known. The network predic-
tions were generally satisfactory.

• The neural network with single hidden layers was selected as the
optimum network to predict the residual strength of concrete. The
network configuration of the models with FFBP is recommended for
general use in order to predict the residual strength of concrete.

• The variables to be included in the model were decided based on the
sensitivity analysis, which employed neural network approach as
well as statistical methods. For calcareous aggregates, water to
binder ratio and elevated temperature were included in the model,
whereas for siliceous aggregates, besides these variables, aggregate
to binder ratio was also included. The water to binder ratio, elevated
temperature, and the compressive strength of concrete were the
most significant variables showing correlation and were thus in-
cluded in the development of the model for all aggregates. The ANN
models featured small errors and consistently good correlation.

Table 9
Error estimates for different predictive ANN models.

Parameter for Error Estimate Relative concrete strength (R = f f/c T c R, , )

ANN1-R ANN2-R ANN3-R

Mean percent error (MPE) 1.95 3.35 3.18
Mean absolute percent error

(MAPE)
12.5 13.1 17.2

Root mean square error (RMSE) 0.10 0.08 0.11
Correlation coefficient (CC) 0.919 0.967 0.932
Percent data for error within 15% 71.2 66.7 61.5
Percentage error enveloping 80%

data
19.3 22.3 25.5

fc R, = compressive strength of concrete at room temperature; fc T, = residual
compressive strength of concrete after exposure to temperature T.

Fig. 10. Comparison of spread of quartiles of error percentiles for different models.
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Nomenclature

a/b aggregate to binder ratio
fc R, compressive strength of concrete at room temperature
fc T, residual compressive strength of concrete after exposure to

temperature
h soaking period
Hr heating rate
n1, n2 number of neurons
p, q, s, and u model parameters
T elevated temperature in oC
w/b water to binder ratio
R ratio of residual compressive strength to the compressive

strength of concrete at room temperature
R2 coefficient of determination
CC coefficient of correlation
CFBP cascade-forward back propagation
CV coefficient of variation
EBP Elman back propagation
FFBP feed-forward back propagation
MAPE mean absolute percent error
MPE mean percent error
RMSE root mean square error
SD standard deviation
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