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a b s t r a c t

This research deals with the prediction of compressive strength and crushing strain of FRP-confined con-
crete using neural networks and regression models. Basic information on neural networks and the types
of neural networks most suitable for the analysis of experimental results are given. A set of experimental
data, covering a large range of parameters, for the training and testing of neural networks is used. The
prediction models based on neural network are presented. The influence of raw and the non-dimensional
group of variables on compressive strength and crushing strain of FRP-confined concrete is studied
through sensitivity analysis, which provided a basis for the development of a new regression based
model. The neural networks based model gave high prediction accuracy and the results demonstrated
that the use of neural networks in assessing the compressive strength and crushing strain of FRP-confined
concrete is both practical and beneficial.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is well established that external confinement of concrete
cylinder (e.g. column) enhances its strength and ductility. Until
the early 1990s, the external confinement was mainly provided
by either constructing an additional reinforced concrete cage or
installing grout-injected steel jackets. Steel jacketing is more effec-
tive than caging, because the latter results in a substantial increase
in the cross-sectional area and self weight of the structure. Both
methods are, however, labor intensive and sometimes difficult to
implement on site. In addition to being heavy, steel jackets are also
poor in resisting weather attacks. Nowadays, fiber reinforced poly-
mers (FRPs) have started to be used as confining materials in struc-
tures and the technique of FRP strengthening of reinforced
concrete columns has replaced conventional steel jacketing dra-
matically [1]. FRP has advantages such as: high strength-to-weight
ratio, high confinement strength, easy to install and maintain,
fatigue resistant, non-magnetic, non-metallic, and durable.
FRP-wrapping, prefabricated sheet jacketing and filament winding
can substantially enhance the axial compressive strength and duc-
tility of concrete cylinders due to lateral confinement of FRP. A
clear understanding of the strength and ductility of FRP-confined
concrete is necessary for constructing a stress–strain model of
FRP-confined concrete in order to evaluate overall strengthening
effects of columns retrofitted by FRP composites.

In recent past, substantial work is reported on FRP-strength-
ened columns or concrete cylinders. These studies were mainly

conducted on the compressive strength and stress–strain behavior
of FRP-confined concrete [1–43]. Demers and Neale [2] investi-
gated the effectiveness of FRP wrapping for strengthening of plain
concrete cylinders. They wrapped cylinders through one and three
layers of FRP. They observed increase in strength up to 70% and
ductility up to seven times than that of unwrapped plain concrete
cylinders. Toutanji and Balagurce [3] investigated effectiveness of
FRP wrapping for strengthening plain concrete cylinders. Two lay-
ers of CFRP or GFRP wrap were applied to the cylinder. They
observed 200% and 100% increase in the compressive strength with
CFRP and GFRP wraps, respectively. The studies have shown that
FRP-confined concrete behaves differently from steel-confined
concrete [4], so design recommendations developed for steel-
confined concrete columns (or cylinders) cannot be applied to
FRP-confined columns despite the apparent similarity between
these two types of columns or cylinders. Parvin and Jamwal [5]
investigated the behavior of small-scale FRP-wrapped concrete cyl-
inders under uniaxial compressive loading using non-linear finite
element analysis. They considered two parameters for the numer-
ical study: the FRP wrap thickness, and the ply configuration. The
finite element analysis results showed substantial increase in the
axial compressive strength and ductility of the FRP-confined con-
crete cylinders as compared to the unconfined ones. The increase
in wrap thickness also resulted in enhancement of axial strength
and ductility of the concrete cylinders. Berthet et al. [6] presented
the results of an experimental investigation concerning the com-
pressive behavior of short concrete columns externally confined
by carbon and E-glass FRP jackets. The results showed that external
confinement can significantly improve the ultimate strength and
ductility of the specimens. Lam and Teng [7] proposed a design-
oriented stress–strain model for concrete confined by FRP wraps
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with fibers only or predominantly in the hoop direction. The model
is based on a careful interpretation of existing test data and obser-
vations. The predictions of the model were found to agree well
with test data. Almusallam [8] conducted a comprehensive exper-
imental program which involved 54 plain concrete cylinders with
varying compressive strength wrapped with E-glass/epoxy fiber
reinforced polymer (GFRP) jackets and subjected to uniaxial com-
pressive loads. The influence of number of composite plies (i.e.
composite thickness) and compressive strength of concrete on
the behavior of the GFRP-confined cylinders was investigated.
The results of this study showed that: (i) compressive strength
and ductility of the concrete cylinders increases with number of
composite layers; and (ii) effect of confinement is substantial for
normal strength concrete and marginal for high-strength concrete.
A semi-empirical theoretical model was also developed in order to
predict stress–strain relationship of GFRP-confined concrete cylin-
ders. The model results showed an excellent agreement with
experimental values. Youssef et al. [9] developed a stress–strain
model for concrete confined by fiber reinforced polymer (FRP)
composites. The model was based on the results of a comprehen-
sive experimental program including large-scale circular, square
and rectangular short columns confined by carbon/epoxy and
E-glass/epoxy jackets providing a wide range of confinement
ratios. Ultimate stress, rupture strain, jacket parameters, and
cross-sectional geometry were found to be significant factors
affecting the stress–strain behavior of FRP-confined concrete. Such
parameters were analyzed statistically based on the experimental
data, and equations to theoretically predict these parameters were
presented. Experimental results from this study were compared
with the proposed semi-empirical model as well as others from
the literature.

Although many studies have been carried out on FRP-confined
concrete, there are still some issues worth being discussed further:
(i) early models have been developed based on a limited test data
that is one of the weakness of the existing models in which further
applicability of their approaches could not be guaranteed; (ii)
many models were derived from steel-confined concrete models,
whereas extensive experimental results have shown that the
stress–strain behavior of FRP-confined concrete cylinders is signif-
icantly different from that of steel-confined concrete; so they are
often not effective enough; (iii) the ultimate rupture strain of FRP
has a great influence on the behavior of FRP-confined concrete cyl-
inders, which is seldom considered by the existing models; and (iv)
few experiments and analyses were found to consider strength and
ductility of FRP-confined concrete cylinders with strain-softening
responses, although it is closer to the case of real structures.

Some investigators [44,45] have used the strain efficiency factor
in the prediction of the compressive strength of FRP-confined con-
crete. The theoretical models used in these studies for the estima-
tion of strain efficiency factor are based on many assumptions such
as ignoring stress localization and bond/friction between FRP and
concrete. Further, the change in diameter of concrete cylinders
would also depend upon the Poisson’s ratio of concrete whose
value varies with the level of stress due to micro-cracking. The
value of Poisson’s ratio of concrete seems to have been taken as
constant in the analysis. These models require some material
parameters, such as Poisson’s ratios of FRP material, which are
not available in the literature. It is due to these reasons that the
strain efficiency factor has not been considered in the analysis pre-
sented in this paper.

In recent years, artificial neural networks (ANNs) have been of
interest to researchers in the modeling of various civil engineering
systems. The FRP-confined concrete is affected by unknown multi-
variable interrelationships and the existing experimental data are
noisy; consequently, the models derived by regression analysis
are not able to predict the behavior well. The ANN automatically

manages the relationships between variables and adapt based on
the data used for their training. So, it is important to collect a large
number of experimental data. In this study, a large test database
built from an extensive survey of existing tests on FRP-confined
circular concrete specimens is carefully examined to establish
the effect of various variables. Finally, new models are proposed
based on ANNs for the prediction of crushing strength and crushing
strain. The ANN models have been compared against regression-
based models developed in this study.

The aim of this paper is to construct a NN model to predict the
compressive strength and crushing strain of FRP-confined con-
crete. The NN model with one hidden layer was constructed and
the training, testing and validation stages have been performed
using the available test data of 272 different cylindrical FRP-
confined specimens. Efforts were made to establish a methodology
that would not only predict the compressive strength and crushing
strain of FRP-confined concrete but provide an economic and rapid
means for future experimental researchers as well. A regression
based model has also been developed for the prediction of com-
pressive strength and crushing strain of FRP-confined concrete.
The test results were compared with the results predicted by
neural network as well the regression models.

2. Regression models

A number of research efforts have been made on using multi-
variable regression models to improve the accuracy of predictions.
Statistical models have the attraction that once fitted they can be
used to perform predictions much more quickly than other model-
ing techniques and are correspondingly simpler to implement in
software.

A concrete specimen has a tendency to expand under axial com-
pression. By using FRP jacket, the lateral dilation gets confined and
a state of triaxial compression is created that enhances strength
and ductility of the concrete. The effect of confinement on proper-
ties of concrete was first studied by Richart et al. [46] who tested
axially loaded concrete cylinders subjected to lateral fluid pressure.
Based on the tests the following formula (with b = 1) to estimate
the compressive strength f 0cu of the confined concrete was proposed
which is a general form for majority of existing strength models
[46]:

f 0cu

f 0c
¼ 1þ a

fl

f 0c

� �b

ð1Þ

in which f 0cu and f 0c are the compressive strengths of the confined and
the unconfined concrete, respectively, fl is the lateral confining
pressure, and a is the confinement effectiveness coefficient. Richart
et al. [47] showed that the proposed model can also be suitable for
steel-confined concrete. Fardis and Khalili [38] suggested that the
above model (with b = 1) could be used for FRP-confined concrete.
For application to FRP-confined concrete, fl can be related to the
thickness and strength of the FRP by:

fl ¼ 0:5qjfju ð2Þ

where fju is the ultimate tensile strength of the FRP composite jacket
and qj is the confinement ratio of the FRP jacket, given by:

qj ¼
4tj

D
ð3Þ

where tj is the total thickness of the FRP jacket and D is the diameter of
the confined column. ACI 440 [48] adopted the model originally
proposed by Mander et al. [49] for the prediction of compressive
strength of concrete confined by steel jacket and later shown to be
applicable for FRP-confined concrete through some modification by
Spoelstra and Monti [50]. Many researchers subsequently

H.M. Elsanadedy et al. / Composites: Part B 43 (2012) 228–239 229



Author's personal copy

investigated specifically the behavior of FRP-confined concrete and
consequently a considerable number of models for its compressive
strength and crushing strain were developed. All of the proposed
models were developed empirically by either doing regression anal-
ysis using existing test data or by a development based on the theory
of plasticity with four or five parameters to be determined using
available experimental data. Table 1 presents some of the important
existing empirical models to predict the compressive strength and
crushing strain of FRP-confined concrete since 1981.

3. Experimental data

The data used in the paper is taken from Refs. [2,4,6,8,10–37]. The
data involves compression test results of 272 cylindrical FRP-
confined concrete specimen with varying types of FRP composites
and normal as well as high strength concrete. The data consists of
five input parameters viz. diameter of cylindrical specimen; com-
pressive strength of concrete; thickness, tensile strength and modu-
lus of elasticity of FRP. The two output parameters are compressive
strength and crushing strain of FRP-confined concrete. The database
contains some subsets of two to three data with same material and
geometrical parameters. These subsets cannot be averaged for the
loss of variability within the subsets. Thus the data has been used
in the present analysis without any modification.

The histograms of the raw variables’ data used in the analysis
are shown in Figs. 1–5. The minimum and maximum values of
the variables are mentioned in the first and last range of variables
on X-axis. The observations made from these figures are:

(i) Though the diameter of specimens varies from 50 and
406.4 mm (Fig. 1) but most of the data (72.4%) is for diame-
ter close to 150 mm – normally used for determining com-
pressive strength of concrete. The data for specimen
diameter less than or equal to 70 mm and greater than
160 mm is quite low at around 5%.

(ii) The total thickness of FRP material is mostly less than
0.5 mm with 57% data for this range (Fig. 2) but the variation
is from 0.089 to 7.264 mm.

(iii) There is wide range of modulus of elasticity (Fig. 3) and
tensile strength of FRP (Fig. 4) because of varied materials
covered in the data set which is consisting of carbon,
HM-carbon, E-glass and aramid. The modulus of elasticity
and tensile strength of FRP vary from 13.6 to 630 GPa and
230 to 3900 MPa respectively.

(iv) The data covers a wide range of compressive strength of con-
crete with variation from low strength concrete of 17.4 MPa
to high strength concrete as strong as 169.7 MPa. Maximum
data (48.2%) is for compressive strength of concrete varying
from 30 to 42 MPa (Fig. 5). The data for high strength con-
crete (>42 MPa) is 33.4%.

4. Neural network model

Because confinement of concrete is a complex non-linear
process dependent on many variables, it is a problem well suited
to the artificial intelligence concept known as ANNs. Much of the
current research into compressive strength and crushing strain

Table 1
Different FRP confinement models available in the literature.

Reference Model for ultimate strength Model for ultimate strain

Fardis and Khalili [39] f 0cu ¼ f 0c 1þ 2:05 fl
f 0c

� �h i
ecu ¼ 0:002 1þ 0:125 Ejqj

f 0c

j k
Karbhari and Gao [40]

f 0cu ¼ f 0c 1þ 2:1 fl
f 0c

� �0:87
� �

ecu ¼ 0:002 1þ 5 fl
f 0c

� �h i
Samaan et al. [41] f 0cu ¼ f 0c 1þ 6 f 0:7

l
f 0c

h i
ecu ¼ f 0c�0:872f 0c�0:371f l�6:258

245:61f 00:2c þ0:3364Ejqj

Miyauchi et al. [42] f 0cu ¼ f 0c 1þ 3:5 fl
f 0c

� �h i
ecu ¼ 0:002 1þ 10:6 fl

f 0c

� �0:373
� �

Toutanji [13]
f 0cu ¼ f 0c 1þ 3:5 fl

f 0c

� �0:85
� �

ecu ¼ 0:0021þ ð310:57eju þ 1:90Þ f 0cu
f 0c
� 1

� �h i
Saafi et al. [4]

f 0cu ¼ f 0c 1þ 2:2 fl
f 0c

� �0:84
� �

ecu ¼ 0:002 1þ ð537eju þ 2:6Þ f 0cu
f 0c
� 1

� �h i
AU [37]

f 0cu ¼ f 0c 1þ 1:17 fl
f 0c

� �0:39
� �

ecu ¼ 0:002þ 0:33 fl
f 0c

� �0:77

Lam and Teng [7] f 0cu ¼ f 0c 1þ 3:3 fl
f 0c

� �h i
ecu ¼ 0:002 1:75þ 12 fl

f 0c

� �
eju

0:002

� �h i0:45

Wu et al. [43] f 0cu ¼ f 0c 1þ 2 fl
f 0c

� �h i
ecu ¼ 1:786eju

fl
f 0c

� �0:66

Youssef et al. [9]
f 0cu ¼ f 0c 1þ 2:25 fl

f 0c

� �1:25
� �

ecu ¼ 0:003368þ 0:259 fl
f 0c

� � ffiffiffiffiffiffieju
p

ACI 440 [48] f 0cu ¼ f 0c 2:25
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 7:9 fl

f 0c

q
� 2 fl

f 0c

� �
� 1:25

h i

4.8

17.3
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prediction for unconfined concrete recognizes that neural nets are
appropriate for the problem.

In the last few years, ANN technology, a sub-field of artificial
intelligence, is being used to solve a wide variety of problems in
civil engineering applications [51–56]. The most important prop-
erty of ANN in civil engineering problems is their capability of
learning directly from examples.

The manner in which the data is presented for training is the
most important aspect of the neural network method. Often this
can be done in more than one way; the best configuration being
determined by trial-and-error. It can also be beneficial to examine
the input/output patterns or data sets that the network finds diffi-
cult to learn. This enables a comparison of the performance of the
neural network model for these different combinations of data. In
order to map the causal relationship related to the compressive
strength and ultimate strain of FRP-confined concrete, two sepa-
rate input/output schemes (called Model-A1 and Model-A2) were
employed, where the first takes the input of raw causal parameters
while the second utilizes their non-dimensional groupings. This

was done in order to see if the use of the grouped variables pro-
duces better results. The Model-A1 thus takes the input in the form
of causative factors namely, D; tj; Ej; fju; f 0c and eju and yields the out-
puts, which are the compressive strength, f 0cu, and crushing strain,
ecu, of FRP-confined concrete:

Model-A1 : f 0cu ¼ f1ðD; tj; Ej; fju; f 0cÞ and ecu ¼ f2ðD; tj; Ej; fju; f 0cÞ ð4Þ

where Ej and fju are the modulus of elasticity and ultimate tensile
strength of FRP jacket.

Another Model A-2 employing the dimensionless variables is
given by:

Model-A2 :
f 0cu

f 0c
¼ g1 qj;

fju

f 0c
;
Ej

f 0c

� �
and ecu ¼ g2 qj;

fju

f 0c
;
Ej

f 0c

� �
ð5Þ

The network architecture of Model-A1 employed for the predic-
tion of compressive strength and crushing strain of FRP-confined
concrete, represented by Eq. (4), is given in Fig. 6. The network
architecture of Model-A2 employed for the prediction of compres-
sive strength using single hidden layer, represented by Eq. (5) is
given in Fig. 7. Whereas, the network architecture for Model-A2
with two hidden layers employed for the prediction of crushing
strain is shown in Fig. 8.

Three neuron models namely, tansig, logsig and purelin, have
been used in the architecture of the network with the back
propagation (BP) algorithm. In the back propagation algorithm,
the feed-forward (FFBP), cascade-forward (CFBP) and Elman back
propagation (EBP) type networks were considered. Each input
was weighted with an appropriate weight and the sum of the
weighted inputs and the bias forms the input to the transfer func-
tion. The neurons employed use of the following differentiable
transfer functions to generate their output:

Log-sigmoid transfer function:

yj ¼ f �
X

i

Wijxi þ /j

 !
¼ 1

1þ e�
P

i
Wijxiþ/jð Þ ð6Þ

Tan-sigmoid transfer function:

yj ¼ f �
X

i

Wijxi þ /j

 !
¼ 2

1þ e
�2

P
i

Wijxiþ/j

� � � 1 ð7Þ

Linear transfer function:

yj ¼ f �
X

i

Wijxi þ /j

 !
¼
X

i

Wijxi þ /j ð8Þ

The weight, W, and biases, /, of these equations are determined
in such a way as to minimize the energy function. The above trans-
fer functions use the input x to generate layer output y. The suffix i
is used for the neurons of a layer, whereas, suffix j is used for the
layer number. The number of layers for models with one hidden
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layer (Figs. 6 and 7) are two, whereas, the number of layers for the
model with two hidden layers (Fig. 8) are three. The neurons of
first hidden layer are generated using the input layer as the input,
whereas the generation of the output layer neuron employs the
preceding hidden layer as the input. The generation of neurons of
second hidden layer of Fig. 8 employs first hidden layer as the
input. The sigmoid transfer functions generate output between 0
and 1 or �1 and +1 as the neuron’s net input goes from negative
to positive infinity depending upon the use of log or tan sigmoid.
When the last layer of a multilayer network has sigmoid neurons
(log or tan) then the output of the network is limited to a small
range, whereas, the output of linear output neurons can take on
any value.

There are three phases involved in ANN modeling, viz. training,
validation and testing for which separate data set is used. The cur-
rent study used the data described above for the prediction of com-
pressive strength (272 data points) and crushing strain (230 data
points) of FRP-confined concrete. The training of the above two
models was done using 66.67% of the data (181 data points for
compressive strength and 153 for crushing strain) selected ran-
domly. Validation and testing of the proposed models was made
with the help of the remaining 33% of observations (91 data points
for compressive strength and 77 for crushing strain), which were
not involved in the derivation of the model. The training phase is
used to adjust the weights on the neural network for which Leven-
berg–Marquardt non-linear least square fitting method is
employed, whereas, the validation phase is used to minimize
over-fitting. In the validation phase, there is no adjustment of the
weights of the network with its data set; it is just to verify whether
there is any increase in accuracy when a data set that has not been
shown to the network before (i.e. validation data set) is also added
to the training data set. The testing phase is for testing the final
solution in order to confirm the actual predictive power of the net-
work for which different error estimates have been used viz. mean
percent error (MPE), mean absolute deviation percent (MAD), root
mean square error (RMSE), correlation coefficient (CC), and

coefficient of determination, R2, of the linear regression line
between the predicted values from the neural network model
and the desired outputs. The parameter MPE gives an idea about
the overall characteristic of prediction whether over or under-
predicted – positive value indicates over-estimation, whereas, neg-
ative value indicates under-estimation.

The optimal architecture was determined by varying the num-
ber of hidden neurons. The optimal configuration was based upon
minimizing the difference between the neural network predicted
value and the desired output. In general, as the number of neurons
in the layer is increased, the prediction capability of the network
increases in the beginning and then becomes stationary.

The training of the neural network models was stopped when
either the acceptable level of error was achieved or when the num-
ber of iterations exceeded a prescribed maximum. The neural net-
work model configuration that minimized the MAD and RMSE and
optimized the R2 was selected as the optimum and the whole anal-
ysis was repeated several times.

5. Sensitivity analysis

Sensitivity tests were conducted to determine the relative sig-
nificance of each of the independent parameters (input neurons)
on the compressive strength and crushing strain of FRP-confined
concrete (output) in both of the models given by Eqs. (4) and (5).
In the sensitivity analysis, each input neuron was in turn elimi-
nated from the model and its influence on the prediction of com-
pressive strength and crushing strain of FRP-confined concrete
was evaluated in terms of the MPE, MAD, RMSE, CC and R2 criteria.
The network architecture of the problem considered in the present
sensitivity analysis consists of one hidden layer with 12 neurons
except for crushing strain prediction model using Model A2 for
which two hidden layers with 12 neurons in each layer were con-
sidered. The value of epochs was taken as 100.

5.1. Compressive strength

The results in Table 2 show that for the prediction of compres-
sive strength using Model-A1, the variables in the order of decreas-
ing level of sensitivity are: tj;D; Ej; f 0c and fju. It is observed that the
last parameter fju has least significant effect when taken indepen-
dently. The elimination of tj is found to have the most significant
effect as it reduces the value of R2 from 0.95 to 0.63. The available
regression models (Table 1) for the prediction of compressive
strength do not include Ej – third most significant parameter,
whose elimination results in large reduction in the value of R2 from
0.95 to 0.89 thus signifying the importance of its inclusion in the
prediction of compressive strength of FRP-confined concrete.

Table 3 gives the results of sensitivity analysis for Model-A2.
The variables in the order of decreasing level of sensitivity are:
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qj, Ej/f 0c and fju/f 0c . Most of the available models reported in Table 1
involve only fl/f 0c , where fl involves the product of qj and fju thus
ignoring Ej/f 0c . The drastic reduction in the value of R2 from 0.94
to 0.72 for this case indicates that the available models incorporat-
ing only limited number of the parameters are not good enough for
achieving the desired accuracy and reliability in the estimation of
compressive strength of FRP-confined concrete. These findings
are consistent with existing understanding of the relative impor-
tance of the various parameters on compressive strength of
FRP-confined concrete. Further, qj and fju are given equal weight
because these are combined together in one variable fl, whereas
the sensitivity analysis indicates that the variables have signifi-
cantly different levels of sensitivity. It is due to this reason that
qj and fju have not been combined in the present study and the
same approach has also been adopted in the development a regres-
sion-based model presented latter.

5.2. Crushing strain

The results of sensitivity analysis for the prediction of crushing
strain using Model-A1 are given in Table 4. It is observed from the
table that the variables in the order of decreasing level of sensitiv-
ity are: tj; f 0c ; Ej; fju and D. The elimination of tj is found to have the
most significant effect as it reduces the value of R2 from 0.90 to
0.74. Thus the variable tj is the most significant parameter for com-
pressive strength as well as crushing strain. The crushing strain has
been taken in percent in ANN analysis.

The regression models for predicting crushing strain of
FRP-confined concrete may be categorized under three groups,
viz. Group-A to Group-C, on the basis of the involvement of raw
variables in the model. Group-A is assumed to represent models
of Karbhari and Gao [40], Miyauchi et al. [42], AU [37] and Wu
et al. [43], which do not include Ej; Group-B represents Fardis
and Khalili [39] model, which does not include fju; whereas,
Group-C represents Samaan et al. [41], Toutanji [13], Saafi et al.
[4], Lam and Teng [7] and Youssef et al. [9], which includes all
raw variables. The non inclusion of fju in regression models (i.e.
Group-B) show reduction in the value of R2 from 0.90 to 0.86.
Whereas, the elimination of Ej (i.e. Group-A) reduces the value of
R2 from 0.90 to 0.83.

Table 5 gives the results of sensitivity analysis for Model-A2
wherein two hidden layers each with twelve neurons are used.

The variables in the order of decreasing level of sensitivity are:
qj, Ej/f 0c and fju/f 0c . The elimination of qj is found to have the most
significant effect as it reduces the value of R2 from 0.86 to 0.71.

The above three groups viz. Groups A–C are valid even for the
categorization on the basis of dimensionless variables but Samaan
et al. [41] belonging to Group C may not be considered here
because it is not based on the dimensionless variables. It is
observed from Table 1 that Group-A does not include Ej/f 0c and
Group-B does not include fju/f 0c . It is observed from the table that
even the best among the groups viz. Gr. B wherein variable fju/f 0c
was not included results in reduction in the value of R2 from
0.86 to 0.76.

For compressive strength as well as crushing strain, Model-A1
using the raw variables is found to be better than Model-A2 involv-
ing dimensionless parameters. Though the difference in error
parameters is small but consideration of two layers in Model-A2
when used for crushing strain makes it a bit complex; thus, for uni-
form approach, Model-A1 is recommended for adoption for com-
pressive strength as well as crushing strain. The sensitivity study
of both models, gives the impression that the elimination of some
of the variables taken independently has only marginal influence
on the resulting compressive strength of FRP-confined concrete.
However, considering the limitations and uncertainties in the data
and the group effect on elimination, a full-fledged network involv-
ing all input variables would be desirable.

6. Analysis and interpretation of test results

The preprocessing of the network training set was performed by
normalizing the inputs and targets so that their mean is zero and
standard deviations as unity. Similarly, all weights and bias values
were initialized to random numbers. While the numbers of input
and output nodes are fixed, the hidden nodes in the case of FFBP
were subjected to trials and the one producing the most accurate
results (in terms of the RMSE) was selected. The optimization of
the training procedure automatically fixes the hidden nodes in
the case of the CFBP. The training of these networks was stopped
after reaching the minimum mean square error between the net-
work yield and true output over all the training patterns.

The network architecture of Model-A1 employed for the predic-
tion of compressive strength and crushing strain of FRP-confined
concrete are shown earlier in Figs. 6–8. The error estimation
parameters (MPE, MAD, RMSE, CC and R2), on the basis of which
the performance of a model is assessed, are already given in Tables
2–5.

Table 2
Sensitivity analysis of Model A-1 for the prediction of compressive strength with
feed-forward back propagation for different sets of input variables.

Input variables MPE MAD RMSE CC R2

All (Eq. (4)) 0.09 7.06 7.83 0.98 0.95
No D 3.60 11.31 13.33 0.93 0.86
No tj 6.54 22.18 21.39 0.80 0.63
No Ej (available models) �0.15 10.30 11.54 0.95 0.89
No fju 0.47 7.11 8.70 0.97 0.94
No f 0c 0.41 9.77 11.78 0.94 0.89

Note. MPE, mean percent error; MAD, mean absolute deviation percent; RMSE, root
mean square error; CC, correlation coefficient; R2, coefficient of determination.

Table 3
Sensitivity analysis of Model A-2 for the prediction of compressive strength with
feed-forward back propagation.

Input variables MPE MAD RMSE CC R2

All (Eq. (5)) �0.45 8.11 0.21 0.97 0.94
No qj 8.48 24.39 0.59 0.69 0.47
No fju=f 0c 1.21 9.70 0.25 0.95 0.90
No Ej=f 0c (available models) 2.77 15.95 0.43 0.85 0.72

Table 4
Sensitivity analysis of Model A-1 for the prediction of crushing strain with feed-
forward back propagation for different sets of input variables.

Input variables MPE MAD RMSE CC R2

All (Eq. (4)) (Gr. C) 3.48 19.72 0.33 0.95 0.90
No D 2.41 21.62 0.36 0.94 0.89
No tj 17.74 34.22 0.55 0.86 0.74
No Ej (Gr. A) 11.44 28.24 0.45 0.91 0.83
No fju (Gr. B) 6.32 22.80 0.40 0.93 0.86
No f 0c 14.89 36.00 0.53 0.87 0.76

Table 5
Sensitivity analysis of Model A-2 for the prediction of crushing strain with feed-
forward back propagation.

Input variables MPE MAD RMSE CC R2

All (Eq. (5)) (Gr. C) 2.95 22.31 0.41 0.93 0.86
No qj 23.40 41.70 0.59 0.84 0.71
No fju=f 0c (Gr. B) 15.74 31.16 0.53 0.88 0.76
No Ej=f 0c (Gr. A) 12.93 33.60 0.57 0.86 0.72
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6.1. Compressive strength

The training and validation for Model-A1 is shown in Fig. 9,
whereas training and validation figures for other cases being sim-
ilar have not been included herein. The trained values of connect-
ing weights and bias for the two models obtained from FFBP
training scheme are given in Tables 6 and 7, respectively.

A new regression model for the prediction of compressive
strength of FRP confined concrete is developed:

f 0cu ¼ f 0c 1þ 0:038q1:32
j

ffiffiffiffiffi
fju

f 0c

s
Ej

f 0c

� �0:8 f 0ch

f 0c

� �0:6
" #

ð9Þ

where f 0ch is the transitional strength of concrete demarcating nor-
mal and high strength, taken here as 42 MPa [57]. The above model
further confirms the observation made in the sensitivity analysis
presented above that qj and fju/f 0c have different levels of sensitivity
thus considering them together in parameter fl, as done in most of
the models, is not justified. The histograms of error in the prediction
of the compressive strength of FRP-confined concrete for Model-A1
and Model-A2 are plotted in Fig. 10. The error in the regression
model given by above Eq. (9) is also plotted in Fig. 10. The percent-
age error in the prediction of the concrete compressive strength for
different data sets is plotted in Fig. 11 for Model-A1 whose perfor-
mance is better as compared to Model-A2. The predicted value of
the compressive strength of concrete has been plotted against its
observed value in Figs. 12–14 for the Model-A1, proposed regres-
sion model and ACI 440 model [48], respectively.

The mean error in the proposed regression model given by Eq.
(9) is 12.72%; whereas the mean errors in neural network Model-
A1 and Model-A2 are only 7.06% and 8.11%, respectively. The mean
error in the prediction by ACI 440 [48] is very high at 32.79% and
the compressive strength is overestimated for most of the data
points (Fig. 14) which is also evident from its high positive MPE
value of 26.83% (Table 10). It is observed from Fig. 10 that ANN
Model-A1 is slightly better than Model-A2. A comparison of ANN
Model-A1 with the modified regression model, given by Eq. (9),
shows that more than 94.5% of the data has error less than 15%
for Model-A1 whereas, only 71.7% of the data has the same per-
centage of error for the proposed regression model. It is also
observed from Table 10 that for about 80% of the data, the percent-
age error is less than 7.0% and 12.7% respectively for the two ANN
models Model-A1 and Model-A2, whereas the percentage error in
the regression based models for the same percentage of data is
about 18.4%. This clearly indicates the supremacy of the neural net-
work models over the regression model.
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Fig. 9. Epochs versus squared error for prediction of compressive strength by back
propagation using Model-A1.

Table 6
Connection weights and biases for Model-A1 used for the prediction of compressive strength (refer to Fig. 6) (output layer bias, /2 = �0.4715 and R = 0.98).

Neuron Input–hidden layer weights, W1 Hidden layer-output weight, W2 Hidden layer bias, /1

D tj Ej fju f 0c

1 0.6409 �1.2649 0.7899 �0.5126 0.2664 1.2213 �3.0709
2 �1.0052 �1.2199 0.4910 �0.0504 0.8316 1.0751 2.5376
3 0.5825 0.4283 �0.2359 �1.7628 �1.7607 1.5805 �0.0870
4 0.1285 �0.2656 0.2118 �1.4062 1.3161 0.9912 �0.7114
5 0.9887 �0.1970 0.6256 0.5509 �0.9922 �2.8012 �1.9259
6 �1.1374 0.3367 �1.1666 1.0688 1.8352 0.9113 �0.1329
7 �0.5814 �0.7507 0.9310 0.3597 0.2481 1.4077 �0.6819
8 �1.7538 0.5759 �0.0689 �0.5542 �0.6266 0.2143 0.3821
9 0.7777 �0.2503 �0.1289 0.4805 0.4462 1.8986 1.5160

10 0.0788 1.4177 �0.0700 �0.9084 �0.6066 1.2574 �2.6700
11 1.0540 �0.2792 �0.0749 �0.5747 �0.4378 0.3469 0.9688
12 0.2055 �0.5802 �0.3591 0.3021 0.2229 0.8170 �3.5589

Table 7
Connection weights and biases for Model-A2 used for the prediction of compressive strength (refer to Fig. 7) (output layer bias, /2 = �2.5869 and R = 0.97).

Neuron Input–hidden layer weights, W1 Hidden layer-output weight, W2 Hidden layer bias, /1

qj fju=f 0c Ej=f 0c

1 1.7258 �1.0823 0.2819 �1.3876 �1.3134
2 0.4558 �0.4757 2.7364 �1.6919 �3.1534
3 2.5996 3.3578 �0.5815 2.6337 �2.6242
4 1.3048 �2.3271 �0.0692 0.9178 �2.2407
5 1.2933 1.6685 �2.9785 �2.1126 2.9268
6 2.3418 3.4962 �0.3467 �3.0220 �2.6499
7 �1.8502 3.2945 0.3719 �0.9687 0.2091
8 1.5212 0.9884 �3.4358 1.5081 3.4416
9 1.0410 �0.7899 �0.4957 �1.6512 1.7674

10 �1.6965 �4.4007 1.5177 0.7348 0.6545
11 2.0314 �1.1567 0.2658 2.3927 3.9775
12 �3.4991 0.5404 0.3026 �1.1090 �2.6712
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It is observed that the use of raw variables (i.e. Model-A1) may
be more beneficial than that of the non-dimensional grouped vari-
ables as input (i.e. Model-A2), provided an appropriate training
scheme is chosen. The most suitable network, FFBP Model-A2,
has the highest CC = 0.98 and R2 = 0.95; and lowest MPE = 0.09,

MAD = 7.06 and RMSE = 7.83. All the ANN models featured small
RMSE during training; however, the value was slightly higher dur-
ing validation. The models showed consistently good correlation
throughout the training and testing (Fig. 9).

The network configuration (FFBP Model-A1) along with corre-
sponding weight and bias matrix given in Table 6 is thus recom-
mended for general use in order to predict the compressive
strength of FRP-confined concrete.

6.2. Crushing strain

The error estimation parameters (MPE, MAD, RMSE, CC and R2),
on the basis of which the performance of a model is assessed, are
already given in Tables 4 and 5 for crushing strain.

The trained values of connecting weights and bias for Model-A1
for the prediction of crushing strain obtained from FFBP training
scheme are given in Table 8. The connection weight and bias for
the prediction of crushing strain using Model-A2, wherein two hid-
den layers with twelve neurons each are used, are given in Tables
9a and 9b.

A new regression model for the prediction of crushing strain of
FRP confined concrete is developed:

ecu ¼ 0:002þ 0:035q0:7
j

fju

f 0c

� �
Ej

f 0c

� �0:02 f 0ch

f 0c
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for Model-A1.
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Fig. 13. Observed versus predicted compressive strength for regression model of
Eq. (9).
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The above model also shows that qj is the most significant
parameter as observed earlier in the sensitivity analysis. The histo-
grams of error in the prediction of the crushing strain of FRP-
confined concrete for Model-A1 and Model-A2 are plotted in
Fig. 15. The error in the regression model given by Eq. (10) is also
plotted in Fig. 15. The percentage error in the prediction of the
crushing strain for different data sets is plotted in Fig. 16 for Mod-
el-A1 which is found to be better than Model-A2. The predicted
value of the crushing strain of FRP-confined concrete has been
plotted against its observed value in Figs. 17 and 18 for the Mod-
el-A1 and regression model respectively. The error estimates for
the two ANN models and proposed regression models for crushing
strength and crushing strain are summarized in Table 10. The error
estimates for the prediction of compressive strength using ACI 440
[48] are also given in the table. Besides the five error estimates

considered above for the ANN models, two additional estimates
(viz. percent data for error within 15% range and percentage of
error enveloping 80% of the data) for judging the performance of
models have been considered. It may be noted here that the RMSE
of ANN Model-A1 for compressive strength may not be compared
with other models because of the difference in the form of output
which is dimensioned for Model-A1, whereas it is non-dimensional
in other models.

The mean error in the modified regression model given by Eq.
(10) is 29.87%; whereas the mean errors in neural network
Model-A1 and Model-A2 are only 19.72% and 22.31%, respectively.
It is observed from Fig. 15 that ANN Model-A1 is slightly better
than Model-A2. A comparison of ANN Model-A1 with the modified
regression model, given by Eq. (10), shows that more than 57.8% of
the data has error less than 15% for Model-A1 whereas, only 33.9%

Table 8
Connection weights and biases for Model-A1 used for the prediction of crushing strain in percent (refer to Fig. 6) (output layer bias, /2 = �0.00619 and R = 0.95).

Neuron Input–hidden layer weights, W1 Hidden layer-output weight, W2 Hidden layer bias, /1

D tj Ej fju f 0c

1 �2.4273 �1.7886 0.3150 0.0784 1.1914 1.8318 1.8192
2 �1.6615 �0.3102 1.1384 �0.2479 0.0662 0.5448 �0.1841
3 2.0469 0.8691 �0.6913 �0.3978 2.3242 �0.6221 �0.5340
4 0.7022 1.6985 �0.5290 2.0376 0.1049 1.3847 �1.3259
5 �2.5059 1.3147 1.2605 0.5353 �0.5972 �0.7715 2.8166
6 �0.5998 �0.6549 0.0123 0.8252 �2.0476 �0.8091 �1.0193
7 1.5121 1.3068 0.4374 �1.0890 0.2167 0.6927 �0.6104
8 �2.2440 �0.1956 �1.5241 �0.8711 1.0323 0.6338 �0.6329
9 1.7219 1.2478 �1.3179 �0.7502 �0.9534 �2.3167 �3.0031

10 �2.6217 �1.0511 0.7552 �0.6813 �0.8621 �1.6888 1.9959
11 0.2111 �2.5669 1.6236 �0.7431 �0.1703 �1.3530 2.2822
12 0.5573 �0.5218 2.4416 �1.0234 0.6897 �0.3774 �0.9207

Table 9a
Connection weights and biases for first layer of Model-A2 used for the prediction of crushing strain in percent (refer to Fig. 8).

Neuron of I hidden layer Input-I hidden layer weights, W1 II hidden layer-output weight, W3 I hidden layer bias, /1 II hidden layer bias, /2

qj fju=f 0c Ej=f 0c

1 �0.8181 �0.8337 �0.6303 �1.2672 2.9287 1.0600
2 3.2999 1.5260 �0.4851 �1.2182 0.6524 �1.9781
3 �1.8516 �2.4131 �1.1707 �1.2796 1.1317 �1.2888
4 0.8299 0.1194 1.7234 �0.7441 �1.8306 �0.1412
5 2.4633 �1.7445 0.0062 �1.2106 3.1169 0.8078
6 �2.3733 �1.2258 1.4393 �0.8170 �0.5896 �0.1716
7 �1.0687 0.6013 �1.3691 0.1418 2.1290 �1.0842
8 �1.9369 1.0473 �0.3414 �1.3588 0.9908 0.3103
9 0.1015 �1.8694 2.7420 0.7388 0.2943 �1.0944

10 1.8157 0.4799 �3.4563 2.2523 3.0967 1.1462
11 0.2802 1.7432 �0.2572 �2.6518 �1.7823 1.2848
12 1.2239 1.6394 �1.1316 �0.5002 �1.7065 2.1447

Table 9b
Connection weights and biases for second layer of Model-A2 used for the prediction crushing strain in percent (refer to Fig. 8) (output layer bias, /3 = �0.0264 and R = 0.93).

Neuron of II hidden layer Weight for neuron of I–II hidden layer, W2

Neuron of I hidden layer

1 2 3 4 5 6 7 8 9 10 11 12

1 �0.823 0.494 �1.064 0.749 0.791 �0.864 �0.895 0.460 0.884 �1.389 1.280 1.249
2 �0.173 0.415 �1.437 �0.365 0.343 1.964 1.213 0.719 1.687 �0.329 0.583 �0.751
3 0.614 �1.857 0.250 �0.173 0.006 �1.140 �1.468 0.516 �0.878 1.144 0.008 0.205
4 1.368 �0.336 1.062 �1.123 �0.079 �1.328 1.470 0.766 0.610 �0.333 0.099 0.536
5 0.280 �0.352 0.915 �1.068 �0.302 0.757 1.221 0.698 �0.974 �0.106 �0.498 0.874
6 �0.959 1.323 �0.189 1.279 0.210 �0.127 0.195 0.072 �0.259 0.205 0.715 �0.621
7 �1.552 �0.066 0.305 0.752 0.830 1.144 �0.443 0.162 �1.679 1.140 0.283 0.830
8 0.481 0.696 0.297 0.394 �0.383 �1.113 �0.760 �0.973 1.163 0.076 0.474 �0.094
9 �1.238 0.738 �0.900 0.106 0.405 �0.038 �0.571 0.650 �0.410 0.059 0.626 0.201

10 0.237 1.484 �0.766 �0.479 �1.412 0.735 0.095 �1.138 1.164 0.937 0.419 �0.233
11 0.113 0.902 �1.777 0.340 1.165 0.395 0.362 �0.420 �0.537 �2.493 0.409 �2.079
12 0.807 �0.855 �0.286 0.268 0.080 �0.262 0.530 �0.478 �0.491 �0.058 �1.101 �0.140
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of the data has the same percentage of error for the regression
model (Fig. 15). It was also observed from Table 10 that for about
80% of the data, the percentage error is less than 29.9% and 32.4%
respectively for the two ANN models Model-A1 and Model-A2
respectively, whereas the percentage error in the regression based
models for the same percentage of data is about 42.4%. This clearly
indicates the supremacy of the neural network models over the
regression model.

It is observed that the use of raw variables (i.e. Model-A1) may
be more beneficial than that of the non-dimensional grouped vari-
ables as input (i.e. Model-A2), provided an appropriate training
scheme is chosen. The most suitable network, FFBP Model-A1,
has the highest CC = 0.95 and R2 = 0.90; and lowest MPE = 3.48,
MAD = 19.72 and RMSE = 0.33. All the ANN models featured small
RMSE during training; however, the value was slightly higher dur-
ing validation. The models showed consistently good correlation
throughout the training and testing.

The network configuration (FFBP Model-A1) along with corre-
sponding weight and bias matrix given in Table 8 is thus recom-
mended for general use in order to predict the crushing strain of
FRP-confined concrete.

7. Conclusions

A generalized model for predicting the compressive strength
and crushing strain of FRP-confined concrete using neural network

Table 10
Error estimates for different models.

Parameter for error estimate Compressive strength Ultimate compressive strain

ANN
Model-A1

ANN
Model-A2

Regression model of Eq. (9) ACI 440 [48] ANN
Model- A1

ANN
Model-A2

Regression model of
Eq. (10)

Mean percent error (MPE) 0.09 �0.45 4.30 26.83 3.48 2.95 4.50
Mean absolute deviation in percent (MAD) 7.06 8.11 12.72 32.79 19.72 22.31 29.87
Root mean square error (RMSE) 7.83 0.21 0.42 0.64 0.33 0.41 0.33
Coefficient of correlation (CC) 0.98 0.97 0.85 0.61 0.95 0.93 0.90
Coefficient of determination, R2 0.95 0.94 0.73 0.37 0.90 0.86 0.81
Percent data for error within 15% 94.5 83.8 71.7 23.9 57.8 55.2 33.9
Percentage error enveloping 80% data 7.0 12.7 18.4 36.9 29.9 32.4 42.4
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has been developed. The network predictions were generally more
satisfactory than those given by traditional regression equations
and the one developed in this study because of low errors and high
correlation coefficients. The compressive strength as well as the
crushing strain predictions based on raw data (D; tj; Ej; fju; f 0c) were
better than those based on the dimensionless grouped variables.
The neural network with one hidden layer was selected as the opti-
mum network to predict the compressive strength of as well as the
crushing strain of FRP-confined concrete. Thus network configura-
tion of Model-A1 with FFBP is recommended for general use in
order to predict the compressive strength as well as crushing strain
of FRP-confined concrete. On the basis of sensitivity analysis for the
prediction of compressive strength, it is observed that the thick-
ness of FRP jacket, tj, diameter of cylindrical specimen, D, modulus
of elasticity, Ej, and compressive strength of concrete, f 0c are the
four most significant parameters for the prediction of compressive
strength as well as the crushing strain of FRP-confined concrete.

From the study of sensitivity of Model-A1 and Model-A2 and
considering the variability in the outcome resulting from applica-
tion of different analytical schemes, it is felt that the network
which requires all input quantities may be followed for generality.
The neural network model is far better than the regression models
in the prediction of the compressive strength and crushing strain of
FRP-confined concrete.
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