

Ain Shams University

Faculty of Engineering

Department of Architecture

A Thesis Presented in Partial Fulfillment of the Requirements for Doctor

of Philosophy in Architecture Engineering by:

Abdulrahman Ayman Fahmy Salem
M.Sc. - Architecture - 2019 – Ain Shams University

B.Sc. - Architecture - 2015 – Ain Shams University

Supervised by:

Professor Dr. Yasser Mohamed Mansour
Professor of Theories of Architecture

Ain Shams University

Professor Dr. Hazem Talaat El Daly
Professor of Theories of Architecture

Ain Shams University

2024

 ترسيم عملية الفكرة المعمارية من خلال توظيف الذكاء الاصطناعي في الوصول إلى التشكيل

MAPPING THE ARCHITECTURAL CONCEPT PROCESS BY UTILIZING ARTIFICIAL
INTELLIGENCE IN

FORM FINDING

Statement

This thesis is submitted to Ain Shams University for the Ph.D. degree in

Architecture.

The work included in this thesis was carried out by the researcher at the

Department of Architecture, Faculty of Engineering, Ain Shams

University, and During the Period from June 7, 2021, to October 2024.

No Part of this thesis has been submitted for a degree of a qualification at

any other university or institute.

Name Abdulrahman Ayman Fahmy Salem

Signature

Date

Board of Examiners

Board Signature

Professor Dr. Samir Sadek Hosny

Professor of Architecture, Department of

Architecture - Faculty of Engineering, Ain Shams

University.

Professor Dr. Yasser Mohammed Mansour

Professor of Theories of Architecture, Department

of Architecture - Faculty of Engineering, Ain

Shams University.

Professor Dr. Sherif Morad Abdelkader

Professor of Architecture, Department of

Architecture - Faculty of Engineering, The

American University in Cairo.

Professor Dr. Hazem Talaat Eldaly

Professor of Theories of Architecture, Department

of Architecture - Faculty of Engineering, Ain

Shams University.

Name: Abdulrahman Ayman Fahmy Salem

Thesis Title: MAPPING THE ARCHITECTURAL

CONCEPT PROCESS BY UTILIZING ARTIFICIAL

INTELLIGENCE IN FORM FINDING

Degree: Doctor of Philosophy in Architecture

Thesis Defense Date: ….…../………/…………

Post Graduate Studies:

Approval stamp Faculty council approval

The thesis was approved on University council approval

Researcher Data

Name: Abdulrahman Ayman Fahmy Salem

Job: Assistant Lecturer at the Faculty of Engineering – Ain Shams

University

Department: Architecture

Degree: Doctor of Philosophy

Code: 035983

Birthday: 02-02-1993

Bachelor: Architecture – June/2015

Master of Science: Building Technology – November/2019

ORCID: 0000-0002-7258-3431

E-mail: abdulrahmanfahmy@eng.asu.edu.eg

i

Acknowledgements

 First, of all I would love to thank Allah for helping me through the

hard times and for rewarding me with such a milestone in my academic

life which I hope could help researchers and students locally and

worldwide in the future.

To my beloved father… This achievement is for you. You have always been

there for me whenever I needed support and whenever I needed to talk and

express my depression. No words can describe how proud I am to be your

son.

To my beloved mother, thank you for always being beside me and never

giving up on me in the hardest times and for your encouragement and love.

To my precious wife, thanks for being there for me in hard times. Being in

my life is a precious gift from Allah.

To my dear son, the love of my life, and Allah’s precious gift. You may be

tiny now, but you always made me laugh and feel happy whenever I needed

it.

I would also love to show my sincere gratitude for the dear professor

Yasser Mansour, my mentor and who has always been my source of light

every time I felt lost. Without your guidance and knowledge, I would have

never reached this place.

To the dear professor Hazem Eldaly, this work would have never been

completed, without your patience, guidance, and knowledge all the way.

ii

No words can describe how grateful and lucky I am to be a student of

yours.

To my brother, my sister, my dearest friend Amer, my dear beloved Aunt

Fawqeya, Ahmed, and Mohammed Essam, family, and friends as well for

their encouragement and support.

And to the great ML engineer Ali Hussein for his valuable effort in

revising the ML process and code used, without your kind help and

patience, I would not have reached this moment. Thank you from my heart.

And finally, to knowledge… I WANT MORE!

iii

Abstract

The rapid advancements in machine learning (ML) have led to numerous

practical applications across various fields. Architects and researchers

have also begun exploring the potential of ML to enhance their work.

However, existing applications often fail to provide precise and readily

usable architectural models within the standard design software used by

architects. To address this challenge, we present a novel approach that

leverages coding geometry in an algorithmic process to translate

architectural parameters into machine-understandable data types, such as

doubles, integers, and strings. The suggested pipeline starts from modeling

a parametric villa on Rhinoceros3d with C# code, creating a large dataset

by changing the parameters, and then training ML models with the dataset.

The parametric model generated encompasses a wide range of interrelated

parameters, including wall dimensions, floor heights, recesses dimensions,

window characteristics, building area, setbacks, and land dimensions. The

entire model is implemented using RhinoCommon API and C#

programming language. The resulting parametric model facilitates

automatic storage of data in a CSV file formatted to be used directly in

ML. We tested different ML algorithms in this research on four datasets

created from the model. A dataset to predict parameters related to the areas,

one to predict parameters related to other form parameters, one to predict

windows’ existence in each wall, and another to predict windows’ widths.

The datasets require both regression and classification algorithms to

predict all the parameters. Impressive results are yielded with ensemble

learning methods with all datasets. Regression tasks could reach an R2

score as high as 0.97, 0.79, and 0.99 for areas, other parameters, and

windows’ widths datasets and 98% accuracy in the windows’ existence

classification task. All results are computed on the test dataset. These

findings highlight the efficacy of this approach in generating accurate

architectural predictions through ML techniques.

iv

Keywords

Black box, architectural design thinking, artificial intelligence, generative

design, form finding, machine learning, regression, classification, neural

networks, coding, programming.

List of Acronyms

Abbreviation Term
AD Algorithmic Design

AdaBoost Adaptive Boosting

AGI Artificial General Intelligence

Abbreviation Term
AI Artificial Intelligence

ANI Artificial Narrow Intelligence

ANN Artificial Neural Network

API Application Programming Interface

ASI Artificial Super Intelligence

BERT
Bidirectional Encoder Representation from

Transformers

CD Computational Design

CNN Convolutional Neural Network

CRNN Convolutional Recurrent Neural Network

CV Computer Vision

DL Deep Learning

DNN Deep Neural Network

DT Decision Tree

GAN Generative Adversarial Network

k-NN k-Nearest Neighbor

LLM Large Language Model

LSTM Long Short-Term Memory

MAE Mean Absolute Error

ML Machine Learning

MLP Multi-Layer Perceptron

MSE Mean Squared Error

NLP Natural Language Processing

PCA Principal Component Analysis

PD Parametric Design

ReLU Rectified Linear Unit

v

RF Random Forest

RNN Recurrent Neural Network

SDK Software Development Kit

SVC Support Vector Classification

SVM Support Vector Machine

SVR Support Vector Regression

VAE Variational AutoEncoder

VPL Visual Programming Language

XGBoost eXtreme Gradient Boosting

For a Glossary: Please, refer to appendix A.

Contents

Statement... ii

Board of Examiners ... iii

Researcher Data ..iv

Acknowledgements ...i

Abstract .. iii

Keywords ..iv

List of Acronyms...iv

Contents ... v

List of Figures ...ix

List of Tables ...xiv

I. Overview .. xv

II. Problem Definition... xvii

III. Research Aim .. xviii

IV. Research Hypothesis ..xix

V. Literature Review...xix

VI. Research Methods and Tools ...xxix

VII. Research Scope & Limitations.. xxx

VIII. Research Structure.. xxxii

I. Framework of the Study ... xxxv

 Chapter 1: Architectural Design Thinking and Process 1

vi

Preface .. 1

1.1 Thinking and problem-solving .. 2

1.2 Architectural design thinking .. 6

1.3 The black box vs the glass box vs the grey box metaphors 11

1.4 Design methodologies ... 13

1.5 Architectural design process ... 16

1.6 New technologies effects on the design process 18

1.7 Complexities in architectural design ... 20

Summary .. 23

 Chapter 2: Mapping the Elements of Forms in Architecture 25

Preface .. 25

2.1 Characteristics of architectural forms 25

2.2 Form generation in architectural design: form making vs. form

finding .. 30

2.3 Mapping and analyzing the elements and motifs of contemporary

forms 36

Summary .. 44

 Chapter 3: Coding in computational design: A base for utilizing AI in

architectural form finding .. 46

Preface .. 46

3.1 Computational design thinking ... 47

3.2 The roots of computational design .. 50

3.3 A taxonomy of computational design terms 52

3.4 Generative form finding .. 57

3.5 Architectural forms as information ... 60

3.6 Coding as a Practice .. 62

3.7 How Modeling Software Work ... 63

3.8 Visual Programming Language ... 66

3.9 Bias in Modeling Processes and Leveraging Power, Freedom, and

Spruceness of Coding ... 68

Summary .. 73

vii

 Chapter 4 Artificial Intelligence and Machine Learning in Architecture 76

Preface .. 76

4.1 AI Definition and History ... 77

4.2 Types and Applications of AI .. 79

4.3 Generative and Non-Generative AI ... 81

4.4 ML Definition and Types .. 86

4.5 Data Sets in ML... 88

4.6 ML Algorithms .. 90

4.7 A Review on Using Non-Gen-AI in Architecture 94

4.8 A Review on Using Gen-AI in Architecture 102

4.9 Generative AI Drawbacks in Architectural Design 112

4.10 Generative and Non-Generative AI Usage Possibilities in

Architectural Design .. 117

Summary .. 120

 Chapter 5: Architectural Form Generation: Applying Machine Learning

Algorithms on Architectural Parameters Datasets 124

Preface .. 124

5.1 A Framework for Utilizing Machine Learning in Form

Generation .. 124

5.2 Problem Definition, Scope, and Limitations 132

5.3 Methods and Tools .. 133

5.4 Coding an Architectural Design Model 134

5.4.1 Modeling the project .. 134

5.4.2 Parametric relationships ... 136

5.4.3 Resulting sample .. 137

5.5 Generating A Machine-Learning Ready Dataset 138

5.5.1 Data set 1 (form data set): .. 140

5.5.2 Data set 2 (windows data set): ... 141

5.6 Data Correlations... 141

5.7 Data Pre-Processing .. 143

5.7.1 Cleaning continuous data ... 144

viii

5.7.2 Cleaning categorical data ... 145

5.8 Data splitting and choosing features and targets 145

5.8.1 Form data set splitting .. 146

5.8.2 Windows data set splitting ... 148

5.9 Data Resampling ... 150

5.10 Train-Test Splitting .. 152

5.11 Training Models .. 152

Summary .. 154

 Chapter 6: Machine Learning Analysis and Results 156

Preface .. 156

6.1 Feature importance .. 156

6.2 Evaluation Metrics .. 157

6.2.1 Evaluating regression performance.................................. 158

6.2.2 Evaluating classification performance 158

6.3 Model learning analysis .. 159

6.3.1 Form data set analysis .. 159

6.3.2 Windows data set analysis ... 164

6.4 Predictions ... 171

6.5 Model Fine-Tuning.. 172

6.6 Discussion ... 172

Summary .. 175

Research Conclusion .. 179

Future Directions ... 184

References .. 186

Appendices ... 214

والمناقشة الحكم لجنة .. ccli

البحث ملخص أ ..

ix

List of Figures

FIGURE 1-1 CEREBRAL CORTEX (HUMAN BRAIN) -

HTTPS://MY.CLEVELANDCLINIC.ORG/HEALTH/ARTICLES/23073-CEREBRAL-CORTEX (LAST ACCESS:
14/11/2023) .. 5

FIGURE 1-2 DESIGN PROCESS (ARCHER, 1969, P.94 AND P.100) ... 12
FIGURE 1-3 THE DESIGN PROCESS: ANALYSIS, SYNTHESIS, AND EVALUATION (DUERK 1993, P. 18) 14
FIGURE 1-4 THE ENVIRONMENTAL MODEL OF THE DESIGN PROCESS (BROADBENT, 1988, P. 467)....... 16
FIGURE 1-5 - FRANK GEHRY'S GUGGENHEIM BILBAO -

HTTPS://ARCHITIZER.COM/BLOG/PRACTICE/TOOLS/HOW-ARCHITECTURE-IS-BORN-FRANK-GEHRY/
 .. 18

FIGURE 1-6- SOLAR RADIATION OPTIMIZATION WITH GRASSHOPPER / GALAPAGOS / DIVA BY YAZDANI

STUDIO, HTTPS://YAZDANISTUDIORESEARCH.WORDPRESS.COM/2015/02/09/BUILDING-
OPTIMIZATION-TOOLS-THE-GRASSHOPPER-DEFINITION-AND-BREAKDOWN/............................ 19

FIGURE 1-7- DIGITAL FABRICATION TECHNIQUE TO EXTRACT INFORMATION ABOUT ELEMENTS USING

GENERATION, GRASSHOPPER, AND RHINOCEROS3D – BY ANTONIO TURIELLO,
HTTPS://WWW.GRASSHOPPER3D.COM/GROUP/GENERATION... 20

FIGURE 2-1 - PLATONIC SOLIDS, HILL, V., AND ROWLANDS, P., 2008, NATURE’S CODE 28
FIGURE 2-2 - GEOMETRICAL ANALYSES OF MASON'S MARKS ON DIFFERENTDRAWINGS OF GOTHIC

CATHEDRALS, FRANZ VON RHIZA, STUDIEN ÜBER STEINMERTZ ZEICHEN,1917, PP. 44-45 28
FIGURE 2-3 - DIAGRAMS OF ST. PETER CHURCH BY BRAMANTE, YILMAZ, 2016, EVOLUTION OF THE

ARCHITECTURAL FORM BASED ON THE GEOMETRICAL CONCEPTS .. 29
FIGURE 2-4 WORKING MODEL OF THE 1989 VITRA DESIGN MUSEUM IN GERMANY BY GEHRY, FRANK O.

GEHRY, COURTESY FRANK GEHRY PAPERS AT THE GETTY RESEARCH INSTITUTE 34
FIGURE 2-5 SYSTEMIZATION AND COMPOSITION BY JEAN-NICOLAS-LOUIS DURAND -

HTTPS://WWW.SENSESATLAS.COM/JEAN-NICOLAS-LOUIS-DURAND/ 34
FIGURE 2-6 - LOUIS SULLIVAN, PLATE 2, DETAIL, FROM A SYSTEM OF ARCHITECTURAL ORNAMENT

ACCORDING WITH THE PHILOSOPHY OF MAN'S POWER (NEW YORK: AIA PRESS, 1924; REPRINT

1934). .. 35
FIGURE 2-7 - HOUSE IV - TRANSFORMATIONS SERIES BY PETER EISENMAN -

HTTPS://EISENMANARCHITECTS.COM/HOUSE-IV-1971 .. 35
FIGURE 2-8 – ARCHITECTURAL ORDERS FROM GREEK, ROMAN, AND TUSCAN ERAS,

HTTPS://BLOG.STEPHENS.EDU/ARH101GLOSSARY/?GLOSSARY=ORDER 38
FIGURE 2-9 – GEOMETRICAL BAR TRACERY, ELY CATHEDRAL, LADY CHAPEL, WEST WINDOW (LEFT),

RAYONNANT BAR TRACERY ABOVE THE SOUTH ROSE WINDOW IN NOTRE-DAME DE PARIS (RIGHT)

(HTTPS://EN.WIKIPEDIA.ORG/WIKI/TRACERY) ... 38
FIGURE 2-10- CALIPHAL-STYLE ARCHES OF THE TAIFA PALACE (11TH CENTURY) IN THE ALCAZABA OF

MÁLAGA, SPAIN, HTTPS://EN.WIKIPEDIA.ORG/WIKI/HORSESHOE_ARCH#CITE_NOTE-:02-7 39
FIGURE 2-11 –(A) GREEK KEY ON A STOVE IN THE IN THE D.A. STURDZA HOUSE, IN BUCHAREST,

HTTPS://EN.WIKIPEDIA.ORG/WIKI/FILE:GREEK_KEY_ON_A_STOVE_IN_THE_IN_THE_D.A._STUR

DZA_HOUSE,_IN_BUCHAREST.JPG, (B) ZIGZAG MOTIF ON SMITH AND CHAMBERS BUILDING,
NAPIER, NEW ZEALAND. HTTPS://EDITION.CNN.COM/STYLE/ARTICLE/NAPIER-ART-DECO-
ARCHITECTURE/INDEX.HTML ... 40

FIGURE 2-12- RIETVELD SCHRÖDER HOUSE,
HTTPS://EN.WIKIPEDIA.ORG/WIKI/RIETVELD_SCHR%C3%B6DER_HOUSE 40

x

FIGURE 2-13- USING SOLID STRONG WALLS IN CONTEMPORARY DESIGNS (VILLA BY RYMAR STUDIO

(LEFT), 21 VILLA BY SAAD AL OMAYRAH (RIGHT)),
HTTPS://RYMARSTUDIO.COM/RESIDENTIALARCHITECTURE,
HTTPS://WWW.BEHANCE.NET/GALLERY/148907457/21-VILLA-BY-DEPTH-OF-FIELD 43

FIGURE 2-14- USING LOUVERS AS ARCHITECTURAL PATTERN IN CONTEMPORARY DESIGNS (CONDOMÍNIO

TERRAS DE TOSCANA, BY LIMA ARQUITETOS (LEFT), CB HOISE, INDONESIA, BY STUDIO AVANA

(RIGHT) - HTTP://WWW.LIMAARQUITETOS.COM/PROJETOS/RESIDENCIA-BR/,
HTTPS://WWW.BEHANCE.NET/GALLERY/98916083/CB-HOUSE 43

FIGURE 2-15- USING SKEWED AND RECESSED ELEMENTS TO HIGHLIGHT OPENINGS (VILLA IN UAE BY

NISREEN KAYYALI (LEFT), VIEWPOINT HOUSE, QUEZON CITY, PHILIPPINES BY JIM CAUMERON

DESIGN (RIGHT)) - HTTPS://WWW.INSTAGRAM.COM/NISREENKAYYALI/,
HTTPS://WWW.ARCHDAILY.COM/951932/VIEWPOINT-HOUSE-JIM-CAUMERON-
DESIGN?AD_MEDIUM=GALLERY .. 44

FIGURE 3-1- SEQUENTIAL VS. CONCURRENT VS. PARALLEL DESIGN PROCESSES

(HTTPS://WWW.LINKEDIN.COM/PULSE/CONCURRENCY-VS-PARALLELISM-2-SIDES-SAME-COIN-
KHAJA-SHAIK-/) ... 48

FIGURE 3-2- INTERACTION BETWEEN COMPONENTS FORMS THE WHOLE DESIGN IDEA 49
FIGURE 3-3- (LEFT) A BOX AS GEOMETRY VS. A BOX WITH GEOMETRIC EXISTENCE CHARACTERISTICS,

(RIGHT) A BOX IS CONSIDERED A CONTAINER OF MANY INFORMATION RATHER THAN A SIMPLE

GEOMETRY. ... 49
FIGURE 3-4 – VILLA DESIGN BY LE CORBUSIER

(HTTPS://MELISSABILGECELIK.WORDPRESS.COM/2018/10/31/REGULATING-LINES-LE-
CORBUSIER/) ... 51

FIGURE 3-5- GRAPHITE AND RED PENCIL ON VERSO OF HOTEL NACIONAL STATIONARY BY MIES VAN DER

ROHE (HTTPS://WWW.MOMA.ORG/COLLECTION/WORKS/87415) 51
FIGURE 3-6 - CONCEPTUAL REPRESENTATION OF THE TERMS’ EXTENSION REGARDING THE CD PARADIGM,

BY CAETANO, A., ET. AL., 2019, COMPUTATIONAL DESIGN IN ARCHITECTURE: DEFINING

PARAMETRIC, GENERATIVE, AND ALGORITHMIC DESIGN. ... 56
FIGURE 3-7- NUMBER OF TIMES EACH CD TERM APPEARED IN THE LITERATURE BETWEEN 1978 AND

2018 BY CAETANO, ET. AL, 2019 ... 57
FIGURE 3-8- SHAPE GRAMMARS (MIT - COMPUTATIONAL DESIGN I: THEORY AND APPLICATIONS - FALL

2005 LECTURE 7) .. 59
FIGURE 3-9- LEFT: L-SYSTEMS (CHIU, P., 02015, THE STRUCTURE OF L-SYSTEM), RIGHT: EXAMPLES OF

GEOMETRICALLY SELF-SIMILAR FRACTALS. (A) THE MANDELBROT SET. THE " CURVE " (B) AND THE

" SNOWFLAKE " (C), DESCRIBED BY NIELS FABIAN HELGE VON KOCH (1870–1924), AND THE "

SIERPINSKI TRIANGLE " (D), DESCRIBED BY THE MATHEMATICIAN WACLAW SIERP – DI LEVA, A.,
ET. AL, 2013, FRACTALS IN THE NEUROSCIENCES, PART I: GENERAL PRINCIPLES AND BASIC

NEUROSCIENCES .. 59
FIGURE 3-10- COMPONENTS OF GENERIC CELLULAR AUTOMATON - LEAO, S., ET. AL., 2004,

SIMULATING URBAN GROWTH IN A DEVELOPING NATION’S REGION USING A CELLULAR

AUTOMATA-BASED MODEL .. 60
FIGURE 3-11- DOMAIN BOX CREATION AS AN ALGORITHM ... 66
FIGURE 3-12 - GRASSHOPPER3D DEFINITION ARRANGEMENT .. 67
FIGURE 3-13 – RHINOCOMMON API - HTTPS://DEVELOPER.RHINO3D.COM/API/RHINOCOMMON/ 70
FIGURE 3-14- BOX STRUCT IN RHINOCOMMON API -

HTTPS://DEVELOPER.RHINO3D.COM/API/RHINOCOMMON/RHINO.GEOMETRY.BOX 70

xi

FIGURE 3-15 - PARAMETRIC VILLA C# SCRIPT CREATED USING C# COMPONENT IN GRASSHOPPER- BY

THE AUTHOR ... 72
FIGURE 4-1- THE DENOISING PROCESS USED BY STABLE DIFFUSION.

HTTPS://EN.WIKIPEDIA.ORG/WIKI/STABLE_DIFFUSION#/MEDIA/FILE:X-
Y_PLOT_OF_ALGORITHMICALLY-GENERATED_AI_ART_OF_EUROPEAN-
STYLE_CASTLE_IN_JAPAN_DEMONSTRATING_DDIM_DIFFUSION_STEPS.PNG 83

FIGURE 4-2 – NERF PIPELINE - MILDENHALL, B., ET. AL., 2020, NERF: REPRESENTING SCENES AS

NEURAL RADIANCE FIELDS FOR VIEW SYNTHESIS .. 85
FIGURE 4-3- ARCHITECTURE OF A DEEP ANN - HTTPS://FREECONTENT.MANNING.COM/NEURAL-

NETWORK-ARCHITECTURES/, LAST ACCESS: 30-8-2023 .. 94
FIGURE 4-4 ARCHITECTURE SUBFIELDS IN 60 ARTICLES DISCUSSING APPLYING ML IN ARCHITECTURE

(TOPUZ, B., AND ALP, N., 2023, MACHINE LEARNING IN ARCHITECTURE) 95
FIGURE 4-5 - DESIGNED CAPITALS WITH ML - CUDZIK, J., 2018, ARTIFICIAL INTELLIGENCE AIDED

ARCHITECTURAL DESIGN .. 98
FIGURE 4-6 - EXPECTED FORMS AND PREDICTED FORMS FROM TEST DATASET - ZHENG, H., AND YUAN, P.,

2021, A GENERATIVE ARCHITECTURAL AND URBAN DESIGN METHOD THROUGH ARTIFICIAL 99
FIGURE 4-7 - GM ALGORITHM IMPLEMENTED TOWARDS PREDICTION OF PANEL CLUSTERS BASED ON THE

AREA SIZE AND PLANARITY OF PANELS. - YAZICI, C., 2020, A MACHINE-LEARNING MODEL DRIVEN

BY GEOMETRY, MATERIAL AND STRUCTURAL PERFORMANCE DATA IN ARCHITECTURAL DESIGN

PROCESS ... 100
FIGURE 4-8 - DIFFERENT INPUT–OUTPUT TRAINING SETS AND THE ACHIEVED ACCURACY – TAMKE, M., ET.

AL, 2018, MACHINE LEARNING FOR ARCHITECTURAL DESIGN: PRACTICES AND INFRASTRUCTURE

 .. 101
FIGURE 4-9 - RESULTING FURNISHED UNITS (CHAILLOUS, S, 2019., AI & ARCHITECTURE – AN

EXPERIMENTAL PERSPECTIVE – HARVARD UNIVERSITY GSD) ... 103
FIGURE 4-10- 15TH FLOOR PROCESSED UNDER EACH STYLE: BAROQUE (FAR-LEFT), MANHATTAN

(CENTER-LEFT), ROW-HOUSE (CENTER-RIGHT), VICTORIAN (FAR-RIGHT) (CHAILLOUS, S, 2019.,
AI & ARCHITECTURE – AN EXPERIMENTAL PERSPECTIVE – HARVARD UNIVERSITY GSD) 104

FIGURE 4-11 - ITERATIVE AND COLLABORATIVE HUMAN–MACHINE WORKFLOW FOR ARCHITECTURAL

FLOOR PLAN GENERATION. (AALAEI, M., ET. AL., 2023, ARCHITECTURAL LAYOUT GENERATION

USING A GRAPH-CONSTRAINED CONDITIONAL GENERATIVE ADVERSARIAL NETWORK (GAN)) .. 105
FIGURE 4-12 - TEST RESULTS ON THE VALIDATION DATA SET OF EDU-AI (KARADAG, I., ET. AL., 2022,

EDU-AI: A TWOFOLD MACHINE LEARNING MODEL TO SUPPORT CLASSROOM LAYOUT GENERATION)
 .. 105

FIGURE 4-13 - A SUBGRAPH, THAT IS, BUILDING BLOCK, DISCOVERED BY THE DNN HIGHLIGHTED WITHIN

THE LARGER GRAPH OF A HOME (AS., I., ET. AL, 2023, ARTIFICIAL INTELLIGENCE IN

ARCHITECTURE: GENERATING CONCEPTUAL DESIGN VIA DEEP LEARNING) 106
FIGURE 4-14 - GENERATED FACADES FOR THE HARBIN CENTRAL STEER (SUN, C., ET. AL., 2022,

AUTOMATIC GENERATION OF ARCHITECTURE FACADE FOR HISTORICAL URBAN RENOVATION USING

GENERATIVE ADVERSARIAL NETWORK) .. 107
FIGURE 4-15 – (LEFT) MINIMAL WORKFLOW FOR MIDJOURNEY (A–D), DALL· E 2 (E–H), AND STABLE

DIFFUSION (I–L) (PLOENNINGS, J., AND BERGER, M., 2023, AI IN ARCHITECTURE), (RIGHT)

REFINEMENT AND VARIANT GENERATION IN MIDJOURNEY (A–C), DALL· E 2 (D–F), AND STABLE

DIFFUSION FOR A WALKWAY (G) AND A SECOND STORY (H, I) - (PLOENNINGS, J., AND BERGER, M.,
2023, AI IN ARCHITECTURE) .. 108

xii

FIGURE 4-16 - BASE INPUT SKETCH FOR AI GENERATION (BAO, Y AND XIANG, C., 2023 - EXPLORATION

OF CONCEPTUAL DESIGN GENERATION BASED ON THE DEEP LEARNING MODEL-DISCUSSING THE

APPLICATION OF AI GENERATOR TO THE PRELIMINARY ARCHITECTURAL DESIGN PROCESS) 108
FIGURE 4-17- RENDERING GENERATION RESULTS MADE BY MIDJOURNEY, STABLE DIFFUSION AND DALL-

E 2 (FROM LEFT TO RIGHT RESPECTIVELY). (BAO, Y AND XIANG, C., 2023 - EXPLORATION OF

CONCEPTUAL DESIGN GENERATION BASED ON THE DEEP LEARNING MODEL-DISCUSSING THE

APPLICATION OF AI GENERATOR TO THE PRELIMINARY ARCHITECTURAL DESIGN PROCESS) 108
FIGURE 4-18- ARCADE FACADE RENEWAL BASED ON PROMPT AND CONTROLNET. - KUANG, Z., ET. AL,

2023, ADVANCING URBAN RENEWAL: AN AUTOMATED APPROACH TO GENERATING HISTORICAL

ARCADE FACADES WITH STABLE DIFFUSION MODELS ... 109
FIGURE 4-19 - OBJECT GENERATION VIA 26-ACTIONS MODEL - FROM LEFT TO RIGHT, INPUT VOXEL

GEOMETRIES, VOXELS, PIPES, AND SMOOTHENED MESHES. AKIZUKO, Y., ET. AL., 2020,
GENERATIVE MODELING WITH DESIGN CONSTRAINTS – REINFORCEMENT LEARNING FOR OBJECT

GENERATION ... 110
FIGURE 4-20 - TRANSFERRED IMAGE TRANSLATION (LIU, C., ET. AL., 2021, PIPES OF AI – MACHINE

LEARNING ASSISTED 3D MODELING DESIGN) .. 111
FIGURE 5-1- SUGGESTED MACHINE LEARNING FRAMEWORK FOR REGRESSION AND CLASSIFICATION

TASKS IN ARCHITECTURAL MODELING - BY THE AUTHOR .. 132
FIGURE 5-2 – VILLA PROTOTYPE CODED IN C# ON GRASSHOPPER FOR RHINOCEROS3D 135
FIGURE 5-3 – SLABS ANNOTATIONS .. 135
FIGURE 5-4 – POINTS ANNOTATIONS OF THE VILLA ... 137
FIGURE 5-5 – RESULTING VILLA MODEL WHICH WAS BUILT BY USING PARAMETERS IN CODE. 139
FIGURE 5-6 - SCREENSHOTS OF RANDOM SAMPLES OF THE DATA SET .. 140
FIGURE 5-7 – CORRELATION HEATMAP BETWEEN FEATURES AND TARGETS FOR THE DATA SET 1 141
FIGURE 5-8- – CORRELATION HEATMAP BETWEEN FEATURES AND TARGETS FOR DATASET 2 (REGRESSION)

 .. 142
FIGURE 5-9 – POINT-BISERIAL CORRELATION BETWEEN FEATURES AND BINARY TARGETS IN DATA SET 2

(CLASSIFICATION) ... 143
FIGURE 5-10 - ROOFS LABELS .. 144
FIGURE 5-11 - HEATMAP SHOWING CORRELATIONS BETWEEN THE VARIABLES IN THE DATASET (BY THE

AUTHOR).. 146
FIGURE 5-12 - HEATMAP SHOWING CORRELATIONS BETWEEN THE VARIABLES OF THE FORM AREAS DATA

SET (BY THE AUTHOR) ... 147
FIGURE 5-13- HEATMAP SHOWING CORRELATIONS BETWEEN THE VARIABLES OF THE FORM REST-OF-

PARAMETERS DATA SET (BY THE AUTHOR) ... 148
FIGURE 5-14 - CORRELATION MATRIX HEATMAP BETWEEN CONTINUOUS TARGETS AND FEATURES 149
FIGURE 5-15 - POINT-BISERIAL CORRELATION BETWEEN BINARY TARGETS AND FEATURES 149
FIGURE 5-16 - COUNT PLOTS OF TARGETS OF THE WINDOWS DATA SET BEFORE APPLYING SMOTE 151
FIGURE 5-17 - COUNT PLOTS OF TARGETS OF THE WINDOWS DATA SET AFTER APPLYING SMOTE 152
FIGURE 6-1 - FEATURE IMPORTANCE SCORE FOR A RANDOM FOREST REGRESSOR 157
FIGURE 6-2 - COMPARISON OF THE REGRESSION METRICS BETWEEN THE 9 TRAINED MODELS FOR THE

AREAS SUB-DATA SET. .. 160
FIGURE 6-3- TRAINING LOSS AND VALIDATION LOSS DURING TRAINING THE FEED-FORWARD MLP ON THE

AREAS REGRESSION SUB-DATA SET .. 161
FIGURE 6-4 - AVERAGED SCATTER PLOT ON TEST DATA SET WITH THE BEST-FIT LINE CREATED BY RANDOM

FOREST REGRESSOR (AREAS SUB-DATA SET) ... 161

xiii

FIGURE 6-5 - COMPARISON OF THE REGRESSION METRICS BETWEEN THE 9 TRAINED MODELS FOR THE

REST OF PARAMETERS SUB-DATA SET. .. 162
FIGURE 6-6- TRAINING LOSS AND VALIDATION LOSS DURING TRAINING THE FEED-FORWARD MLP ON THE

REST OF PARAMETERS REGRESSION SUB-DATA SET .. 163
FIGURE 6-7 - AVERAGED SCATTER PLOT WITH BEST-FIT LINE CREATED BY RANDOM FOREST REGRESSOR

THE REST OF PARAMETERS SUB-DATA SET ... 164
FIGURE 6-8- COMPARISON OF SCORES BETWEEN THE 7 ALGORITHMS USED WITH THE WINDOWS WIDTH

SUB-DATA SET .. 165
FIGURE 6-9- TRAINING LOSS AND VALIDATION LOSS DURING TRAINING THE FEED-FORWARD MLP ON THE

WINDOWS WIDTH REGRESSION DATA SET ... 166
FIGURE 6-10 - AVERAGED SCATTER PLOT WITH BEST-FIT LINE CREATED BY XGBOOST REGRESSOR WITH

THE WINDOWS WIDTHS SUB-DATA SET .. 167
FIGURE 6-11 - COMPARISON OF THE METRICS ACHIEVED BY THE 6 CLASSIFICATION ALGORITHMS TRAINED

WITH THE WINDOWS EXISTENCE SUB-DATA SET. .. 168
FIGURE 6-12 - CONFUSION MATRICES FOR ALL THE CLASSIFIERS IN ALL CLASSIFICATION MODELS 169
FIGURE 6-13 - THE CONFUSION MATRICES OF THE 12 CLASSIFIERS OF THE RANDOM FOREST MODEL ... 170
FIGURE 6-14- THE CONFUSION MATRICES OF THE 12 CLASSIFIERS OF THE XGBOOST MODEL 170
FIGURE 6-15 - THE CONFUSION MATRICES OF THE 12 CLASSIFIERS OF THE DECISION TREE MODEL 171
FIGURE 6-16 STAGE 1: TIME AND EFFORT ESTIMATION FOR AI/HUMAN (LEFT) AND HUMAN

DESIGN/CODING (RIGHT) ... 177
FIGURE 6-17- STAGE 2: TIME AND EFFORT ESTIMATION FOR AI/HUMAN INTERVENTION 177
FIGURE 6-18- OVERALL: DESIGN INTERVENTION ESTIMATION .. 178

xiv

List of Tables

TABLE 1-1 SUMMARY OF STYLES OF THINKING (STERNBERG, 1997, P. 27) 4
TABLE 1-2 TWO TYPES OF THINKING DESCRIBED BY INTELLECTUALS (URL-2, CALDWELJ, ET AL., 2000) . 4
TABLE 1-3 - CAPON'S CATEGORIZATION OF THE SIX ELEMENTS OF GOOD ARCHITECTURE (CAPON, 1999A,

P. 181) .. 7
TABLE 1-4 DEFINITION OF 20· CENTURY ARCHITECTS OF ARCHITECTURE. THESE TERMS ARE COMPARED

WITH THE ORIGINAL VITRUVIAN CATEGORIES (INTRODUCED BY CAPON, 1999B, PP. 349-353,
COMPILED BY MAHMOODI, 2001, P. 55) ... 8

TABLE 2-1- ANALOGUE FORM MAKING THEORIES (EL IRAQI AND EL DALY, 2017) 32
TABLE 2-2 ANALYSIS OF COMMON CONTEMPORARY MOTIFS ... 41
TABLE 5-1 - SAMPLE DATA SHAPE ... 138
TABLE 5-2 - NUMBERS OF SAMPLES AND PARAMETERS THAT AFFECT THE DESIGNS. 139
TABLE 5-3 - FEATURES AND TARGETS OF THE MODEL ... 145
TABLE 5-4 – MACHINE LEARNING PROBLEM TYPES IN THIS STUDY .. 153
TABLE 5-5- DIFFERENT MODELS TRAINED FOR REGRESSION AND CLASSIFICATION TASKS 154
TABLE 6-1- COMPARISON OF THE REGRESSION METRICS BETWEEN THE 9 TRAINED MODELS FOR THE AREAS

SUB-DATA SET .. 160
TABLE 6-2- COMPARISON OF THE REGRESSION METRICS BETWEEN THE 9 TRAINED MODELS FOR THE AREAS

SUB-DATA SET .. 162
TABLE 6-3- COMPARISON OF THE REGRESSION METRICS BETWEEN THE 7 TRAINED MODELS FOR THE

WINDOWS WIDTH SUB-DATA SET .. 165
TABLE 6-4- COMPARISON OF THE CLASSIFICATION METRICS BETWEEN THE 6 TRAINED MODELS FOR THE

WINDOWS EXISTENCE SUB-DATA SET ... 168
TABLE 6-5 – RANDOM FOREST METRICS SCORES FOR ROOFS DATA SET 173
TABLE 6-6 - METRICS COMPARISON BETWEEN DIFFERENT ALGORITHMS TRAINED ON THE WINDOWS

WIDTHS SUB-DATA SET ... 174

xv

Introduction

I. Overview

Architectural design methods commonly employed by architects are often

regarded as vague and difficult to formalize. Among these is the "black

box" design approach, where the generation of design concepts occurs

solely in the architect's mind without external articulation. This approach

aligns with the desire of many architects to express individuality, resulting

in the development of a personal architectural language or style. However,

this individual expression can lead to a degree of repetitiveness, as

architects often reproduce similar forms that reflect their personal design

philosophies (Schön, 1984). Furthermore, the design process itself is

inherently non-linear. It follows a cyclic, iterative pattern in which an

initial concept undergoes continuous development and refinement through

the architect's critical analysis at each stage of the design process. This

iterative nature complicates the explanation and formal documentation of

how the design process functions in practice (Lawson, 2006).

The advent of the digital era has had a profound impact on various fields,

including architecture. Initially, architectural design was conceptualized

through manual sketches on paper. Today, however, architects rely on a

wide range of digital tools and software to translate increasingly complex

ideas, which have been made possible by the development of new

materials and fabrication techniques. These advancements have facilitated

the construction of free-form buildings, once difficult to realize through

traditional methods (Kolarevic, 2003). The digital revolution did not stop

at merely aiding architects in expressing their ideas; it brought about a

significant paradigm shift with the introduction of generative design. In

generative design, software generates numerous design alternatives based

on input variables, constraints, and algorithms. This allows the architect to

explore a vast array of potential solutions, as opposed to manually

developing only a few alternatives (Mitchell, 2005).

This shift has prompted critical debate within the architectural community.

Some argue that manually generating a small number of well-considered

design alternatives is more efficient and professional than sifting through

thousands of machine-generated options, many of which may lack

xvi

 Introduction

coherence or thorough analysis (Oxman, 2017). Moreover, the sheer

volume of alternatives produced through generative design can overwhelm

architects during the decision-making phase, delaying the selection of the

optimal design solution (Duarte, 2001).

However, what if machines were able to produce fewer, but more refined,

alternatives? By incorporating architect-specific variables, constraints, and

algorithms—reflecting the architect’s design logic—it might be possible to

generate fewer, but well-studied, design solutions. Additionally, applying

artificial intelligence (AI) and machine learning (ML) technologies could

enable the machine to "learn" from the architect’s preferences, decisions,

and design style, allowing it to generate outcomes that align more closely

with the architect’s intentions (Gero & Kannengiesser, 2014).

AI has seen rapid advancements across many industries, with an increasing

number of tools becoming publicly accessible. In the field of architecture,

generative AI applications are being explored for a range of tasks, from

conceptual design and visualization to automatic generation of plans

(Burry, 2016). However, generative AI technologies like point-clouds,

voxels, or NeRF models, while effective for visual outputs, often fail to

produce architectural models that are clean and developable. There are

ongoing experiments with non-generative AI applications for tasks such as

material prediction, classification, and urban planning (Peters, 2013).

This research explores the potential of AI and ML in architectural design,

specifically in form-finding and form-making processes. A critical aspect

of this investigation is the translation of architectural style and vocabulary

into quantifiable variables and constraints that can be processed by AI to

generate designs that not only meet technical requirements but also align

with the architect’s creative vision. Moreover, the integration of coding and

algorithms in this framework is analyzed, as it provides a more structured

approach to utilizing ML in the design process. Several ML models are

tested and evaluated to determine their suitability for these applications,

contributing insights into the development of AI-assisted design

frameworks.

xvii

Introduction

II. Problem Definition

Generative design, as beneficial as it might seem, has some shortcomings,

especially in the decision-making phase. In this process, thousands of

variations are produced so that the architect could choose a suitable design

to develop. However, many of these variations might not be reliable nor

logical depending on many aspects like building codes, architectural style,

human behavior, spaces relations, or even architects’ aesthetic sense and

artistic preferences regarding form making. In this manner, architects

might consume a lot of time trying to sort out the best generated ideas for

further studies and design development. In addition, the more the architect

provides the program with constraints and variables, the more ideas the

program will generate leading to more time consumption in the decision-

making phase.

On the other hand, the machine needs a lot of information to sort out the

best alternatives and ignore the ones which do not imply the architect’s

character which shapes his own black box of ideas, id Est, optimizes the

results and so that has a role in the decision-making process leading to a

smaller number of variations with a better design quality rather than a

larger quantity.

The time spent designing a building takes a lot of manhours. Even

designing more prototypes of the building will still take a lot of time

although the style may be already determined.

To utilize AI in time saving, some generative AI models which generates

photos (designs?) of plans and perspectives is present and is being used

extensively by architects nowadays. However, such applications come

with many issues regarding authenticity, creativity, and even functionality

of the result which we argue should not be even considered an architectural

product.

Finally, to automate some tasks in the design phase, some classification

and regression applications have been experimented to predict or classify

materials, architectural parameters, etc. However, we could not trace any

trials to create architectural form models through ML which could be

xviii

 Introduction

directly used in other phases such as schematic design and design

development.

Although AI and ML field is considered highly developed today, many

concepts in this field need to be revisited by architects to harness the power

within the machine in automating time-consuming tasks.

III. Research Aim

This research aims at utilizing ML in decision-making so that the machine

could learn from previous decisions and lower down the probabilities of

the resulting architectural forms by taking on the architect’s character

resulting in models and alternatives close to what the architect could design

with a normal black box design approach. In this sense, the idea of getting

the machine to decide values of architectural parameters which forms a

building model through a framework which utilizes ML is the main aim.

The aim of this research could be achieved through the following

objectives:

• Defining the architectural design process, and architectural design

thinking.

• Defining metaphors in architectural thinking including black box,

glass box, and gray box.

• Investigating and mapping the vocabulary and elements of

contemporary architecture style.

• Applying certain relations between the parameters to form

generative models through coding.

• Investigating AI and ML applications to understand their

capabilities and decide how to benefit from them.

• Defining a framework for decision-making using ML.

• Driving a methodology framework for utilizing ML to generate

designs that are relevant to the architect’s/project’s patterns and

previous choices and preferences took by the architect in this

regard.

xix

Introduction

IV. Research Hypothesis

An architect’s way of thinking is considered a process that could be

traceable in the conception thinking phase (grey box). This process

coupled with the vocabulary of an architectural style could be translated

into parameters that shall combine to produce the result of what occurs in

the mind of the architect in this very process. If these parameters are well

studied and well introduced to the machine through ‘coding’, the machine

could provide relevant and precise generative designs that could speed up

decision-making. In addition, the machine could learn from the architect’s

choices and thus give more precise and more relevant designs either in the

next phase or even the next project. This ML mechanism could take

architecture to a new era of human-machine interactive architectural

conceptualization.

V. Literature Review

This review briefly shows the previous work and research done

considering architectural design methods, contemporary architecture,

generative design, algorithmic design, and applying AI in architecture. The

review includes investigations about different design methods including

the black box and the glass box, explanation of architectural design

literature, explorations in contemporary architecture motifs and finding its

patterns, generative design, and algorithmic design as design methods with

its pros and cons, and different applications and terminology of AI and ML

in architecture field.

- Previous literature regarding architectural design methods:

Since the Greeks, propositional knowledge which asks

epistemological questions about the evidence of asserted claims

and truth, or falsity has been the focus of western philosophical

studies. Design problems which are hard to define according to

Lawson (1980) relate to various epistemological questions and

while designers search for answers in the design process, they

contribute to the interpretation of a design problem. In this process,

designers could modify the rules when processing the information

xx

 Introduction

leading to a paradigmatic revolution where either a new entity

arises, or an entire system falls (Rittel, 1972).

Architectural design has seen many attempts to be defined. It is

defined in terms of certain fields of knowledge as Rowe’s thoughts

of it as being located in an ambivalent position between technical

science and forms of fine art (Rowe, 1987). Vitruvius defined

design as providing three main factors which are firmness,

commodity, and delight. However, the accepted theory of

successful designs evaluation is more likely based on Vitruvius’

three factors, and this is seen in contemporary linguistic studies

using terms which are used by Vitruvius like semantic, pragmatic,

and syntactic.

Architectural design as defined above has five important

components that designers should consider throughout design

process phases. These components are aesthetics, culture,

environment, structure and materials, and economics and social

influence. Also, it has methods which include six approaches:

“black box”, “glass box”, problem structure, control, observation,

and evolution (Broadbent, 1969). Studying these methods is

important to recapture the activities involved with design decision-

making so that architects could follow defined procedures from

formulating a program to achieving an effective and efficient final

solution.

In the “black box” approach, mystery and creativity are the two

main characteristics of the design process. The process usually

occurs in the designer’s mind therefore it is hard to analyze the

design. However, techniques like brainstorming and applying

synetics could help to visualize the process itself.

On the other hand, the “glass box” approach, design is analyzed

based on the logical process and decision sequence of the design.

The process in this case is a sequential events entity including

identification, analysis, synthesis, and evaluation. According to

Broadbent, (1969), this approach could be applied through some

xxi

Introduction

methods including operational research, critical path, systems

analysis, set theory, logical model, “feed-forward”, and design

territory map. Also, in this approach, two distinct design structures

are observed which are a sequential process such as the sequential

structure of the design process with its twelve major chronological

phases included in the handbook from the Royal Institute of British

Architects (RIBA) and an iterative/cyclic process where a feedback

loop before the completion of the project is attached to different

phases as in Levin’s eleven stages in the decision sequence. This

approach has seen criticism because it focuses on art development

rather than concerning for actual buildings’ practical aspects.

The problem structure method is composed of many variations

including morphological analysis, inter-connected decision areas,

decomposition analysis and relational theory. According to

Aismow (1962), the design process is divided into seven phases:

feasibility study, preliminary, detailed design, planning for

production, consumption, and retirement. In the preliminary

design, a best design is identified from a number of alternatives.

However, an evolution of design methods appeared after Popper’s

systems approach to problem solving as well as his philosophy of

science applying the deductive method of testing. Therefore,

architectural design methods could be described as an iterative

process based on trial-and-error which relies on experience,

knowledge, and intuition. And so, According to Rzevski, 1980,

design process has four features: investigative, creative, rational,

and decision-making process. This problem-solving framework

involves four steps which are problem understanding, tentative

solution generation, iterative testing and refining of details, and

finally, design solution outputting. This solution suggests new

design problems in the future.

xxii

 Introduction

- Previous literature regarding generative design and algorithmic

design:

Dorst, K., 2003, explains how design problems in architecture are

open-ended, ill-structured, and unique and how solving such

problems requires problem-specific and experimental

methodology. In this manner, architects are not allowed to solely

rely on predefined methodologies nor approved solutions to similar

problems. Architectural problems are complex and have a wide

range of subconscious factors on various levels that range from

building codes to aesthetic aspects. The complexity of such

problems requires the reasoning, guessing, and intuitive decision-

making of an architect.

In recent years, generative design has evolved when form-finding

techniques were introduced through computational tools. This

approach revolutionized architectural design and production where

new design paths were offered to architects favoring

computationally generated complexities over predictable

relationships between form and presentation. Thus, the emphasis

was shifted from “form making” to “form finding” (Kolarevic,

2003).

According to Agkathidis, A., 2015, generative design could be

described as a method by which the form is generated based on

rules or algorithms which are often derived from computational

tools as processing and scripting platforms. Being influenced by

Jacques Derrida’s deconstruction theory, Peter Eisenman applied

design techniques such as fractals, scaling, overlay, and

superposition in relation to rules of order and thus designed several

projects on this basis. This could be thought of as the first

contemporary generative design attempt before the advent of

digital architecture and various software which offered new

possibilities.

Agakathidis, A., 2015, briefs generative design techniques as:

xxiii

Introduction

1- continuous surface (soft mesh, double-curved shells, and

hyperboloids)

2- Modularity and accumulation (interlocking units and irregular

units)

3- Deformation and subtraction (twisted block and porous space)

4- Algorithmic patterns (tessellated planes and Voronoi surface)

5- Triangulation (3D Penrose pattern and faceted loft).

Generative design is usually criticized for disconnecting the output

from its context and users. This could lead to decreasing spatial

quality and integration of the building within the urban

environment. In addition, it is criticized for disconnecting the

architect from drafting techniques and physical modelling which

once formed the essential foundations of architectural education,

risking the loss of material effects and properties.

Generative algorithms are defined as parametric ways that could

handle geometry in design problems (Khabazi, 2012). Using this

type of algorithms, designers could utilize a lot of possibilities

regarding geometric computing and also manage large amounts of

data and calculations easier than conventional geometry methods.

This approach is not only limited to predetermined experiments but

rather serves the exploration of unlimited potentials. (Gunagama,

2017).

Maldonado, 2014, describes an algorithm as a cooking recipe with

a step-by-step guide. According to this description, an algorithm in

architecture requires limitations in design which are analogous to

the variables and parameters in a cooking recipe. Therefore,

variables and parameters are necessary for an algorithm system. In

this context, variables are entities which change in the system while

the parameters are entities that are used to unify or connect various

variables of an equation (Gunagama, 2017). Gunagama concludes

that despite of the various alternatives that could be developed

through generative design, the breadth of the definition of optimal

xxiv

 Introduction

design as well as the lack of ‘the ability to translate verbal ideas to

mathematical’ could lead to limitation in the resulting alternatives.

Also, according to Singh, V., 2012, adopting generative design

(GD) systems in architecture is meant to support human designers

through computational capabilities as well as automate parts of the

design process. The commonly used generative design techniques

according to him are shape grammars, L-systems, cellular

automata, genetic algorithms, and swarm intelligence. Also, most

of the existing generative design systems are derived from one of

these techniques.

In addition, Krause, J., 2003, experienced the generative design

process in architecture, and described it as a teaching process where

the architect is a teacher, and the computer is the student. Krause

claimed that a person cannot really understand something until he

teaches it to a computer. He described the process steps as follows:

1- Start with a goal.

2- Describe consistencies.

3- Formalize code parts.

4- Set range potential.

5- Evaluate output.

6- Add complexity.

7- Increase tectonic potential.

8- Iterate.

- Previous literature regarding contemporary architecture:

In 1929 Hugh Ferriss published his book The Metropolis of

Tomorrow. He presented designs of various functions imagining

the city of the future. In one of his drawings, Night in the Science

Zone, he presented a skyscraper without any details rising from

amidst the houses surrounding it. He included a poem to this

drawing: “Buildings like crystals. Walls of transparent glass.

xxv

Introduction

Ordinary glass hollow bricks covering the steel grid. Without

Gothic art: without acanthus leaves: without memories of the plant

world. The mineral kingdom. Glittering stalagmites. Forms as cold

as ice. Mathematics. Night in the Science Zone.” These words

formed later the manifesto of the future generations of

expressionist architects.

According to Kozlowski, 2013, the advent of contemporary

expressionism in architecture has seen light through Zaha Hadid’s

design of the Peak Hong Kong Club in 1983. All of the trends like

cubism, futurism, formism, etc. are considered the languages of

‘expressionism’.

Hohenadel, K., 2020, answers the question “what is contemporary

architecture?” as the current style of architecture where building

built according to current trends in a time would be considered

contemporary architecture. The author claims that the

characteristics and elements of contemporary architecture include

curved lines, rounded forms, unconventional volumes, asymmetry,

free-form shapes, open floor plans, large windows, green roofs,

living walls, integration into the surrounding landscape, integrated

smart technologies, and integrated customizable LED lighting. In

addition, flat roofs, geometric simplicity, open spaces,

environmental considerations, and volumes compositions could be

considered motifs of the contemporary architecture.

Reffat, R., 2008, investigated patterns of contemporary architecture

in Saudi Arabia using data mining (DM) techniques. Reffat

suggests that every place gains its character by certain patterns of

events which are not necessarily human events. The elements of

the building (walls, windows, rooms, doors, etc.) repeat a lot, but

they vary every time they occur. Hence, the fact that the elements

themselves vary says that they are not the repeating events. The

events in this case could be the patterns of relationships between

the elements. Each of these patterns is a three-part rule expressing

the relation between context, problem, and solution. The author

xxvi

 Introduction

claimed that traditional methods of data analysis including

spreadsheets and ad-hoc queries were capable of only creating

informative reports from data and could not analyse the contents of

these reports and thus not adequate. So, he used data mining which

is a process which discovers patterns and relationships in data

which may could be used to make valid predictions through a

variety of data analysis tools. Data mining functions were

performed including summarization, association, classification,

prediction, and clustering. The studied building characteristics

regarding form and facades were the organization of the building

(centralized, linear, radial, cluster, or grid), building orientation,

building height, main entry façade direction, fenestration pattern,

shading devices, glazing, building envelope, external finishes, and

façade style. A lot of characteristics were not studied including the

dimensions of glazing, repetitive motifs, and form generation

variables. The data mining process includes data pre-processing

where noisy and incomplete data are removed, data transformation

where data is stored in various tables, and data warehousing, which

is the process of visioning, planning, building, using, managing,

maintaining, and enhancing data bases. Data could be stored in

WEKA’s data warehouse which is composed of ML algorithms for

solving real-world data mining problems. Reffat used WEKA and

IBM intelligent miners for mining the data.

- Previous literature regarding AI and ML:

On the other hand, the advent of AI in the world has affected a lot

of fields including architecture. Applying AI in the architectural

discipline has been investigated in many research and experiments

recently.

Chaillou, S., 2019, studied the application of AI to floor plans

generation and analysis. The goal took the usual sequence of AI

applications in the architectural field which has 3 steps: generation,

classification, and presentation where users can browse through the

generated design alternatives. However, their study dealt with the

xxvii

Introduction

design process as a sequential process with successive design steps

which contradicts with the cyclical nature of the design process

where a designer thinks, analyses, develops, and analyses again

until a satisfying and problem-solving solution appears. The

researcher used two of AI’s main fields of investigation in their

study: analytics and generative adversarial neural networks (GAN).

The GANs -as any machine-learning model- could learn

statistically significant phenomena among data presented to them.

However, their structure is made of two key models which are the

Generator and the Discriminator. GANs could generate a loop

between the two models to refine their relevant images generation

ability. The Discriminator works to recognize images from a set of

data. On the other hand, the Generator works in creating images

which resemble images from the same dataset. In this study, the

machine took 250 iterations to be able to build some sort of

intuition for itself after being trained for a day and a half. Before

those iterations, the initial attempts were imprecise. In order to

qualify the results, 6 aspects of the floor plan design were used as

metrics including footprint and orientation. Each metric is

translated to numbers, colours, or matrices to establish a proper

communication with the computer about its characteristics and

shape. From this study, the qualifying or classification phase is a

crucial phase in AI applications because the finer the metrics are

provided, the better and higher will the quality of the generated

options be.

Also, Zheng, H., 2018, and Martinez, N., 2017, investigated GANs

as design assistants where they studied the idea of creating a loop

between the designer and the machine to refine the design process.

According to Malaeb, J., and Ma, W., 2019, the developed

understanding of how human brain works led to changes in the

concept of AI where a machine focuses on mapping human

behavior rather than only carrying out complex calculations and

working as a memory. AI mostly works with deep learning and

natural language processing technologies. By processing large

xxviii

 Introduction

amounts of data and classifying it based on patterns recognition,

machines could be trained to accomplish specific tasks. The

authors mention that various attempts to introduce AI to the

architectural field exist. However, most of the trials are partially

applying AI because they require human intervention and

monitoring to do a major part of the work. Again, the authors

confirm a main concern with AI where data inaccuracies always

reflect on the results. That is why limitations of AI in creative fields

are obvious where a machine learns from data. In addition, the

authors tackled deep learning and explained that it involves feeding

the machine with a lot of data that could help making decisions

about other data. The data is fed through neural networks which

could extract numerical values of the data which pass through them

and then classify the data according to the answers received.

Also, Bishop, 2006, defines ML as a subset of AI. It is “the

scientific study of algorithms and statistical models that computer

systems use to perform a specific task without using explicit

instructions, relying on patterns and inference instead.” A

mathematical model based on sample data known as “training data”

is built by ML algorithms. This model helps to make predictions or

decisions without being explicitly programmed to perform the task.

Last but not least, As, I., et. al., 2018, tackled the idea of applying

deep neural network (DNN) to extract design into essential

building blocks based on functional performance criteria and then

recombining them into new designs. The idea is based on a

historical event from the 16th century in Spain where the Italian

architect Giacomo Barozzi da Vignola was hired by the king Philip

II to initiate a competition to design a monastery in Madrid. 22

architects submitted their entries, but Vignola composed a new

design from the 22 submitted designs by collaging bits and pieces

instead of choosing a winning project. However, the king was

impressed although the idea does not seem to be ethical in today’s

profession’s morals. The authors investigated two ML methods for

design generation which are DNNs for convolution and

xxix

Introduction

representation learning and GANs. In the first method, a graph

convolutional neural network is used to discover essential building

blocks which respond to certain functional criteria. After that, the

building blocks are merged into new designs with the use of graph-

theory methods and data about the proximity of nodes in latent

vector embeddings. However, DNNs are not set up to generate new

designs, instead, they are very effective at classification and

discovery. The second method (GANs) is considered a new version

of DNNs which the authors used to merge building blocks into new

compositions. At the end, the researchers confirmed the initial

validation of graph-processing DNNs in generating novel

conceptual designs although some limitations and constraints were

faced including the complexity of architecture field (design scope)

where they only focused on the function and not the aesthetical and

structural aspects, design data work where some design samples

could not be labelled nor converted to graphs on Revit API’s BIM

format, and the evaluation of generated designs where the authors

did not deal with quantitative evaluation of the new compositions.

As, I., et. al., 2018, also suggest non-manifold topology as an

alternative method to graph presentation which could allow the

representation of walls, corridors, and enclosed spaces by

topological objects like faces, shells, and cells.

VI. Research Methods and Tools

The research goes through different successive methodologies to achieve

its aim and objectives. These methodologies are:

Methodology Application

Critical

Analysis

Defining thinking and problem-solving

Defining architectural thinking

Investigating complexities in architectural design

Analyzing the design process and form generation

Mapping contemporary architecture patterns and motifs

Investigating generative design and algorithmic design

xxx

 Introduction

Investigating AI and ML definitions, types, and

applications

Case Studies Analyzing AI and ML applications in architecture

Experiments

Turning the elements of a building into parameters

through algorithms building.

Writing a generative design program through coding

Generating a parameters data set that could be used to

train ML models

Identifying the problems and deciding the proper ML

models and tasks

Applying ML so that the machine could learn from the

architect by mapping the data set and predict/classify the

parameters of the building under study

Applying coding to fine-tune the resulting 3d-model so

that the architect can interfere in both teaching the

machine and modifying the result easily.

VII. Research Scope & Limitations

This research is directed towards investigating ML supervised learning

models specifically from AI models. ML models could predict, classify, or

cluster data based on the data sets they learn from. So, models do not

‘generate’ new data but generalize to unseen data based on mathematical

concepts from linear algebra, numeric methods, and optimization.

Supervised learning is chosen so that the machine can predict numbers and

classes which map to architectural parameters defined by the architect as

the framework targets a human-centered design approach. Other

applications like clustering could not help with the intended product.

However, a wider spectrum of AI models is investigated to understand and

analyze the differences between generative and discriminative AI in terms

of concepts and applications.

In addition, as this type of application’s result could be considered

‘generative design’, analysis of how generative design systems work is

necessary to gain insights about how ML applications could be different.

xxxi

Introduction

To work with ML, it is recommended that architectural design modeling

be done through coding, so, the research is also directed towards a

thorough study on how to harness the power and freedom of coding in form

generation. The suggested framework allows the architect to create design

options as samples used for training. The architect’s designs (data set)

totally depend on their choice. In this case the architect should judge those

designs themselves because whatever the data set looks like, if a pattern

exists between the building requirements and target building parameters,

the framework should work as intended, and the accuracy of ML models

should be high. To test the framework, a contemporary building is designed

and modelled through coding in C# in Grasshopper3d for Rhinoceros3d 7

using RhinoCommon API which were chosen for the fast interface and

processing of algorithms. Other software could have resulted in the same

result.

For simplicity in the framework’s validation stage in this research, the

result from this first step is a data set containing tangible form proportions-

related parameters values of 600 prototypes of the contemporary villa

consciously designed by the author (an architect) based on some cases

related to the total built-up area which ranges between 200 and 1000 m2,

the neighbor types, setbacks, land dimensions, and other scenarios. The

villa was chosen to have a ‘contemporary’ style for ease of geometry in

building and coding as the main concept is to find a relationship between

almost a hundred of parameters of the villa, and to train the ML system and

test if it could find a pattern between them. For the sake of simplicity, the

location of the villa (country) was not included in the equation.

Different ML and ANN algorithms were tested for both classification and

regression tasks which were assigned to either predict values of the

parameters or to classify some parameters and achieve the aim of the

research.

xxxii

 Introduction

VIII. Research Structure

Part Chapter Chapter Subtitles Methodology

P
a
rt

 1
:

A
rc

h
it

ec
tu

ra
l

D
es

ig
n

 P
ro

ce
ss

 f
ro

m
 A

rc
h

it
ec

ts
 t

o
 M

a
ch

in
es

C
h

a
p

te
r

1
:

A
rc

h
it

ec
tu

ra
l

D
es

ig
n
 T

h
in

k
in

g
 a

n
d

 P
ro

ce
ss

1- Thinking and Problem-

Solving

2- Architectural Design

Thinking

3- The Black Box vs the Glass

Box vs the Gray Box

Metaphors

4- Design Methodologies

5- Architectural Design

Process

6- New Technologies Effects on

the Design Process

7- Complexities in

Architectural Design

8- Evaluation of Architectural

Design Outcome

C
ri

ti
ca

l
A

n
a
ly

si
s

a
n
d
 C

a
se

 S
tu

d
ie

s

C
h

a
p

te
r

2
:

M
ap

p
in

g
 t

h
e

E
le

m
en

ts

o
f

F
o
rm

s
in

A
rc

h
it

ec
tu

re

1- Characteristics of

Architectural Forms

2- Form Generation in

Architectural Design

3- Mapping and Analyzing the

Elements and Motifs of

Contemporary Forms

xxxiii

Introduction

C
h

a
p

te
r

3
:

C
o
d
in

g
 i

n
 C

o
m

p
u
ta

ti
o
n
al

 D
es

ig
n
:

A
 B

as
e

fo
r

U
ti

li
zi

n
g

A
I

in
 F

o
rm

 F
in

d
in

g

1- Computational Design

thinking

2- The Roots of Computational

Design

3- A Taxonomy of

Computational Design

Terms

4- Generative Form Finding

5- Architectural Forms as

Information

6- Coding as a Practice

7- How Modeling Software

Work

8- Visual Programming

Languages

9- Bias in Modeling Processes

and Leveraging Power,

Freedom, and Spruceness of

Coding

P
a
rt

 2
:

In
te

g
ra

ti
n

g
 A

I
in

 t
h

e
A

rc
h

it
ec

tu
ra

l
D

es
ig

n

P
ro

ce
ss

C
h

a
p

te
r

4
:

A
rt

if
ic

ia
l

In
te

ll
ig

en
ce

 a
n

d
 M

ac
h
in

e
L

ea
rn

in
g
 i

n
 A

rc
h
it

ec
tu

re
 1- AI Definition and History

2- Types and Applications of AI

3- Generative and Non-

Generative AI

4- Machine Learning

Definition and Types

5- Data Sets in Machine

Learning

6- Machine Learning

Algorithms

7- A Review on Using Non-Gen

AI in Architecture

8- A Review on Using Gen AI

in Architecture

9- Generative AI Drawbacks in

Architectural Design

10- Generative and Non-

Generative AI Usage

Possibilities in Architectural

Design

C
ri

ti
ca

l
A

n
a
ly

si
s

a
n

d
 C

a
se

 S
tu

d
ie

s

xxxiv

 Introduction

Chapter 5:

Architectural

Form

Generation:

Applying

Machine

Learning

Algorithms

on

Architectural

Parameters

Data Sets

1- Problem Definition, Scope,

And Limitation

2- Materials and Methods

3- Coding an Architectural

Design Model

4- Generating a Machine-

Learning Ready Data Set

5- Data Correlations

6- Data Pre-Processing

7- Data Splitting and Choosing

Features and Targets

8- Data Resampling

9- Train-Test Splitting

10- Training Models

E
xp

er
im

en
ts

Chapter 6:

Machine

Learning

Analysis and

Results

1- Feature Importance

2- Evaluation Metrics

3- Model Learning Analysis

4- Predictions

5- Model Fine-Tuning

6- Discussion and Conclusion

Research Conclusion and Future Direction

xxxv

Introduction

I. Framework of the Study

Suggested Machine Learning Framework for Regression and Classification Tasks in Architectural

Design Modeling - By the Author

36

Part 1: Architectural Design Process from

Architects to Machines

1

 Chapter 1

Chapter 1: Architectural Design Thinking and

Process

Preface

Architectural design is a very complicated process which exhibits a very

large number of parameters and possibilities. In his book “How Designers

Think”, Bryan Lawson argues that the essence of design necessitates

different ways of thinking. As the author describes, thinking could be either

in closed systems or adventurous. But with all the parameters that affect

architects’ decisions and ways of thinking, how is it possible to map every

idea that sparks in the designers’ brain or even the design process? Those

parameters can be quantitative as the legal constraints, technical aspects,

financial aspects, and clients’ desired number of rooms in a building. And

they can be qualitative including architectural theories, psychological

factors, architects’ philosophical approaches, and aesthetical aspects which

usually depend on the designer’s favored architectural style, language, and

motifs.

Architectural innovation has always drawn inspiration from the concealed

depths of black boxes as well as the transparent clarity of glass boxes. And

the design thinking process in architecture, often considered a vague

merger of intuition, expertise, and inspiration, has been metaphorically

likened to a black box – a mysterious entity in which decisions are made

and ideas take shape, shielded from external scrutiny. Yet, counter to this

notion is the transparent principles of the glass box, where design decisions

are laid bare for all to witness, fostering collaboration, critique, and shared

understanding.

This chapter explores what architectural design thinking is through an

investigation of different design thinking styles and design types as well as

how to define good architecture. Different complexities in design thinking

are explained leading to the important questioning of whether architectural

design thinking should be encapsulated in a black box or a glass box after

explaining the two metaphors. This chapter is an invitation to critically

reflect on the metaphors that define the understanding of the architectural

2

 Architectural Design Thinking and Process

design process. It challenges preconceived notions, encourages thoughtful

examination, and paves the way for a deeper comprehension of the

multifaceted nature of design thinking in architecture.

Design is a strategic approach to problem-solving, leveraging creative

abilities that integrate elements from both the arts and sciences to address

diverse challenges. While designers employ various problem-solving

methods, they typically adhere to an established pattern or sequence of

steps that have proven effective in realizing designs from the initial

concept to their completion. Whether performed consciously or

subconsciously, the design process is a fundamental aspect integral to

nearly every project.

In the realm of architecture, the design process and methodology play a

crucial role in crafting innovative solutions. Numerous studies have delved

into design methodologies, engaging in critical analysis, evaluation,

comparison, and the proposition of alternative approaches for creative

problem-solving. These studies serve a dual purpose: assisting designers

in understanding their distinctive styles and presenting novel options for

achieving solutions.

The stimulus for such research lies in recognizing that each architect

operates within their unique conceptual frameworks. These frameworks

not only aid in setting boundaries and defining objectives but also enhance

communication within extensive networks of collaborators. In summary,

the passage underscores the structured yet creative essence of the design

process and emphasizes ongoing efforts to refine it through

methodological exploration.

In this chapter, the term architectural design process is explained, and

different methodologies are discussed. Also, the effects of other disciplines

on the process are discussed as well as the effects of today’s technology on

different architectural design processes.

1.1 Thinking and problem-solving

Understanding the design process requires insight into human cognition

and thinking, as highlighted by Lawson (1990) and Caldwell, et. Al.

3

 Chapter 1

(2000). Psychologists believe creativity is linked to brain function and

neural processes, with individuals varying in their cognitive wiring. Since

ancient times, the debate over the origins of knowledge—whether it is

acquired through experience (empiricism) or inherent (nativism)—has

intrigued thinkers like Plato and Aristotle. Rowe (1987) identifies two

themes in problem-solving: one grounded in mental processes governed by

lawlike relationships and the other in behavioral, non-mentalistic terms.

The evolution of design thought in architecture has been shaped by five

key psychological perspectives: Associationism, The Wurzburg School,

The Gestalt Movement, Behaviorism, and Cognitivism.

Associationism viewed creative problem-solving as mechanistic and

atomistic, while The Wurzburg School, led by Kulpe, emphasized task-

oriented act theories, influencing principles like Sullivan's "form follows

function." The Gestalt movement introduced holistic principles,

emphasizing whole units in perception and problem-solving, impacting

architectural design through comprehensive images. Behaviorism focused

on observable behavior and stimulus-response models, influencing

practical approaches like climate-responsive design. Cognitivism,

integrating Gestalt psychology, views the mind as an information

processor, relevant in the modern context due to the complexity and

volume of information in contemporary design projects (Mahmoodi,

2001).

Thinking styles are diverse and categorized into problem-directed,

undirected, and creative thinking (Gilhooly, 1996). Directed thinking

involves solving well-defined problems using state-action or problem

reduction methods. Undirected thinking, such as daydreaming, often

occurs in the pre-concept phase, potentially leading to innovative design

ideas. Creative thinking, characterized by Wallas (1926) in four phases—

Preparation, Incubation, Illumination, and Verification—generates novel

and valuable products. Styles of thinking, defined as preferred ways of

thinking (Mahmoodi, 2001), vary among individuals, with societal

perceptions of capability influenced by the fit between thinking styles and

tasks. Exploring these styles enhances the understanding of how

architectural designers approach problem-solving.

4

 Architectural Design Thinking and Process

Table 1-1 summarizes thinking styles using Sternberg's (1997) metaphor

of governments, which have diverse functions (legislative, executive,

judicial), forms (monarchic, hierarchic, oligarchic, anarchic), levels

(global, local), orientations (external, internal), and leanings (liberal,

conservative). Similarly, styles should consider these various aspects of

individual functioning.

Table 1-1 Summary of Styles of Thinking (Sternberg, 1997, p. 27)

Functions Forms Levels Scope Leanings

Legislative

Executive

Judicial

Monarchic

Hierarchic

Oligarchic

Anarchic

Global

Local

Internal

External

Liberal

Conservative

Mental self-government has three functions—Legislative (creating rules),

Executive (following rules), and Judicial (evaluating rules)—and

manifests in styles akin to government forms: monarchic (focused),

hierarchic (priority-setting), oligarchic (balancing goals), and anarchic

(creative). These styles vary by level, with global thinkers addressing

abstract issues and local thinkers focusing on details; by scope, with

internal thinkers being introverted and task-oriented, and external thinkers

being extroverted and people-oriented; and by leaning, with liberals

seeking change and conservatives preferring structure.

Since classical times, it has long been recognized that the human brain

possesses two distinct modes of thinking and understanding (Table 1-2).

Table 1-2 Two Types of Thinking described by intellectuals (URL-2, CaldwelJ, et al., 2000)

 Left Brain Right Brain

Maslow Rational Intuitive

Bruner Rational Metaphoric

Koestler Associative Thinking Bisociative Thinking

De Bono Vertical Horizontal or Lateral

Bronowski Deductive Imaginative

5

 Chapter 1

Shopenhauer Objective Subjective

Freud Secondary Process Primary Process

Jung Causal Acausal

Langer Discursive Symbolism Presentational Symbolism

Neisser Sequential Processing Multiple Processing

Kubie Conscious Processing Preconscious Processing

The human brain consists of two cerebral hemispheres (Figure 1-1), with

the left hemisphere typically dominant. The left hemisphere is slightly

larger, and the two are connected by the Corpus Callosum. Roger Sperry's

split-brain experiments in the 1950s revealed distinct functions for the left

and right hemispheres, each controlling the opposite side of the body.

Figure 1-1 Cerebral Cortex (Human Brain) - https://my.clevelandclinic.org/health/articles/23073-

cerebral-cortex (Last Access: 14/11/2023)

Different brain regions process information differently, with visual word

perception and word meaning involving distinct areas. Human actions and

thoughts are controlled by one dominant hemisphere. Initially, hemispheric

differences were thought to be based on behavior modality, with the left

hemisphere specialized for language and reasoning, and the right for music

6

 Architectural Design Thinking and Process

and vision. This evolved into a distinction between a "rational" left

hemisphere and an "intuitive" right hemisphere. More recently, discussions

emphasize a "left-analytic" and "right-holistic" mode of information

processing, suggesting each hemisphere has a distinct cognitive style. The

left is associated with sequential, analytic thinking, common in Western

societies, while the right is linked to holistic, intuitive thinking, more

prevalent in Eastern cultures and religions (McGilchrist, I., 2009).

The present discussions on hemisphere characteristics should not imply

that thinking activities are exclusively determined by either the left or right

hemisphere. The design process benefits from the interaction between the

two hemispheres, leading to well-rounded thoughts and actions.

According to Tovey (1984), designing and problem-solving engage both

hemispheres by matching analytically processed problem models with

holistically processed solution patterns. Evidence indicates that both

hemispheres contribute in parallel during higher-level mental activities,

exchanging information. Both types of thinking are crucial in addressing

design problems, but the dominant hemisphere may vary based on the

adopted strategy.

Understanding how the human brain thinks remains a crucial subject that

helps us to understand how any thinking or problem-solving process

occurs in the human’s mind. From a further perspective, understanding

how architects think and solve problems will be a very important

discussion in the coming years because of the spread of AI applications in

architectural design recently which will have higher chances to be

developed once frameworks of how architects think are developed, AI can

learn from these frameworks and act accordingly.

1.2 Architectural design thinking

Architectural design involves solving diverse problems, including site

issues, social effects, space planning, construction technologies,

environmental aspects, legal constraints, and cost. This process requires

thinking skills like analysis, synthesis, and evaluation, encompassing both

well-defined and ill-defined aspects. Not all problem-solving thoughts are

7

 Chapter 1

documented; some remain in the architect's mind until a complete solution

emerges. Definitions of architecture vary, often blending art and science.

Influential figures like John Ruskin, Le Corbusier, Louis Kahn, and Norval

White emphasize both the physical and mental aspects of architecture.

Ruskin and William Morris view architecture as Building + Art. Conway

and Roenisch (1994) note its Greek origin meaning 'builder,' yet

architecture is broader, affecting social, cultural, and economic aspects.

Capon (1999) categorizes architecture using Aristotle's six categories:

Substance (construction), Relation (context), Quantity (form), Quality

(meaning), Acting, and being Acted upon. This multi-disciplinary identity

shapes lives and societies, requiring characteristics like uniqueness and

positive psychological impacts. Capon organizes the six elements of good

architecture into two main categories as in table 1-3.

Table 1-3 - Capon's categorization of the six elements of good architecture (Capon, 1999a, P. 181)

Primary Categories

Greek categories Architectural elements

Quantity

Activity

Quality

Form., Pattern, Structure, Geometry, etc.

Function, Needs, Effects, Exchange, etc.

Meaning, Association, Resemblance,

Style, etc.

Secondary Categories

Substance

Relation

Will

Construction, Materials, Design, etc.

Context, Community, Nature, Feeling, etc.

Spirit, Power, Politics, Attitudes, etc.

Capon (1999a) examines Aristotle's categories of good in architecture by

aligning them with ancient Greek virtues and professional practice values.

He identifies two main categories: Primary and Secondary. The primary

category aligns Greek virtues such as Justice, Temperance, and Wisdom

with professional values like Impartiality, Efficiency, and Integrity. The

secondary category connects virtues like Duty, Love, and Courage with

values such as Responsibility, Respect, and Motivation.

8

 Architectural Design Thinking and Process

Capon builds on these models by incorporating Aristotle's principles of

good performance into six architectural principles, categorized into

primary and secondary elements. Primary principles include:

1. Impartiality of Form: Objectivity in form.

2. Efficiency of Function: Efficiency and economy in function.

3. Integrity of Meaning: Propriety and integrity in meaning.

Secondary principles are:

4. Obligations of Construction: Responsibility in design and

construction.

5. Regard for Context: Sympathy for context and community.

6. Motivation of Spirit: Motivation and conviction in will and spirit.

In the second volume of his book, Capon examines definitions of

architecture provided by several 20th-century architects across different

years and texts. He endeavors to categorize their perspectives under the

three Vitruvian categories, as outlined in Capon (1999a). Mahmoodi, 2001

compiled the definitions as in table 1-4:

Table 1-4 Definition of 20· century architects of architecture. These terms are compared with the

original Vitruvian categories (Introduced by Capon, 1999b, pp. 349-353, compiled by Mahmoodi,

2001, p. 55)

Vitruvius,
+ 2OOO years

ago

Firmittas

(Firmness)

Utilitas

(Commodity)

Venstustas

(Delight)

Geoffrey

Scott, 1914

Construction Convenience Aesthetics

Auguste

Perret, 1923

Material Use Beauty

Le Corbusier,

1923

Construction Utilitarian needs Custom/tradition

Le Corbusier,

1923

Construction Needs Mathematics/harmony

Le Corbusier,

1923

Constructing Living Conceiving

Le Corbusier,
1923

Economy Sociology Aesthetics

9

 Chapter 1

Walter

Gropius, 1924

Technology Economy Form

Walter

Gropius, 1924

Construction Economy Design

Walter

Gropius, 1924

Technical Economic Aesthetic

Walter

Gropius, 1924

Technical Social Aesthetic

Walter

Gropius, 1924

Structure Function Intellect

Ludwig Mies

van der Rohe,

1928

Technical Economic Cultural

Ludwig Mies

van der Rohe,

1928

Material Functional Spiritual

Ludwig Mies

van der Rohe

Technical Economic Architectural

ASNOVA,

1931

Technical

plausibility

Economic

feasibility

Plastic expression

Nikolaus

Pevsner, 1943

Construction Function Style

Reyner Ban

bam, 1960

Structural Social Academic

L. Benevolo,

1960

Technical Social Cultural

Christian

Norberg-

Schulz,

(1963)

Technical Functional Aesthetic

Christian

Norberg-

Schulz

Physical Social Cultural

Christian

Norberg-

Schulz

Techniques Building task Form/semantics

Robert

Venturi, 1966

Structure Programme Expression

N. L. Park,

1968

Construction Function Aesthetics

N. L. Park,

1968

Physical Behavioural Conceptual

George Baird,
1969

Technique Function Form

10

 Architectural Design Thinking and Process

Charles Jenks,

1969

Technics Function Form

L Ligo, 1974 Technics Function Form

David Canter,

1977

Physical

attributes

Actions Conceptions

R. Krier, 1982 Construction Function Form

M. Foster,

1983

Structure Design Style

The prevailing definitions concerning the three Vitruvian categories are as

follows: Firmness aligns most closely with aspects like construction and

technique; Commodity relates primarily to economic and social

considerations; and Delight pertains to the formal and aesthetic aspects of

architecture. The only concern in Capon’s studies was referencing to

Vitruvius’: Firmitas (firmness), Utilitas (commodity), and Vensutas

(delight) because the three elements are seen as complementary to each

other rather than separable. If delight is separated from commodity, it could

imply that delight serves no fundamental purpose. In addition, firmness

and commodity are considered main contributors to delight. And in this

sense, architectural design thinking is involved with problems that are

related to those three cores. Although, the three cores are redescribed from

time to time, they remain the main cores to assess an architectural design

either as good one or not from a general perspective.

Lawson (1990) argues that architectural design defies strict boundaries,

involving subjective value judgments and a blend of problem discovery

and resolution. Mahmoodi (2001) suggests that despite its intuitive nature,

design approaches can be categorized by types. Broadbent's (1988)

comprehensive categorization includes Pragmatic, Typologic, Analogic,

and Syntactic Design. Pragmatic Design employs trial-and-error processes

based on physical factors, while Typologic (iconic) Design utilizes pre-

established solutions. Analogic Design draws inspiration from various

sources to foster new insights, while Syntactic Design (canonic) operates

within rule-based systems, often geometric. Mahmoodi notes that

architects often combine multiple design types within a project to address

unique challenges effectively.

11

 Chapter 1

1.3 The black box vs the glass box vs the grey box metaphors

Creative activities within the design process unfold organically, reflecting

its iterative and dynamic nature (Lawson, 1993; Lang, 1987; Broadbent,

1969). Designers engage in continuous exploration, synthesizing diverse

information, making intuitive leaps, and forging unexpected connections

to generate innovative solutions. Bruno Latour's metaphorical concept of

the black box, introduced in 1987, symbolizes encapsulated knowledge

known to specialists but often perceived as unknowable (Latour, 1987).

Black boxes serve as ready-made solutions, offering practical outcomes

without necessitating exhaustive internal understanding (Witt, 2018).

Norbert Wiener's dichotomy of black and glass boxes underscores the

trade-off between usability and comprehensive understanding in design

operations. The "black box" approach, as elucidated by Lawson (1993) and

echoed by Lang (1987) and Broadbent (1969), conceptualizes design as an

abstract and internalized mental activity. This perspective highlights

design's multifaceted and subjective nature, encouraging the use of

techniques like brainstorming and synectics to illuminate the creative

process (Lawson, 1993). Within this framework, the design process is seen

as a complex interplay between analytical and holistic thinking, involving

the integration of problem models with visual-spatial and symbolically

coded solution patterns (Tovey, 1984).The "black box" approach to design

refers to viewing the creative and mysterious aspects of the design process

as an abstract and internalized mental activity within the designer. In this

perspective, design is seen as a complex and subjective process that defies

easy analysis. While traditional analytical methods may struggle to dissect

the intricacies of design thinking, techniques like brainstorming and the

application of synectics are considered helpful in providing a glimpse into

the visualization and ideation aspects of the design process.

Throughout history, designers have fluctuated between black boxing and

glass boxing in their relationship with mathematics, representing informed

action (glassboxing) and pragmatic approaches (blackboxing) (Witt,

2018). The "glass box" (glass box) design method, emphasized by

Broadbent (1969) and Archer (1969), analyzes the design process

12

 Architectural Design Thinking and Process

systematically, considering identifiable events such as identification,

analysis, synthesis, and evaluation. This approach utilizes various methods

like systems analysis and set theory, providing a logical framework for

problem-solving. Figure 1-2 shows the design process as proposed by

Archer, 1969.

Figure 1-2 Design process (Archer, 1969, p.94 and p.100)

The "glass box" design approach was criticized by Sullivan and Hillier

(1972) for prioritizing artistic development over building quality. In

response, the evolution of design methods integrates concepts from

Popper's philosophy of science, emphasizing conjecture and refutation to

bridge the gap between science and art in the design process.

In 2018, Witt., A., wrote in Log Journal vol 43 introducing a new term

called ‘greyboxing’. Witt introduced the concept of "greyboxing,"

highlighting its significance in contemporary software development,

particularly in the integration of mathematical techniques into digital

design. Grey boxing involves orchestrating combinations of black and

glass boxes to create novel functions, offering a unique perspective on how

mathematical ideas infiltrate architecture. This approach, reminiscent of

architecture's historical assimilation of mathematical techniques,

facilitates the creation of new operational networks by opportunistically

appropriating instrumental knowledge without requiring exhaustive

technical understanding.

13

 Chapter 1

In the current digital landscape, the use of neural networks exemplifies the

gray boxing approach, where the network extracts formal rules from a

diverse collection of images to generate novel architectural forms. The

process involves navigating through layers of black boxes, emphasizing

the importance of curated training sets as a common currency for distilling

formal rules. Witt positions these techniques within the broader context of

black boxing, gray boxing, and glass boxing approaches in design history,

underscoring their enduring relevance and adaptability across disciplines.

In general, Witt’s description paints grayboxing as a resilient and effective

strategy, allowing for creative adaptation and integration of mathematical

concepts, computer science, AI., and many other fields into the design

process.

1.4 Design methodologies

Mahmoodi (2001) distinguishes between 'design methods' and 'design

methodology', where the former refers to techniques and procedures, while

the latter encompasses the broader strategy and process of applying these

methods within the realms of analysis, synthesis, and evaluation.

Architecture history traces back the concept of architectural designing to

Vitruvius, with later contributions from Alberti (1485), Descartes (1637),

Laugier (1753), and Le Corbusier (1923), each emphasizing aspects of

problem-solving, decomposition, and composition in the design process.

Contemporary architects and critics view the design process as a blend of

reason and intuition, described as "learning-by-doing" (Grant, 1975, 1982;

Schon, 1984). Today, the focus is on incorporating user behavior and

enhancing the built environment for sustainability, with Mahmoodi

identifying two major models of design methodologies: 'the systematic

model' and 'the environmental model'.

The systematic model

Throughout history, societal shifts have significantly influenced the design

process. In the Middle Ages, architecture revolved around religious

buildings, while today, civic and business structures dominate urban

landscapes. Post-World Wars, Modernism emerged, emphasizing

simplicity and speed. Mahmoodi (2001) introduced the "stage-phase

14

 Architectural Design Thinking and Process

approach" in design methodology, influenced by Green (1962), Cutler and

Cutler (1982), and others. Broadbent (1973) highlighted engineering's

impact on design theory, while Asimow (1962) outlined problem-solving

phases. Gugelot (1963) introduced a six-stage method for design

education. The AIA's model (Duerk, 1993) includes Pre-Design,

Schematic Design, and other steps. Salvadori (1974) divided architectural

praxis into Programming, Schematic, and other phases. Duerk (1993)

emphasized interactive processes between Analysis, Synthesis, and

Evaluation. Figure 1-3 shows the proposed design process by Duerk

(1993).

Figure 1-3 The Design Process: Analysis, Synthesis, and Evaluation (Duerk 1993, p. 18)

As seen from the figure, Duerk’s model suggests cyclical relation between

activities with no order of priorities. In addition, the model separates the

activities each set in its own category where this does not meet what

happens in practice where many activities are inseparable.

Advancements in technology with the introduction of Building

Information Modeling (BIM) has reshaped the design process in the AEC

15

 Chapter 1

industry. BIM integrates inputs from all disciplines involved in a project,

facilitating synthesis, analysis, and evaluation in a unified framework.

Optimization techniques are applied to various design aspects, such as

views, structure, daylighting, and ventilation. This integrated approach

emphasizes the importance of rational decision-making in the design

process.

In the 1960s, early environmental design models leaned towards discrete,

sequential decision processes influenced by "rational" decision-making

models (Simon, 1957, 1960, 1969). Newell, Shaw, and Simon's 1957 paper

introduced the information processing theory, emphasizing cognitive

processes (Rowe, 1987). Lang (1987) highlights Studer's (1970) model,

focusing on defining function, designing form, building, and evaluating.

Computer-aided design approaches, like ICADS, emerged, emphasizing

collaborative decision-support systems. Mahmoodi (2001) criticizes

overreliance on computer systems in design, advocating for human

involvement in decision-making.

The environmental model

According to Mahmoodi (2001), the 'environmental model' in design

methodology incorporates environmental considerations and human

sciences. Lang (1987) advocates for an argumentative design process,

delineating phases like Intelligence, Design, Choice, Implementation, and

Post-implementation Evaluation. This mirrors professional praxis, which

includes Programming, Design, Evaluation and Decision, Construction,

and Post-occupancy Evaluation (Lang, 1987). Intelligence activities in

design involve problem identification and understanding, goal

formulation, and environmental evaluation (Lang, 1987). Mahmoodi

(2021) supports the environmental approach, stressing the context-

dependent nature of problem perceptions and definitions. However,

criticisms include the perceived linearity of the model, even in its

interactive form (Mahmoodi, 2001). Another model by Professor

Broadbent (1988) incorporates Popper's (1963) "conjecture" and

"refutations." The model explores different design types (conjectures),

including Pragmatic, Typologic, Analogic, and Syntactic Design. It also

16

 Architectural Design Thinking and Process

examines the fit of spaces to activities, environmental filtering, cultural

symbolism, and environmental impact (refutations) (figure 1-4).

Figure 1-4 The environmental model of the design process (Broadbent, 1988, p. 467)

Professor Broadbent (1988, p.459) clarifies that his model of the design

process deviates from so-called "linear" models. Instead, he describes it as

a "map" of the "design territory." Later in the same text, he emphasizes that

the design process is not confined to a linear sequence and can commence

at any point within his model.

Broadbent's latest proposal reflects the contemporary architectural design

process, involving iterative analysis and evaluation after each design

iteration. Stakeholders assess various aspects like environmental, social,

aesthetic, functional, cultural, and economic factors until the building's

performance is reviewed and decisions are made.

1.5 Architectural design process

Design process methodology, established as a distinct discipline in the

1960s, has evolved beyond traditional approaches like 'drawings and

17

 Chapter 1

patterns.' Although these conventional methods persist, the field has

embraced more diverse and advanced techniques.

As design methodology gained recognition as an independent field,

scholars like J. Christopher Jones, in his 1980 book "Design Methods:

Seeds of Human Future," highlighted the intricacies of the design process.

Jones identified three key operations: gathering information, testing design

decisions, and evaluating their appropriateness. He also categorized the

design process into unconscious and conscious intellectual activities,

tapping into both intuitive and rational thinking.

Architectural design profoundly influences project outcomes, shaping

functionality, aesthetics, user experience, and sustainability. Decisions

made during design impact budget, regulations, and adaptability.

Collaborative approaches are crucial for success.

Design, as discussed by Chandrasegaran, Kisselburgh, & Ramani (2012),

is an iterative process aiming to achieve functionality through form

proposal and analysis. However, in the contemporary context, design

expands beyond functionality, integrating intellect and technicalities

(Royal College of Art, 1979; Cross, 2006). Architects are challenged to

infuse creativity into projects, enhancing user experiences while meeting

functional needs (Levin, 1966).

Contemporary design thinking diverges from traditional linear

methodologies (Abowardah, 2016). Rather than following a strict

sequence of analysis, synthesis, and evaluation, modern approaches allow

for flexible engagement of different thinking modes throughout the

process. This adaptability acknowledges the complexity of design

activities. Abowardah (2016) explored practical design methodologies by

analyzing insights from renowned architects like Frank Gehry, Zaha

Hadid, Toyo Ito, and Peter Zumthor. Gehry's process, for example,

involves sketching continuously, drawing inspiration from sculptors and

painters. Despite appearing sequential, his method incorporates trial and

error, resembling Broadbent's cyclic approach between analysis and

evaluation. Figure1-5 shows Frank Gehry’s sketch of Guggenheim Bilbao

against the constructed version.

18

 Architectural Design Thinking and Process

Figure 1-5 - Frank Gehry's Guggenheim Bilbao - https://architizer.com/blog/practice/tools/how-

architecture-is-born-frank-gehry/

Zaha Hadid Architects utilize digital techniques, known as 'form finding',

relying on mathematical studies and optimization for structure,

daylighting, and ventilation. Their process remains within the analysis-

evaluation cycle, prioritizing digital methods before synthesis.

Additionally, Toyo Ito's approach is similar, focusing on integrating with

nature through digital tools like Voronoi, aiming to break away from

homogeneity in cityscapes. Moreover, Peter Zumthor follows a

comparable process but emphasizes space and materials in the analysis

phase, relying on physical models for concept evaluation.

Abowardah (2016) outlines the design process into three phases: analyzing

knowledge, developing tools, and invention, aligning with Broadbent's

suggested approach influenced by Popper's thoughts. Architectural firms

globally invest in research and development to automate processes and

enhance efficiency.

1.6 New technologies effects on the design process

New technologies have revolutionized the design process, particularly in

the analysis and evaluation stages. Instead of relying solely on sketching

19

 Chapter 1

or modeling, advanced design techniques driven by developments in

materials and construction allow for more innovative solutions. Architects

now trust computers to find optimal forms based on various considerations

like environmental impact, spatial relations, and structural analysis.

However, architects still direct these approaches based on project goals,

ensuring that the final design meets objectives and can be feasibly

constructed. Figure 1-6 shows how decisions could be made and buildings

forms could be optimized based on solar radiation simulations.

Figure 1-6- Solar Radiation Optimization with Grasshopper / Galapagos / DIVA by Yazdani

Studio, https://yazdanistudioresearch.wordpress.com/2015/02/09/building-optimization-tools-the-

grasshopper-definition-and-breakdown/

After this result, the product is refuted and evaluated against other design

problems and aspects until a final decision is made.

Moreover, the approach to deal with the building as information which are

sometimes complicated led to changes in the implementation phase where

the required product of the process is no longer 2D drawings, but a building

information model containing every single element to be constructed and

showing the relations and quantities of the elements.

In addition, the development in digital fabrication specialization led to a

groundbreaking leap in the preparation of the construction drawings which

20

 Architectural Design Thinking and Process

made building complex geometries very easy and well organized in site.

Figure 1-7 shows the use of Grasshopper for Rhinoceros3D in digital

fabrication, numbering the surfaces, and extracting all of the information

needed for site fabrication. Different plugins are developed to automate the

extraction of such information.

Figure 1-7- Digital Fabrication Technique to Extract Information about Elements Using

Generation, Grasshopper, and Rhinoceros3d – by Antonio Turiello,

https://www.grasshopper3d.com/group/generation

Other techniques such as procedural modeling, simulations, kinetic

architecture, and more, also led to many changes in the design process.

These techniques will be discussed in chapter 2.

To conclude, recent technologies did not affect the design process

suggested by Broadbent, 1988, per say, but it affected the phases in a very

strong and efficient way that made the cyclic process between analysis and

evaluation much smoother and made the intervention of different design

types and modes applicable at any stage of the cyclic process.

1.7 Complexities in architectural design

Since Vitruvius, architectural evaluation has revolved around firmness,

commodity, and delight. Attempts to quantify delight, such as through the

golden ratio or modular grids, have persisted throughout history. Today,

environmental parameters can be quantified using tools and building

codes, enabling assessments of factors like daylighting and power

consumption.

21

 Chapter 1

However, assessing functionality faces challenges due to the uniqueness of

each design. Support tools are often used late in the process, hindering

early identification of imperfections. Post-occupancy evaluations focus on

design confirmation rather than comprehensive quality quantification

(Mahmoodi, 2001).

To improve design quality assessment, there's a need for research into tools

that accommodate design uniqueness and can be applied in the early

phases. Bridging the gap between support tools and design requirements is

crucial. Without such advancements, aesthetic assessment will remain

subjective, relying solely on designers' perspectives of beauty and

proportions.

It is crucial to understand the difference between problem solving and

designing. In problem-solving, designers typically seek logical solutions

to specific issues, whereas in designing, they create a comprehensive

solution that addresses multiple design problems. Designing involves more

effort, as designers need to integrate both creative and logical solutions.

Despite the complexity of design, the notion of breaking down design

problems into constituent parts for easier solutions is challenging, as

Professor Lawson notes (1993), emphasizing the need to consider the

entire problem or a multitude of issues simultaneously. Architects can face

many challenges in design categorized by the author as: complexities

within thinking, complexities in problems definition, complexities within

the design process, complexities in decision making, and complexities

resulting from rapid development in technology.

Complexities in Problems Definition

Architectural design involves solving complex problems, from client

requirements to environmental impacts. These intertwined issues create a

network of decisions for architects. Defining problems accurately is

challenging due to many non-quantifiable aspects of architecture, leading

to uncertainties. Lateral thinking is essential, as solutions may emerge

unexpectedly, but delving deeper can reveal further complexities,

perpetuating a cycle of problem-solving.

22

 Architectural Design Thinking and Process

Complexities within Thinking

Design thinking involves multifaceted problem-solving influenced by

cognitive styles like divergent vs. convergent and impulsive vs. reflective

thinking. Architects balance these styles to tackle design challenges

effectively, leveraging different modes of thinking within the same task to

innovate.

Complexities within the Process

The design process encompasses analysis, synthesis, and evaluation,

involving data collection, idea generation, and solution selection. It's

recognized as a series of internalized operations, with designers

transforming inputs into outputs, raising questions about the intuitive

process governing human thinking in design.

Complexities in Decision-Making

Architectural design requires intricate decision-making due to varied and

interconnected problems. Conflicting decisions can arise, leading to

complex trade-offs. Some problems require creative problem-solving,

while others rely on design principles and standards, though these may

have shortcomings.

Complexities Resulting from Rapid Technological Development

Technological advancements, like BIM and AI, have revolutionized

architectural design, offering new opportunities and challenges. BIM

facilitates information integration, enhancing efficiency, while AI enables

tasks like visualization and parameter prediction. These developments

prompt questions about architects' roles and idea authenticity in the face of

evolving technology.

To conclude, architectural design is a very complex process because of the

many complexities encompassed in this activity associated with many

aspects like aesthetics, information, technology, constraints, and many

others that hinder the problem-solving process. Those complexities need

to be understood well to map how an architect solves the problems

resulting from them.

23

 Chapter 1

Summary

This chapter delves into architectural design thinking, exploring its

complexities and evolution. It begins by examining the human brain's

cognitive processes, drawing from psychological studies on problem-

solving from Associationism to Cognitivism, highlighting the relevance of

Cognitivism in architectural thinking due to its emphasis on information

processing. Definitions of architecture and design types by Vitruvius and

Broadbent are discussed, revealing the challenge of forming a concrete

definition.

The exploration extends to understanding the architect's thought process

through black box and glass box metaphors, emphasizing the complexity

and non-linear nature of architectural design. Various complexities within

thinking, problem definition, design process, decision making, and

technology are examined, showcasing the multifaceted nature of

architectural design.

The chapter transitions to the Architectural Design Process, introducing J.

Christopher Jones' operations and tracing the evolution of design

methodologies since the 1960s. Mahmoodi's classification into systematic

and environmental models is discussed, along with specific models like

Broadbent's stage-phase model and Archer's design process flow chart.

Insights from renowned architects like Frank Gehry, Zaha Hadid, Toyo Ito,

and Peter Zumthor are incorporated, showcasing diverse design

approaches. Abowardah's investigation of practical models for design

methodology, analyzing famous architects' processes, is explored.

The impact of new technologies on the design process is examined,

highlighting advancements like solar radiation optimization tools and

Building Information Models (BIM), which have streamlined decision-

making and construction processes. The chapter concludes with a

discussion on evaluating architectural design outcomes, emphasizing the

need for early assessment to avoid problems. Parameters affecting form-

making, known as delight, are discussed, acknowledging the challenge of

assessing aesthetics due to changing principles throughout history.

24

 Architectural Design Thinking and Process

In summary, the chapter provides a comprehensive overview of

architectural design thinking, from cognitive processes to practical

methodologies and the influence of technology, emphasizing the dynamic

and creative essence of design in architecture.

Yet, the question remains, can the process occurring in the architect’s mind

within a black box approach be mapped? Or can the architect themselves

map the process of thinking? Does the process remain the same for the

architect when a black box approach is taken regardless of the project?

Answering these questions could have a great impact on the architectural

design process. Especially if the answer is true, then supposedly a machine

can learn this process and act as a designer.

25

 Chapter 2

Chapter 2: Mapping the Elements of Forms in

Architecture

Preface

Architectural form extends beyond the arrangement of physical space and

activities. According to Yilmaz (1999), it serves as a meaningful

instrument, signifying a connection with elements, their syntax, associated

meanings, and their impact on individuals. The reduction of form to the

mere selection and organization of elements is cautioned against; it should

not be seen solely as a tool for conveying meaning.

The foundational elements - point, line, plane, basic shapes, and solids -

historically influenced various conceptual geometries, continuing to play

a crucial role in contemporary architecture. These elements significantly

shape space and architectural form, contributing aesthetic, symbolic, and

conceptual depth to architectural design. Architects widely employ these

elements, particularly in the organization of architectural space.

When the use of elements is symbolic and serves as surface decoration, the

elements are usually referred to as motifs (Aamir, 2017).

In this chapter, architectural form is defined beside mentioning different

characteristics of form as well as its elements from points to solids. After

that, the difference between form making and form finding is highlighted

as a base for the upcoming question in next chapters whether AI could

serve in the form making or form finding. The chapter ends by discussing

how to map different contemporary architectural form elements and

motifs. This part will later be serving in translating those elements to

computational parameters that will be ‘learned’ by AI algorithms.

2.1 Characteristics of architectural forms

Erzen (2015) posits that in ancient times, the Greek 'idea' equated to the

Latin 'form,' suggesting that form originates from an underlying idea or

purpose, making them inseparable. Bacon (1974) defines architectural

form as the intersection of mass and space, comprising elements like

26

 Mapping the Elements of Forms in Architecture

texture, light modulation, and color, which collectively imbue space with

a distinct quality. Ching (1996) discusses the versatility of the term "form,"

encompassing external appearance, conditions of presentation, and formal

structure in art and design. In "Form, Space, and Order," Ching presents

form as both internal structure and external outline, emphasizing unity.

Forms have relational properties governing composition and arrangement,

including position, orientation, and visual inertia.

In architecture, forms are categorized as regular or irregular. Regular

forms, as per Ching (1996), typically exhibit stability and symmetry

around one or more axes. Even after dimensional changes or the

addition/subtraction of elements, their inherent regularity often remains.

Irregular forms, on the other hand, are asymmetrical and dynamic,

accommodating both solid masses and spatial voids. The spatial

organization of architectural elements, influenced by these forms, defines

compositions' visual dynamics and overall design (Ching, 1996).

Architectural form theories have evolved since ancient times, notably

influenced by Plato's multifaceted concept of form. The Renaissance

marked a shift towards viewing the Idea as originating in the artist's mind

rather than a unified essence. In the seventeenth century, Boullee

emphasized the epistemological meaning of form, prioritizing geometric

designs for instant perception. By the twentieth century, the Gestalt

psychology of form introduced by figures like Le Corbusier highlighted

the unity of perception and conception. However, there was a departure

from mental realms of form in favor of methodological approaches, with

figures like Alexander proposing mathematically based design

methodologies. Eisenman advocated for eliminating preconceived forms,

favoring generative grammar in the design process. The advent of

computers further transformed form, making it an expression of

universality and methodological rather than purely aesthetic or

epistemological (Plato, Renaissance, Boullee, Le Corbusier, Alexander,

Eisenman).

Geometry and form

27

 Chapter 2

From Vitruvius' geometric ideals to modern approaches like Corbusian

regulating lines and Miesian modular grids, architectural design has relied

on mathematics (Burry, 2010). In ancient times, even the angle of

inclination of the Great Pyramid was determined through geometric

constructions (Yilmaz, 2016). During the Middle Ages and the

Renaissance, mathematical principles were considered divine and formed

the basis for designing beautiful buildings. Greek, Roman, and

Renaissance architects grounded their aesthetic rules in geometric ratios,

with geometry serving as the primary mathematical tool until the

seventeenth century. As buildings grew in complexity in the late nineteenth

century, a science of structural design emerged, employing sophisticated

geometric operations. Throughout history, the prevailing notion has been

that architectural form must adhere to mathematical principles,

establishing order through regularities, proportional systems, and synthetic

methods for generating forms. Architecture has aimed to emulate the

geometric order of nature, offering schemes for analyzing finished forms.

Yilmaz (2016) highlights how ancient Greek and Egyptian architects used

geometry and proportion to seek divine rules for form generation. They

established foundational units and precise geometrical systems, deriving

proportions from geometric figures to create clear and rational designs

with symmetry. Geometry represented divine truths in ancient Egypt,

influencing timeless design principles in Western theory. Pythagoras

influenced the distinction between matter and form, while Plato's theories

on ideal forms, based on Pythagorean ratios and Platonic solids, shaped

architectural design principles. (Figure 2-1).

28

 Mapping the Elements of Forms in Architecture

Figure 2-1 - Platonic Solids, Hill, V., and Rowlands, P., 2008, Nature’s Code

Architects later adapted Platonic Solids into practical building blocks like

the sphere, cylinder, cone, pyramid, and cube, reflecting a pragmatic

approach to architectural form.

Medieval architects used basic geometric shapes like circles, equilateral

triangles, and squares to create intricate forms in both section and plan,

embodying divine characteristics (Yielmaz, 2016). The Gothic cathedrals

employed two design schemes, Ad Quadratum and Ad Triangulum, for

proportioning building plans and facades, determining element sizes, and

creating repetitive ornamentation. (figure 2-2).

Figure 2-2 - geometrical analyses of mason's marks on differentdrawings of Gothic cathedrals,

Franz von Rhiza, Studien über Steinmertz Zeichen,1917, pp. 44-45

29

 Chapter 2

These geometrical principles were foundational in medieval building

design long before they were systematically codified during the

Renaissance.

During the Renaissance, architects like Alberti and Bramante applied

idealized geometric concepts influenced by Greek mathematical systems,

as outlined by Yilmaz, 2016. They viewed architecture as mathematics

translated into spatial units, applying Pythagorean ratios to create

proportional harmony in buildings. This period saw experimentation with

ideal forms and proportions, exemplified by Leonardo's Vitruvian Man,

reflecting a belief in buildings belonging to a higher order governed by

universal truths.

Figure 2-3 - Diagrams of St. Peter Church by Bramante, Yilmaz, 2016, Evolution of the

Architectural Form Based on the Geometrical Concepts

In Baroque architecture, Guarini utilized dynamic geometrical operations

to create complex spatial designs, departing from Renaissance clarity

(Yilmaz, 2016). During the Enlightenment, architects like Boullee and

Ledoux employed ideal geometry symbolically, while Durand advocated

for simplicity and economy (Yilmaz, 2016). In the twentieth century,

architects such as Le Corbusier and Mies Van der Rohe embraced

Euclidean geometry, emphasizing rationality and integrity in design

(Yilmaz, 2016). A minority, including Frank Lloyd Wright, blended

geometric concepts with experimental psychology to design space

logically, integrating geometry, volumes, and functions harmoniously

based on geometric principles.

30

 Mapping the Elements of Forms in Architecture

In general, architectural forms and spaces are composed of four

fundamental element types: points, lines, planes, and volumes. In the

context of architecture, these elements are typically three-dimensional

volumes defined by vertices (points), edges (lines), and surfaces (planes).

Each element type holds intrinsic characteristics within an architectural

context. Lines convey direction, emphasizing significant end points and

defining boundaries. The intersection of lines introduces a third point,

providing additional content for making relative judgments of distance and

angle. In architecture, a three-dimensional design can be envisioned

mentally before it materializes physically.

The perception of three-dimensional forms can vary based on factors such

as viewing angles, distances, lighting conditions, color, and texture.

However, certain elements can be considered independent of these variable

situations including shape, texture, light, color, size, and scale (Yilmaz,

2016). Forms could be significantly manipulated by changing these

elements. However, shapes and sizes remain the most relating aspects to

how a form is perceived.

Additionally, Yilmaz (2016) emphasizes that design strategies, such as

unity, balance, contrast, harmony, rhythm, and proportion, play a crucial

role in shaping the overall concept of a "whole" throughout the design

process, whether in two-dimensional or three-dimensional contexts. Today,

parametric design empowers architects to craft visually appealing façade

patterns, seamlessly integrating complex surfaces with digital fabrication

techniques. These patterns, enhanced by strategies like repetition, rhythm,

harmony, and unity, often serve as the focal point, requiring minimal

manipulation of the form itself.

2.2 Form generation in architectural design: form making vs. form

finding

The reciprocal relationship between mathematics and information

technology (IT) has led to the development of new mathematical tools,

particularly in the field of architecture. This evolution goes beyond

creating variations of functional solutions, drafting, modeling, and

31

 Chapter 2

presenting—it extends to the actual generation of forms. This approach is

known as the form-generation process. Initially rooted in using rules and

algorithms for architectural forming in a one-way process, the form-

generation process has evolved to incorporate a comprehensive set of

parametric equations. These equations can be recorded and revisited at any

stage of the design, allowing for dynamic changes to parameters and

subsequently altering the entire design solution swiftly (El Iraqi and El

Daly, 2017).

The generation of architectural forms involves a range of techniques and

methodologies, often categorized into form-making and form-finding

processes. While the form-making process emphasizes the subjective,

intuitive, and creative aspects of design, the form-finding process relies on

mathematical rules, algorithms, or constraints to guide the generation of

architectural forms. The choice between these approaches often depends

on the goals of the design, the preferences of the architect, and the intended

expression or functionality of the final structure. Many architects may

incorporate elements of both processes, striking a balance between creative

freedom and systematic control in their design methodologies. In

contemporary architectural practices, forms are increasingly designed to

align with specific parameters and functions.

Form making:

According to El Iraqi and El Daly, 2017, form making is a creative process

driven by intuition and imagination, often preceding analysis and design

constraints. This direct embodiment of ideas into forms can be facilitated

through conventional or computational mediums, sometimes resembling

sculpture with a focus on form over function.

In the realm of architectural creativity, diverse theories have profoundly

shaped form making. Anchored in principles like intuition,

unpredictability, metaphorization, and departure from strict logic, these

theories offer architects unique perspectives. Intuition guides architects

beyond analytical rigidity, while unpredictability injects spontaneity.

Metaphorization relies on symbolic associations, fostering imaginative

structures. Rejecting strict logic encourages exploration of

32

 Mapping the Elements of Forms in Architecture

unconventional, non-linear approaches, leading to organic and innovative

forms. Established theories like Wallas's stages of incubation, and concepts

such as Genploration and synectics, further enrich the creative toolkit.

Embracing these theories allows architects to synthesize intuition,

metaphor, and unpredictability, transcending conventional boundaries in

architectural form creation. Some of these theories are mentioned in table

2-1.

Table 2-1- Analogue Form Making Theories (El Iraqi and El Daly, 2017)

Theory Concept
Role in Form

Making

Intuition

Intuition refers to the

ability to foresee

without necessarily

understanding the

process.

Architects rely on

intuitive processes to

generate ideas

directly without a

rigid analytical

approach.

Unpredictability

Unpredictability

emphasizes the

unexpected nature of

creative processes.

Form making

benefits from

elements that are not

pre-determined,

introducing

spontaneity and

uniqueness.

Metaphorization

Metaphorization

involves using

metaphors and

associations in the

creative process.

Metaphors serve as

powerful tools for

generating novel and

imaginative forms,

connecting diverse

concepts.

No Logic

This perspective

challenges the notion of

strict logical processes

in creativity.

Architects explore

unconventional and

non-linear

approaches, allowing

for more organic and

innovative forms.

Theories of

Incubation (Wallas)

Wallas proposed a

theory of creativity

involving stages like

The incubation stage

allows ideas to

develop

33

 Chapter 2

preparation, incubation,

illumination, and

verification.

subconsciously,

contributing to the

creative process.

Genploration

(Finke, Ward and

Smith)

Genploration focuses

on the exploration of

generic structures and

elements in creativity.

Architects explore

generic elements that

can be adapted and

transformed into

unique forms.

Redundant

Generation (Lem)

Redundant generation

involves creating

variations of a concept

until a novel solution

emerges.

Architects

experiment with

multiple iterations,

allowing for

unexpected and

innovative forms.

Synectics (Gordon)

Synectics emphasizes

making connections

between seemingly

unrelated concepts.

Architects draw

inspiration from

diverse sources,

fostering creative

connections and

generating novel

forms.

The integration of these theories provides architects with a rich toolkit for

form making. By embracing intuition, unpredictability, metaphorization,

and alternative logic, architects can push the boundaries of creativity and

produce innovative architectural forms.

In recent decades, digital systems have revolutionized architectural design,

impacting geometric representation and design synthesis. Methodologies

like fuzzy modeling and random functions, highlighted by El Iraqi and El

Daly, 2017, offer innovative approaches. Fuzzy modeling introduces

imprecise images akin to architectural sketching, while random functions

challenge architects to transform computer-generated shapes, rooted in

chaos theory. Integration of 3D digitizing allows seamless navigation

between real and digital environments, as seen in Gehry's work, blending

tangible and virtual realms in architectural design. (figure 2-4).

34

 Mapping the Elements of Forms in Architecture

Figure 2-4 Working model of the 1989 Vitra Design Museum in Germany by Gehry, Frank O.

Gehry, courtesy Frank Gehry Papers at the Getty Research Institute

Form finding

Form finding in architecture involves discovering and shaping

architectural forms exclusively derived from function, employing rules,

constraints, and algorithms within a "generator." This process, outlined by

El Iraqi and El Daly, 2017, encompasses both analogue and digital

methods. Analogue form finding, exemplified by architects like Jean-

Nicolas-Louis Durand, utilizes mathematical rules or transformational

principles to generate architectural forms (figure 2-5).

Figure 2-5 Systemization and Composition by Jean-Nicolas-Louis Durand -

https://www.sensesatlas.com/jean-nicolas-louis-durand/

35

 Chapter 2

Similarly, Louis Sullivan employed analogue methods to describe

processes for reproducing floral ornamentation based on geometrical

constructs (figure 2-6).

Figure 2-6 - Louis Sullivan, Plate 2, detail, from A System of Architectural Ornament According

with the Philosophy of Man's Power (New York: AIA Press, 1924; reprint 1934).

Le Corbusier's Five Points of Architecture exemplifies an analogue

generative system predating widespread computational use in architecture.

Similarly, Peter Eisenman employed analogue transformational rules in

design synthesis, creating a system allowing infinite expressions with

finite means. Eisenman's approach is evident in his designs of a series of

houses as seen in figure 2-7.

Figure 2-7 - House IV - Transformations Series by Peter Eisenman -

https://eisenmanarchitects.com/House-IV-1971

36

 Mapping the Elements of Forms in Architecture

Digital form-finding in architecture involves the use of computational tools

to generate various forms, ranging from orthogonal conventional shapes

using basic shape algebra and formal logic to complex three-dimensional

curves and folding surfaces using trigonometric parameterized functions.

Computational algorithmic modeling is a process that applies rules and

algorithms within a computational medium, but it lacks the potential for

changing a rule with direct manipulation applied to the end result. When

the process includes a feedback loop allowing for the modification of rules,

it is considered a form generation process, whether it's generative or

parametric. Digital form-finding types of process including computational

modeling, algorithmic modeling, generative modeling, and parametric

modeling will be discussed in chapter 3.

2.3 Mapping and analyzing the elements and motifs of

contemporary forms

In computer science, an architectural style is a set of design rules or

conventions that dictate how the elements and relations of a software

system should be organized. It represents a family of systems with a shared

set of design goals and constraints. Architectural styles define a specific

way in which components (such as modules, classes, or objects) and

connectors (communication channels, protocols) are arranged to achieve

certain architectural qualities like performance, modifiability, or

reusability. An architectural pattern, on the other hand, provides a higher-

level abstraction compared to architectural styles. It describes a

fundamental structural organization schema for software systems,

specifying the overall structure of the system and the patterns for the

relationships between its components. Architectural patterns go beyond

specifying individual elements and connections; they define a set of

predefined subsystems, their responsibilities, and also include rules and

guidelines for organizing interactions between these subsystems. In

summary, architectural styles focus on the manner in which components

and connectors are used, while architectural patterns provide a broader,

higher-level template for organizing the overall structure of a software

system, including predefined subsystems and their relationships. Both

37

 Chapter 2

concepts are crucial in guiding the design and development of complex

software systems, helping architects make informed decisions based on

established best practices and design principles (Clement, P., et. al. 2011).

The same definitions can be directly applied to architectural design of

buildings. When the difference between the terms ‘architectural pattern’

and ‘architectural style’ is discussed, both terms result in an architectural

approach. However, architectural patterns tend to relate to certain

problems in a certain context. For instance, an architectural style tends to

relate how architectural elements and components are composed focusing

on the approach. On the other hand, architectural patterns relate how the

resulting architectural approach may solve problems in different contexts

including environmental, social, psychological, and economic aspects.

Architectural design motifs are recurring, often symbolic, themes that are

used in the design of buildings and structures. These motifs can be derived

from various sources, including cultural, historical, religious, or natural

influences. They are employed to create a sense of unity, rhythm, and

visual interest in the architecture. Motifs relate to the architectural style

more than patterns. They mostly tend to symbolize and give meanings or

just symbolize how an architect expresses his beliefs of good architecture

regarding proportions, aesthetics, and other design strategies.

Examples of Motifs in Architectural Design include the following:

Architectural Orders:

Classical architecture introduced the concept of orders, including Doric,

Ionic, and Corinthian, each with distinct styles for columns and

entablatures. Orders define the arrangement of architectural elements,

contributing to the overall style and cohesion of a building or tradition.

Figure 2-8 shows how the use of different classical orders as motifs differs

according to columns and entablature types and proportions as well

decoration elements.

38

 Mapping the Elements of Forms in Architecture

Figure 2-8 – Architectural Orders from Greek, Roman, and Tuscan Eras,

https://blog.stephens.edu/arh101glossary/?glossary=order

Gothic Tracery

Gothic tracery (figure 2-9), prominent in cathedrals, comprises intricate

patterns of intersecting ribs in windows. It enhances aesthetics and

establishes a cohesive motif for Gothic architecture through rhythmic

recurrence across architectural elements.

Figure 2-9 – Geometrical bar tracery, Ely Cathedral, Lady Chapel, west window (left), Rayonnant

bar tracery above the south rose window in Notre-Dame de Paris (Right)

(https://en.wikipedia.org/wiki/Tracery)

Moorish Arch Motif

The horseshoe arch (figure 2-10) in Islamic architecture, originally from

early Christian art during the Roman Empire, is a defining motif

https://blog.stephens.edu/arh101glossary/?glossary=order

39

 Chapter 2

characterized by its rounded shape widening at the base. Adorned with

intricate patterns and calligraphy, it recurs in doorways, windows, and

arcades, contributing to the unique visual language of Islamic architectural

styles (Marcias, G., 1954).

Figure 2-10- Caliphal-style arches of the Taifa palace (11th century) in the Alcazaba of Málaga,

Spain, https://en.wikipedia.org/wiki/Horseshoe_arch#cite_note-:02-7

Greek Key Pattern

The Greek Key pattern, a continuous linear motif in classical design,

consists of repeated geometric shapes forming a meandering line. Often

used as a decorative border or frieze, its repetitive presence adds rhythm

and unity to architectural elements, defining motifs in classical and

neoclassical structures. Figure 2-11 (a) shows Greek key on a stove in the

in the D.A. Sturdza House, in Bucharest.

Art Deco Zigzag Motif

Art Deco architecture features the distinctive zigzag motif (figure 2-11

(b)), marked by sharp, angular lines. Seen in friezes, cornices, and facade

layouts, this pattern represents a departure from traditional ornamentation.

Its repetition across elements embodies the dynamic and modern aesthetic

of the Art Deco movement in the early to mid-20th century..

40

 Mapping the Elements of Forms in Architecture

Figure 2-11 –(a) Greek key on a stove in the in the D.A. Sturdza House, in Bucharest,

https://en.wikipedia.org/wiki/File:Greek_key_on_a_stove_in_the_in_the_D.A._Sturdza_House,_in

_Bucharest.jpg, (b) Zigzag Motif on Smith and Chambers building, Napier, New Zealand.

https://edition.cnn.com/style/article/napier-art-deco-architecture/index.html

Modernist Grid Motif

Modernist architecture adopts the grid motif, featuring regular and

geometric arrangements of elements like windows and columns. Architects

such as Ludwig Mies van Der Rohe, Le Corbusier, and Peter Eisenman

apply this motif, inspired by Piet Mondrian's lines. Gerrit Rietveld,

influenced by Mondrian, incorporated similar elements into Mrs. Truus

Schröder-Schräder's house in Utrecht, Netherlands (figure 2-12). The

pervasive repetition of the grid motif reinforces modernist principles of

clarity and rationality, becoming a hallmark of the architectural style.

Figure 2-12- Rietveld Schröder House,

https://en.wikipedia.org/wiki/Rietveld_Schr%C3%B6der_House

Following Le Corbusier and Mies Van Der Rohe, architects like Alvaro

Siza, Kenzo Tange, Gordon Bunshaft, Richard Meyer, and Tadao Ando

embraced the grid motif. Today, this motif is ubiquitous in contemporary

https://en.wikipedia.org/wiki/File:Greek_key_on_a_stove_in_the_in_the_D.A._Sturdza_House,_in_Bucharest.jpg
https://en.wikipedia.org/wiki/File:Greek_key_on_a_stove_in_the_in_the_D.A._Sturdza_House,_in_Bucharest.jpg
https://en.wikipedia.org/wiki/Rietveld_Schr%C3%B6der_House

41

 Chapter 2

villas and private residential buildings worldwide. Factors such as high

construction costs and fast-paced social lives have contributed to its

widespread adoption. As a result, designs are becoming increasingly

similar, with architects employing a common language, as seen in the

analysis of common motifs in Table 2-2.

Table 2-2 Analysis of Common Contemporary Motifs

No

.
Project Photo Description

1

- C shaped slab with

thickness around 40 cm on

the first floor

- C shaped terrace elevation

on ground floor

- The terrace is recessed from

the ground floor edge.

- Glazing facades inside the

slab edges
https://www.flickr.com/photos/aareps/901

9441462/in/album-72157636835800726/

2

- C shaped slab with

thickness around 40 cm on

the first floor

- L shaped terrace elevation

on ground floor

- Terrace is on the ground

floor edge

- Glazing facades inside the

slab edges

Private villa in Vilnius, Lithuania

by ngarchitects

https://ngarchitects.eu/vila-energy/

42

 Mapping the Elements of Forms in Architecture

3

- C shaped slab with

thickness around 30 cm on

the first floor

- L shaped terrace elevation

on ground floor

- The terrace is recessed from

the ground floor edge.

- Glazing facades and

stonework inside the slab

edges

https://catalog-plans.ru/catalog/62-65

4

- C shaped slab with

thickness around 30 cm on

the first floor

- L shaped terrace elevation

on ground floor

- The terrace is on the ground

floor edge.

- Glazing facades inside the

slab edges

EH House, Pilar, Argentina by

Estudio GMARQ.
https://www.archdaily.com/906904/eh-

house-estudio-

gmarq?ad_medium=gallery

5

- C shaped slab with

thickness around 70 cm on

the first floor

- L shaped terrace elevation

on ground floor

- The terrace is recessed from

the ground floor edge.

- Glazing facades and

woodwork inside the slab

edges

Twelve by Jaime Salvá, Santa

Ponça, Mallorca, Spain.
https://homeadore.com/2020/07/27/twelve

-by-jaime-

43

 Chapter 2

salva/?utm_source=feedburner&utm_me

dium=feed&utm_campaign=Feed:+home

adore+(HomeAdore)

Other motifs appear strongly in contemporary villas and residential

buildings, including the use of repeated solid blocks with light or opening

gaps (figure 2-13), the use of stripped louvers more as an architectural

pattern (figure 2-14), and the use of skewed recessed blocks which usually

frame openings (figure 2-15). Even some of these motifs are composed

together to form a different look.

Figure 2-13- Using solid strong walls in contemporary designs (villa by Rymar Studio (left), 21

Villa by Saad Al Omayrah (right)), https://rymarstudio.com/residentialarchitecture,

https://www.behance.net/gallery/148907457/21-Villa-By-Depth-of-Field

Figure 2-14- Using louvers as architectural pattern in contemporary designs (Condomínio Terras

de Toscana, by Lima Arquitetos (left), CB hoise, Indonesia, by Studio Avana (right) -

http://www.limaarquitetos.com/projetos/residencia-br/,

https://www.behance.net/gallery/98916083/CB-House

https://rymarstudio.com/residentialarchitecture
http://www.limaarquitetos.com/projetos/residencia-br/

44

 Mapping the Elements of Forms in Architecture

Figure 2-15- Using skewed and recessed elements to highlight openings (Villa in UAE by Nisreen

Kayyali (left), Viewpoint House, Quezon City, Philippines by Jim Caumeron Design (right)) -

https://www.instagram.com/nisreenkayyali/, https://www.archdaily.com/951932/viewpoint-house-

jim-caumeron-design?ad_medium=gallery

These motifs contribute to the visual language of architecture and are often

used to communicate cultural, historical, or artistic references. Architects

use motifs to create a sense of unity and coherence in the design, tying

together various elements of a building into a harmonious whole.

Summary

In this chapter, the definition of architectural form is explored tracing its

origin to the Latin term equivalent to idea. Over time, architects expanded

this definition to encompass the intersection of mass and space,

highlighting the multifaceted nature of forms beyond mere aesthetics.

From ancient times to the present, theories on form have evolved,

reflecting shifts from epistemological to methodological perspectives due

to societal and economic developments. Geometry has played a crucial

role, with historical roots linking it to divine principles, now utilized for

rationalizing designs amidst technological advancements.

Conceptual elements such as points, lines, surfaces, and solids were

analyzed, with points deemed particularly influential in form development

due to their ability to establish relationships and parametrically define

elements. Visual elements and design strategies like form, size, proportion,

repetition, rhythm, harmony, and unity were discussed for their impact on

form perception and design aesthetics, especially with advancements in

digital fabrication techniques facilitating patterned facades and forms.

https://www.instagram.com/nisreenkayyali/

45

 Chapter 2

Form making, characterized by subjective and intuitive aspects, was

juxtaposed with form finding, which relies on mathematical rules for

problem-solving. Architectural patterns, driven by problem-solving

approaches within specific contexts, were contrasted with architectural

styles focused on compositional elements' formation. Notable motifs,

including architectural orders of the Greeks, Gothic tracery, Moorish

arches, Greek key patterns, Art Deco zigzags, and modernist grids, were

analyzed for their significance and influence on architectural styles.

Contemporary architectural motifs and styles, observed in villas and

residential buildings, exhibited recurring patterns such as exposed slabs,

recessed glazing facades, L-shaped terraces, repeated solid blocks with

openings, stripped louvers, and skewed recessed blocks. These motifs

reflect cultural, religious, and aesthetic considerations, shaping

architectural compositions.

In the subsequent part, these motifs will be incorporated into designed

models to educate AI on architectural aesthetics and styles.

46

Coding in computational design: A base for utilizing AI in

architectural form finding

Chapter 3: Coding in computational design: A base

for utilizing AI in architectural form finding

Preface

Computational design in architecture utilizes computational tools and

processes, including algorithms, scripting, and programming, to inform,

generate, and optimize solutions. This approach often intersects with

parametric design but encompasses a broader range of techniques.

Parameters such as wall length, window size, and spatial relationships

influence spatial experience, aesthetics, environmental interaction, and

resource consumption. Architects' evolving expertise shapes their unique

design approaches.

Parametric design translates architectural models into parameters and

defines their relationships. Changing one parameter can alter others due to

their interconnections. Architects use data types like numbers, booleans, or

strings to create parametric models, which can include regulations like

setbacks and heights. This algorithmic thinking allows for easy

adjustments and maintains design consistency (Jabi, W., 2013). Software

like Grasshopper for Rhinoceros3d and Dynamo for Revit arrange models

as interconnected algorithms.

In September 2007, Rutten, D. developed the "Explicit History" plugin for

Rhinoceros3d, which created a visible history of operations. This evolved

into Grasshopper3d, enabling visual coding and forming the basis of

parametric design with real-time modifications. Similar visual

programming languages followed, including Dynamo for Revit,

Marionette for Vectorworks, Param-O for Archicad, VizPro for Sketchup,

and SIII for Blender, enhancing modeling capabilities (Sawantt, S., 2021).

Coding, defined as instructing a machine to perform tasks, underpins

architectural software by transforming geometry through mathematical

operations. Mastery of a software's coding language allows architects to

use the software more effectively, reducing user interface biases. Coding

provides tools like iterations, conditional statements, and extensive

libraries for tasks such as data visualization and array manipulation,

47

 Chapter 3

expanding design possibilities. Coding enables architects to perceive

geometry as containers of information, enriching their design

understanding.

This chapter discusses computational design as a design thinking

approach, exploring its roots and presenting a taxonomy of methodologies.

It reviews the generative form-finding approach, analyzes architectural

forms as information and examines algorithm formation based on form

elements, advocating for coding over visual programming languages.

Additionally, the chapter provides an overview of coding practices,

software functionality, and the importance of coding for its power and

freedom, avoiding biases in visual programming and conventional

modeling.

3.1 Computational design thinking

Computational design in architecture integrates advanced computational

capabilities to automate, parallelize, and enhance various aspects of the

design process. It enables architects to efficiently manage information,

incorporate changes seamlessly, and explore diverse design possibilities

through automation and algorithms, aligning with contemporary

architectural demands.

Oxford Dictionary defines computation as "the action of mathematical

calculation" and "the use of computers, especially as a subject of research

or study." The Cambridge Advanced Learner's Dictionary & Thesaurus

adds that it is "the act or process of calculating an answer or amount by

using a machine." In architecture, Oxman (2006) describes computational

design (CD) as design processes that fully utilize computers for their

computational abilities rather than as electronic drawing boards. Terzidis

(2006) defines CD as the entire process leading to a final result through

digital tools. Thus, CD can be expressed as a design process leveraging

computational capabilities through various activities (Caetano, I., et al.,

2019) including automating design procedures through deduction,

induction or abstract, parallelizing design tasks by breaking down the

design process into smaller, more manageable components that can be

48

Coding in computational design: A base for utilizing AI in

architectural form finding

processed simultaneously (figure 3-1), incorporating and propagating

changes and assisting in form-finding processes.

Figure 3-1- Sequential vs. Concurrent vs. Parallel Design Processes

(https://www.linkedin.com/pulse/concurrency-vs-parallelism-2-sides-same-coin-khaja-shaik-/)

According to Menges, A., and Ahlquist, S. (2011), computational design

(CD) is crucial because it shifts the perception, purpose, and production of

form by utilizing information processing and interactions between

elements, emphasizing systems thinking over by-element thinking.

Systems thinking views every aspect of a form as part of a hierarchical

structure of components. Menges and Ahlquist argue that computation is

not necessarily related to computer use and should not be confused with

computerization, which involves automation and digitization. They assert

that computational methods can codify, analyze, systematize, and

synthesize mental processes without digital tools.

Aristotle's definition of 'holism' underpins the understanding of systems as

wholes greater than the sum of their parts. Descartes emphasized

understanding processes through simple causalities, while Christopher

Alexander highlighted that a system's overall behavior results from the

interaction among its parts. Understanding these interactions is critical

(figure 3-2).

49

 Chapter 3

Figure 3-2- Interaction between Components Forms the Whole Design Idea

Glenn Wilcox argues that design computing views geometric forms as

containers of information, not just shapes. Thus, a simple box is perceived

not merely as a geometric object but as an entity with characteristics like

height, length, and width. (figure 3-3 (left). In computational design

thinking, a box is viewed as a container of information defining its

characteristics and relationships with other architectural elements (figure

3-3 (right)). This box consists of points that determine distances between

each other and other elements. Each surface of the box has attributes like

color and texture, along with a center point. The box's center point and

each point's coordinates (X, Y, Z) provide valuable data for spatial

positioning. Extracting this information facilitates transformations and

establishes relationships with other objects and their components.

Figure 3-3- (left) A box as geometry vs. a box with geometric existence characteristics, (right) A

box is considered a container of many information rather than a simple geometry.

Thinking about architectural elements through the lens of computational

thinking, adds many layers of control and freedom to the way the elements

are interacting to form spaces and architectural forms through the fast-

developing tools in computers. Additionally, extracting those relations as

50

Coding in computational design: A base for utilizing AI in

architectural form finding

parameters can serve as a basis for utilizing different ML in the form

finding process.

3.2 The roots of computational design

The influence of geometry, proportion, and numerical principles in

architecture dates back to ancient times (Burry, M., 2010). Vitruvius is

credited with establishing the Vitruvian Triad—Firmitas (Durability),

Utilitas (Utility), and Venustas (Beauty)—as the fundamental principles of

architecture. Vitruvius emphasized the importance of geometric ideals,

particularly Order and Arrangement (Ordinatio). He highlighted that the

thoughtful organization of architectural elements creates a cohesive and

visually pleasing composition, contributing to the overall harmony and

effectiveness of the design.

The concept of the golden ratio, often denoted by the Greek letter phi (φ),

has been known and utilized since ancient times, and it is not attributed to

a single individual. The golden ratio is an irrational number, approximately

equal to 1.618033988749895, and it appears in various mathematical and

natural contexts. It is often expressed as the ratio of two quantities, where

the whole is to the larger part as the larger part is to the smaller part.

The term "golden ratio" itself is relatively modern, coined in the 19th

century. Mathematicians and artists throughout history, however, have

been aware of and fascinated by this ratio. Ancient Greek mathematicians,

including Euclid, explored the mathematical properties of the golden ratio,

and it has been observed in the architecture of ancient civilizations, such

as the Parthenon in Athens. The Italian mathematician Leonardo

Fibonacci, in his "Liber Abaci" (1202), introduced the Fibonacci sequence,

which is closely related to the golden ratio. However, it's important to note

that while Fibonacci popularized the sequence, the golden ratio itself was

known and used before his time.

Le Corbusier introduced the concept of "regulating lines" in his design

principles. As observed in figure 3-4, these lines served as a framework for

organizing and proportioning buildings. They were based on mathematical

principles and were intended to provide a rational and harmonious basis

51

 Chapter 3

for architectural composition. According to Le Corbusier, regulating lines,

be they circular, square, or linear, manifest as helpful and regular points

that intricately bring diverse elements together. The placement of angles in

a precise manner is underscored as a mechanism for uniting varied

qualities of architectural elements, fostering a sense of order and cohesion.

Figure 3-4 – Villa Design by Le Corbusier

(https://melissabilgecelik.wordpress.com/2018/10/31/regulating-lines-le-corbusier/)

Additionally, Ludwig Mies van der Rohe frequently employed modular

grids as a foundational design principle to manifest his commitment to

simplicity and order. The modular grids (figure 3-5) provided a framework

for organizing elements and spatial configurations, enabling rational and

flexible compositions. Mies's grids balanced order with adaptability,

accommodating various functions precisely. The Barcelona Pavilion and

the Farnsworth House exemplify the enduring impact of his modular grid

system on modern architectural design.

Figure 3-5- Graphite and red pencil on verso of Hotel Nacional stationary by Mies Van der Rohe

(https://www.moma.org/collection/works/87415)

https://www.moma.org/collection/works/87415

52

Coding in computational design: A base for utilizing AI in

architectural form finding

Today, the intensive use of CD is seen in the work of many architects who

apply generative design techniques and optimization especially in the form

finding process. Numbers and computation became a very important

aspect in designs as will be discussed in section 3-4.

3.3 A taxonomy of computational design terms

The emergence of computation-based approaches in design has seen

widespread adoption among architects and design professionals in recent

decades. However, diverse terminologies such as computational,

parametric, generative, algorithmic, performance-based, and evolutionary

design have led to ambiguity and hindered communication within the field.

This variability reflects the dynamic nature of computational design,

rooted in a rich history dating back to the 1960s, influenced by pioneers

like Ivan Sutherland (Caetano, A., et. Al, 2019).

Sutherland's concepts of design variation and parametric instances

catalyzed the shift toward computational design. In the 1970s, efforts to

formalize CD emerged, leading to its recognition as a distinct field within

architecture in the 1980s. By the 1990s, computational design had

solidified its presence, with dedicated conferences and journals. However,

in the last two decades, it has evolved beyond automating drafting tasks to

encompass diverse computation-based methods.

Contemporary computational design integrates techniques like building

simulation, evolutionary optimization, and novel fabrication methods,

driving innovative design approaches. As computational design continues

to evolve, it remains at the forefront of architectural exploration, shaping

the conceptualization and realization of built environments. In this section

different CD related terms are reviewed, defining how each approach is

involved in CD including CAD, parametric design, generative design,

algorithmic design, and other related terms.

Computer-Aided Design (CAD) emerged in the late 1950s and early

1960s, with Ivan Sutherland's "Sketchpad" in the 1960s introducing

interactive graphic design systems. The 1970s saw the development of

commercial CAD systems like DAC-1 and CALMA for electronic design

53

 Chapter 3

and manufacturing. The 1980s brought 3D CAD and the rise of desktop

workstations, with Autodesk's AutoCAD becoming widely used in 1982.

CAD became mainstream in the 1990s, with standardization efforts

making it accessible across industries. It aids in creating, modifying,

analyzing, and optimizing designs, improving workflow efficiency,

quality, and documentation, and contributing to manufacturing design

databases.

The history of digital design (DD) traces back to the 1950s and 1960s when

early digital computers were primarily used for scientific and military

purposes. Ivan Sutherland's "Sketchpad" in the early 1960s laid the

foundation for digital design, marking the inception of digital tools in the

design process. In the 1970s, computer graphics emerged, enabling

designers to manipulate and visualize images on digital displays.

Autodesk's AutoCAD in 1982 played a pivotal role in the widespread

adoption of digital design tools. After that, the 1990s witnessed the

democratization of digital design with the rise of personal computers and

software like Adobe Photoshop, Illustrator, Rhino, and 3ds Max.

In the 21st century, the integration of digital design into various disciplines

accelerated, exemplified by the rise of parametric design and algorithmic

modeling. Today, digital design encompasses various fields from graphic

and web design to product design, animation, and virtual reality.

Advancements in technologies like augmented reality, AI, and generative

design continue to shape the landscape of digital design, empowering

designers to bring their visions to life in unimaginable ways.

Caetano, A, et. Al., 2019 argue that parametric design (PD) in architecture

utilizes parameters and algorithms to create adaptable architectural forms,

offering a wide range of design possibilities. Moretti (1971) describes PD

as investigating relationships between design dimensions, while Kalay

(1989) focuses on dynamic geometric representations. Szalapaj (2001)

emphasizes geometric constraints, and Kolarevic (2003) views PD as

declaring design parameters rather than specific shapes, allowing for

multiple solutions. Eggert (2004) stresses PD's optimization capacity,

while Schumacher (2008) sees it as a contemporary architectural style.

54

Coding in computational design: A base for utilizing AI in

architectural form finding

Woodbury (2010) highlights PD's associative nature, and Elghandour

(2014) views it as code-based design. Zboinska (2015) categorizes PD

under Algorithmic Design, emphasizing algorithmic processes. Zarei

(2012) subdivides PD into conceptual modeling and

construction/manufacturing categories.

Parameters enable designers to establish relationships and constraints

governing the design, allowing exploration within a coherent system.

Janssen and Stoufs (2015) categorize PD into object, associative, data-

flow, and procedural modeling, providing comprehensive tools for

designers across the design process.

Soleimani (2019) advocates for integrating parametrics into architecture

programs through three interconnected approaches. Firstly, the system-

based approach emphasizes studying architecture as complex subsystems

rather than individual objects, engaging with spatial, material, social, and

structural elements for harmonious coexistence. Secondly, the algorithmic,

rule-based approach promotes computational thinking, using algorithms to

create active relationships between design intent and outcome, yielding

alternative design possibilities. Lastly, the interdisciplinary approach

encourages architects to draw from diverse disciplines like philosophy,

biology, mathematics, and computer science to address evolving

challenges creatively. These approaches serve as essential pillars for the

transformative integration of parametric design in architectural education.

Generative design (GD) employs computational systems to autonomously

explore and generate potential solutions, akin to nature's evolutionary

mechanisms. It surpasses the autonomy of Parametric Design (PD) by

utilizing more autonomous algorithmic descriptions (Caetano, A, et. Al.,

2019). GD systems, as defined by Mitchell (1977), generate solutions to

design challenges without continuous direct input from the designer.

Fischer and Herr (2001) characterize GD as a methodology where

designers interface with generative systems, exploring and evolving

solutions through computational means. Frazer (2002) compares GD to

evolutionary processes in nature, highlighting its dynamic and iterative

nature. Krause (2003) notes GD's autonomy in creating architectural

55

 Chapter 3

structures or spaces, while McCormack (2004) describes it as generating

complex designs from simple specifications. Bukhari (2011) positions GD

as a subtype of Algorithmic Design (AD), utilizing algorithms to produce

diverse solutions. These perspectives underscore GD's dynamic,

algorithmically driven nature and its capacity to autonomously evolve and

fulfill design criteria.

Algorithmic design (AD), according to Caetano, A, et. Al., 2019, leverages

algorithms to generate models, establishing a clear correlation between the

algorithm and the resulting design. This transparency enables users to trace

and understand how different elements of the model are generated. AD

provides generative capabilities through algorithms and enhances

transparency and understanding throughout the design process. An

algorithm, as defined by the Cambridge Dictionary, is a set of

mathematical instructions or rules to solve a problem. Terzidis (2003,

2004) describes AD as generating space and form through rule-based logic

inherent in architectural programs and language. Bukhari and Caldas

(2011, 2008) note that AD includes both generative design and

evolutionary design methods, employing fitness functions to guide the

search process. Oxman (2017) emphasizes the procedural nature of AD,

involving the explicit coding of instructions to generate digital forms.

Zboinska (2015) views AD as a paradigm built upon Parametric Design

(PD) tools, utilizing simple rules and relationships to produce complex

geometries. Together, these perspectives define AD as a versatile paradigm

encompassing various computational design methods.

Caetano, A, et. Al., 2019, suggested a conceptual overlap and inconsistent

use of terms related to CD, with a specific focus on PD, GD, and AD. They

illustrated this conceptual overlap using a Venn diagram (figure 3-6),

indicating that AD is a subset of GD and shares a non-empty intersection

with PD.

56

Coding in computational design: A base for utilizing AI in

architectural form finding

Figure 3-6 - Conceptual representation of the terms’ extension regarding the CD paradigm, by
Caetano, A., et. Al., 2019, Computational design in architecture: Defining parametric, generative, and

algorithmic design.

Caetano, A, et. Al., 2019, argue that there are multiple cases of overlaps:

1- AD (Both GD and PD): Designing an algorithm that generates a

facade based on a set of parameters like the dimensions, size, and

distribution of different elements.

2- GD, PD, but not AD: Designing through optimization, however, the

relations between the parameters and the optimization mechanism

is difficult.

3- GD but neither PD nor AD: Using cellular automata in design

where the rules are not parametric, and the outcome is nearly

impossible to directly infer from the rules of the automaton.

4- PD but neither AD nor GD: Designing an element such as a wall

allowing users to change the parameters without requiring explicit

use of algorithms.

5- GD, AD, but not PD occurs in digital fabrication when a computer

numerical control machine operates, executes a program that is

often automatically generated and entirely non-parametric.

Last but not least, and according to Caetano, A., et. Al., 2019,

"performance-based design" is the third most used term after PD and GD,

but less prevalent than Parametric Design (PD) and Generative Design

(GD). There is limited overlap with the term "performative design," which

is not as commonly used. They presented a bar diagram illustrating the

57

 Chapter 3

frequency of appearance of each CD-related term in the literature from

1978 to 2018.

Figure 3-7- Number of times each CD term appeared in the literature between 1978 and 2018 by

Caetano, et. Al, 2019

Overall, performance-based design integrates performance criteria

throughout the design process, prioritizing specific outcomes over

traditional standards. It's prevalent in architecture and engineering,

focusing on achieving desired performance goals. Evolutionary design,

adaptive design, performative design, and kinetic design are variations

within this approach.

GD utilizes algorithms to generate designs autonomously, emphasizing

computational processes to produce diverse solutions. AD, a subset of GD,

emphasizes traceability between algorithms and outcomes. PD relies on

parameters to describe designs, allowing flexibility and adaptability within

a defined framework. Understanding these terms is essential for employing

specific techniques and approaches in the design process.

3.4 Generative form finding

Generative form-finding is a design process rooted in rules or algorithms,

often facilitated by software like Rhinoceros, Grasshopper, Dynamo, and

58

Coding in computational design: A base for utilizing AI in

architectural form finding

scripting platforms. Eisenman's influence in the 80s and early 90s, inspired

by Derrida's deconstruction theory, introduced techniques like overlay,

fractals, and scaling, paving the way for contemporary generative design

attempts. Greg Lynn further advanced the field with techniques such as

NURBS and splines, leading to the emergence of 'blob architecture.'

With the advancement of computational and scripting tools, digital

fabrication became more accessible, enabling explorations in paneling,

optimization, simulations, and algorithmic design. Generative design

leverages computers to explore solutions, sometimes through algorithms,

and employs evolutionary optimizers to reach design goals. This approach

shifts the focus from the final form to the underlying logic of design,

externalizing the designer's intelligence into generative systems. Various

tools like shape grammars, parametric variations, and evolutionary

algorithms enable designers to encode rules and algorithms, guiding form

generation. Additionally, newer tools explore randomness and chaos in

form generation, broadening the spectrum of generative design

possibilities. (El Iraqi, A., and El Daly, H., 2017).

According to El Iraqi, A., and El Daly, H., 2017, generative design systems

can be broadly classified into two categories: linguistic generative systems

where the emphasis is on encoding design rules and logic (syntax) in a

language-like structure that govern and shape the design (semantics) and

biological generative systems which draw inspiration from natural

processes, particularly those related to evolution. Genetic Algorithms and

Cellular Automata are examples of biological generative tools.

Linguistic generative systems includes shape grammars, developed by

Stiny and Gips in 1972, which formalize rules for generating shapes or

forms, particularly useful in architecture and urban planning, L-systems,

which was introduced by Lindenmayer, model growth processes,

especially for self-replicating structures like plants, and fractals, being

complex shapes with self-similarity, generated through recursive

algorithms and have applications in diverse fields for creating intricate and

visually appealing forms.

59

 Chapter 3

Figure 3-8- Shape Grammars (MIT - Computational Design I: Theory And Applications - Fall

2005 Lecture 7)

Figure 3-9- Left: L-Systems (Chiu, P., 02015, The Structure of L-System), Right: Examples of

geometrically self-similar fractals. (A) The Mandelbrot set. The " curve " (B) and the " snowflake

" (C), described by Niels Fabian Helge von Koch (1870–1924), and the " Sierpinski triangle "

(D), described by the mathematician Waclaw Sierp – Di Leva, A., et. Al, 2013, Fractals in the

Neurosciences, Part I: General Principles and Basic Neurosciences

Biological generative systems include genetic algorithms which mimic

natural selection to find optimal solutions by creating populations,

evaluating fitness, and using genetic operators like crossover and mutation.

Solutions are represented as individuals (phenotypes) with encoded

parameters (genotypes), genes, alleles, and chromosomes. GAs evolve

over generations toward optimal solutions. They also include Cellular

automata (CA) which are discrete computational models where cell states

evolve based on rules determined by neighboring cells (Robert J., K.,

2002). CA is used in generative design to create complex patterns and

simulate dynamic systems.

60

Coding in computational design: A base for utilizing AI in

architectural form finding

Figure 3-10- Components of Generic Cellular Automaton - Leao, S., et. Al., 2004, Simulating

Urban Growth in a Developing Nation’s Region Using a Cellular Automata-Based Model

In essence, the generative form finding represents a pivotal moment in

design evolution, where technology becomes a co-creator, pushing the

boundaries of what is conceivable and achievable in architecture and

engineering. Algorithms and parametric models drive the creation of

complex, self-adaptive structures. This union facilitates not only the

exploration of diverse design possibilities but also the optimization of

forms based on performance criteria.

3.5 Architectural forms as information

The use of computer-aided tools in architectural design, as highlighted by

Jabi (2013), has facilitated the creation of more complex designs,

especially with the emergence of scripting tools that offer architects greater

control over design elements. Architectural forms serve as repositories of

valuable information in computational design, encompassing geometric,

material, environmental, cultural, and experiential data. This information

influences design decisions and can be utilized to optimize designs for

sustainability, functionality, and user experience. Each parameter of a

building influences its spatial aspects and user interaction, underscoring

the importance of understanding these factors. Furthermore, translating

architectural information into datasets for ML algorithms enables pattern

recognition and prediction, driving innovation and efficiency in design

processes. Overall, treating architectural forms as information enhances

design thinking and enables a deeper understanding of the relationship

61

 Chapter 3

between physical space and digital design. And the best way to deal with

large quantities of information is through algorithms.

The advent of parametric design software such as Grasshopper for Rhino

and Dynamo for Revit shifted the way architectural modeling tasks are

done from a conventional method of drawing to creation-by-algorithms.

Algorithms require input data/parameters and steps/operations/conditions

on those parameters to reach a final output. For instance, a simple example

of an algorithm for solid wall creation requires inputs such as points, a

rectangle, or a surface. In the case of a rectangle, an operation of converting

it to a surface, and then extruding it and in case of a surface, only extrusion

process is required. Now, if an architect needs to adjust the wall

parametrically, they can change the rectangle dimensions or the extrusion

height. Transformations are operations applied on the shape that could

change its position, angle, scale, etc. and each is considered an

operation/rule applied within the algorithm to reach the final output.

Copying the wall, connecting walls and slabs, opening walls, transforming

items to respect setbacks, and more are examples of rules applied to the

same algorithm to reach a building rather than a wall. Afterwards, adjusting

any parameter within the same framework of the algorithm maintaining its

structure will be easy. However, the number of parameters can be critical

because regardless of how many parameters an architect adds to the

algorithm, relations between those parameters should be kept clear in order

to maintain the algorithm’s readability and function. And so, the way an

architect can algorithmically decompose a building and find the proper

relationships between its components can be very complex. Especially,

with a large number of components each related to another. But what is

guaranteed is that each design will be a product of a well-structured and

connected algorithm that maps exactly how the architect thinks and what

decisions have been made. And there comes the importance of parametric

design approach where an architect could use hundreds of parameters that

together shape the form while being interrelated directly so that changing

a parameter could affect other parameters.

62

Coding in computational design: A base for utilizing AI in

architectural form finding

3.6 Coding as a Practice

"Coding" typically refers to the act of writing code, which is a set of

instructions written in a programming language. This can involve

translating a specific algorithm or set of tasks into a language that a

computer can understand and execute. Coding is often considered a more

casual term, and it can be used to describe both the broader process of

writing code and the specific act of writing individual lines or blocks of

code. In the Oxford Languages Dictionary, the term ‘code’ is defined as a

‘system of words, letters, figures, or symbols used to represent others,

especially for the purposes of secrecy’ and ‘program instructions.’ Also,

the term ‘coding’ is defined as ‘the process of assigning a code to

something for classification or identification’ and ‘the process or activity

of writing computer programs’ (Oxford Languages Dictionary).

From these definitions, coding is not a process that is exclusively related

to computers. Human mental processes could be done through coding. In

fact, coding becomes a general activity that involves ciphering data,

analyzing, and synthesizing it to solve problems. In qualitative research,

coding is essential for organizing and analyzing data, assigning labels to

segments of qualitative data to identify patterns and insights.

While coding and programming are often used interchangeably,

programming encompasses the entire software development process,

including coding, problem-solving, testing, and maintenance. It requires a

comprehensive understanding of the software development life cycle. In

practice, coding involves writing instructions for software to perform

specific tasks, often hidden behind a graphical user interface (GUI). When

a user interacts with a GUI, such as clicking a button, it triggers a series of

processes between the front end (GUI) and back end (software logic),

ultimately executing the desired action. This process could be broken down

simply into the following steps: user interaction in the GUI triggers event

handling in the front end, where the software captures and processes the

user's action. This information is communicated to the back end, which

determines the appropriate response based on the user input. The software's

logic executes the action, translating high-level code into machine code for

63

 Chapter 3

the computer's CPU to process. If necessary, the software may undergo

compilation before execution. The updated GUI provides feedback to the

user, indicating that the action has been completed. This seamless process

ensures intuitive and responsive user experiences in software applications.

The GUI triggers actions in the software's logic, leading to the generation

and execution of machine code by the computer's hardware. The process

varies by programming language: C/C++ directly translates code to native

code, Java to bytecode, C# to an intermediate language, which is then Just-

In-Time (JIT) compiled to native code, and Python to bytecode executed

by its interpreter. This variation affects how code is executed and

optimized.

Machine code, written in binary or hexadecimal notation, is specific to a

computer's architecture and operating system. Developers typically use

higher-level programming languages and rely on compilers or interpreters

to generate machine code. The actual instructions executed depend on

factors like the programming language, operating system's API, and

hardware architecture. Lower-level languages like C/C++ may use system-

specific functions to interact with the OS, while higher-level languages like

Java/Python delegate interaction to the runtime environment or interpreter.

Understanding coding principles empowers users to leverage machines

fully, fostering creativity in task execution and potentially innovating new

functions.

3.7 How Modeling Software Work

Programs, or software, are sets of instructions enabling computers to

perform tasks, essential for computing's functionality. Programmers and

software developers design, create, and maintain software, shaping

applications that empower computers. Modeling software like Rhinoceros,

3ds Max, Revit, and Maya interact with computer hardware to create and

manipulate 3D models. Developed using high-level languages such as C++

or C#, they employ frameworks for GUI, event handling, and rendering.

GUI facilitates user interaction, with inputs processed through event

handling. Core functionalities, like surface modeling, employ complex

algorithms implemented using high-level languages. 3D rendering engines

64

Coding in computational design: A base for utilizing AI in

architectural form finding

interface with the GPU for realistic visuals. File operations use libraries

for compatibility with standard formats, integrating with OS APIs for tasks

like file management. Custom scripting and plugins, often in Python,

extend functionality. Memory management and multi-threading

considerations optimize performance, making them indispensable tools in

design, animation, architecture, and engineering.

Modeling and rendering geometry

Geometry modeling algorithms in 3D software, like Bezier surfaces and

NURBS, use mathematical representations to define and manipulate

geometry. Implemented in languages such as C++, C#, or Python, these

algorithms compute points on the geometry based on mathematical

formulations, often employing techniques like De Casteljau's algorithm for

Bezier surfaces. Rendering processes, facilitated by OpenGL or DirectX,

utilize GPU acceleration for real-time visualization, incorporating shading

and lighting algorithms for realism. The GUI allows user interaction for

operations like selection, translation, and scaling, with event handling

mechanisms triggering updates. Optimization techniques enhance

performance with complex geometry. The rendering pipeline, used by

libraries like OpenGL, converts 3D data into visual images, with shaders

enabling custom visual effects for enhanced realism. Translation to

machine code involves compiling high-level language code into CPU-

executable instructions, typically written in languages like C++.

The rendering pipeline encompasses a series of mathematical operations

and algorithms translated into machine code instructions for efficient

execution on a computer's hardware. This includes transforming vertices,

applying view transformations, projecting coordinates, and clipping to

ensure visibility, followed by rasterization to determine pixel coverage.

Vertex and fragment shaders, compiled from high-level shading languages

like GLSL or HLSL, handle shading operations in parallel on the GPU.

Texture mapping involves calculating texture coordinates and sampling,

while depth testing compares pixel depths for drawing order. Alpha

blending logic is applied for transparency, and frame buffer operations

manage pixel storage and display updates. Optimization techniques are

65

 Chapter 3

employed during compilation to generate efficient machine code,

leveraging parallelism, particularly in GPU programming, for

simultaneous execution of shader operations on multiple vertices or

fragments.

The compilation process translates high-level code into an intermediate

representation like bytecode or assembly code. During linking and loading,

this representation is further translated into machine code specific to the

CPU or GPU architecture, resulting in an executable program runnable on

the hardware.

Software documentation

Software documentation is a comprehensive set of written materials that

serves to describe, explain, and guide various aspects of a software system.

The information in software documentation is often divided into task

categories, including evaluating, planning, setting up or installing,

customizing, administering, using, and maintaining. Different types of

documentation play crucial roles throughout software development life

cycle and there are mainly two types which are internal and external

software documentation. Internal software documentation serves as a

valuable resource within a company including administrative

documentation which includes administrative guidelines, roadmaps, and

product requirements and developers’ documentation which offers clear

instructions to developers on how to build the software. On the other hand,

external documentation includes user documentation which provides

guidance on product usage to the end-users, developer documentation

which focuses on system-related details including how to invoke the API,

and just-in-time documentation used where immediate support is needed

for customer-facing queries, minimizing the need for users to refer to

additional documents or FAQs.

APIs and SDKs

API (Application Programming Interface) and SDK (Software

Development Kit) are essential tools in software development, each

66

Coding in computational design: A base for utilizing AI in

architectural form finding

serving distinct purposes. An API defines rules for software component

interaction, enabling developers to access functionality without exposing

internal details. On the other hand, an SDK is a comprehensive package

containing tools, libraries, and resources for building applications on

specific platforms or frameworks. While APIs specify interaction rules,

SDKs provide a complete development environment, including APIs,

documentation, sample code, tutorials, and other tools.

3.8 Visual Programming Language

Visual programming languages (VPLs) use graphical elements like icons

and symbols to represent programming logic, aiming to simplify coding

and make it accessible to non-programmers. The concept of VPLs has

evolved over decades, originating from the early development of graphical

user interfaces. In architecture, visual programming emerged alongside

computational design and parametricism, allowing architects to explore

algorithms and dynamic parameters in design processes. Grasshopper,

integrated with Rhino 3D modeling software, played a significant role in

popularizing visual programming by offering a user-friendly interface for

creating parametric designs. This approach facilitated interdisciplinary

collaboration and streamlined architectural practices. Figure 3-11 shows

an algorithm that creates a box using domains in the X, Y, and Z directions,

and then moves it to the Z direction.

Figure 3-11- Domain Box Creation as An Algorithm

67

 Chapter 3

In the background of such an algorithm, each component runs a certain line

of code that executes the function. The XY Plane component runs a ‘Plane’

struct property ‘Worldly’, the domain box component runs a ‘Box’ Class

constructor, the construct domain component runs an ‘Interval’ Struct, the

unit Z component runs a ‘Vector3d’ struct ‘ZAxis’ property, and the move

component runs a ‘Translation’ method from the ‘Transform’ struct in

RhinoCommon. The required parameters such as domain values and unit

Z, vector value, etc., are considered input variables in the code.

Conventional modeling techniques in architecture often involve manually

drawing shapes and structures, which can be non-algorithmic and non-

parametric. This process may lead to inefficiencies when editing geometry

and may require recreating geometry from scratch for complex tasks.

Visual Programming Languages (VPLs) offer a graphical representation of

programming concepts, allowing users to intuitively understand and

manipulate program logic.

While VPLs enhance accessibility to programming, they may face

challenges in expressing complex algorithms and handling large-scale

tasks compared to text-based languages. They could lead to

misrepresentation of a project algorithm due to the huge number of

components on the screen that are connected to each other with wires

resulting in a very tedious and unarranged virtual working space as shown

in figure 3-12.

Figure 3-12 - Grasshopper3d Definition Arrangement

68

Coding in computational design: A base for utilizing AI in

architectural form finding

In summary, VPLs provide a graphical approach to coding, offering

intuitive interfaces and visual representations of code structures. While

they enhance accessibility, challenges exist, such as managing complexity

in larger projects.

3.9 Bias in Modeling Processes and Leveraging Power, Freedom,

and Spruceness of Coding

Bias in modeling processes arises from both software design and

educational factors. Conventional modeling approaches limit creativity by

dictating how geometry is built, often restricting users to predefined

methods within the software's GUI. This bias impedes the ability to treat

geometry as dynamic information, hindering the full utilization of

mathematical operations in design. For example, in such software,

architects may lack flexibility in constructing shapes or evaluating

surfaces, leading to limitations in modifying and building upon geometry.

Curve manipulation is particularly challenging, with divisions often

resulting in kinks and disruptions to smoothness. Overall, conventional

approaches constrain architects to predefined methods and limit their

ability to fully leverage mathematical operations in the design process.

Parametric modeling addresses limitations in conventional approaches by

enabling mathematical manipulation of geometry. However, educational

bias persists as architects often learn software through predefined methods,

hindering creative thinking. Users may favor easier modeling approaches,

leading to a narrow perspective on software capabilities. Additionally,

tutorials often focus on tools rather than mathematical principles, further

limiting understanding. Overall, bias in modeling software restricts both

thinking and modeling processes for architects.

Architectural design through coding empowers architects to innovate by

fostering computational thinking, facilitating the creation of complex

forms, optimized spatial layouts, and innovative design solutions.

The power of coding lies in automating repetitive tasks, speeding up

design iteration, and exploring various possibilities. Functions like

69

 Chapter 3

iterations and conditionals are fundamental, offering control over code

flow and flexibility. Iterations, via loops, enhance efficiency by repeating

tasks and processing data sets, crucial for automation and batch processing.

Conditionals enable decision-making, executing code blocks based on

conditions, vital for error handling and user interaction. Together, they

form the foundation for dynamic and efficient coding, handling diverse

scenarios and data precisely. Additionally, coding facilitates interactions

with the operating system, simplifying tasks like exporting model data as

photos or spreadsheets for use in other disciplines, reducing reliance on

multiple software tools.

The freedom offered by coding in architectural design liberates architects

from traditional constraints, enabling them to express design intent

algorithmically through parametric models. This dynamic approach fosters

flexibility, facilitating efficient design modifications in response to

evolving project needs or client feedback. Working with the modeling

software's API empowers architects to freely explore its functions and

modeling methods, aligning with project requirements and enhancing the

design process.

Rhinoceros3d SDK

RhinoCommon, McNeel & Associates' cross-platform .NET plugin SDK

for Rhinoceros3d, offers extensive capabilities for extending and

integrating functionalities within Rhino. Primarily designed for .NET

languages like C#, it provides a versatile API with a robust geometry

library at its core. Beyond basic scripting, RhinoCommon enables task

automation and the development of custom plugins, enhancing Rhino's

native features with bespoke tools. Its cross-platform compatibility ensures

seamless operation across various operating systems, and supported by an

active community, developers can tailor solutions to diverse design and

engineering needs effectively. Figure 3-13 shows the RhinoCommon API

website exhibiting all of the namespaces and their different classes and

structs.

70

Coding in computational design: A base for utilizing AI in

architectural form finding

Figure 3-13 – RhinoCommon API - https://developer.rhino3d.com/api/rhinocommon/

To construct a box through coding using the API, the 'Box' struct offers six

different constructors tailored for various scenarios. These constructors

include methods for creating a box from a bounding box, copying another

box, constructing it with a base plane and bounding box, using a base plane

and a generic piece of geometry, requiring a base plane and a list of points

(at least 2), and finally, one that needs a base plane and three intervals in

each Cartesian coordinate (figure 3-14).

Figure 3-14- Box Struct in RhinoCommon API -

https://developer.rhino3d.com/api/rhinocommon/rhino.geometry.box

Also, under the ‘Box’ struct, a list of properties (usually mathematical)

related to the box are exhibited in order to gain all the possible information

71

 Chapter 3

from it like its area, volume, orientation plane, center, X, Y, and Z intervals.

Moreover, a set of methods are present for box geometries which facilitate

getting more information about boxes like their corners, if it contains a

certain point or another box, the closest point to a box, converting the box

to a Boundary Representation (Brep) object, and transforming the box.

The spruceness of coding in architecture refers to the cleanliness and

efficiency achieved through well-organized and concise code. It

emphasizes modular scripting, enhancing collaboration and sharing of

design methodologies within the architectural community. This approach

improves code readability, scalability of design solutions, and logical

thinking skills for architects. In software like Grasshopper and Dynamo, a

single coding component can create, modify, and transform every building

component, resulting in a tidy virtual workspace. Figure 3-15 shows how

tidy a virtual working environment can get with coding.

72

Coding in computational design: A base for utilizing AI in

architectural form finding

Figure 3-15 - Parametric Villa C# Script Created using C# Component in Grasshopper- By the

Author

73

 Chapter 3

In general, integrating coding into architectural design modeling

empowers architects with the computational tools needed to transcend

traditional design boundaries. It provides the power to create intricate and

responsive designs, the freedom to explore diverse possibilities, and the

spruceness of well-crafted, efficient code. This symbiotic relationship

between coding and architectural design opens new horizons for creativity,

efficiency, and collaboration within the field of architecture.

Summary

In conclusion, this chapter provides a comprehensive exploration of

computational design as a transformative design thinking approach. It

delves into the historical roots of computational design and presents a

nuanced taxonomy that encapsulates the diverse approaches that have

emerged under its expansive umbrella. The focal point of the chapter

revolves around the in-depth examination of the generative form-finding

approach, shedding light on its principles and applications in architecture.

The collaborative engagement between designers and computational tools

enables the externalization of design intelligence, fostering a dynamic and

iterative design process. As designers increasingly leverage generative

algorithms, shape grammars, and other computational techniques, the

creative landscape expands, providing a rich platform for exploration,

experimentation, and the realization of novel design solutions.

By analyzing architectural forms as a source of information for

computational design, architectural forms become not only design

outcomes but also repositories of data that inform and shape the

computational design process. A crucial aspect discussed in the chapter is

the translation of this information into algorithms. The formation of

algorithms, rooted in the extracted information from architectural forms,

serves as a pivotal step in the computational design approach. In the next

part integrating coding, ML, and AI in the architectural design process is

discussed.

This chapter delves into the evolution of parametric design and visual

programming in architecture, tracing its roots back to the 'Explicit History'

plugin for Rhinoceros3d software released in September 2007. The

74

Coding in computational design: A base for utilizing AI in

architectural form finding

concept of 'visual coding' emerged, forming the basis for parametric

design, where architects gain full control over parameters and real-time

modifications. Coding, defined as the direct means to instruct machines,

is explored as an integral part of architectural design and modeling.

Architectural software communicates with machines through coding and

mathematics, using transformations like altering coordinate systems to

visualize geometry. Mastery of coding languages empowers architects to

understand software mechanics deeply, reducing biases inherent in user

interfaces. The chapter emphasizes the power of coding, incorporating

built-in functions such as iterations and conditional statements for precise

design control. Additionally, the integration of libraries in programming

languages enhances the capabilities of architectural modeling, from data

visualization to working with matrices and arrays.

In essence, coding is presented as a transformative practice in architecture,

enabling architects to read geometry as containers of information rather

than mere shapes. The chapter concludes by highlighting the importance

of coding as a modeling approach, emphasizing its power and freedom to

overcome biases in visual programming languages and conventional

modeling methods.

75

Part 2: Integrating AI in the Architectural

Design Process (A Framework for

Utilizing AI in Form Generation)

76

 Artificial Intelligence and Machine Learning in Architecture

Chapter 4 Artificial Intelligence and Machine

Learning in Architecture

Preface

Today, AI and ML stand as pillars of transformative forces, reshaping the

understanding of what machines can achieve. This chapter begins with the

fundamental definition of AI. The definition of AI is multifaceted,

encapsulating the development of machines and systems endowed with the

capacity to perform tasks that traditionally require human intelligence.

From rule-based systems to advanced neural networks, the breadth of AI's

definition encompasses a spectrum of capabilities that continues to expand

with technological advancements. Machine Learning, a subset of AI, forms

the backbone of intelligent systems. It is the engine that enables machines

to learn from data and improve their performance over time. The interplay

between AI and ML is symbiotic, with ML providing the adaptive

capabilities that empower AI to navigate dynamic environments.

Khean et al. (2018) highlighted architecture as one of the slowest industries

to integrate AI and ML due to factors like traditional practices prioritizing

craftsmanship and artistic expression, limited data availability, and the

complexity of design. They underscored the importance of architect-AI

interaction for favorable outcomes. This aligns with the "human-centered

AI" approach, emphasizing collaboration between AI systems and human

experts to enhance architects' capabilities and creativity, rather than

replacing them.

In this chapter, the history of AI from the early philosophical musings to

pivotal moments that have shaped the field is reviewed. In addition,

generative AI (Gen-AI) and non-generative AI (Non-Gen-AI) are

explored. The fundamental differences between systems designed for

specific domains and those aiming to replicate human-like cognitive

abilities across a spectrum of tasks is discussed. These distinctions have

profound implications, not only in technical realms but also in ethical and

societal dimensions. Moreover, some of the Gen-AI and non-Gen AI

77

 Chapter 4

applications in architecture are reviewed and how these applications can

be involved in the design process is discussed. Additionally, building on

what was discussed earlier in chapter 1 regarding design thinking and

architectural design process, the authenticity of Gen-AI products is

questioned with a focus on generated images. Gen-AI is analyzed as a

concept regarding how it could affect the design process, proposing a

theory on how Gen-AI could fit in the process rather than dramatically

changing it in a way contradicting with the essence of architectural design.

After that, architectural visualization field and whether it directly affects

the design process or not is discussed. Finally, how non-gen- AI could be

integrated into the design process is explained.

4.1 AI Definition and History

AI refers to the simulation of human intelligence in machines that are

programmed to think and learn like humans. It involves the development

of computer systems capable of performing tasks that typically require

human intelligence. These tasks include learning from experience (ML),

understanding natural language, recognizing patterns, solving problems,

and adapting to new situations.

AI can be approached through four perspectives, as outlined by Russell

and Norvig (2010): thinking humanly, acting humanly, thinking rationally,

and acting rationally. Thinking humanly, proposed by Haugeland (1985)

and Bellman (1987), envisions AI as machines with minds, capable of

human-like thought processes. Acting humanly, as described by Kurzweil

(1990) and Rich and Knight (1991), focuses on creating machines that

perform tasks requiring human intelligence. Thinking rationally,

articulated by Charniak and McDermott (1985) and Winston (1992),

explores AI as the study of mental faculties through computational models.

Acting rationally, defined by Poole et al. (1998) and Nilsson (1998), views

AI as the design of intelligent agents capable of exhibiting intelligent

behavior. These perspectives converge on AI's core components: learning,

reasoning, problem-solving, and creativity, drawing from diverse

disciplines such as psychology, mathematics, linguistics, neuroscience,

philosophy, and computer engineering.

78

 Artificial Intelligence and Machine Learning in Architecture

Alan Turing's seminal 1950 article, "Computing Machinery and

Intelligence," laid the foundation for AI, introducing the Turing Test and

pioneering concepts like machine learning and reinforcement learning.

Preceding this, Turing began discussing AI in 1947 lectures at the London

Mathematical Society. In 1956, the Dartmouth workshop convened

prominent figures like John McCarthy, Allen Newell, and Herbert Simon,

marking the formal inception of AI as a field. McCarthy's creation of Lisp

in 1958 revolutionized AI programming. The period between 1952 and

1969 witnessed key AI applications like the General Problem Solver (GPS)

by Newell and Simon, and Arthur Samuel's checker AI player. The late

1960s and early 1970s saw a shift toward knowledge-based systems,

exemplified by projects like DENDRAL and MYCIN, while the late 1970s

marked the commercialization of AI. The mid-1980s experienced both

progress, with neural networks challenging symbolic approaches, and

setbacks, known as the "AI Winter." Subsequent years emphasized

empirical experiments and real-world applications, with the late 1990s and

early 2000s witnessing a shift to data-centric approaches. In the 21st

century, AI advancements have focused on intelligent agents, integration

with the Internet, and the pursuit of human-level AI, with ethical

considerations driving research and development (Solomonoff, G., 2023).

In the evolution of computer science over the past six decades, there has

been a notable shift from algorithm-centric approaches to a focus on the

significance of data in AI development. This shift, highlighted by

Yarowsky's 1995 work on word-sense disambiguation and Banko and

Brill's 2001 study, emphasizes that the quality and quantity of available

data may outweigh the importance of algorithm choice. Yarowsky's

approach demonstrated achieving high accuracy without labeled examples

by leveraging vast unannotated text corpora, while Banko and Brill's study

showed that increased data volume can surpass algorithmic variations in

performance. Further evidence from Hays and Efros (2007) illustrates how

algorithmic performance improves with a larger collection of images,

reinforcing the impact of data scale on AI outcomes. This data-driven

paradigm suggests a potential solution to the "knowledge bottleneck" in

AI, where comprehensive system knowledge is acquired through learning

79

 Chapter 4

rather than manual knowledge engineering, given sufficient data for

training algorithms. These developments signal a resurgence in AI

applications, potentially marking the end of the "AI Winter" era and

ushering in a new era of innovation across diverse industries, as

acknowledged by Kurzweil's recognition of AI's pervasive integration into

various sectors.

4.2 Types and Applications of AI

This section presents various types of AI based on its capabilities and

functionality as well as different applications of AI.

AI Types

Biswal, A., 2023 categorizes AI into several types based on its capabilities,

including Artificial Narrow Intelligence (ANI), Artificial General

Intelligence (AGI), Artificial Superintelligence (ASI), and Singularity.

ANI, also known as weak AI, is specialized in performing specific tasks

and encompasses the first and second waves of AI, involving expert

systems, artificial neural networks, and data mining, among others. ANI

systems excel in tasks like image recognition, speech recognition, natural

language processing, recommendation engines, machine translation, and

self-driving cars, but are limited to these tasks and lack generalization

abilities. AGI, on the other hand, aims to mimic human-level intelligence

across a broad range of tasks, possessing adaptability, learning capabilities,

complex reasoning, and potentially self-awareness. ASI is a speculative

type of AI that surpasses human intelligence in all aspects, potentially

capable of recursive self-improvement. The Singularity refers to AI

achieving autonomy and intelligence to break free from human control,

leading to an intelligence explosion. The development of AGI is seen as a

prerequisite for the Singularity, although there is uncertainty surrounding

its occurrence and timeline.

AI types based on functionality include various categories, each

delineating specific attributes and capabilities. Reactive Machines,

exemplified by IBM's Deep Blue, operate solely on current input data

without drawing from past experiences, limiting their adaptability beyond

80

 Artificial Intelligence and Machine Learning in Architecture

predefined tasks. Limited Memory AI strikes a balance by incorporating

short-term memory, crucial for tasks like autonomous driving systems,

exemplified by Mitsubishi Electric's advancements in this field. Theory of

Mind AI endeavors to endow machines with the ability to understand and

attribute mental states to themselves and others, showcased by creations

like Kismet and Sophia. Lastly, Self-Awareness in AI pertains to

recognizing one's own mental states, from basic understanding to nuanced

awareness, with implications for enhancing human-machine interactions

and system performance. While fully self-aware AI remains theoretical,

ongoing research explores its ethical implications and technical feasibility,

aiming to advance AI towards higher levels of self-awareness (Boucher,

2020).

AI Applications

Applications of AI include expert systems, ML, NLP, computer vision,

speech, planning, and robotics.

ML is a branch of AI that focuses on creating systems that can learn from

data and make decisions or predictions based on that data. ML can be

applied to various domains, such as computer vision, natural language

processing, recommender systems, and more. Additionally, Natural

Language Processing (NLP) is a specialized field within AI that focuses

on the interaction between computers and human languages. Its

overarching goal is to equip computers with the ability to comprehend,

analyze, generate, and manipulate natural language texts and speech. The

applications of NLP span a wide range and include machine translation,

speech recognition, sentiment analysis, information extraction, text

summarization, question answering, and the creation of chatbots.

Expert systems are AI-driven computer programs designed to tackle

complex issues within defined domains. They consist of a knowledge base,

an inference engine, and a user interface. Drawing from facts and rules

sourced from human experts or authoritative references, the inference

engine employs logical reasoning to derive new conclusions. The user

interface enables interaction, allowing users to ask questions, offer

feedback, or update the knowledge base. Despite their utility, expert

81

 Chapter 4

systems may falter when faced with unforeseen circumstances and

typically lack common sense or inventive problem-solving capabilities.

Computer vision is an integral field within AI that empowers machines to

comprehend and make decisions based on visual information, mirroring

human vision capabilities. Some common computer vision algorithms

include Sobel, Prewitt, or Canny for image filtering and edge detection,

ANNs for image classification, object detection, and image segmentation,

U-Net for image segmentation, SIFT (Scale-Invariant Feature Transform)

and SURF (Speeded Up Robust Features) for feature extraction, Lucas-

Kanade and Horn-Schunck for estimating the motion of objects in

consecutive frames of a video, and Eigenface, Fisherfaces, and Local

Binary Patterns (LBP) for face recognition (Szeliski, R., 2010).

Last but not least, AI Planning is a specialized field within AI dedicated to

the development and execution of plans to achieve specific goals. The core

tasks in AI Planning involve determining a sequence of actions that

transition from an initial state to a desired goal state, followed by the

execution of these actions in either a real or simulated environment.

4.3 Generative and Non-Generative AI

Generative AI (Gen-AI) and non-generative AI (Non-Gen AI) represent

two broad categories of AI systems based on their capabilities and

functionalities.

Gen-AI

In January 2021, a breakthrough in AI creative abilities was announced

when DALL-E was open for the public to experiment with. DALL-E is a

platform that converts text to images through generative AI. In July 2022,

another breakthrough in AI creative abilities was announced when

MidJourney was open for the public to experiment with. MidJourney is

another text-to-image generative AI model, but it was resulting in more

realistic generated images with more options.

Since then, DALL-E and MidJourney were developed, and new versions

were published gradually with more options including inpainting,

82

 Artificial Intelligence and Machine Learning in Architecture

outpainting, and image-to-image generation reaching DALL-E v3 and

MidJourney 5 at the time of writing this research. Also, other image

generation models were developed including Adobe Firefly and stable

diffusion.

Of course, Many fields have leveraged the power of such models and

capabilities and the architectural field is no exception and many

applications of using image generation AI models in architecture were

explored in section 7.2.2.

In fact, the advent of both generative and non-generative AI has

significantly transformed the architectural design process. Generative AI,

with its prowess in divergent thinking and algorithmic creativity, has

become a catalyst for idea generation. Furthermore, generative AI

facilitates collaboration between architects and machines, fostering a

symbiotic relationship that leverages the strengths of both.

Gen AI refers to systems that have the ability to generate similar new

content, often in the form of images, text, sound, 3d models, speech, code,

video, etc. These systems can create outputs that are not explicitly present

in their training data by understanding the distribution of data.

Text Generation

Text generation techniques encompass a diverse array of algorithms and

models aimed at producing coherent and contextually relevant textual

content across various domains. Markov Models leverage probability-

based predictions, while Recurrent Neural Networks (RNNs) process

sequences with hidden states to capture context. Long Short-Term Memory

(LSTM) Networks overcome limitations in capturing long-range

dependencies, and Generative Adversarial Networks (GANs) produce

realistic text through an adversarial training process. Transformers, like

BERT, utilize self-attention mechanisms to enhance contextual

understanding, and Large Language Models (LLMs) represent a

cornerstone in natural language processing (NLP), pre-trained on extensive

text corpora. LLMs, such as GPT and BERT, demonstrate remarkable

performance in tasks like text generation and classification. They are

83

 Chapter 4

adaptable across various domains, from general language understanding to

domain-specific applications like medical data analysis. With their

pervasive applications in education, healthcare, customer service, and

beyond, LLMs are shaping the future of human-computer interaction and

information processing.

Image Generation

Image generation AI encompasses algorithms and models designed to

create new images, leveraging deep learning architectures trained on large

datasets. Key approaches include Generative Adversarial Networks

(GANs), Variational Autoencoders (VAEs), PixelCNN/RNN, Deep

Dream, CLIP, and DALL-E. GANs, like DCGAN and StyleGAN, produce

diverse images, while VAEs capture latent representations.

PixelCNN/RNN generate images pixel by pixel, Deep Dream enhances

patterns, CLIP generates images from textual prompts, and DALL-E

generates images based on textual descriptions by directly creating pixels

in the generation process. It does not explicitly involve a separate noising

and denoising mechanism. Stable diffusion algorithms, such as Diffusion

with Denoising Priors (DDPM) and Noise-Contrastive Estimation (NCE),

use controlled noise to transform images gradually, contributing to realistic

and diverse image generation (figure 4-1).

Figure 4-1- The denoising process used by Stable Diffusion.

https://en.wikipedia.org/wiki/Stable_Diffusion#/media/File:X-Y_plot_of_algorithmically-

generated_AI_art_of_European-

style_castle_in_Japan_demonstrating_DDIM_diffusion_steps.png

https://en.wikipedia.org/wiki/Stable_Diffusion#/media/File:X-Y_plot_of_algorithmically-generated_AI_art_of_European-style_castle_in_Japan_demonstrating_DDIM_diffusion_steps.png
https://en.wikipedia.org/wiki/Stable_Diffusion#/media/File:X-Y_plot_of_algorithmically-generated_AI_art_of_European-style_castle_in_Japan_demonstrating_DDIM_diffusion_steps.png
https://en.wikipedia.org/wiki/Stable_Diffusion#/media/File:X-Y_plot_of_algorithmically-generated_AI_art_of_European-style_castle_in_Japan_demonstrating_DDIM_diffusion_steps.png

84

 Artificial Intelligence and Machine Learning in Architecture

Last but not least, inpainting and outpainting techniques, utilizing

generative models, fill in missing or extend image content. These methods

cater to various image generation requirements, highlighting the versatility

and significance of AI in creating visually compelling content.

Videos Generation

Video generation in AI uses advanced techniques to create realistic and

dynamic video content, simulating the appearance and motion of real-

world videos. This field, part of generative modeling, leverages models

like GANs, RNNs, LSTM networks, VAEs, 3D CNNs, and flow-based

models to understand and synthesize dynamic visual content. GANs

employ adversarial training to create realistic video sequences, capturing

temporal and spatial patterns from video datasets. RNNs and LSTM

networks handle temporal dependencies between frames, predicting the

next frame to maintain coherent sequences. VAEs learn probabilistic

distributions from training videos, sampling from these distributions to

produce diverse video sequences. 3D CNNs process video data in three

dimensions, capturing spatial and temporal features simultaneously from

video volumes. Flow-based models focus on learning motion and

transformations between frames, generating videos with realistic motion

by modeling the underlying dynamics. These algorithms, trained on large

video datasets, adjust model parameters to minimize the difference

between generated and real videos, resulting in the creation of diverse and

realistic visual content.

3D Models Generation

3D model generation in AI involves using advanced techniques to create

three-dimensional representations of objects, scenes, or environments

from 2D images, point clouds, or other input data, enabling AI systems to

understand and replicate the three-dimensional nature of the physical

world. Several notable models and algorithms are employed for this task,

each leveraging different approaches. Depth Estimation Networks use

CNNs to predict depth information from 2D images, learning from datasets

containing RGB images and corresponding ground truth depth maps. Point

Cloud Generative Models, including PointNet and PointNet++, generate

85

 Chapter 4

3D point clouds representing object surfaces, trained on datasets with 3D

point cloud representations. Volumetric Representations with 3D CNNs

divide 3D space into small cubes (voxels) and use CNNs to learn and

generate volumetric representations from 2D images.

GANs are adapted for 3D model generation through adversarial training,

refining the generator's ability to create realistic 3D structures from input

data such as 3D models or point clouds. Multi-View Synthesis uses

multiple 2D images from different viewpoints to synthesize a coherent 3D

representation, leveraging neural rendering techniques and training on

datasets of multi-view images.

Neural Radiance Fields (NeRF), introduced by Mildenhall, B., et al., 2020,

represents 3D scenes as continuous functions outputting color and density

for any 3D point, excelling at modeling complex scenes with detailed

geometry and appearance. NeRF is trained on images captured from

different viewpoints and uses ray marching to estimate color and density

values, allowing for realistic and high-fidelity 3D representation. These

algorithms are trained on diverse datasets containing 2D images, 3D point

clouds, or volumetric representations, adjusting model parameters to

minimize differences between generated 3D structures and real-world

examples, thus enabling the reproduction of intricate three-dimensional

scenes and objects.

Figure 4-2 – NeRF pipeline - Mildenhall, B., et. Al., 2020, NeRF: Representing Scenes as Neural

Radiance Fields for View Synthesis

The examples of algorithms mentioned in this section showcase the

versatility of generative AI in creating content across visual art, music,

text, and more. As the field continues to advance, generative models are

likely to contribute to various creative and practical applications.

86

 Artificial Intelligence and Machine Learning in Architecture

Non-Gen-AI

Non-generative AI focuses on tasks such as classification, regression,

pattern recognition, and prediction, rather than generating new content.

These systems are trained on labeled datasets to learn the relationship

between features and labels. Applications include image classification with

CNNs, where objects within images are identified and categorized, and

NLP models for sentiment analysis, such as BERT or LSTM, which

determine the sentiment of a given text. Regression models are widely used

in finance for predicting stock prices based on historical data. Other

applications of non-generative AI include clustering, association rules,

dimensionality reduction, object detection, and face recognition. These

models excel in prediction and pattern recognition, making them valuable

tools across various domains.

In summary, generative AI focuses on creating new and original content,

while non-generative AI is more oriented toward tasks that involve

classification, regression, and pattern recognition without the explicit

generation of new data. Both approaches have their own strengths and

applications, and the choice between generative and non-generative AI

depends on the specific requirements of the task at hand.

4.4 ML Definition and Types

Non-generative AI (ML) excels in analytical support, aiding architects in

data analysis, simulation, and visualization. It contributes to realistic

renderings, project management optimization, and quality assurance.

However, the integration of AI in architecture poses challenges, including

ethical considerations regarding biases, the delicate balance between

technological efficiency and human creativity, and the need for architects

to adapt to evolving workflows. In navigating these challenges, architects

can harness the benefits of AI to enhance their design processes, ensuring

a harmonious integration of technological advancements with traditional

practices.

ML is a sub-set of AI which aids in discovering intricate patterns within

data, utilizing good generalization on unseen data with very precise

87

 Chapter 4

predictions. In ML several disciplines meet such as database, data mining,

pattern recognitions, etc. This process does not require explicit

programming of ML algorithms and meanwhile, many explorations in

applying ML are being widely conducted in different fields. ML algorithms

could be categorized as supervised learning, unsupervised learning, and

reinforcement learning. Specific types of data are used with ML algorithms

including images, text, numbers, and sounds. However, all these types

require the ability to be transformed into numerical values so that they can

be processed by machines. In architectural form design, numerical

predictions require being labeled to be used in their predefined parameters

afterwards to generate a model.

Types of ML

Machine learning can be broadly categorized into three main types based

on the learning style and approach:

Supervised Learning

In supervised learning, the algorithm is trained on a labeled dataset, where

each input data point is paired with its corresponding output or target. The

goal is to learn mapping from inputs to outputs, enabling the algorithm to

make predictions or classify new, unseen data. ML supervised learning

algorithms perform both regression and classification tasks. Regression

quantifies the relationship between input and target variables, predicting

numerical values, suitable for predicting architectural parameters like

lengths, widths, heights, and distances. Classification categorizes inputs

into classes, useful for making binary decisions in architectural models,

such as detecting the presence of windows in a wall. Artificial Neural

Networks (ANNs), a subcategory of ML under deep learning, consist of

interconnected nodes or perceptrons and have advanced significantly,

enhancing capabilities in both regression and classification tasks.

Unsupervised Learning

Unsupervised learning deals with unlabeled data, exploring its inherent

structure and patterns without explicit guidance to discover relationships,

clusters, or representations within the data. Key techniques include

88

 Artificial Intelligence and Machine Learning in Architecture

clustering algorithms, which group similar data points; dimensionality

reduction algorithms, which reduce feature numbers while preserving

essential information; and association rules, which describe relationships

among items in a dataset. Association rules are commonly used in market

basket analysis to identify products frequently purchased together. An

association rule is typically written in the form "If {X}, then {Y},"

indicating the relationship between two itemsets. These techniques help

uncover patterns, correlations, and co-occurrences in data.

Reinforcement Learning

Reinforcement learning involves an agent learning to make decisions by

interacting with an environment and receiving feedback in the form of

rewards or penalties. The agent, which is the decision-making entity, learns

optimal strategies over time through its actions. The environment is the

external system with which the agent interacts. Examples of applications

include game playing, where agents learn through trial and error, and

robotics, where robots learn to perform tasks in a physical environment.

These three types represent the fundamental paradigms in ml, each serving

different purposes and applications. Additionally, there are hybrid

approaches and specialized techniques within these categories,

contributing to the diversity and richness of the field.

4.5 Data Sets in ML

In ML, a data set is a collection of data points that are used for training,

testing, and evaluating machine learning models. Datasets play a crucial

role in the development and assessment of ML algorithms, allowing

models to learn patterns and make predictions based on the provided

information. Data provided to algorithms could be in many forms

including numerical, text, images, audio, videos, etc. according to the

problem under study.

Any data set consists of features or input variables (attributes) which the

model uses to make predictions. Inputs could be either numeric or

categorical and this defines the problem and how it is approached. On the

89

 Chapter 4

other hand, labels or outputs are the desired output or target values that the

model aims to predict.

Data sets could be either labeled or unlabeled. While labeled data are data

which contain input features with corresponding labels, unlabeled data

contain only input features without corresponding labels. Labeled data is

used to train supervised learning models for either regression or

classification tasks. On the other hand, in unsupervised learning and with

the absence of labels, the model’s task is to discover patterns or structures

in the data without explicit guidance.

Data set splitting

Data set splitting is a crucial step in machine learning, dividing a dataset

into training, validation, and testing subsets to assess model performance

and prevent overfitting. The training dataset, comprising input-output

pairs, is used to train the model. The testing dataset, separate from the

training set, evaluates the model's generalization to new data. A validation

dataset, distinct from both training and testing sets, helps tune

hyperparameters and avoid overfitting. For small datasets, a split of 70-

80% for training and 20-30% for testing is common. Large datasets allow

for an additional validation set, with splits typically being 60-70% for

training, 15-20% for validation, and 15-20% for testing. Random shuffling

ensures representative subsets, and stratified splitting maintains class

proportions in imbalanced datasets. Cross-validation, like k-fold, involves

multiple splits for robust evaluation.

Challenges associated with having an ML-ready data set

Handling datasets in machine learning poses several challenges that can

impede model generalization on unseen data. These challenges include

data quality, imbalance, dataset size, dimensionality, noise, and missing

values. Poor data quality can lead to biased models and inaccurate

predictions, while imbalanced class distributions can result in biased

models favoring majority classes. Noise and missing values further

complicate model training, requiring careful preprocessing. High-

dimensional spaces exacerbate the curse of dimensionality, necessitating

90

 Artificial Intelligence and Machine Learning in Architecture

techniques like feature selection and dimensionality reduction. Scaling and

normalization address numerical feature discrepancies, while one-hot

encoding handles categorical variables. Prior to model training, thorough

exploratory data analysis and cleaning are essential to ensure dataset

organization, balance, sufficiency, dimensionality, and cleanliness, as these

factors significantly impact model performance (Aggarwal, C., 2015).

4.6 ML Algorithms

Machine learning algorithms are computational methods or procedures

used by machines to learn from data and make predictions or decisions

without being explicitly programmed. These algorithms enable machines

to improve their performance on a specific task over time through the

experience gained from the data they process. There are various types of

machine learning algorithms, and they are explained in this section.

A) Regression

Regression analysis quantifies relationships between a dependent variable

(also known as the target variable) and independent variables (also known

as features or covariates), aiding predictions or inferences. Ordinary Least

Squares (OLS) is a common method, minimizing error sum of squares to

establish a 'best fit' line. Assumptions include uncorrelated, zero-mean, and

constant-variance errors for parameter estimation, with normal distribution

for hypothesis tests and interval estimation. Advanced tests verify these

assumptions for specific regression equations, making regression analysis

a vital tool across scientific disciplines.

Ensemble learning

Ensemble learning combines decisions from multiple ML models to reduce

error and enhance predictions compared to a single model. The maximum

voting technique is then applied to aggregated decisions for the final

prediction. In an ensemble of trees, each tree is grown based on a random

vector realization, and final predictions are generated through voting with

equal weights. Ensemble learning utilizes Bagging (parallel ensemble) and

Boosting (sequential ensemble) methods. Bagging, introduced by Breiman

in 1996, builds each tree using a bootstrap sample drawn with replacement

91

 Chapter 4

from the training dataset. This reduces prediction errors by averaging and

variance reduction, as explained by Breiman in 1998 and further detailed

by Hastie et al. in 2001. Random forests further reduce variance by

minimizing correlation between aggregated quantities. Ensemble learning

algorithms include random forests, decision trees, XGBoost, etc.

A random forest regressor aim to reduce correlations by introducing an

additional level of randomness. These models utilize a random subset of

variables, selecting a subset of covariates at random. Cerquitelli, T., et al.

(2019), investigated the use of random forest and ridge regression to

forecast power consumption in buildings using the SPEC engine. Their

study demonstrated the effectiveness of these methods in forecasting both

fine-grained values and coarse levels of power consumption in buildings.

Breiman asserts that random forests possess two key advantages: They

achieve remarkable prediction accuracy. And this high accuracy is

achieved across a broad spectrum of settings for the single tuning

parameter utilized.

Additionally, Decision trees utilize a modified version of the C4.5

algorithm introduced by Quinlan in 1993. In regression trees, leaf nodes

can represent distinct values corresponding to the concept or include a

function for determining the value of the target attribute. Yu, Zhun, et al.

(2010), employed a decision tree algorithm to predict the energy

performance indexes of residential buildings, achieving a model accuracy

of 92%.

Last but not least, XGBoost, short for eXtreme Gradient Boosting, utilizes

additive modeling by sequentially incorporating new decision trees to

minimize loss through gradient descent. This strategy prevents overfitting

by integrating the outputs of existing trees with those of the new tree until

loss is minimized or a predefined tree limit is reached. Yucong, W., and

Bo. W., in 2020, introduced the EA-XGBoost model for predicting

buildings' energy consumption, achieving an R2 score of 0.93, an MAE of

46.82, and an RMSE of 47.01.

92

 Artificial Intelligence and Machine Learning in Architecture

Ridge

Ridge regression is a method used to improve model performance in the

presence of multicollinearity within the data. By utilizing L2

regularization, it tackles scenarios where multicollinearity results in

unbiased least-squares estimates and high variances, leading to substantial

deviations between predicted and actual values.

KNN

The k Nearest Neighbor (k-NN) method, categorized as a non-parametric

and supervised technique, requires three essential elements: a set of labeled

entities, a metric for calculating object distances or similarities, and the

specification of k, representing the number of nearest neighbors. In a study

by Hong, G., et al. (2022), the k-NN regressor was examined for predicting

hourly energy consumption in community buildings. The researchers

concluded that the algorithm's overall RMSE results fell within the

acceptable range according to ASHRAE guidelines.

Linear Regression

Linear regression is employed to assess the relationship between

independent and dependent variables, aiming to find optimal coefficients

(w = w1, ..., wn) that accurately represent a linear correlation. In a study

by Boukarta, S. (2021), linear regression was examined to predict the

annual energy demand for heating and cooling in residential buildings,

despite the small sample size of only 60 samples. Remarkably, the model

achieved an impressive R2 score of 0.94%.

Multivariate Polynomial Regression

Polynomial regression is a method that allows for flexible curve fitting,

particularly focusing on a single independent variable X. When applied to

situations with multiple independent variables, it is referred to as

Multivariate Polynomial Regression. In a study conducted by

Mavromatidis, L., et al. (2013), polynomial regression models were

investigated for predicting the thermal performance of composite dynamic

93

 Chapter 4

building envelopes. The results of the models indicated errors that were

deemed acceptable under most conditions.

B) Classification

Classification is a data mining technique that is employed to predict the

categorization of data instances into specific groups. A set of classification

algorithms could be used to predict the classification of data including

Random Forest, k-NN, Radius Neighbor Classifier, and MLP. The main

difference between these algorithms when used in regression and when

used in classification is that instead of analyzing and predicting continuous

values, binary values are predicted.

C) ANNs and Deep Learning

ANNs constitute a broad class of machine learning models inspired by the

human brain's functioning. They can be shallow or deep, with varying

numbers of layers. Deep learning, a subset of machine learning,

specifically focuses on neural networks with multiple hidden layers,

allowing for the creation of deep neural networks. This characteristic depth

enables deep learning models to automatically learn intricate hierarchical

representations of data, enhancing performance in handling complex

patterns. Deep learning algorithms include Multilayer Perceptron (MLP),

Convolutional Neural Networks (CNNs), Recurrent Neural Networks

(RNNs), Long Short-Term Memory (LSTM), and Transformer Models

(e.g., GPT, BERT). MLP, a type of ANN, is particularly effective in

regression tasks. It comprises artificial neurons, which take input values

and apply weights specific to the neuron before passing through an

activation function. Deep learning finds extensive applications in image

and speech recognition, natural language processing, and strategic gaming

due to its ability to learn hierarchical features automatically. Figure 4-3

shows the architecture of deep ANN.

94

 Artificial Intelligence and Machine Learning in Architecture

Figure 4-3- Architecture of a deep ANN - https://freecontent.manning.com/neural-network-

architectures/, Last Access: 30-8-2023

4.7 A Review on Using Non-Gen-AI in Architecture

Non-Gen-AI applications include tasks like classification, prediction,

pattern recognition, etc. This kind of application does not include creative

generation of new outputs such as images, text, 3d models, etc.

Non-Gen-AI offers a diverse range of applications in architectural projects,

spanning from project scheduling and cost estimation to energy

performance analysis and building code compliance. Machine learning

algorithms can optimize schedules, allocate resources, and predict delays,

while also assisting in estimating construction costs and analyzing building

designs for energy efficiency. AI tools can ensure compliance with

building codes, aid in site selection, and enhance facility management

through predictive maintenance and energy optimization. Additionally,

collaborative design tools powered by AI facilitate real-time collaboration

and intelligent design suggestions, while optimization algorithms help in

material selection based on factors like cost and sustainability.

Accessibility analysis further ensures compliance with accessibility

standards, making AI a valuable asset in various facets of architectural

design and management.

In 2023, Topuz, B., and Alp., N., reviewed the applications of ML in

different architectural design sub-disciplines with themes including CAD,

95

 Chapter 4

Computer-Aided-Engineering (CAE), and Computer-Aided

Manufacturing (CAM). The researchers focused on 60 articles published

in different journals. These studies spanned 21 different areas in

architecture, addressing a myriad of challenges within each domain as

shown in figure 4-4.

Figure 4-4 Architecture subfields in 60 articles discussing applying ML in architecture (Topuz, B.,

and Alp, N., 2023, Machine Learning in Architecture)

The breakdown exemplifies the extensive range of applications for

machine learning in architecture, showcasing its potential to address

problems related to design optimization, historic preservation,

sustainability, building performance, and many other facets of the

architectural process.

In the following discussion, different applications of non-gen-AI are

presented.

Sustainability and Energy Efficiency

Numerous studies within sustainable architecture have employed Machine

Learning (ML) techniques to optimize building energy efficiency and

96

 Artificial Intelligence and Machine Learning in Architecture

consumption. For instance, Tansas and Xifara developed a statistical ML

framework to scrutinize the influence of variables like wall area and

glazing area on residential building heating and cooling loads,

emphasizing the accuracy of ML predictions aligned with the training data.

Chou and Bui, 2014 utilized various AI techniques to estimate heating and

cooling loads, with the ensemble approach and Support Vector Regression

standing out. Robinson et al., 2017 found that gradient boosting regression

models excelled in predicting commercial building energy consumption.

Also, Roy et al., 2023, explored advanced ML techniques for residential

buildings, while Deng et al., 2018 cautioned about nuanced performance

compared to linear regression for US commercial building energy use.

Studies by Rahman and Smith showcased ML's capability, including

Neural Networks and Gaussian process regression, in predicting fuel

consumption in commercial buildings. Additionally, Fan et al. applied

Deep Learning for short-term building cooling loads, demonstrating DL's

potential for accurate prediction models. Yang et al. introduced an adaptive

artificial neural network capable of predicting unexpected data behavior.

Gonzalez and Zamarreno employed a feedback ANN for short-term

electric load consumption prediction, highlighting its simplicity and

resource efficiency.

Moreover, Kristianse, T., et al., 2022, explored applying Artificial Neural

Networks (ANNs) to predict annual daylight illuminance and operative

temperature, aiming to reduce simulation time, achieving a promising 96%

reduction in overall time using ANN models. These studies underscore the

versatility and effectiveness of AI and ML techniques in addressing various

challenges associated with electricity consumption prediction in diverse

building contexts. Additionally, Sebestyen, A., 2020, evaluated ML model

predictions of radiation values and sunlight hours compared to software

plugin metrics like Ladybug toolsets in Grasshopper3d for Rhinoceros3d.

In 2019, Feng et al. introduced a method blending parametric design with

ML algorithms to evaluate early-stage environmental performance in

building design, addressing uncertainties associated with design choices.

Singh, M., et al., 2022, developed a convolutional neural network approach

for energy prediction, addressing key challenges and providing

97

 Chapter 4

interpretable BPS information through a web tool. He, Y., et al., 2021,

introduced a hybrid framework for rapid evaluation of pedestrian-level

wind environments in architectural sustainable design, demonstrating

efficiency and accuracy in providing design optimization information.

Collectively, these studies highlight ML's potential to enhance

sustainability and efficiency in architectural design and energy

consumption prediction.

Architectural Theories

Several studies have leveraged machine learning (ML) techniques to

enhance various aspects of architectural analysis and design. Uzun and

Colokoglu (2019) utilized a pretrained Faster-RCNN-Inception-V2-

COCO model to classify architectural drawings images into plans and

sections, highlighting challenges due to dataset size. Wang et al. (2022)

employed CNN-based models for classifying architectural styles,

achieving satisfactory performance with preprocessing and attention

mechanisms. Xu et al. (2014) addressed the multi-class problem in

architectural style classification using probabilistic analysis and

deformable part-based models. Sun et al. (2022) proposed a deep learning

framework for understanding architectural styles and age epochs,

demonstrating its effectiveness in analyzing building façades.

Moreover, Shalunts et al. (2011) successfully clustered façade elements by

architectural style using k-means, achieving high accuracy percentages

ranging between 92.5 and 98.1 according to the class. Alymani et al. (2019)

introduced a workflow combining database systems and unsupervised

learning algorithms to cluster architectural design aspects, highlighting the

efficacy of K-Means clustering. Millan et al. (2022) presented a

methodology utilizing data analysis and machine learning to track the

design process in architecture, revealing insights into design strategies and

problem-solving pathways. Qin et al. (2023) introduced the

"NeoDescriber" model for automatic identification and description of

Neoclassical buildings, achieving effective performance in classification

and detection tasks. These studies collectively demonstrate the diverse

98

 Artificial Intelligence and Machine Learning in Architecture

applications and promising outcomes of ML in architectural analysis and

design.

Form Prediction

Cudzik and Radziszewski (2018) trained an artificial neural network

(ANN) to predict detailed configurations of Roman Corinthian order

capitals, positioning the algorithm as a co-designer capable of generating

potential spatial variations for examined forms. The dataset included

samples enabling the analysis of local deformation, with input data

comprising sample coordinate values, surface normal vectors, and volume

center plane deviations. Through the backpropagation of errors learning

procedure, the ANN was trained with 28,900 samples, resulting in a Mean

Square Error below 0.001. The successfully trained ANN demonstrated its

ability to generate three-dimensional variations of new capital forms based

on given input parameters, enhancing the design process by providing

computer-generated solutions. This research showcases the valuable role

of neural networks in architectural computational design, extending the

range of available design tools.

Figure 4-5 - Designed capitals with ML - Cudzik, J., 2018, Artificial Intelligence Aided

Architectural Design

Lakzaeian (2020) addressed challenges in multi-planar building facades

segmentation by introducing a specialized algorithm designed to

differentiate between structural and non-structural elements in complex

facades. The algorithm achieved a 98% accuracy for single complex

openings and an overall average accuracy of at least 91% when applied to

buildings in Dublin, Ireland. Additionally, Zheng and Yuan (2021)

developed a specialized artificial neural network aimed at enhancing the

99

 Chapter 4

precision and computational efficiency of learning and generating 3D

geometries as vectorized models. This involved creating a custom data

structure with feature parameters aligned with the neural network's

requirements, resulting in improved design feature extraction.

Figure 4-6 - Expected forms and predicted forms from test dataset - Zheng, H., and Yuan, P.,

2021, A generative architectural and urban design method through artificial

The neural network's generative abilities demonstrate its predictive power,

efficiently learning and extrapolating geometric design features from

existing building data. This data-driven approach provides designers with

a powerful tool for informed and efficient design exploration.

BIM Models Semantics

In their 2018 study, Bloch, T., and Sacks, R., explored the classification of

room types in residential apartments using an ANN algorithm, comparing

it to rule-inferencing. The research highlighted the direct applicability of

machine learning to space classification, while rule-inferencing proved

unsuitable for this context. This underscores the importance of selecting

appropriate AI methods for specific BIM object classification challenges.

Similarly, in 2019, Koo, B., et al. utilized support vector machines (SVM)

to evaluate the semantic integrity of mappings between BIM elements and

IFC classes. Their approach, trained on a dataset of 4187 unique elements

from six architectural BIM models, demonstrated high accuracy in

classifying elements and subtypes within classes. These studies contribute

to automating quality checks in BIM deliverables and enhancing semantic

enrichment for domain-specific analysis.

100

 Artificial Intelligence and Machine Learning in Architecture

Design and Fabrication

In 2020, Yazici, S. integrated ML and ANN algorithms with geometry,

material, and structural performance simulation data to support decision-

making processes. They trained an ANN, non-linear regression model

(NLR), and a Gaussian mixture model (GM) using data from structural

performance simulations to predict materials based on architectural

geometry and panel clusters on the shell model. The results demonstrated

fast solutions and accurate predictions, offering valuable insights for

decision-making.

Figure 4-7 - GM algorithm implemented towards prediction of panel clusters based on the area

size and planarity of panels. - Yazici, C., 2020, A machine-learning model driven by geometry,

material and structural performance data in architectural design process

In 2018, Tamke, M., et al. explored ML's application to enhance design

and fabrication adaptation in Robotic Incremental Sheet Forming (RISF).

ML was used to manage forming tolerances by creating, adapting, and

improving fabrication instructions. The integration of ML into fabrication

processes utilized data mining techniques and trained ML models on

physical outputs, acquired via 3D scanning of ten panels, yielding

approximately 45,000 samples. Two approaches were employed: a

regression-based method for local adjustments within panels and a neural-

network-based approach for predicting and adjusting entire panel

geometries. The regression-based method used in-process measurements

for achieving required tolerances, while the neural network predicted the

101

 Chapter 4

final shape of the panel after fabrication, enabling adjustments based on

predicted springback.

Figure 4-8 - different input–output training sets and the achieved accuracy – Tamke, M., et. Al,

2018, Machine learning for architectural design: Practices and infrastructure

Layouts Design Evaluation

In 2020, Mandow, L., et al. explored sketch generation for energy-efficient

single-family dwellings using a combination of shape grammars and

reinforcement learning. Their approach involved defining shape grammar

rules and applying reinforcement learning to generate habitable and

energy-efficient sketches. The study highlighted the reinforcement

learning process and provided experimental results demonstrating

convergence, along with validation using energy simulation software.

Moreover, in 2017, Takizawa, A., and Furtura, A., investigated spatial

feature assessment using computer-generated modeling, VR, and deep

learning. They utilized a computer-generated model of a street in Osaka to

capture omnidirectional images, incorporating depth information at 50

observation points. Virtual reality preference evaluations informed the

training of deep convolutional neural networks (DCNNs), revealing that

the model error rate was significantly lower for RGBD images as well as

the importance of integrating color/texture and geometric features for

enhanced spatial evaluations. This interdisciplinary approach offers

avenues for more accurate spatial analyses in urban environments,

although further foundational research is needed for widespread

applications.

102

 Artificial Intelligence and Machine Learning in Architecture

4.8 A Review on Using Gen-AI in Architecture

As discussed in section 4.3, Gen-AI applications involve generating new

content, ideas, or solutions based on input data or predefined parameters.

In the context of architectural design, generative AI can play a significant

role in creating, modifying, or optimizing designs by leveraging algorithms

and computational models. In this section, some gen-AI applications in

architectural design used by researchers and architects today are reviewed.

A) Text Generation

Text generation AI models could be used in various fields of architecture.

In 2023, Caliskan, E., explored the potential applications of ChatGPT in

third-year architectural design studios. The research involved structuring

interviews with ChatGPT, with findings evaluated using the Delphi

technique among experts. ChatGPT demonstrated the ability to address

design issues but faced limitations in accessing maps and discerning

geopolitical entities. Beyond documented studies, architects increasingly

utilize large language models (LLMs) like ChatGPT, LlaMa, and Bard.

These models aid in generating prompts for image generation tasks,

conceptual design images, floor plans, and architectural details. Moreover,

the human-like text generated by LLMs facilitates direct communication

with clients and stakeholders, enabling architects to convey messages

effectively.

In an experiment utilizing ChatGPT v3.5, architects explored its role in

brainstorming architectural design concepts for a Mercedes-Benz

exhibition. Appendix D showcases the conversation, revealing ChatGPT's

organized responses and ability to ask pertinent questions, guiding the

discussion. The model demonstrated awareness of project criteria,

suggesting ideas aligned with Mercedes-Benz's precision and

craftsmanship ethos. Furthermore, ChatGPT's responses became more

specific as discussions progressed, highlighting its potential in generating

innovative design concepts through iterative questioning and refinement.

This process underscores the value of LLMs in enhancing brainstorming

phases, fostering creativity, and unlocking new design possibilities.

103

 Chapter 4

B) Generating Layouts

Image generation AI in architecture has become an innovative and

influential tool, providing architects and designers with new ways to

conceptualize, visualize, and iterate on design ideas. There are several

applications through which image generation AI started to influence the

architectural field.

In 2019, Chaillous, S., utilized nested GANs to generate a diverse array of

floor plan designs, employing a classification methodology for

exploration. These nested GANs enabled the capture of complexity in floor

plans and addressed challenges sequentially. Following this, a pipeline was

employed to produce finalized plans with walls and furniture. Utilizing

Boston's building footprints database, an algorithm was trained to generate

footprints based on the layouts. Subsequently, algorithms were trained with

over 700 annotated floor plans, each designated for a specific room count.

Lastly, a model was trained to furnish entire units and expanded to include

room-specific furnishing based on function (figure 4-9).

Figure 4-9 - Resulting Furnished Units (Chaillous, S, 2019., AI & Architecture – An Experimental

Perspective – Harvard University GSD)

The model was further developed to solve entire buildings, adding

windows and doors rationally. And the author applied a transfer-style

method to train the GAN to create plans based on a specific architectural

style as shown in figure (4-10).

104

 Artificial Intelligence and Machine Learning in Architecture

Figure 4-10- 15th Floor Processed Under Each Style: Baroque (Far-Left), Manhattan (Center-

Left), Row-House (Center-Right), Victorian (Far-Right) (Chaillous, S, 2019., AI & Architecture –

An Experimental Perspective – Harvard University GSD)

Afterwards, the classification algorithm categorizes the generated floor

plans based on various criteria, aiding users in exploring different designs.

This user-oriented approach allows architects to intervene in the pipeline's

steps, making the process architect-centered.

Aalaei et al. (2023) explored architectural layout generation using graph-

constrained conditional GANs, introducing methods for translating high-

level constraints like bubble diagrams and implementing a fully vectorized

workflow. Their key contribution involved applying a convolutional

message passing (CMP) approach, considering both topological and

geometric conditions. They presented a distinct network architecture and

an iterative pipeline utilizing three separate GAN models with unique

objectives. Figure 4-11 illustrates the proposed pipeline which includes

user input, model-generated layout, user modifications, and final

architectural plan and 3D model.

105

 Chapter 4

Figure 4-11 - Iterative and collaborative human–machine workflow for architectural floor plan

generation. (Aalaei, M., et. Al., 2023, Architectural layout generation using a graph-constrained

conditional Generative Adversarial Network (GAN))

Karadag et al. (2022) trained a Pix2Pix GAN algorithm using two datasets

of educational school buildings’ space layouts. They developed two

algorithms: one generated footprints and suggested furniture layouts in

block zoning, while the other generated furniture drawings in the plans.

This innovative approach targeted the problem directly, instead of relying

on existing datasets. The model successfully generated outputs not only

from the training dataset but also from the validation dataset. Figure 4-12

displays the results of the trained model on the validation set.

Figure 4-12 - Test results on the validation data set of EDU-AI (Karadag, I., et. Al., 2022, EDU-

AI: a twofold machine learning model to support classroom layout generation)

As, I., et. Al, 2018, presented a deep Neural Network (DNN) approach

utilizing graphs for the generation of conceptual designs. The system

demonstrated its capability to assess and score designs, decompose them

into fundamental building blocks (figure 4-13), and creatively recombine

them into novel compositions. Additionally, a Generative Adversarial

Network (GAN) method was introduced, capable of producing new

designs which were not present in the training set.

106

 Artificial Intelligence and Machine Learning in Architecture

Figure 4-13 - A subgraph, that is, building block, discovered by the DNN highlighted within the

larger graph of a home (As., I., et. Al, 2023, Artificial intelligence in architecture: Generating

conceptual design via deep learning)

Also, Liu et al. (2022) utilized the Pix2Pix GAN algorithm to generate

private garden layout plans based on given site conditions, learning from

traditional Chinese private gardens.

C) Modifying Images Contextually

Moreover, Sun et al. (2022) employed GANs to abstract historic

architecture styles and automatically generate stylized facades (figure 4-

14). Their study curated a bespoke dataset from Harbin Central Street,

implementing a data augmentation process. The generated designs were

quantitatively and qualitatively assessed, demonstrating high accuracy,

realism, and diversity. Two applications validated the feasibility and

adaptability of the proposed workflow, enhancing historic urban area

renovation design processes.

107

 Chapter 4

Figure 4-14 - Generated facades for the Harbin Central Steer (Sun, C., et. Al., 2022, Automatic

generation of architecture facade for historical urban renovation using generative adversarial

network)

D) Generating Images from Texts

Basarir and Erol (2021) proposed an AI framework to generate

architectural sketches based on client briefs, using semantic analysis and

visual pattern recognition. Additionally, Ploennings and Berger (2023)

explored the use of AI art platforms like Midjourney, DALL·E 2, and

Stable Diffusion in concept design, noting their effectiveness in ideation,

sketching, and modeling. They evaluated AI models' versatility in

architectural tasks, highlighting successes in generating inspirational

images and addressing challenges in responding to generic requests. The

study also analyzed 85 million MidJourney queries, revealing prevalent

usage patterns and suggesting structured workflows for interior and

exterior design (figure 4-15). These findings not only showcased the

current capabilities of image generation models in architectural design

tasks but also illuminated potential advancements and avenues for further

exploration in the integration of AI tools within the creative processes of

architecture.

108

 Artificial Intelligence and Machine Learning in Architecture

Figure 4-15 – (left) Minimal workflow for Midjourney (a–d), DALL· E 2 (e–h), and Stable

Diffusion (i–l) (Ploennings, J., and Berger, M., 2023, AI in Architecture), (right) Refinement and

variant generation in Midjourney (a–c), DALL· E 2 (d–f), and Stable Diffusion for a walkway (g)

and a second story (h, i) - (Ploennings, J., and Berger, M., 2023, AI in Architecture)

E) Generating Images from Images and Text

Bao and Xiang (2023) examined Stable Diffusion, MidJourney, and

DALL-E 2 as smart assistants in preliminary design processes. They

analyzed the impact of AI activities on architects and students using a

survey with AI-generated images (figures 4-16 and 4-17). Results showed

AI's potential to optimize architectural design by reducing time and

enhancing visualization, with satisfactory performance reported by users.

Figure 4-16 - Base input sketch for AI generation (Bao, Y and Xiang, C., 2023 - Exploration of

Conceptual Design Generation based on the Deep Learning Model-Discussing the Application of

AI Generator to the Preliminary Architectural Design Process)

Figure 4-17- Rendering generation results made by MidJourney, Stable Diffusion and DALL-E 2

(from left to right respectively). (Bao, Y and Xiang, C., 2023 - Exploration of Conceptual Design

Generation based on the Deep Learning Model-Discussing the Application of AI Generator to the

Preliminary Architectural Design Process)

Hu et al. (2021) introduced the Low-Rank Adaptation (LoRA) method,

optimizing large pre-trained language models for downstream tasks by

109

 Chapter 4

decomposing weight updates (ΔW) and reducing trainable parameters.

During inference, the weight update is seamlessly merged into the main

weights without additional overhead, facilitated by a LoRA scaling factor

(α). Kuang et al. (2023) proposed a workflow using LoRA to generate

facade images of historical styles for urban renewal projects, preserving

the city's historical identity. Utilizing the LoRA and ControlNet models,

architects could automatically generate facade images of specific historical

styles. This approach efficiently preserved and integrated historical

architectural elements into urban renewal projects, contributing to the

maintenance of the city's historical identity.

Figure 4-18- Arcade facade renewal based on prompt and ControlNet. - Kuang, Z., et. Al, 2023,

Advancing Urban Renewal: An Automated Approach to Generating Historical Arcade Facades

with Stable Diffusion Models

Although image generation using AI seems very promising in terms of

visual appearance, ideas, and even consistency, some questions and

concerns are present within this approach. These concerns will be

discussed later in this chapter.

F) 3d-Models Generation

AI-driven methods, particularly Generative Adversarial Networks

(GANs), are revolutionizing 3D model generation by autonomously

producing intricate and realistic structures. Akizuki et al. (2020) applied

110

 Artificial Intelligence and Machine Learning in Architecture

Reinforcement Learning (RL) within a 3DGAN framework to generate

furniture 3D models with topological consistency by voxelizing thousands

of furniture 3d models to train the algorithm, showcasing the algorithm's

ability to create complex structures within specified constraints.

Figure 4-19 - Object generation via 26-actions model - from left to right, input voxel geometries,

voxels, pipes, and smoothened meshes. Akizuko, Y., et. Al., 2020, Generative Modeling with

Design Constraints – Reinforcement Learning for Object Generation

Nichol et al. (2022) utilized a two-step approach for 3D scene generation,

employing text-to-image diffusion models (GLIDE) to create synthetic

views, followed by generating 3D point clouds conditioned on the

generated images. The models were trained on millions of 3D models, with

diverse post-processing steps implemented to ensure data quality. To

standardize the data, each 3D model was rendered from multiple angles as

RGBAD images using Blender, ensuring consistency for subsequent

analysis and processing.

Integrating AI to the Conventional 3D Modeling Pipelines

Liu et al. (2021) utilized style transfer NN algorithms to generate 2D

photos from floor plans and truss structures, aiding in 3D modeling for

architectural design. The algorithms processed floor plans as content

images and truss structures as style images, generating transferred images.

111

 Chapter 4

These images were then translated into floor plans for innovative structure

design, with vertical components serving as pillars. This transformation

from 2D-style transferred images to 3D geometries presents new

possibilities for architectural design processes.

Figure 4-20 - Transferred Image Translation (Liu, C., et. Al., 2021, Pipes of AI – Machine

Learning Assisted 3D Modeling Design)

AI generative algorithms allow other types of generation including codes

and videos. In 2023, Ceylan et al. explored text-guided video editing with

the 'Pix2Video' algorithm, utilizing pre-trained image models to achieve

desired edits while preserving source video content. The method involves

employing a pre-trained structure-guided model for text-guided edits on an

anchor frame and propagating changes to future frames through self-

attention feature injection.

Similarly, Chai et al. introduced 'StableVideo,' enhancing text-driven

diffusion models to generate consistent appearances for edited objects,

employing an inter-frame propagation mechanism within the diffusion

video editing framework. Blattmann et al. applied the Latent Diffusion

Model (LDM) paradigm to high-resolution video generation, fine-tuning

on encoded image sequences and aligning diffusion model upsamplers for

temporal consistency.

Moreover, Karras and colleagues developed DreamPose, a diffusion-based

method for generating animated fashion videos from still images,

achieving state-of-the-art results in fashion video animation by

transforming a pre-trained text-to-image model into a pose-and-image

guided video synthesis model. These advancements highlight the growing

potential of AI-driven techniques in text-to-video and image-to-video

generation for diverse applications.

112

 Artificial Intelligence and Machine Learning in Architecture

To conclude, The integration of machine learning into the architectural

design process holds immense potential across all planning phases,

transforming both repeatable and predictable activities. Machine learning

tools can effectively replace certain tasks, particularly those involving

decision-making, by learning from the work performed by architects. This

evolution introduces complex machine learning methods, bringing

artificial intelligence to the forefront of architectural and product design.

This shift has the power to redefine the value of algorithmic design,

moving beyond being a mere computational tool to becoming an equal

collaborator in the design process. This collaborative synergy between

human designers and machine learning systems has the capacity to

revolutionize the architectural design landscape, fostering efficiency,

creativity, and the exploration of novel design paradigms.

Also, and more importantly, such collaboration could be described as

‘human-centered’ where the machine aids in automating the process rather

than interfering in creative and aesthetic aspects of the design which we

argue that they are the essence of an architectural product. These aspects

along with many others require the architect to be the center of the process

seeing the whole picture and taking decisions that respect the complicated

network of all design aspects.

Recently, many AI applications have been introduced to the architectural

design process including encompassing modeling, classification,

rendering, and more. However, getting predictions that aid in form

modeling was not experimented with deeply. Also, the basic knowledge of

a framework to codify a building to retrieve its parameters and to create

efficient data sets remains crucial for the success of such applications.

4.9 Generative AI Drawbacks in Architectural Design

Today, the field of architecture has seen many experiments with generated

designs in the form of images. Recently, some architects have started to

generate design ideas through image generation gen-AI models either by

providing a prompt expressing the project requirements, some certain

ideas, etc. in the form of text, or by providing sketches.

113

 Chapter 4

Gen-AI’s impact on the authenticity of designs is a pivotal aspect of this

evolution. The authenticity of generative AI architectural designs is a

nuanced consideration, encompassing both the innovative potential of AI-

generated creations and the preservation of unique human expression in

design. Generative AI excels at exploring diverse design possibilities,

pushing the boundaries of conventional architecture, and fostering

creativity. However, questions arise regarding the authenticity of designs

when algorithms autonomously generate solutions. Critics argue that

reliance on generative AI might lead to a homogenization of designs, with

the risk of overlooking the distinct cultural, historical, and contextual

nuances that human architects often incorporate into their work.

Millet et. Al, 2023, revealed an anthropocentric bias in art appreciation,

suggesting a prevailing human-centric viewpoint in assessing creativity,

particularly in the context of AI-generated art. Their experiments,

encompassing over 1,700 participants, unveiled a consistent bias against

AI-created art, perceived as less creative and awe-inspiring compared to

human-made counterparts. Similarly, Ragot et. Al., 2020's extensive study

involving 565 participants identified a preference bias toward human-

made creations, with art perceived as AI-generated receiving less favorable

evaluations. These findings underscore a persistent negative perception

bias towards AI in the realm of art, reflecting a broader inclination to view

creativity as an exclusively human trait. As AI continues to advance in the

creative domain, these biases pose challenges to fostering an inclusive

perspective that recognizes and appreciates the unique contributions of

both human and machine creativity. Addressing these biases is essential for

cultivating a more open-minded appreciation of AI's potential as a tool for

artistic expression.

Yet when it comes to the originality of ideas in image generation models

like diffusion models, it is important to note that these models are trained

on existing data. The originality of generated samples depends on the

diversity and complexity of the training data. If the training data includes

a wide range of unique and novel examples, the model has the potential to

generate original outputs. However, diffusion models, like other generative

models, do not inherently generate truly novel ideas in the creative sense—

114

 Artificial Intelligence and Machine Learning in Architecture

they synthesize new examples based on patterns learned from the training

data.

Moreover, gen-AI models could be eclectic. The term "eclectic" in the

context of image generation could refer to the ability of a model to combine

diverse elements from its training data to create novel and varied images.

If a diffusion model has been trained on a diverse dataset containing

images with different visual styles, objects, and scenes, it may be capable

of generating images that incorporate elements from various sources.

In the case of diffusion models, the process typically involves iteratively

adding noise to an input until it transforms into a sample from the target

distribution. The ability to create eclectic images could arise from the

model's capacity to blend and remix features it has learned from disparate

examples in its training data (Rombach, R., et. Al., 2022).

Thus, proponents of generative AI emphasize its capacity to reinterpret and

combine design elements in novel ways, challenging traditional notions of

authenticity. AI-generated designs can be seen as a reflection of the data

they are trained on, capturing and reinterpreting architectural styles and

features from various sources. This dynamic process can result in

unexpected designs that embody a new form of randomness rooted in

computational creativity.

Navigating the authenticity of generative AI architectural designs requires

a careful balance. Architects and designers must actively engage with AI

tools, guiding the algorithms to align with their vision while also

embracing the serendipity and novelty that AI can introduce. The synthesis

of human insight and machine-generated possibilities can lead to truly

authentic designs that are both innovative and deeply connected to human

sensibilities. As the field continues to evolve, a thoughtful and critical

approach to the integration of generative AI will be essential in preserving

and redefining the authenticity of architectural design.

Among many researchers and architects, Chaillou, S., who utilized Gen-

AI in creating floor plans in 2019 had beliefs which are rooted in the

assertion that a statistical approach to design conception profoundly shapes

115

 Chapter 4

the potential of AI in the field of architecture. The departure from

deterministic methodologies toward a more holistic, less-prescriptive

character is seen as a unique opportunity within the architectural domain.

Rather than viewing machines solely as tools for optimizing predefined

variables, Chaillou advocates relying on AI to extract significant qualities

and emulate them throughout the entire design process, marking a

paradigm shift toward a more dynamic and exploratory design experience.

Furthermore, according to Chaillou, the conviction lies in the pivotal role

of designing the right pipeline to ensure the success of AI as a new

architectural toolset. The preference for the "Grayboxing" approach, as

introduced by Witt, A., 2018, is considered strategic and likely to yield

optimal results. Chaillou contrasts this with the "black box" model, where

users input information upfront and receive finished design options at the

end, without influence over intermediate generation steps. The

"Grayboxing" approach, as advocated by Chaillou, involves breaking

down the pipeline into discrete steps, empowering the user to intervene at

various stages as mentioned in chapter 1.

This hands-on control over the machine ensures the user's ultimate

guarantee of the quality of the design process, offering a more

collaborative and iterative interaction between human insight and AI

capabilities. This deliberate approach, as expressed by Chaillou,

underscores a commitment to a thoughtful integration of AI into

architectural practices, emphasizing user agency and creativity within the

technological framework.

The gray box approach seems logical especially with today’s mathematical

applications in architectural generative designs which includes

optimization and simulation techniques for instance. Also, AI applications

in architectural design could involve such an approach. Especially, that it

includes different applications (APIs) that could be learnt and used in the

form of an internal black box operation in the design process without

needing to learn what is behind -as users and not as developers-.

In fact, while strongly agreeing with Chaillou that AI should be dealt with

as a ‘toolset’ for the architect that involve many advantages, I strongly

116

 Artificial Intelligence and Machine Learning in Architecture

believe that today’s Gen-AI applications which generates images (used as

designs) -at least till the time of writing this research- are as far as possible

not only from what architectural design profession is about but also from

what an architectural design methodology could be and could propose as a

solution to a problem. I believe that an architectural design product is not

just drawings. It is rather an experience and a process. And this process

most likely -if not always- includes problem solving of a handful of issues

from a handful of other disciplines as well as architectural rules (form,

commodity, and delight). Those other disciplines include structural,

societal, psychological, philosophical, humanitarian, and environmental,

to name a few. All of these issues could never be diminished to whatever a

generated architectural drawing image could encompass because every

project should be designed with a whole new character and new thoughts.

Also, and more importantly regarding text-to-image applications

specifically, ‘can all the aspects of an architectural design in words be

diminished?’. Architects who mostly follow the ‘black box’ approach find

it hard to clearly express their ideas and how the form is generated. And

worse, even those who apply the ‘glass box’ approach either by following

function, relying on generative design various techniques, etc., still have

hard time realizing the process and the reasons of the resulting product

which is usually hard to explain to a machine. A gen-AI photo generation

model cannot understand the orientation of the building, or the parametric

approach taken to stabilize the structure, or the best façade pattern or form

manipulation to reduce solar gain. Instead, Gen-AI models generate

responses based on patterns learned during training. And of course, such

manners are taken into consideration from day 1 in the design process and

are ‘applied directly’ more than ‘thought of’. If architects skip such

techniques in the process and start with a generative design (created by AI-

Gen models), it is most likely that the end product will be as far as possible

from these images, and then the architects should ask themselves, ‘what

was the benefit?’ Even with newly introduced models including LoRA and

ControlNet. Still, the ‘control’ they provide the architect with, is more

control of an outline or a boundary of the building or getting closer results

117

 Chapter 4

to the words descriptions. Still, this whole process deals with an

architectural product as a 2-dimensional product.

In addition, architectural design is about understanding what a user desires,

and not only the architect’s aesthetic and creative parts. If this part of the

architect’s job is well perceived, they would most probably find themselves

in need of designing something that is unseen before, even if some

details/techniques are reused. In this sense, relying on a dataset of

previously designed projects could contradict this theory.

And in this manner, I would strongly suggest differentiating between the

product of Gen-AI models and the product of a generative design as there

are no contradictions if the previous theory on generative design is applied.

As discussed in chapter 4, generative design is still controlled by the

architect who defines the parameters and the goals for which a machine

searches the solutions to achieve. Even when imagining a generative

design based on a simulation analogy, there are defined goals that spark

the simulation. And even the parameters affected by the simulations are

defined by the architect.

So, after all, answering the question ‘can gen-AI fit in a professional

architectural design process’, of course. But it could be integrated into

some phases of the process rather than starting the process. In the next

section, some applications of gen-AI that could possibly add value to the

process are suggested.

4.10 Generative and Non-Generative AI Usage Possibilities in

Architectural Design

AI technology could be seen and thought of as a great tool for automating

the design process which includes by nature visualization of ideas. Earlier

in this chapter some of these applications were exhibited where a Gen-AI

could generate a plan after defined boundaries (regardless of the idea that

those boundaries were decided by AI in those examples).

Ali, S., 2020, argues that architectural visualization plays a crucial role in

augmenting the comprehension of knowledge by minimizing cognitive

118

 Artificial Intelligence and Machine Learning in Architecture

load. The utilization of visualization tools enables individuals to grasp

information more efficiently and to a deeper extent. By representing data

in visual formats such as charts, graphs, or diagrams, complex concepts

are simplified, aiding in quicker assimilation and enhanced retention. This

visual approach leverages the brain's capacity to process and interpret

images rapidly, allowing individuals to extract meaningful insights with

greater ease. Whether conveying intricate datasets or illustrating abstract

ideas, visualization serves as a powerful cognitive aid, facilitating a more

intuitive and expedited understanding of information. Ultimately, the

integration of visualization tools proves instrumental in optimizing the

communication of knowledge across diverse fields.

However, and according to Ali, S., 2020, visualization in architecture has

become a target more than a tool especially in architectural education. In

fact, visualization could be misleading or deceptive. The beauty of a

‘hyper-realistically’ and aesthetically rendered glass box could mislead the

client’s preferences. In this regard, visualization should be carefully dealt

with by architects as a tool rather than as a product.

In terms of visualization, the idea of transforming sketches is seen very

powerful and with more development it could make a great tool for

visualizing plans, sections, other drawings, and perspectives when the

machine has a 100% ability to generate images which apply exactly what

is defined in a sketch. This application is seeing many developments today

especially with the introduction of techniques like inpainting, outpainting,

and Low-Rank Adaptation (LoRA). The more datasets to be fed to the

generative algorithm, the more precise it will be in visualizing the

architect’s sketch instead of generating new ideas.

Also, such technology could aid a lot in a phase of the design process called

the ‘mood board’ in which architects search for inspirational designs and

show it to the client in order to be on the same ground during the design

phase. Such a phase is important before starting the concept design and is

usually related to aspects like façade elements, aesthetical elements, and

design style. However, this step is not meant to have a significant impact

on the core of the form making/finding process.

119

 Chapter 4

Gen-AI image generation in this case, could have an added value based on

the data it is trained on, and it is believed to have the same result as

collecting the inspirational images from the web.

Additionally, Gen-AI applications regarding transforming images into 3D-

models could have a huge impact on automating design tasks. Especially,

if 3d-model gen-AI models developed to generate surfaces and clean

meshes rather than point clouds or voxels. Such an application is not far

from reality. It could develop through integrating the gen-AI model to a

pipeline which exhibits an automated way to segment images and extract

the main points’ coordinates. Such an application could be exhaustive at

first, but if better data sets are collected and engineered, it could not be

regarded as impossible.

Finally, another bright application of Gen-AI is the video Gen-AI which

could create animations and walkthroughs which are considered an

architectural output in some projects. The idea of generating videos

through photos collected from around a 3D-model using diffusion is now

present and could be applied in such tasks.

On the other hand, and as discussed earlier in this chapter, non-gen-AI

models do not generate data as images, text, 3d-models, etc. Instead, they

are capable of predicting and generalizing on unseen data based on the

pattern they learn during their training process. In this regard, non-gen-AI

will not produce an image, but may predict numbers, or classes. These

numbers and classes could be projected to the architectural field as

parameters which could be used by the architects themselves or automated

systems to generate products. This particular description aligns well with

the approach taken to deal with the architectural process as a holistic

system rather than a process of processes (described in chapter 1).

The idea of dealing with a building as a set of parameters which are

interrelated and strongly connected in the design phase, could make good

use of non-gen-AI applications. Accordingly, turning a building’s design

parameters to data sets which could be used to train AI and ML algorithms

could yield many possibilities. Training a model with parameters either

numerical or text to predict design decisions is thought to be an automation

120

 Artificial Intelligence and Machine Learning in Architecture

process saving time and effort for architects in the future. Imagine

designing a cluster of buildings (a residential or administrative compound).

Such projects could take months to create variations or prototypes of the

building with different areas, functions, etc. but with the same architectural

style and theme or either days but with more manhours or architects. With

the aid of coding in extracting all the parameters and generating a data set

including many designs with different areas that is used to train ML models

for example, this could automate the 3d modeling tasks of different

prototypes with different characteristics. Also, and looking from the same

perspective, non-gen-AI models could be used to predict spatial relations

and to detect proper spaces’ areas based on learned data. Moreover, the

models could predict and make decisions based on other aspects such as

environmental and legislative aspects. For instance, they could predict a

length parameter that defines the spacing between two staircases based on

firefighting code or the tilt angle of louvers which reduce solar gain, or

minimum required spacing that respects setbacks, etc. However, such

decisions require neat and precise data sets so that predictions are

mirroring real decisions based on real data. Those models are guaranteed

to have learnt data directly from the architect.

In general, non-gen-AI models could be thought of the same way as

generative-design techniques like optimization and simulations in the

sense that the product is unknown, but it is still applying certain rules

controlled by the architect through the data sets they learn from which

could be very specific to the details-of-every-parameter extent and unique

rather than general and repetitive. Thus, the overall process is controlled

by the architect against any random decisions that could be made by gen-

AI models.

Summary

This chapter provides a comprehensive exploration of the multifaceted

definition of Artificial Intelligence (AI) and its transformative impact on

technology. It begins by defining AI as the development of machines and

systems capable of performing tasks traditionally requiring human

121

 Chapter 4

intelligence, encompassing everything from rule-based systems to

advanced neural networks.

Also, the chapter delves into the history of AI as well as its types and

applications. The distinction between generative AI (Gen-AI) and non-

generative AI (Non-Gen-AI) is explored, with profound implications in

technical, ethical, and societal dimensions. Moreover, Machine Learning

(ML), a subset of AI, is introduced as the backbone of intelligent systems,

enabling machines to learn from data and improve performance over time.

The symbiotic relationship between AI and ML is emphasized, with ML

providing adaptive capabilities for AI to navigate dynamic environments.

The chapter explores various ML approaches, including supervised

learning with labeled data, unsupervised learning uncovering patterns in

unlabeled data, and reinforcement learning where agents learn through trial

and error. The versatility and applicability of ML methods across domains

are highlighted. The chapter introduces a brief overview of specific ML

algorithms used in the research and the evaluation metrics employed to

assess trained ML models.

Moreover, different up-to-date applications of both Gen-AI and Non-Gen-

AI in architecture and similar fields were presented. Gen AI algorithms

showcase great innovation in the product. Most of the examples introduced

using the machine as a designer, taking decisions, and forming a product.

On the contrary, Gen-AI tools should be seen as assistants, providing

architects with valuable insights and options rather than replacing the

human element in design thinking.

In addition, the evolution of AI creative capabilities in the architectural

field is explored from a skeptical perspective, particularly focusing on

image generation models, which have progressed through various models

and techniques, each introducing more options like inpainting, outpainting,

and image-to-image generation. The impact of both generative and non-

generative AI on the architectural design process is highlighted. Generative

AI, known for its divergent thinking and algorithmic creativity, plays a

pivotal role in idea generation and its reliability as a tool used in the

architectural design process is questioned. Collaboration between

122

 Artificial Intelligence and Machine Learning in Architecture

architects and generative AI is emphasized as well as the architect’s role in

the process. In general, applying AI in the architectural field fits well with

the grey box approach of design thinking. In a holistic design process

composed of other processes that relate to each other cyclically, with

today’s design tools which benefit mainly from mathematics and physics,

architects could think of some processes with a black box approach. In

such processes, the embedded operations that happen form no concerns as

the architect totally controls and directs them freely. In fact, the architect

can direct and control Gen-AI systems, but it is concluded that the

architectural design process cannot be diminished in a 2D-space with an

image that hardly involves other design aspects. Such a process could lead

to laziness and stripping the architectural design of its meaning. Also, the

authenticity of AI-generated designs was discussed. From the

understanding of how the models work, those models could be described

as eclectic collage makers which present innovation through repeating

elements that are learned from the training data set. Moreover, architectural

visualization's direct influence is discussed as a useful tool using AI

generative models.

Non-generative AI, on the other hand, excels in analytical support, aiding

architects in data analysis, decision making, predicting, and classification

tasks. The integration of AI in architecture, however, poses challenges,

including ethical considerations, the balance between technological

efficiency and human creativity, and the need for architects to adapt to

evolving workflows to develop them rather than being a user. The chapter

concludes by delving into benefits of using non-gen-AI models in the

design process as automation assets to the architect in the decision making

based on authentic and unique data provided by the architects themselves.

To conclude, this chapter reflects the dynamic and evolving nature of AI's

role in architecture, ranging from opaque generative processes to

transparent analytical tools. It is also concluded that many ML algorithms

could aid in the architectural design process as well as architectural

analysis studies and architectural education. In those applications, the AI

process is human-centered, and AI is considered a tool for automatic heavy

tasks using regression, classification, clustering, and RL algorithms.

123

 Chapter 4

124

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

Chapter 5: Architectural Form Generation:

Applying Machine Learning Algorithms on

Architectural Parameters Datasets

Preface

In this chapter, a framework for utilizing ML in the form-generation

process is explained. This process is considered form-finding in a sense

that the models predict the parameters defining the form but is also

considered form-making in a sense that it is made and decided by the

machine according to how it learnt from the architect ed. Est., mapping the

architect’s decision-making black box approach. So, this process is better

described in the space between form-making and form-finding being closer

to form-finding literally.

This chapter defines the methods and tools used in the process. The coding

process of the 3D-model to extract parameters is explained as well as how

those parameters are related. After that, a resulting sample of the

parameters data set is presented. And finally, how the full data set was

generated is explained with the scope and limitations of the project.

Additionally, in this chapter exploratory data analysis is performed to two

data sets to gain insights about the data. First, the parameters (features and

targets) are correlated to each other and pre-process the data accordingly.

After that, the data is resampled to either increase the number of samples

or balance the data based on the problem. Then, the data sets are split to

train and test sets before training different regression and classification

models.

5.1 A Framework for Utilizing Machine Learning in Form

Generation

This section presents a comprehensive framework that aims at automating

the design process by predicting architectural design parameters using

machine learning. By harnessing parametric modeling tools to create

dynamic, data-rich design alternatives, and applying machine learning

125

 Chapter 5

algorithms to analyze and predict optimal outcomes, this process

transforms the way architectural decisions are made. The integration of

computational techniques into the design process allows for more

informed, data-driven choices, ensuring that design iterations are both

innovative and feasible.

The following framework encompasses the key stages of creating a

parametric building model, generating multiple design alternatives, and

extracting critical parameters to form a dataset. From this data, machine

learning models are trained, validated, and used to predict design

parameters that meet specific goals. This framework not only enhances the

efficiency of the design process but also paves the way for greater

collaboration between architects and computational tools, facilitating a

more integrated and intelligent approach to design.

1. Creating a Fully Parametric Model of the Building:

In the early stages of the design process, the architectural model

must remain flexible to allow for rapid iteration and adaptation to

changing requirements. A parametric model is a dynamic

representation of a building that can adjust its form and function in

response to predefined variables, or parameters. These parameters

typically include critical aspects of the building’s geometry, such

as height, width, depth, floor area, and window-to-wall ratio, along

with structural considerations and façade treatments. Through

parametric modeling, architects can explore a wide design space

efficiently, ensuring that various design alternatives are responsive

to both aesthetic and practical constraints. The parametric model is

structured to allow for changes in variables, creating numerous

design variations that can be analyzed later.

The development of parametric models involves scripting

techniques and parametric control setups in design software.

Parametric modeling is grounded in algorithmic design, where

relationships between design parameters are explicitly defined

through code. Here, a system of inputs and rules governs the

126

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

creation and modification of geometry, facilitating the automation

of form generation.

2. Designing a Large Number of Well-Studied Alternatives

Once the parametric model is established, it is used to explore a

wide range of design alternatives. These alternatives are driven by

different configurations of the model's parameters, reflecting

variations in architectural expression, performance, and structural

feasibility. The process ensures that each alternative aligns with

certain project-specific criteria, such as the form’s tangible

characteristics including proportions and areas, maximizing natural

light, optimizing energy efficiency, or adhering to zoning

regulations. This step is particularly critical in early-stage design,

where exploring multiple design pathways helps stakeholders

choose optimal solutions.

3. Extracting the Parameters of Each Alternative to Create a Large

Dataset

Each design alternative can be represented by a unique

combination of parameters, such as floor area, building height,

structural efficiency, and environmental performance. Capturing

and recording these parameters is essential for creating a

comprehensive design dataset. This dataset not only helps in

understanding the design space but also allows for data-driven

decision-making, making it easier to select or refine specific design

outcomes based on quantitative analysis.

The parametric design space can be encoded into a structured

dataset, where each alternative is represented as a row and each

parameter as a column. This data is stored in formats such as CSV,

allowing for easy manipulation and analysis in various

computational tools (Python, R, etc.). Each entry in the dataset

reflects both independent variables (design parameters) and

dependent variables (performance metrics), which will be critical

for subsequent machine learning tasks. The structured format also

127

 Chapter 5

allows for integration with external data sources, such as energy

simulations, cost analysis, and environmental impact assessments.

4. Data Preprocessing

Studying the Relation Between Parameters

In architectural design, parameters are often interrelated. For

instance, increasing the window-to-wall ratio might improve

daylighting but could negatively affect energy performance due to

heat loss. Understanding these relationships is crucial for informed

design decisions. A thorough exploration of how various

parameters influence each other, and the overall design is

fundamental to ensuring that design alternatives are both functional

and aesthetically pleasing.

This step involves the application of statistical techniques to

understand the dependencies between parameters. Correlation

analysis and visual tools such as scatter plots and heatmaps are

employed to examine these relationships. In more complex

scenarios, dimensionality reduction techniques such as Principal

Component Analysis (PCA) can reveal underlying patterns within

the data, helping to streamline the design space by focusing on the

most influential parameters. These methods allow for a deeper

understanding of how changes in one parameter influence others,

offering insights that can inform both design and optimization

strategies.

Splitting the Dataset According to Parameter Relations

Not all design alternatives will be equally relevant to the project's

goals. By segmenting the dataset based on specific parameter

groupings, designers can focus on the most critical areas of the

design space. This step is vital for filtering out irrelevant or

suboptimal alternatives, allowing the focus to shift to designs that

meet certain thresholds for structural performance, sustainability,

or user comfort.

128

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

Cluster analysis, such as K-means or Hierarchical Clustering, can

be applied to partition the dataset into subsets based on parameter

similarities. This clustering enables more efficient learning by

training models on smaller, more homogeneous groups of data.

Segmentation based on parameter relations ensures that each subset

is more cohesive, allowing machine learning models to learn

specific behaviors within subspaces of the design space.

Balancing the Data through Resampling Techniques

In architectural datasets, certain types of design alternatives may

be overrepresented, leading to biased results when training

predictive models. Balancing the dataset ensures that all design

typologies and configurations are equally considered, leading to

more generalizable and reliable predictions across the entire design

space.

Resampling techniques such as SMOTE (Synthetic Minority Over-

sampling Technique) and undersampling are used to ensure that the

dataset is balanced. This step is important in tasks where certain

design outcomes might be rare, and thus underrepresented in the

dataset. Balancing the dataset prevents the model from becoming

biased towards more common outcomes, ensuring that minority

designs are given equal consideration.

Cleaning the Dataset

Ensuring that the dataset is free from inconsistencies or errors is

critical for meaningful analysis. Missing or erroneous values in the

dataset may represent incomplete or faulty designs that should not

be considered in the final analysis.

Data cleaning involves handling missing values, removing outliers,

and standardizing the dataset. Missing data can be addressed

through imputation (e.g., mean, median, or k-nearest neighbor

imputation), while outlier detection methods can be employed to

identify and remove extreme values that could distort the results.

Standardization or normalization techniques may also be applied to

129

 Chapter 5

scale the data appropriately, ensuring that all parameters are on

comparable scales.

5. Training and Validating Machine Learning Models

Training Machine Learning Algorithms

Machine learning algorithms are trained to identify patterns in the

data and predict new designs. These models learn from past design

alternatives, allowing architects to predict the behavior of new

designs based on historical data. This process helps architects to

quickly evaluate a wide range of alternatives, reducing the need for

manual exploration.

Various machine learning algorithms are applied, depending on the

problem at hand. For regression tasks (e.g., predicting continuous

variables like energy consumption or structural stability),

algorithms such as Linear Regression, Random Forests, and

Gradient Boosting are used. For classification tasks (e.g.,

categorizing building types or design styles), algorithms like

Support Vector Machines (SVM) and Neural Networks are

employed. The models are trained using cross-validation

techniques to avoid overfitting and to ensure that they generalize

well to new data.

Choosing a Champion Model Based on Validation Metrics

The selection of a "champion" model is based on how well it

predicts desired design outcomes, balancing accuracy with

interpretability. The chosen model should not only provide accurate

predictions but also align with the designer's intuition and

architectural goals.

Validation metrics such as R-squared, Mean Squared Error (MSE),

Accuracy, and F1-Score are used to evaluate the performance of

the trained models. Cross-validation is used to compare different

models and select the best one (the "champion") based on its

130

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

performance across multiple datasets. This model will be used to

make predictions in the next phase of the design process.

6. Predicting, Parsing Parameters & Fine-Tuning

Using the Champion Model to Predict the Parameters

Once trained, the model can predict new design parameters based

on user-defined criteria. For example, an architect may specify that

a building should maximize daylight while minimizing energy

consumption, and the model will predict the optimal set of

parameters that satisfy these goals. Additionally, an architect may

specify the area of the building, and the model will predict the

lengths and widths of the floor slabs.

The chosen model is deployed to predict the design parameters for

new building scenarios. Input features may include high-level

goals, such as cost limits or sustainability targets, or tangible goals

like the built-up area of the building, walls offset from slabs, etc.

and the model will output a set of parameter values that reflect the

best design solution based on learned patterns in the data.

Parsing the Predicted Parameters to the 3D Model in Modelling

Software and Finetuning them

The predicted parameters are reintroduced into the parametric

model, allowing for the real-time generation of 3D geometry that

reflects the machine learning model’s suggestions. This process

creates a seamless connection between data-driven predictions and

the physical form of the design, enabling architects to immediately

visualize how the suggested parameters translate into architectural

space.

By updating the 3D model in real-time, architects can rapidly

iterate on the design, assessing both its functional and aesthetic

qualities. The parametric nature of the model allows for

flexibility—if certain parameters need adjustment for practical or

creative reasons, they can be fine-tuned directly in the design

131

 Chapter 5

software. This direct feedback loop helps maintain the balance

between algorithmic optimization and architectural intuition,

ensuring that the machine-generated designs remain responsive to

the unique contextual and human factors inherent in architectural

projects.

For example, if a machine learning model predicts optimal

window-to-wall ratios based on energy efficiency goals, these

parameters can be directly applied to the 3D model in the 3D

modelling software. The facade's geometry will automatically

update, allowing the architect to visualize and evaluate the design

from multiple perspectives, considering light distribution, visual

impact, and user comfort, among other factors. This integration

facilitates a more interactive and informed design process where

data enhances, rather than replaces, the designer's expertise.

The suggested framework integrates parametric modeling and machine

learning to optimize architectural design. A fully parametric model

generates multiple design alternatives, which are analyzed by extracting

key parameters into a dataset. After preprocessing the data—studying

parameter relationships, splitting the dataset, balancing, and cleaning—

machine learning models are trained to predict optimal design parameters.

The best-performing model is selected, and its predictions are parsed back

into the 3D parametric model. Finally, the design is fine-tuned, combining

data-driven insights with architectural judgment to achieve the desired

outcomes.

Although the architect’s decisions (way of thinking) could be ill-defined

or ill-structured, this framework should give results which stick to the

pattern found within the architect’s decisions expressed in the choice of

parameters which affect the outcome.

Figure 5-1 explains the suggested framework to utilize ML in the form-

finding process.

132

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

Figure 5-1- Suggested Machine Learning framework for Regression and Classification Tasks in

Architectural Modeling - By the Author

Following, the suggested framework is applied to a contemporary villa

design to validate it.

5.2 Problem Definition, Scope, and Limitations

The problem in this project is described as analyzing whether ML models

could map the architect’s way of thinking and -metaphorically- take

decisions based on patterns that might exist in his black-box described

thoughts or not.

To test this case, a villa is designed parametrically in a contemporary style

for the sake of simplicity. Modeling this villa by coding resulted in full

control over the parameters to generate 600 samples (consciously

designed) and ease of transforming them into a ML-ready data set.

The project is applied to give the user (architect) full control of

requirements including a rectangular land’s length and width, total built-

up area, setbacks, four neighbor types, and number of building blocks.

133

 Chapter 5

Those parameters directly decided the form-generation process by

affecting tangible parameters including each slab’s length and width,

recess and dimensions between slabs, windows’ existence and widths,

shading devices numbers and width, and walls relations to each other. Only

tangible parameters were tested for simplicity.

The generated data set was used to train different ML models to test

whether they find the pattern that was consciously presented by the

designer or not. Those models included a variety of regression and

classification models which are compared to tests which would suit this

type of problems. So, the target was not to develop an ML model but to

test them and test the reliability of the generated data set.

To evaluate the results (predictions) of the used ML models, regression

results are evaluated based on R2 score, MSE, MAE, and RMSE. And to

evaluate classification results, accuracy, precision, recall, and f1 scores

were used as evaluation metrics. Also, a classification report is generated

for each classification model. Multiple regression and classification

metrics scores are used to assess the results.

5.3 Methods and Tools

Modeling the parametric villa is done using C# component on Grasshopper

v. 1.0 for Rhinoceros3d v.7 implementing the RhinoCommon’s API.

The analysis in this study is performed using the Jupyter Notebook v.6, and

Python v.3.10. Scikit-learn library v.1.3.0 for Python was used for ML and

TensorFlow v.2.10.1 and Keras v2.10 were used to train ANNs.

Also, NumPy v.1.23.5 was used to manipulate data as arrays during the

process and Pandas v.2.0.3 was used to manipulate data in a CSV1 format

as data structures. Additionally, for data visualization Matplotlib v.3.7.2

and Seaborn v.0.12.2 libraries for Python were used.

1 CSV stands for "Comma-Separated Values." It is a simple and widely used file format

for storing tabular data, such as a spreadsheet or database, in a plain text format.

134

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

PC Specifications: 16 GB RAM, Intel (R) Core (TM) i7-8700K CPU

@3.70GHz, Nvidia GTX 1060 3GB.

The tools used in this study were selected for their efficiency and suitability

in handling complex architectural modeling and machine learning tasks.

C# in Grasshopper with RhinoCommon API allows for precise control of

parametric models, essential for creating 3D models. Jupyter Notebook

and Python offer an interactive environment for analysis, while Scikit-

learn provides robust machine learning algorithms for parameter

evaluation. TensorFlow and Keras are ideal for training artificial neural

networks, crucial in design optimization. NumPy and Pandas streamline

data manipulation, and Matplotlib with Seaborn enhances data

visualization, ensuring clear insights throughout the process.

5.4 Coding an Architectural Design Model

In this section the modeling of the villa by coding using C# is explained

and how the parameters were related to affect each other and to build a

consistent model is discussed. Finally, a resulting sample of the data set is

presented.

5.4.1 Modeling the project

A villa prototype is modelled in C# language using RhinoCommon API

(figure 5-2). To model the villa, walls and slabs were created as boxes with

a starting point (x, y) that varies depending on the design and is directly

affected by the setbacks. Walls are interconnected to each other with ruling

parameters that define where a wall starts and how long is a wall offset

from another one. Windows are modeled by cutting in the walls using the

boolean command and mullions are added as boxes spaced by dividing the

window width to an integral number parameter. The parametric model

allows the user to parametrically change the land width, land length,

neighbors (street/neighbor), setbacks, number of blocks for the villa,

starting point, walls widths, walls lengths, walls heights, slabs lengths,

slabs widths, floors heights, whether there is a window in each wall or not,

width of window in each wall, and window’s center point distance from

135

 Chapter 5

the wall’s center point. The number of building blocks is either 2 or 3 to

facilitate modeling villas with larger areas.

Figure 5-2 – Villa prototype coded in C# on Grasshopper for Rhinoceros3d

The slabs widths and lengths are ruled mathematically to not exceed the

setbacks.

Figure 5-3 – Slabs Annotations

And changing the slabs dimensions affects the area of the villa which is

calculated by the equation:

𝐴𝑟𝑒𝑎 = (𝑟𝑜𝑜𝑓1𝑥 × 𝑟𝑜𝑜𝑓1𝑦) + ((𝑟𝑜𝑜𝑓2𝑥 × (𝑟𝑜𝑜𝑓2𝑦𝑏 − 𝑟𝑜𝑜𝑓2𝑦𝑎)) × 2)

+ (((𝑟𝑜𝑜𝑓3𝑥 𝑜𝑓𝑓𝑠𝑒𝑡 − 𝑟𝑜𝑜𝑓3𝑥) × 𝑟𝑜𝑜𝑓3𝑦) × 3)

136

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

Or

𝐴𝑟𝑒𝑎 = (𝑟𝑜𝑜𝑓1𝑥 × 𝑟𝑜𝑜𝑓1𝑦) + ((𝑟𝑜𝑜𝑓2𝑥 × (𝑟𝑜𝑜𝑓2𝑦𝑏 + |𝑟𝑜𝑜𝑓2𝑦𝑎|)) × 2)

+ (((𝑟𝑜𝑜𝑓3𝑥 𝑜𝑓𝑓𝑠𝑒𝑡 + |𝑟𝑜𝑜𝑓3𝑥|) × 𝑟𝑜𝑜𝑓3𝑦) × 3)

Variables in the equation are shown in figure 5-3.

5.4.2 Parametric relationships

The starting point ‘SP’ is the base of the coded model. This starting point

is affected by the setbacks and is conditioned to have x and y values that

are equal to or greater than the setbacks values. At the same time, it starts

shaping roof 1, which is modeled with intervals starting from the starting

point and heading towards the x and y directions. Roof 2 is parametrically

connected to roof one. Its starting point is roof 1’s point ‘rf1b’ and its y

dimension is ‘roof2ya’ + ‘roof2yb’ which are mathematically related to

roof 1’s point ‘rf1b’. In the case of having three building blocks, roof 3’s

starting point is roof 2’s point ‘rf2b’. The x dimension of roof 3 is equal to

‘roof3x’ + ‘roof3x offset’. The point between the two lines ‘rf3b’ has the

same x coordinate as point ‘roof2b.’ Block 1 is modeled to have only one

floor, block 2 is modeled to have two floors, while block 3 is modeled to

have three floors. Figure 5-4 shows points annotations.

137

 Chapter 5

Figure 5-4 – Points annotations of the villa

The walls are modeled in relation to the floors and to each other. So, a wall

can be offset from the roof’s edge or falls exactly on its edge. This requires

a relationship between each two perpendicular walls where a wall’s length

could vary depending on the other walls’ exact location.

Also, the windows were parametrically built in each respective wall with

parameters regarding the center of the window relative to the center of the

wall and how windows’ lengths should not exceed the respective wall’s

length. And conditions were added to choose whether there is a window in

a wall or not with true/false values.

Handrails are also modelled with mathematical relations with the roofs

edges so that they can be offset from the roofs or on the roofs’ edges. Their

shapes also change automatically depending on the relation between the

building blocks.

5.4.3 Resulting sample

Using coding, a CSV file is automatically created to receive the parameters

of the villa. And automatically again by coding, the parameters are

138

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

transferred to the file by pressing a button in grasshopper canvas. The

sample shape has two rows and 125 columns, and the set looks as shown

in table 5-1:

Table 5-1 - Sample Data Shape

Land

Area

Land

Lengt

h

Land

Width

Setb

acks(

X)

Setback

s(Y)

Built

-Up

Area

Num

ber

of

Bloc

ks

Neigh

bor 1

Neigh

bor 2

Neigh

bor 3

408 17 24 3 3 215 2 Street
Neigh

bor

Neigh

bor

Neigh

bor 4

Starti

ng

Point(

X)

Starti

ng

Point(

Y)

GF

Heig

ht

GF

Wall 1

X-

Offset

GF

Wall

1 Y-

Offse

t

GF

Wall

2 Y-

Offse

t

GF

Wall

4 X-

Offse

t

…

SF

Wall

12 Y-

End-

Offse

t

Neigh

bor
3 10 3 0.4 0.7 -5 1.8 … 0

GF

Roof 1

X

GF

Roof 1

Y

GF

Roof 2

X

GF

Roof

2 YA

GF

Roof

2YB

GF

Roof

3 X

GF

Roof

3 X-

Offse

t

GF

Roof

3 Y

…

SF

Lintel

Heigh

t

5 7 7 -15 8 0 13.9 9 … 2.2

GF

Wall 1

Windo

w

GF

Wall 1

Windo

w

Width

GF

Wall 1

Windo

w

Offset

GF

Wall

2

Win

dow

GF

Wall 2

Windo

w

Width

GF

Wall

2

Win

dow

Offse

t

GF

Wall

3

Win

dow

GF

Wall

3

Wind

ow

Widt

h

…

SF

Wall

15

Wind

ow

Offse

t

TRUE 4 0
TRU

E
5.1

TRU

E
6.4

TRU

E
… 0

5.5 Generating A Machine-Learning Ready Dataset

In this section, the generated data sets are analyzed and explained in detail.

The 2 created data sets are composed of 600 samples of villas designs.

Each data set has different targets to be predicted. The targets of the 2 data

sets are the parameters used to create the villa’s model using C# coding in

grasshopper3d. Figure 5-5 shows the resulting model of the target

parameters.

139

 Chapter 5

Figure 5-5 – Resulting villa model which was built by using parameters in code.

Each 100 samples are designed to have a specific land area, and setbacks

options. Several villas’ areas are designed within a specified range and the

samples are divided into 4 categories where neighbor types are changed

which affected the parameters. Table 5-2 shows samples numbers and

parameters that affected the designs.

Table 5-2 - Numbers of samples and parameters that affect the designs.

T
o

ta
l

N
u

m
b

er
 o

f
S

e
t

N
u

m
b

er
 o

f
E

le
m

e
n

ts

L
a

n
d

 A
r
ea

V
il

la
 A

r
ea

N
u

m
b

er
 o

f
B

lo
c
k

s

L
a

n
d

 L
e
n

g
th

L
a

n
d

 W
id

th

Samples Number / Neighbor

Types

S
e
tb

a
c
k

s

S
o

u
th

 S
tr

e
e
t

a
n

d
 3

N
e
ig

h
b

o
r
s

W
e
st

 S
tr

ee
t

a
n

d
 3

N
e
ig

h
b

o
r
s

S
o

u
th

 a
n

d
 W

e
st

S
tr

e
e
ts

 a
n

d
 2

N
e
ig

h
b

o
r
s

S
o

u
th

,
W

e
st

 a
n

d
 E

a
st

S
tr

e
e
ts

 a
n

d
 1

N
e
ig

h
b

o
r

6
0
0

100

4
0
0

-

5
0
0

2
0
0

-

2
5
0

2 20 23 25 25 25 25 2-3

100 5
2
0

2
5
0

-

3
5
0

2 20 26 25 25 25 25 2-3

100 6
4
4

3
5
0 -

4
5
0

2/3 23 28 25 25 25 25 2-3

100 8
3
6

4
5
0 -

5
5
0

2/3 22 38 25 25 25 25 2-3

100 9
1
0

5
5
0 -

6
5
0

2/3 26 35 25 25 25 25 2-3

140

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

100

1
1
2
0

>
6
5

0

3 28 40 25 25 25 25 2-3

Figure 5-6 - Screenshots of random samples of the data set

5.5.1 Data set 1 (form data set):

In the first part of this data set (areas data), the features including land

dimensions, total built-up area, number of blocks, and setbacks are used to

predict the slabs locations as well as their dimensions, and the building’s

starting point (targets). The slabs widths and lengths are ruled

mathematically to not exceed the setbacks.

Changing the slabs dimensions affects the area of the villa which is

calculated by the equation:

𝐴𝑟𝑒𝑎 = (𝑟𝑜𝑜𝑓1𝑥 × 𝑟𝑜𝑜𝑓1𝑦) + ((𝑟𝑜𝑜𝑓2𝑥 × (𝑟𝑜𝑜𝑓2𝑦𝑏 − 𝑟𝑜𝑜𝑓2𝑦𝑎)) × 2)

+ (((𝑟𝑜𝑜𝑓3𝑥 𝑜𝑓𝑓𝑠𝑒𝑡 − 𝑟𝑜𝑜𝑓3𝑥) × 𝑟𝑜𝑜𝑓3𝑦) × 3)

The second part of this data set (rest of parameters data) involves

parameters related to distances between walls, walls’ locations measured

from slabs edges, and number of shading devices added to the first floor.

Those variables are predicted according to the same features from the first

part in addition to neighbor types.

141

 Chapter 5

5.5.2 Data set 2 (windows data set):

In the first part of this data set, the features are the same as used in data set

1 while the targets are whether there is a window or not in a wall. The

second part of this data set has the same features as the first part, but the

targets are the widths of the windows in walls.

5.6 Data Correlations

Heat maps are created to thoroughly explore the correlations between the

variables in the regression data sets (figures 5-7 and 5-8) and through a

point-biserial correlation the correlations between the variables in the

classification data set is explored (figure 5-9).

Figure 5-7 – Correlation heatmap between features and targets for the data set 1

From this correlation matrix, some variables that were consistent along the

data set could be noticed. These variables should be removed. Also,

142

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

drawing from the matrix, it could be also found that some variables could

cause misguidance to the ML including some variables with negative

values. Also, many features are not directly affecting many targets and vice

versa.

Figure 5-8- – Correlation heatmap between features and targets for dataset 2 (regression)

The same is noted in this data set with some variables being consistent

along all the samples. Also, high correlation is noticed between some

windows width and the aligning slab length.

Also, when plotting a point-biserial correlation between features and

binary targets in data set 2, some consistent variables that need to be

dropped are found.

143

 Chapter 5

Figure 5-9 – Point-Biserial correlation between features and binary targets in data set 2

(classification)

5.7 Data Pre-Processing

The two original data sets under investigation consist of 94 columns

containing all the parameters mentioned in section 9.4.

Data set 1 has 45 columns while data set 2 has 57 columns. However, both

data sets share 10 columns which are supposed to serve as features

including the land dimensions, built-up area, neighbor types, and setbacks.

Each data set has 600 samples designed by changing the parameters and

screenshot of the villa design depending on the parameters set is saved in

the same order as the csv data set for later practical validation (figure 3).

Those 600 samples are designed carefully, and the parameters were

changed intentionally depending on the architect’s satisfying results

regarding proportions, neighbors, areas, etc. This may ensure that a

particular pattern exists within the data which the machine could observe.

144

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

5.7.1 Cleaning continuous data

To achieve high efficiency in areas results after prediction, some of the

highly correlated variables needed to be adjusted. Instead of predicting

roof1x, roof1y, roof2x, roof2ya, roof2yb, roof3x, roof3x offset, and roof3

y, and to ensure logical training, some of these variables are replaced with

more relevant data that can ensure the areas prediction accuracy and can

mathematically output the replaced data. For example, roof1y was replaced

with roof1 area, roof 2 ya which happens to have a negative value usually

was replaced with roof2 area, and roof3 y was replaced with roof3 area.

This process was important to make the numeric pattern clearer to the

algorithms. Figure 5-10 shows roofs labels. However, this process was not

done on the windows data set because the lengths and widths of walls

played a key role in defining the windows’ width because walls lengths

were mostly related to slabs dimensions.

Figure 5-10 - Roofs labels

In the form data set, some targets are found consistent among the data set

and are dropped to make it easier for the machine to find relationships.

From the features, neighbor 3 was dropped from both data sets for always

having a ‘neighbor’ value set as 0. Also, setbacks in the X dimension and

in the Y dimension were found to be similar to each other in all of the

samples so, setbacks Y was dropped.

145

 Chapter 5

5.7.2 Cleaning categorical data

Some of the data in the set are of a string type like neighbor and street. And

some are boolean with ‘True’ and ‘False’ values like whether a window

exists in a wall or not. Text in these cases is converted to numerical values

for ML algorithms compatibility and achieving efficient computation. In

this case, both ‘true’ and ‘street’ values are set to ‘1’ while ‘false’ and

‘neighbor’ values are set to ‘0’. Moreover, some targets are dropped for

having consistent values in all samples.

The results of data cleaning led to the areas and rest of parameters data set

to have 33 columns, and the windows data set to have 42 columns.

5.8 Data splitting and choosing features and targets

Features in ML are the input data that the user gives to predict some values.

The values to be predicted are called labels or target variables. In this

problem, and as mentioned in section 9.4, the features and targets are

chosen as shown in table 5-3:

Table 5-3 - Features and Targets of The Model

Features (Inputs) Targets (Outputs)

Feature
No. of

Features
Target

No. of

Targets

Land length 1 Starting point 2

Land width 1 Walls parameters 22

Setbacks 1 Slabs dimensions 8

Built-up area 1 Windows existence 22

Number of blocks 1 Windows widths 22

Neighbors 4
Shading Devices Number 1

Shading Devices Widths 1

Initially, the features include what an architect should input to the program

to output the numerical parameters that control the architectural aspects

like proportions, dimensions of walls, and windows, etc.

The inputs include the building area, land width, land length, number of

blocks, neighbors, and setbacks. The dataset is split to a form dataset where

146

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

form parameters are predicted such as walls offsets, slabs dimensions,

starting point of the form, etc. and another “windows” dataset for

predicting windows existence as well as windows dimensions.

5.8.1 Form data set splitting

The correlation matrix between features and each column in targets is

plotted. The correlation matrix was plotted as a heatmap using Seaborn

library in Python and some variables were excluded from the data frame

for a cleaner dataset.

Figure 5-11 - Heatmap showing correlations between the variables in the dataset (By the Author)

The plot shows that only a few features which could affect the building

area represented in slabs dimensions. Those include land length, land

width, built-up area, and number of blocks.

147

 Chapter 5

For this reason, the form dataset is split to areas related dataset to predict

the slabs dimensions thus, the building area, and another dataset to predict

the walls offsets, and other form related parameters.

The features of the first data set are land length, land width, setbacks, built-

up area, and number of blocks.

While the other data set includes all the targets and features of the cleaned

dataset to train the model for predicting the rest of form parameters using

features like land length, land width, setbacks(X), built-up area, number of

blocks, and the types of the neighbors. Figures 5-12 and 5-13 show the

correlations between each dataset’s variables.

Figure 5-12 - Heatmap showing correlations between the variables of the form areas data set (By

the Author)

148

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

Figure 5-13- Heatmap showing correlations between the variables of the form rest-of-parameters

data set (By the Author)

5.8.2 Windows data set splitting

The windows dataset includes 12 features which are the neighbor types,

the number of blocks, and the slabs’ dimensions which logically points to

whether a window exists in a wall or not and the width of the window (in

the designs and dataset, the walls were directly correlated to the slabs

dimensions). The targets are the windows’ width and whether a window

exists in a wall or not. This shows two types of targets, one is boolean and

one is continuous. Those two types require classification and regression

models respectively. So, the targets were split to classification targets and

continuous targets. Figure 5-14 shows the correlation matrix heatmap

149

 Chapter 5

between continuous targets and features while figure 5-15 shows Point-

Biserial correlation between binary targets and features.

Figure 5-14 - correlation matrix heatmap between continuous targets and features

Figure 5-15 - Point-Biserial correlation between binary targets and features

150

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

Both the correlation heatmap and point-biserial correlation map give us

precise thoughts of how the dataset was generated. Regarding the binary

targets, clear correlations exist between the neighbors and the slabs’ side

and the window in the wall which lies under the slabs side and facing this

exact neighbor. Also, the correlation matrix heatmap reads well in the same

manner.

5.9 Data Resampling

Resampling in ML refers to the process of creating a new dataset by either

duplicating instances (oversampling) or removing instances

(undersampling) in order to achieve a more balanced class distribution.

The goal is to improve the performance of ML models, particularly in cases

where one class is significantly underrepresented compared to another.

There are only 600 samples of designs that were created by the architect

which could be insufficient for ML to analyze the data. To produce enough

samples for ML training, employ general-purpose resampling functionality

in Sklearn library which performs oversampling in this case.

150 of the 600 samples have neighbor 1 value as ‘0’, and 450 have

neighbor 1 value as ‘1’. Also, 150 samples have neighbor 2 value as ‘0’,

and 450 have neighbor 2 value as ‘1’. So, neighbor 1 and neighbor 2 as

neighbors (‘0’ value) are considered minority classes while the two

columns as streets are considered dominant classes. In this case the

resample technique was used to oversample the minor classes to balance

the class distribution. The resulting data set includes 30,600 samples for

the areas’ data set and 30,600 for the windows’ regression data set.

Synthetic Minority Oversampling Technique (SMOTE)

Regarding the windows classification data set, a significant imbalance in

data was noticed, which was a result of the architect’s preferences. Figure

5-16 shows count plots of windows classification targets before applying

SMOTE.

151

 Chapter 5

Figure 5-16 - Count plots of targets of the windows data set before applying SMOTE

The same resampling technique used with the areas’ data set was not able

to balance the data. SMOTE was applied to this data set. It is a technique

that generates synthetic samples for minority classes to tackle imbalanced

data sets. SMOTE primarily operates within the feature space, creating

new instances by interpolating between closely positioned positive

instances.

Figure 5-17 shows count plots of windows classification targets after

applying SMOTE.

152

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

Figure 5-17 - Count plots of targets of the windows data set after applying SMOTE

5.10 Train-Test Splitting

To perform a ML task, data should be split to at least a training set and a

test set. The test size in this case is set to be 20% of the whole dataset while

the remaining 80% are assigned for the training set. The data is shuffled

before splitting to get a test set with randomized instances representing the

entire data set. K-fold cross validation was applied.

5.11 Training Models

After having preprocessed and cleaned data, ML techniques were applied

to predict architectural design parameters of the villa model. The problem

involves both regression and multi-class classification.

There are three regression tasks, one for predicting the areas and slabs

dimensions, one for predicting the architectural parameters including walls

offsets, and one for predicting the windows’ widths and one classification

153

 Chapter 5

task which predicts the existence of windows in different walls. Table 5-4

shows different problem types in this study.

Table 5-4 – Machine learning problem types in this study

P
re

d
ic

ti
o
n

 T
a
sk

s Problem Type

Regression Classification

Slabs dimensions and starting

point
Existence of a window in each

wall
Architectural parameters

Windows’ width

Different regression and classification models were applied directly using

scikit-Learn, TensorFlow and Keras modules for Python. All these models

were discussed earlier in section 4.3.: Random Forest, XGBoost, Ridge,

K-Nearest Neighbor, Linear Regression, Polynomial Regression, Decision

Tree, and Multi-Layer Feedforward Neural Network (MLP) in

TensorFlow. All the ML regressors were used with their default parameters

while the MLP regressors hyperparameters’ were tuned to get the best

possible scores.

For the MLP, the best trained ANN consisted of 3 layers: an input layer of

64 perceptrons and a ‘Relu’ activation level, a hidden layer with 64

perceptrons and a ‘Relu’ activation level. And an output layer with 15

perceptrons and a ‘linear’ activation level. The loss was calculated based

on the mean squared error and the used optimizer was ‘Adam’. The batch

size used in training was 32 and the number of epochs was 100.

A set of classification algorithms are used to predict windows existence in

walls including Random Forest, k-NN, SVC, Decision Tree, AdaBoost,

and XGBoost. All the ML classifiers were used with their default

parameters.

Table 5-5 shows trained models used in this project.

154

 Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

Table 5-5- Different models trained for regression and classification tasks

Trained Models

Regression Classification
Random Forest Random Forest

XGBoost XGBoost

Ridge AdaBoost

k-NN k-NN

Linear Regression Support Vector Classification (SVC)

Decision Tree

Decision Tree
Polynomial Regression

MLP-Scikit-Learn

MLP TensorFlow

Summary

In this chapter an application as a framework is introduced to utilize ML

in the form-finding/making process, the problem was explained, being

exploring a way to test ML algorithms on architectural design parameters

as data sets to see how well ML models could generalize and find patterns

that are consciously made by the author. Then the materials and methods

used to perform this study were explained starting from choosing software,

programming languages, and programming modules to analyze the data

and build the models. It is also discussed in detail how the 3d-model was

built using coding by C# language and how all the parameters were related

together to make a fully parametric contemporary villa where every

parameter could change other parameters with full control over them to

automate the generation of a data set which contains only numerical and

text values as variables. This data was split into two data sets. One to

explore the parameters related to the form-generation and the other to

control the parameters deciding windows’ creation.

Additionally, the chapter delved into analyzing the data set by drawing

correlations between variables. Such correlations are essential to

understand how variables correlate to each other. The result of this phase

led to splitting the large data set into two data sets, each having variables

that directly affect each other, making it easier for the machine to learn

155

 Chapter 5

form and conclude patterns. Further splitting is done to each data set

according to the same concept where some variables were crucial in

determining the area of the building while others affected parameters

related to walls placements and formation. Also, in the second data set,

some parameters fit into a classification task while others required a

regression task. So, the data set ends up split into four sub-data sets. The

sub data sets were cleaned from variables which were consistent along the

whole data set and some variables were mapped to numerical values.

Furthermore, the analysis of data balance was crucial in the study. Some

techniques including SMOTE for classification and Oversampling for

regression data sets were used to balance the data. After that, the four data

sets were split into train and test data sets with an 80-20% ratio

respectively. Finally, different regression and classification models were

trained on the four data sets to gain insights on which models were more

suited to this specific problem.

In the next chapter, the results of the training phase are explained and

analyzed.

156

 Machine Learning Analysis and Results

Chapter 6: Machine Learning Analysis and Results

Preface

In this chapter the results of the different ML models are presented,

analyzed, and compared. Additionally, the model learning of both the form

data set and the windows data set based is discussed and evaluated on the

evaluation metrics discussed earlier. Also, how predictions are done after

training the models and choosing the best model are discussed. After that,

a fine-tuning phase is proposed to give the architect control over the ML

outcome to modify the built 3d-model easily to become a natural part of

the design process. Finally, final conclusions are drawn from the results of

the project.

6.1 Feature importance

According to the findings, the building area - as suggested - was the most

important feature in the final areas’ dataset (as shown in Fig. 6-1).

157

 Chapter 6

Figure 6-1 - Feature Importance Score for a Random Forest Regressor

This feature was directly affecting the areas of the floor slabs which is

calculated based on the lengths and widths of the slabs. While the land

length, land width, and setbacks were affecting only two targets which are

‘Starting Point X’ and ‘Starting Point Y’ representing the x and y

coordinates of the starting point.

6.2 Evaluation Metrics

There are some metrics that show how an ML algorithm performs while

training and with unseen data as well. These metrics vary according to the

problem type, either a regression model or a classification model.

158

 Machine Learning Analysis and Results

6.2.1 Evaluating regression performance

A regression model's performance is evaluated using metrics such as R2

score, mean squared error (MSE), root mean squared error (RMSE), and

mean absolute error (MAE).

R2 score measures the proportion of variation in the dependent variable (Y)

that is explained by the independent variable (X). R2 score is calculated by

finding the sum of residuals squared and the total sum of squares. The sum

squared regression is the sum of the residuals squared, and the total sum of

squares is the sum of the distance the data is away from the mean all

squared. This is a critical measure for assessing model fit, with values

ranging between 0 and 1. An R2 score ≥ 0.9 is considered excellent, > 0.8

is good, and ≥ 0.6 can be acceptable in some scenarios, although there

might be noticeable predictive errors. An R2 score ≤ 0.5 indicates poor

explanation of data variation and potential limitations in prediction. MSE

evaluates how well the regression model fits the data and its square root

provides an estimate of the standard deviation (σ) of the random error term.

Although RMSE is not an unbiased estimator of σ, it remains a dependable

tool for this purpose. These metrics primarily measure the magnitude of

regression errors but do not provide insights into the explained portion of

the variance. MAE is the average absolute error between actual and

predicted values. (Equations are shown in appendix B).

6.2.2 Evaluating classification performance

Accuracy, precision, recall, and F1 scores are evaluation metrics for

classification tasks. Also, a classification report is typically generated.

These scores can assess the performance of a classification model.

Accuracy represents the ratio of accurate predictions to total guesses.

Precision relates to a classifier's capability to correctly classify a negative

instance as negative. Sensitivity/recall, often called the true positive rate,

gauges the model's proficiency in identifying all positive occurrences in

relation to the combined count of true positives and false negatives. F1

score is the harmonic means of precision and recall. The harmonic mean is

a mathematical average derived by dividing the total number of

159

 Chapter 6

observations or elements in a series by the reciprocal of each individual

number within that series.

The harmonic mean of accuracy is the F1 score. The number of actual

instances of the class in the provided dataset is referred to as recall and

support. (Equations are shown in appendix B).

6.3 Model learning analysis

ML analysis was conducted on the two data sets.

6.3.1 Form data set analysis

To estimate the slabs dimensions and the rest of parameters, 8 ML models

were conducted which are: random forest, XGBoost, Ridge, k-NN, linear

regression, polynomial regression, decision tree, and MLP with

TensorFlow. A total of 30,600 samples were used (24,480 samples for

training and 6,120 samples for testing) for each model.

According to the findings, ensemble learning models had the best results

among other algorithms. The results were very accurate especially when

done on the areas sub-data set and the predicted slabs dimensions

parameters succeeded to give very close values of total-built up area as

required in the input. Figure 6-2 and table 6-1 show a comparison between

the regression metrics between the 9 trained models.

160

 Machine Learning Analysis and Results

Figure 6-2 - Comparison of the regression metrics between the 9 trained models for the areas sub-

data set.

Table 6-1- Comparison of the regression metrics between the 9 trained models for the areas sub-

data set

Model R2 Score MAE MSE RMSE
Random Forest 0.97 0.57 7.15 2.67

XGBoost 0.97 0.61 7.11 2.67

Ridge 0.69 4.96 93.16 9.65

k-NN 0.96 0.68 9.17 3.03

Linear Regression 0.69 4.96 93.16 9.65
Polynomial

Regression
0.84 3.29 53.50 7.31

Decision Tree 0.97 0.57 7.21 2.68
MLP-Scikit-

Learn
0.86 2.65 36.02 6.00

MLP TensorFlow 0.99 3.11 45.67 0.52

161

 Chapter 6

In addition, the graph in figure 6-3 shows the training loss and validation

loss during training the Feed-forward MLP. The graph shows convergence

to almost 0 in both training and validation during epochs.

Figure 6-3- Training loss and validation loss during training the Feed-forward MLP on the areas

regression sub-data set

Also, figure 6-4 shows a scatter plot with the best-fit regression line. This

graph shows neither signs of overfitting nor underfitting.

Figure 6-4 - Averaged scatter plot on test data set with the best-fit line Created by Random Forest

Regressor (areas sub-data set)

162

 Machine Learning Analysis and Results

Even with the rest of parameters sub-data set, ensemble models yielded

much better results than other algorithms like ridge, linear regression, and

polynomial regression. However, k-NN algorithm result was close to

ensemble learning algorithms. Figure 6-5 and table 6-2 show a comparison

of the regression metrics between the 9 trained models for the rest of

parameters sub-data set.

Figure 6-5 - Comparison of the regression metrics between the 9 trained models for the rest of

parameters sub-data set.

Table 6-2- Comparison of the regression metrics between the 9 trained models for the areas sub-

data set

Model R2 Score MAE MSE RMSE
Random Forest 0.79 0.10 0.27 0.52

XGBoost 0.79 0.10 0.28 0.53

Ridge 0.19 0.35 0.82 0.90

k-NN 0.78 0.10 0.31 0.55

163

 Chapter 6

Linear Regression 0.19 0.35 0.82 0.90
Polynomial

Regression
0.49 0.24 0.63 0.79

Decision Tree 0.79 0.10 0.28 0.53
MLP-Scikit-

Learn
0.52 0.20 0.42 0.65

MLP TensorFlow 0.62 0.22 0.52 0.07

The graph in figure 6-6 shows the training loss and validation loss during

training the Feed-forward MLP. The graph shows convergence to almost

0.20 in training while convergence in validation loss was higher reaching

almost 0.53.

Figure 6-6- Training loss and validation loss during training the Feed-forward MLP on the rest of

parameters regression sub-data set

Overall, the random forest algorithm performed exceptionally and had the

best metrics results.

Figure 6-7 shows the best-fit line, visualizing the relationship between the

average true values and average predicted values from the random forest

regressor for all targets in the rest of parameters sub-data set which also

164

 Machine Learning Analysis and Results

show neither overfitting nor underfitting although some outliers appear but

generally the line looks well-generalizing the relation.

Figure 6-7 - Averaged Scatter Plot with Best-Fit Line Created by Random Forest Regressor the

rest of parameters sub-data set

The results of the first data set are highly promising in terms of evaluation

metrics.

6.3.2 Windows data set analysis

The windows data set featured two problems which are a classification

problem to detect whether a window exists in a wall or not and a regression

problem to predict the windows’ widths.

Various ML algorithms were trained on both sub-data sets. In regression,

7 algorithms were trained which are: random forest, XGBoost, ridge, k-

NN, linear regression, decision tree, and MLP. All the ensemble learning

algorithms (random forest, XGBoost, and decision tree) performed

165

 Chapter 6

exceptionally well and their scores were very close. Even k-NN performed

well and very close to the mentioned algorithms. Only linear regression

and ridge models underperformed with a low R2 score of 0.49 for each.

Figure 6-8 and table 6-3 show comparison of scores between the 7

algorithms used with the windows width sub-data set.

Figure 6-8- Comparison of scores between the 7 algorithms used with the windows width sub-data

set

Table 6-3- Comparison of the regression metrics between the 7 trained models for the windows

width sub-data set

Model R2 Score MAE MSE RMSE
Random Forest 0.98 0.03 0.08 0.28

XGBoost 0.99 0.03 0.08 0.28

Ridge 0.49 0.66 1.46 1.21

k-NN 0.99 0.03 0.10 0.31

Linear Regression 0.49 0.66 1.50 1.21

Decision Tree 0.99 0.03 0.08 0.29

MLP TensorFlow 0.99 0.12 0.06 0.25

166

 Machine Learning Analysis and Results

Moreover, the feed forward NN also performed very well with a loss value

that started with 0.92 and dropped to as low as 0.06. However, its MAE

score was higher than k-NN and ensemble learning algorithms.

Figure 6-9- Training loss and validation loss during training the Feed-forward MLP on the

windows width regression data set

Overall XGBoost achieved the best results. Figure 6-10 shows the best-fit

line, visualizing the relationship between the average true values and

average predicted values from the XGBoost regressor for regression

targets in the windows widths sub-data set.

167

 Chapter 6

Figure 6-10 - Averaged Scatter Plot with Best-Fit Line Created by XGBoost Regressor with the

windows widths sub-data set

Regarding predictions of windows existence in walls, several classifiers

were trained including random forest, support vector classifier (SVC), k-

NN, XGBoost, AdaBoost, and decision tree. The problem features a multi-

class classification problem. To apply the algorithms, for each algorithm,

12 classifiers were trained so that each classifier is responsible for learning

and predicting one class from the 12 targets. And to evaluate the model,

average accuracies, recalls, precisions, and f1 scores are calculated for the

12 classifiers that each model has. All the 6 algorithms performed well

with the data set and achieved high scores in all the metrics. Only SVC had

slightly lower scores.

Figure 6-11 and table 6-4 show a comparison of the metrics achieved by

the 6 algorithms.

168

 Machine Learning Analysis and Results

Figure 6-11 - Comparison of the metrics achieved by the 6 classification algorithms trained with

the windows existence sub-data set.

Table 6-4- Comparison of the classification metrics between the 6 trained models for the windows

existence sub-data set

Model Accuracy Precision Recall F1 Score

Random Forest 0.98 0.98 0.98 0.98

SVC 0.91 0.94 0.88 0.91

k-NN 0.95 0.96 0.93 0.95

XGBoost 0.98 0.98 0.98 0.98

AdaBoost 0.96 0.97 0.95 0.96

Decision Tree 0.97 0.97 0.96 0.97

A confusion matrix is a tabular representation that illustrates the various

outcomes arising from predictions and actual results in a classification

problem. It provides a structured presentation of the classifier's predictions

and the true values, aiding in the visualization of their interactions. The

matrix displays a comprehensive overview of predicted and observed

values within the classification process. Confusion matrices are visualized

for all the classifiers in all classification models as shown in figure 6-12.

169

 Chapter 6

Figure 6-12 - Confusion matrices for all the classifiers in all classification models

The matrices show how all the models performed well and had very low

classification errors compared to the right decisions. It also shows that

SVC had the greatest number of false positive values and false negative

values.

Figures 6-13 to 6-15 show the confusion matrices of the 12 classifiers of

the random forest model which achieved the best overall results, XGBoost,

and decision tree models respectively.

170

 Machine Learning Analysis and Results

Figure 6-13 - the confusion matrices of the 12 classifiers of the random forest model

The matrix shows how the classifier with the largest number of errors

(Class FF Wall 10 Window) had falsely predicted only 10 times out of 134

predictions.

Figure 6-14- the confusion matrices of the 12 classifiers of the XGBoost model

171

 Chapter 6

Figure 6-15 - the confusion matrices of the 12 classifiers of the decision tree model

Again, from the present results, it is significant that both the regressor and

classifier algorithms performance were remarkable in both windows sub-

data sets in terms of the evaluation metrics. Thus, many algorithms could

generalize on unseen data.

6.4 Predictions

To sum up, the study was conducted on two architectural design data sets

that are prepared to be numerical through coding. ML algorithms were

trained on both data sets. Some regression models were trained on the first

data set to predict the values of the slabs dimensions and other parameters

related to walls dimensions and spacings. While other regression and

classification algorithms were trained on the second data set to predict

windows width and windows existence, respectively. However, to predict

windows existence and windows widths, the same inputs passed for the 1st

data set’s predictions are not used because all the algorithms are required

to complete a one single design prediction process. So, the passed inputs

are the predictions of the slabs’ dimensions obtained from training the first

set of algorithms which are trained on the first data set as inputs to predict

172

 Machine Learning Analysis and Results

the windows existence and windows widths with the second set of

algorithms. In this sense, one seamless connected framework is achieved

utilizing ML in architectural form finding based on the architects’ data and

preferences which are used to train ML models.

6.5 Model Fine-Tuning

To make sure that the final design of the villa is satisfying, a fine-tuning

phase is modeled to modify the design obtained by parsing ML output

values. In this phase, the architect has all the control needed to

increase/decrease any parameter to reach the required final form.

Parameters are controlled with low values sliders to achieve a precise

satisfying design. This resulting design, as well as any future designs could

be easily added to the dataset and the ML cycle can be triggered again

which should be enhanced when more designs are fed to it.

6.6 Discussion

The main aim of the present study was to evaluate the suggested ML

framework where an architectural model is transformed into data sets

containing all the possible parameters in a form of a numeric CSV files

ready to train ML algorithms. Two data sets are applied: one related to

slabs dimensions and walls dimensions and spacings and one related to

windows existence and windows dimensions. In ML, data sets play a

crucial role in the success of algorithms in generalizing for unseen data.

So, an important part of this research was to pre-process the data and check

if patterns can be found. In this regard, sub-data sets were created from the

original data sets changing the targets and features for each one depending

on the features importance to targets. Moreover, some targets related to

slabs dimensions had to be changed so that the built-up area of the training

data maps correctly with the slabs’ dimensions and by trial, this proved to

be important for the algorithm to create a logical best-fit line to predict the

dimensions correctly. Also, some targets and features were consistent

along all the samples, so they were dropped.

Training the models with cleaned data after the previous step was

successful and the evaluation metrics were acceptable. However, another

173

 Chapter 6

step was taken to optimize the algorithms performance which was

oversampling. The data sets originally had 600 samples. The form data set

was oversampled to have 30,600 samples by increasing the samples with

minor classes, while SMOTE was used to oversample the windows

classification sub-data set to balance the data. And this enhanced the

algorithms’ performance significantly.

After data engineering and oversampling, a set of ML algorithms were

trained on the datasets including -for regression- ensemble learning

methods like random forest, XGBoost, and decision tree, and other

algorithms like linear regression, polynomial regression, ridge, k-NN, and

Multi-layer perceptron feed forward NN. For classification, algorithms

included random forest, XGBoost, decision tree, SVC, k-NN, and MLP.

Ensemble learning methods were very successful in the whole study. All

of these algorithms succeeded in terms of achieving the best evaluation

metrics among other algorithms.

As shown in table 6-5, overall, random forest regressor performance was

very successful regarding evaluation metrics when trained with both of

form’s sub-data sets.

Table 6-5 – Random Forest Metrics Scores for Roofs Data Set

Sub-data set
Best R2

Score

Mean

R2

Score

MSE
Mean

RMSE
MAE

Areas 0.97 0.97 6.15 2.48 0.54

Rest of

parameters
0.79 0.78 0.26 0.51 0.1

XGBoost, showed the best results when compared to other algorithms with

the windows width sub-data set. Table 6-6 compares the results of the most

successful algorithms in this scenario. The table shows how 5 out 7

algorithms performed very similarly to each other.

174

 Machine Learning Analysis and Results

Table 6-6 - Metrics comparison between different algorithms trained on the windows widths sub-

data set

Algorithm
Best R2

Score

Mean

R2

Score

MSE
Mean

RMSE
MAE

XGBoost 0.99 0.96 0.07 0.26 0.03

Random

Forest
0.98 0.96 0.07 0.27 0.03

k-NN 0.99 0.97 0.08 0.28 0.03

Decision Tree 0.99 0.97 0.07 0.27 0.03

MLP - 0.99 0.06 0.24 0.12

Even the classification task to predict whether a window exists or not, has

seen a huge success regarding evaluation metrics. To do this task with the

multi-class classification problem, 12 classifiers were created for each

algorithm. Each classifier was trained to predict one output only. In this

manner, MLP showed great results unlike when trained on continuous data.

Still, ensemble learning methods showed better overall performance,

especially the random forest algorithm for which a confusion matrix was

visualized, and the number of false predictions was very low. Also, the k-

NN algorithm performed exceptionally in this task.

The success of ensemble learning methods was expected as ensemble

learning tends to combine the predictions of multiple base models, often

leading to better overall predictive performance compared to individual

models. This can result in higher accuracy, lower error rates, and improved

generalization to new, unseen data. Also, by aggregating the predictions of

multiple models, ensemble methods can help mitigate overfitting, which

occurs when a model is too complex and performs well on the training data

but poorly on the test data. Ensemble methods tend to make the final

predictions more robust and less prone to overfitting. In addition,

ensembles capture different aspects of intricate relationships through

diverse base models, allowing for a more comprehensive understanding of

the data.

To predict values to be parsed to the code on grasshopper3d to build the

predicted model, predictions were taken first from the roofs and rest of

175

 Chapter 6

parameters data. The predicted slabs dimensions were then used as inputs

to predict windows existence and windows’ dimensions. And the resulting

model was very satisfying as it was built with the same architectural style

that the models were trained with. The results were very similar to the

visualized samples renders.

Subsequently, a fine-tuning stage was introduced within the framework to

guarantee the development of a thoroughly refined product. During this

phase, the architect gains complete control over all the parameters, albeit

within a more constrained range of values, facilitating effortless model

adjustments.

Summary

The present study is done to search for a proper framework for utilizing

ML power in architectural design. To achieve this goal, various steps were

taken to transform an architectural model into an ML ready dataset. The

deep study of proper parametric relationships between the model’s

components was crucial to translate the components into the smallest

possible unit of data representing coordinates, dimensions, and boolean

options.

Using coding was very important to create such a complex network of

interconnected parameters and to automate the tasks of exporting the

parameters to a dataset in the form of a CSV file that is ready to be used in

a ML pipeline. In a normal design and architectural modeling workflow,

even using parametric tools and software, creating many

designs/prototypes of the same design style takes a lot of time in modeling

and modifying each prototype. This process could need even more

architects depending on the number or required prototypes. But as the

study proves, not only did coding facilitate how an architect can read

geometry as a container of information, but also the creation of a great

number of samples with the same design style leading to a large dataset in

much less time than a usual design workflow can take to model different

prototypes with different areas and parameters.

176

 Machine Learning Analysis and Results

After that, the dataset was validated by extracting simpler dataset to predict

the roofs dimensions to ensure that an ML regression model can predict

parameters value that could lead to a building with a requested area.

Exploratory data analysis was done to extract the variables that are most

correlating to the roofs’ dimensions. And data pre-processing was needed

to ensure that the model can predict well by replacing some roofs

dimensions with roofs areas with simple mathematical equations. This step

was crucial for the success of the study because negative values of some

roofs led to very low metrics scores when a regressor was trained. Also,

data was oversampled to ensure better learning for the algorithm where the

number of samples was increased by 30,000. After trials, this step proved

to be very important for the success of the model which could not

generalize well on 600 samples, a small sample space. The dataset was

split into train/test sets with ratios of 80% and 20% respectively and a

simple random forest regressor was trained on the dataset with its default

parameters.

The study exhibited a great success with the random forest regressor for

which the scores metrics R2 score, MSE, RMSE, and MAE were 0.97,

6.15, 2.48, and 0.54, respectively. A practical validation was followed by

reversing the mathematical calculations to get the villa’s area which

happened to be the same as the required area or very close to it. The

predicted parameters were then parsed into the code of the villa model with

only a button click in grasshopper canvas to check how the model looks

like. What this study proved is that the machine could learn and map the

patterns that an architect follows when designing a building. It is like the

architect taught the machine how he designs. A process that is hard to

explain to another architect in words. This approach could lead to a great

effect in the architectural design process especially that the result is as

close as possible to what the architect could think inside his brain.

Finally, a fine-tuning phase was added to the framework to ensure a

satisficing product for the architect. In this phase, the architect gets full

control of all the parameters but with a smaller range of numbers to modify

the model easily.

177

 Chapter 6

The results can be described in terms of time and effort distributed between

AI and human interventions across two stages of a design process shown

in figures 6-16 to 6-18. In Stage 1, the pie charts illustrate the time

allocation between AI (30%) and human input (70%) in the design process,

with human intervention being dominant. On the right, a parallel

comparison for coding shows a similar distribution, where design

comprises 30%, and coding consumes 70% of the effort.

Figure 6-16 Stage 1: Time and Effort Estimation for AI/Human (left) and human design/coding

(right)

Stage 2 shifts significantly towards AI involvement, with AI contributing

95% and human involvement reduced to 5%, indicating an advanced level

of automation.

Figure 6-17- Stage 2: Time and Effort Estimation for AI/Human Intervention

The overall assessment at the bottom, showing AI taking 30% and human

70%, summarizes the cumulative effort across both stages. This

demonstrates the evolving role of AI in design and coding, highlighting the

efficiency gained from AI while retaining essential human input in the

creative stages.

Human
70%

AI
30%

Human AI

Coding
70%

Design
30%

Coding Design

AI
95%

Human
5%

AI Human

178

 Machine Learning Analysis and Results

Figure 6-18- Overall: Design Intervention Estimation

Regarding time, the estimated time for stage 1, which includes modelling

the villa using coding, creating 600 consciously designed samples, and

training ML models took around 15 days while stage 2 takes a maximum

of 5 minutes to generate a new design.

Human
70%

AI
30%

Human AI

179

 Conclusion and Future Research

Research Conclusion

The present study provides evidence about the efficiency of utilizing ML

algorithms with architectural design numeric data sets and coding being an

important skill for architects. The study proves a novel direction on how

to apply ML in the form generation process.

Artificial Intelligence has seen a lot of improvements and applications

recently in many fields and architecture is no exception. However, being a

field which exhibits a lot of creativity and logic makes it hard to apply AI

algorithms as with other fields. Architecture is considered a complicated

practice which requires knowledge in many disciplines including

psychology, physics, mathematics, art, and more. The product of

architecture is considered to be complicated as well because of the many

considerations that accompany it. An architect thinks in a cyclic way

through a complex design process to produce a building design. This

makes the learning of architectural and creative thinking as well as

problem solving an essential necessity to architects. Add to that, how at

some point an architect takes decisions based on a black box thinking

approach. In this case, can the machine and today’s AI algorithms map how

the architect thinks?

According to the analytic study of architectural design elements and

motifs, it is clearly observed that those elements and motifs are repeatedly

used by architects according to the design era. A pattern between them

could be identified. For instance, in contemporary architecture of villas,

the use of L, C, U shapes in facades by modifying slabs and walls to create

frames is observed as a repetitive motif. Additionally, the use of rectilinear

shading elements is repeatedly used by architects. If one could observe

such patterns, the machines can also do so, today.

Design methods including parametric design, generative design,

algorithmic design, etc. benefited from what the computers could do,

adding an algorithmic characteristic to the design process making it clearer

and more logical to the architect. Even some decisions regarding structural,

environmental, and energy aspects could be taken using optimization. All

180

 Conclusion and Future Research

of these methods would not have seen light without the advent of visual

programming languages where an architect codes the building using

parameters and operations on them. Moreover, coding is considered to

have a significant effect on the design process giving the architect more

power, freedom, and spruceness as well as helping them break free from

any bias that is present in today’s modelling software and educational

phase.

AI applications in architecture have seen many trials since the late 19th

century. However, they became more popular when image generation

through Gen-AI models was introduced. In essence, AI algorithms could

do much better than creating images which is believed to be machine-

centric today rather than human-centric because of the image generation

process and the data the algorithm learns with. AI algorithms could help in

automating many tasks including predicting numbers, classifying numbers

and images, clustering, etc. Such algorithms are ensured to make the

design process more human-centric where the architect feeds the algorithm

with dataset related only to his problem while the dataset being designed

by the architect themselves based on their experience or past projects.

These benefits of using non-gen AI against the image generation tasks

which cannot map a real complicated design process dealing with the

building as information drawn from a lot of issues and disciplines as well

as authenticity issues, show non-gen AI’s superiority.

To utilize machine learning in the 3d model generation (form finding),

transforming architects’ ideas and designs into numbers become essential

and could be achieved by dealing with the buildings’ parameters as small

entities of data. This could show a huge advancement in applying ML in

the architectural design field to automate tasks that consume a lot of time

like creating many prototypes with different parameters but with the same

design style. Coding could open many possibilities by altering the

architect’s mind from thinking about geometry as geometry to thinking

about it as a container of information. The information could create an

infinite number of possibilities regarding how buildings’ components

correlate with each other parametrically. This approach could utilize

automating the creation of a dataset of architectural design parameters to

181

 Conclusion and Future Research

be used to train ML models which could predict and automate the design

phase of new prototypes of the same design style with different parameters

and properties.

To overcome the data set creation challenge and generate hundreds of

studied designs in a short time while obtaining valuable insights from the

data using ML techniques, an architectural 3d model was generated

parametrically so, its parameters should be strongly related and could be

transformed into data sets containing all the possible parameters in a form

of a numeric CSV file ready to train ML algorithms. For this task, the

model was algorithmically designed and coded in C# using RhinoCommon

geometry functions in a sense where every parameter was related to a target

such as the total built-up area, land dimensions, neighbor types, and

setbacks. Two datasets were generated. A form dataset is designed with

parameters related to the building design including walls lengths, slabs

lengths and widths, heights, number of building blocks, louvers’ numbers

and distances between them, as well as walls distance from slabs. The other

data set is designed to have windows data including window’s existence in

each wall and their widths.

In this study, six hundred samples of designs with 122 parameters were

created. The inputs (features) were the length and width of the land,

neighbors, built-up area, setbacks, and a starting point. On the other hand,

the outputs (targets) were all the numeric and textual parameters of the

walls and windows (112 parameter).

Training ML algorithms with the two data sets exhibited some challenges,

including weak relations between some parameters and data imbalance due

to design limitations. To address these issues, the data sets had to be

preprocessed and engineered to ensure that the relationships between

different parameters are clearer to the machine. Some string parameters

were transformed into numeric values, and some parameters were

mathematically processed.

To tackle creating a larger data set while balancing it, another step was

taken to optimize the algorithms’ performance which was oversampling.

The data sets originally had six hundred samples. The form data set was

182

 Conclusion and Future Research

oversampled to have thirty thousand and six hundred samples by

increasing the samples with minor classes, while SMOTE was used to

oversample the windows classification sub-data set to balance the data.

This enhanced the algorithms’ performance significantly especially when

ensemble learning algorithms were applied. After data engineering and

oversampling,

After preprocessing the data and splitting the data sets to training and test

data sets using K-cross validation, a set of ML algorithms were trained on

the datasets including -for regression- ensemble learning methods like

random forest, XGBoost, and decision tree, and other algorithms like linear

regression, polynomial regression, ridge, k-NN, and MLP. On the other

hand, for classification, algorithms included random forest, XGBoost,

decision tree, SVC, and k-NN. To solve the multi-class classification

problem, twelve classifiers for each algorithm were created. Each classifier

was trained to predict one output only, which was whether a window exists

or not. The models were evaluated using regression metrics like R2 score,

MSE, RMSE, and MAE, and classification metrics like accuracy,

precision, recall, and F1.

Overall, in regression tasks, random forest regressor performance was

successful regarding evaluation metrics when trained with both of form’s

sub-data sets. Additionally, XGBoost showed the best results when

compared to other algorithms with the windows width sub-data set.

Additionally, the classification task was successful in terms of evaluation

metrics. In this manner, ensemble learning methods showed better overall

performance, especially the random forest algorithm for which a confusion

matrix was visualized, and the number of false predictions was low. Also,

the k-NN algorithm performed exceptionally in this task. The success of

ensemble learning methods was expected because these models tend to

combine the predictions of multiple base models, often leading to better

overall predictive performance compared to individual models. In

addition, ensembles capture different aspects of intricate relationships

through diverse base models, allowing for a more comprehensive

understanding of the data. Also, by aggregating the predictions of multiple

models, ensemble methods could help mitigate overfitting, which occurs

183

 Conclusion and Future Research

when a model was too complex and performs well on the training data but

poorly on the test data. This resulted in higher accuracy, lower error rates,

and improved generalization for new, unseen data.

To predict values which were parsed to the code on grasshopper3d to build

the predicted model, predictions were taken first from the roofs and rest of

parameters data. The predicted slabs dimensions were then used as inputs

to predict windows existence and windows’ dimensions. As practical

validation, the predictions were validated numerically by making sure the

design achieves the required area and respects legal constraints. Also, it

was an easy task to tell if the predicted numbers lead to a satisfactory

output because the training dataset was generated based on the authors’

designs. The resulting model was satisfying as it was built with the same

architectural style that the models were trained with and the required areas

were predicted precisely. And the results were similar to the visualized

samples renders. Subsequently, a fine-tuning stage was introduced within

the framework to guarantee the development of a thoroughly refined

product. During this phase, the architect gains complete control over all

the parameters, albeit within a more constrained range of values,

facilitating effortless model adjustments. Generally, the algorithms were

successful because the designed data set already ensured clear

relationships between targets and features. And this proves that

architectural design is based on traceable rules applied to the design

algorithms by the designer. In this case, the machine could automate the

3D model design process by learning these rules and predicting based on

them.

Finally, the suggested framework is tested against tangible aspects of

architectural design which do not depend on certain design patterns but

adapt to the architect’s decisions presented in the final parameters of the

data set. Additionally, only straightforward form aspects related to

proportions were tested for simplicity. Adding more aspects to the design

such as environmental aspects could make the patterns harder to find by

the ML algorithms. However, if patterns exist between the features and

targets -building requirements and building parameters- the framework

should lead to ‘accurate’ results and in this case accurate denotes the

184

 Conclusion and Future Research

architect’s way of thinking showing in the parameters they choose and

create.

Future Directions

As advancements in artificial intelligence and ML are already affecting all

the fields daily, architectural design field is no exception. Explorations

with how to automate architectural design tasks and applying ML to the

design process are becoming inevitable, especially that the architectural

field is considered one of the latest fields to benefit from AI.

Future research could include how to improve the data sets created by

coding because data is the most important aspect when applying ML in any

field. How to increase the number of samples is a crucial requirement.

Increasing the number of samples with varying parameters space could

lead to better trained ML models. For instance, adding more samples with

much varying land lengths and widths, built-up areas, etc., with smaller

differences range could enhance training the models.

Also, creating different sets regarding architectural design style with more

parameters and more options to train a model to predict the parameters of

the building according to its style, wide range of heights, number of blocks,

and typologies could be efficient to generalize the prospect applications

leading to better performance on ground.

Future investigations could also consider creating models on other design

platforms away from Rhinoceros3d and Grasshopper3d. Investigations on

creating a whole new type of software that automates the coding process

of the data sets, especially with new AI coding Copilots introduced lately

as well as Large Language Models which deal with coding like GPT and

Llama is essential. The new software could then use ML algorithms to train

on the data sets created and return the architectural form instantly. Such

applications could lead to a much lighter and easier to use interface that

makes the 3D modelling process smoother and more straightforward.

Additionally, exploring more advanced and intricate design parameters

could lead to a design framework that is much closer to the real world.

185

 Conclusion and Future Research

Such parameters could include various design aspects like environmental,

cost, as well as other intangible aspects such as psychological and

philosophical aspects of architecture. For instance, adding features

(building requirements) to the design samples including daylighting

metrics such as sDA and ASE or solar radiation analysis results being

independent parameters that affect different building parameters (targets)

could lead to better results regarding an all-in-one architectural design

form prediction approach. In this case, the architect could add intended

sDA and ASE values to the input parameters to decide the target parameters

of the building.

Other applications including materials choice could be investigated within

the same framework to give more information regarding the resulting 3D

model which could then be used within a BIM workflow seamlessly.

Additionally, other building parameters could be explored including

building orientation, rooms and services locations, interior design

parameters, etc.

Also, other types of problems could be explored. For example, instead of

training ML models to predict form parameters they could be trained to

predict floor plans designs, urban design compositions, etc. Such

applications could use the exact same framework, and more than one

application could be integrated to work on different problems at the same

time moving forward to a multi-tasking AI model. However, each problem

will require more investigations regarding the best working ML models

and ensemble learning models do not guarantee the result. In this case,

deep learning models may capture more intricate patterns and suit better

such complicated workflows.

Finally, enhancing the framework to be designed and used by multi-users

needs investigations. If different users could generate design samples

according to a certain goal, the framework could significantly enhance the

design process. For example, a user could be responsible for choosing

parameters regarding form proportions, another for specifying materials

and cost, another for optimization tasks and environmental responsiveness,

etc.

186

 References

References

Books, Papers, and Articles:

1- Aalaei, M., Saadi, M., Rahbar, M., and Ekhlassi, A., 2023,

Architectural Layout Generation Using a Graph-Constrained

Conditional Generative Adversarial Network (GAN), Automation

in Construction 155 (2023) 105053

2- Aamir, N., 2017, The Ideological Basis of Design Motifs in the

Architecture of Subcontinent: The Converging Stories of Bells and

Tassels, Pakistan Social Sciences Review

3- Abowardah, E., and Osama, M., 2016, Design Process and

Strategic Thinking in Architecture, Proceedings of 2016

International Conference on Architecture & Civil Engineering

(ICASCE 2016), London.

4- Aczel, D., 1989, Complete Business Statistics. Irwin, p. 1056.

ISBN 0-256-05710-8.

5- Agkathidis, A., 2015, Generative Design: Form-Finding

Techniques in Architecture, Laurence King Publishing Ltd, UK.,

pp. 14-17.

6- Aggarwal, C., 2015. Data mining: The textbook. Springer.

7- Ahlquist, S., and Menges, A., 2011. Introduction: Computational

Design Thinking. In: Menges, A., Ahlquist, S. (Eds.), AD Reader:

Computational Design Thinking. John Wiley & Sons Ltd, United

Kingdom, pp. 10e29.

8- Akizuki, Y., Bernhard, M., Kakooee, R., Kladeftira, M., and

Dillenburger, B., 2020, Generative Modelling with Design

187

 References

Constraints – Reinforcement Learning for Object Generation –

CAADRIA Volume 1 - Pages / Article No. 445 – 454

9- Ali, S., 2020, The Role of Visualization Software in Architectural

Education مجلة العمارة والفنون والعلوم الإنسانية Article 3, Volume 5, Issue

24, November 2020, Page 26-43

10- Alpaydin, E., 2014, Introduction to Machine Learning, The MIT

Press, Cambridge, Massachusetts, London, England.

11- Alymani, A., Jabi, W., and Corcoran, P., 2020, Machine Learning

Methods for Clustering Architectural Precedents Classifying the

relationship between building and ground, eCAADe 38.

12- Amamata, Z., Mohammed, B., and Yusuf, B., 2014, Are Smart

Buildings Same as Green Certified Buildings? A Comparative

Analysis, Int. J. Sci. Res. Publ. 4 2250– 3153 www.ijsrp.org.

13- Archer, L.B., 1969, The Structure of the Design Process. In G.

Broadbent & A.Ward (Eds.) Design Methods of Architecture. New

York: Witteborn.

14- As, I., Pal, S., and Basu, P., 2018, Artificial Intelligence in

Architecture: Generating Conceptual Design via Deep Learning,

International Journal of Architectural Computing, Vol. 16(4), pp.

306-327.

15- As., I., Pal, S., and Basu, P., 2023, Artificial Intelligence in

Architecture: Generating Conceptual Design Via Deep Learning,

International Journal of Architectural Computing 2018, Vol. 16(4)

306–327.

16- Asimow, M. 1962, Introduction to Design, Prentice-Hall.

17- Atlas, L., Park, D., El-Sharkawi, M., Marks, R., and Damborg, M.,

2002, Electric Load Forecasting Using an Artificial Neural

http://www.ijsrp.org/

188

 References

Network, IEEE Trans. Power Syst. 6 442–449,

doi:10.1109/59.76685.

18- Bacon, E., 1974, Design of Cities, Penguin Publishing Group.

19- Banham, R., 1996, A Critic Writes: Selected Essays by Reyner.

Banham. Berkeley: University of California Press, c1996.

20- Banko, M., & Brill, E. (2001). Scaling to Very Large Corpora for

Natural Language Disambiguation. Proceedings of the 39th Annual

Meeting on Association for Computational Linguistics (pp. 26-33).

21- Bao, Y and Xiang, C., 2023 - Exploration of Conceptual Design

Generation based on the Deep Learning Model-Discussing the

Application of AI Generator to the Preliminary Architectural

Design Process, xArch symposium-Creativity in the age of digital

reproduction At: Xi'an Jiaotong-Liverpool University, Suzhou,

China

22- Basarir, L., and Erol, K., 2021, Briefing AI: From Architectural

Design Brief Texts to Architectural Design Sketches ASCAAD

2021

23- Belém, C, Santos, L and Leitão, A 2019 ’On the Impact of Machine

Learning Architecture without Architects?’, CAAD Futures 2019,

Daejon, South Korea

24- Bellman, R. (1987). An Introduction to Artificial intelligence: Can

computers think? Thomson Course Technology.

25- Bengesi, S., El-Sayed, H., Sarker, M., Houkpati, Y., Irungu, J., and

Oladunni, T., 2023, Advancements in Generative AI: A

Comprehensive Review of GANs, GPT, Autoencoders, Diffusion

Model, and Transformers, arXiv:2311.10242 [cs.LG]

26- Bergstra, J., & Bengio, Y., 2012, Random Search for Hyper-

Parameter Optimization, Journal of Machine Learning Research,

281–305. http://dx.doi.org/10.5555/2188385.2188395

http://dx.doi.org/10.5555/2188385.2188395

189

 References

27- Bloch, T., and Sacks, R., 2018, Comparing Machine Learning and

Rule-Based Inferencing for Semantic Enrichment of BIM Models,

Automation in Construction 256-272

28- Bovill, C.: Fractal Geometry in Architecture and Design.

Birkhauser, Boston, 1996.

29- Boukarta, S., 2021, Predicting energy demand of residential

buildings: A Linear Regression-Based Approach for A Small

Sample Size. SSP – Journal of Civil Engineering, Vol 16, Issue 2/

30- Breiman, L., 1984, Classification and Regression Trees, 1st Edition,

Routledge, New York.

31- Breiman, L. ,1996. Bagging Predictors. Machine Learning, 24(2),

123–140.

32- Breiman, L. ,1998. Arcing Classifiers. The Annals of Statistics,

26(3), 801–849.

33- Breiman, L., 2001a. Statistical Modeling: The Two Cultures.

Statistical Science, 16, 199-215.

34- Breiman, L., 2001b. Random Forests. Machine Learning, 45, 5-32.

35- Bishop, C. M. 2006, Pattern Recognition and Machine Learning.

Springer.

36- Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim, S.,

Fidler, S., and Kreis, K., 2023, Align your Latents: High-

Resolution Video Synthesis with Latent Diffusion Models,

arXiv:2304.08818v1 [cs.CV]

37- Broadbent, G., 1969, Design Methods in Architecture, New York,

G. Wittenborn

38- Broadbent, G., 1973. Design In Architecture: Architecture and the

Human Sciences. UK: John Wiley and Sons.

190

 References

39- Broadbent, G., (postscript), (1988). Design in Architecture:

Architecture and the Human Sciences. London: David Fulton

Publishers.

40- Burry, J. & Burry M., 2010, The New Mathematics of Architecture,

Thames & Hudson Ltd, UK.

41- Burry, M. (2016). Prototyping for architects. Thames & Hudson.

42- Bukhari, F. A, 2011. A Hierarchical Evolutionary Algorithmic

Design (HEAD) System for Generating and Evolving Building

Design Models. PhD Thesis. Queensland University of

Technology.

43- Caetano, I., Santos, L., Leitao, A., 2019, Computational Design in

Architecture: Defining Parametric, Generative, and Algorithmic

Design

44- Caldas, L., 2008. Generation of Energy-Efficient Architecture

Solutions Applying GENE_ARCH: An Evolution-Based

Generative Design System. Adv. Eng. Inf. 22, 59e70.

45- Caliskan, E., 2023, Interview with Chat GPT to Define

Architectural Design Studio Work: Possibilities, Conflicts and

Limits, Journal of Design Studiov:5

46- Capon, David Smith, (1999a). Architectural Theory, Volume One:

The Vitruvian Fallacy, A History of the Categories in Architecture

and Philosophy. West Sussex: John Waley & Sons.

47- Capon, D., l999b, Architectural Theory, Volume Two: Le

Corbusier's Legacy, Principles of Twentieth-century Architectural

Theory Arranged by Category. West Sussex: John Waley & Sons.

48- Ceylan, D., et. Al, 2023, Pix2Video: Video Editing using Image

Diffusion, arXiv:2303.12688v1 [cs.CV] 22 Mar 2023

191

 References

49- Cerquitelli, T., Malnati, G., and Apiletti, D., (2019). Exploiting

Scalable Machine-Learning Distributed Frameworks to Forecast

Power Consumption of Buildings. Energies 12 (15) pp. 29-33.

50- Chae, Y., Horesh, R., Hwang, Y., and Lee, Y., 2016, Artificial

Neural Network Model For Forecasting Sub-Hourly Electricity

Usage In Commercial Buildings, Energy Build 111 184–194,

doi:10.1016/j.enbuild.2015.11.045.

51- Chai, W., Guo, X., Wang., G., and Lu, Y., 2023, StableVideo: Text-

Driven Consistency-aware Diffusion Video Editing,

arXiv:2308.09592v1 [cs.CV] 18 Aug 2023

52- Chaillous, S., 2019, AI & Architecture – An Experimental

Perspective – Harvard University

53- Chandrasegaran, E., Kisselburgh, L., & Ramani, T. (2012).

Enhancing visual thinking in a toy design course using freehand

sketching. August Proceedings of the International Design

Engineering Technical Conferences & Computers and Information

in Engineering Conference IDETC/CIE.

54- Charniak, E., & McDermott, D. V. (1985). Introduction to Artificial

Intelligence. Addison-Wesley.

55- Charytoniuk, W., and Chen, M., 1998, Nonparametric Regression

Based Short-Term Load Forecasting, IEEE Trans. Power Syst. 13

725–730, doi:10.1109/59.708572.

56- Chou, J., and Bui, D., 2014, Modeling Heating And Cooling Loads

By Artificial Intelligence For Energy-Efficient Building Design,

Energy Build 82 437–446, doi:10.1016/j.enbuild.2014.07.036.

57- Chawla, N., Bowyer, K., Hall, L., and Kegelmeyer, W., 2002,

SMOTE: Synthetic Minority Over-sampling Technique, Artificial

Intelligence Research (JAIR)

192

 References

58- Ching, F.D.K. (1996) Architecture; Form, Space & Order. Van

Nostrand Reinhold, New York.

59- Clement, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,

Nord, R., & Stafford, J. (2011). Documenting software

architectures: Views and beyond (2nd ed.). Addison-Wesley.

60- Conway, H., and Roenisch, R., 1994, Understanding Architecture:

An Introduction to Architecture and Architectural History, Francis

& Taylor e-Library, 2005.

61- Cross, N., 2006, Designerly ways of Knowing. London: Springer-

Verlag.

62- Cudzik, J., and Radziszewski, K., 2018, Artificial Intelligence

Aided Architectural Design, AI FOR DESIGN AND BUILT

ENVIRONMENT - Volume 1 - eCAADe 36 | 77-84

63- Culter, L., and Culter, S., 1982. Recycling Cities for People: The

Urban Design Process. 2nd ed. Boston, Mass.: CBNI Publishing.

64- Dedinec, A., Filiposka, S., Kocarev, L., 2016, Deep Belief Network

Based Electricity Load Forecasting: An Analysis Of Macedonian

Case, Energy 115 1688–1700, doi:10.1016/j.energy.2016.07.090.

65- Deng, H., Fannon, D., and Eckelman, M., 2018, Predictive

Modeling For US Commercial Building Energy Use: A

Comparison Of Existing Statistical And Machine Learning

Algorithms Using CBECS Microdata, Energy Build 163 34–43,

doi:10.1016/j.enbuild.2017.12.031.

66- Desai, N., & Patel, V., 2021, Linear Decision Tree Regressor:

Decision Tree Regressor Combined with Linear Regressor.

67- Dong, B., Cao, C., and Lee, S., 2005, Applying Support Vector

Machines To Predict Building Energy Consumption In Tropical

193

 References

Region, Energy Build 37 545–553,

doi:10.1016/j.enbuild.2004.09.009.

68- Dorst, K., 2003, Exploring the Structure of Design Problems,

International Conference on Engineering Design Iced 03

Stockholm.

69- Duarte, J. P. (2001). Customizing mass housing: A discursive

grammar for Siza's Malagueira houses. MIT Press.

70- Duerk, Donna P., (1993). Architectural Programming: Information

Management for Design. New York: Van Nostrand Reinhold.

71- Edwards. R., New, J., and Parker, L., 2012, Predicting Future

Hourly Residential Electrical Consumption: A Machine Learning

Case Study, Energy Build 49 591–603,

doi:10.1016/j.enbuild.2012.03.010.

72- Eggert, R.J., 2004, Engineering Design, Prentice Hall, Upper

Saddle River, New Jersey.

73- Elghandour, A., Saleh, A., Aboeineen, O., and Elmokadem, A.,

2014, Using Parametric Design to Optimize Building’s Façade

Skin to Improve Indoor Daylighting Performance. pp. 353-361

74- El Iraqi, A., and El Daly, H., 1997, Architectural Forming Between

Form Making and Form Finding Towards Form Follows

Parameters, Journal of Al-Azhar University Engineering Sector

75- Erzen, N., 2015, Form and Meaning in Architectural Theory,

Serbian Architectural Journal 7 (2), pp.75-87

76- Fan, C., Xiao, F., and Zhao, Y., 2017, A Short-Term Building

Cooling Load Prediction Method Using Deep Learning

Algorithms, Appl. Energy. 195 222–233,

doi:10.1016/j.apenergy.2017.03.064.

194

 References

77- Ferriss, H., 1929, The Metropolis of Tomorrow, David McKay

Publications, USA.

78- Fischer, T., Herr, C.M., 2001. Teaching generative design. In:

Proceedings of the 4th International Conference on Generative Art.

Milan, Italy.

79- Frazer, John, Frazer, Julia, Xiyu, L., Mingxi, T., Janssen, P., 2002.

Generative and evolutionary techniques for building envelope

design. In: Proceedings of the 5th International Conference on

Generative Art. Milan, Italy, pp. 1e16.

80- Georges, M., (1954). L'architecture musulmane d'Occident. Paris:

Arts et métiers graphiques. pp. 163–164.

81- Gero, J. S., & Kannengiesser, U. (2014). The function-behaviour-

structure ontology of design. In A. Chakrabarti & L. T. M. Blessing

(Eds.), An Anthology of Theories and Models of Design (pp. 263–

283). Springer.

82- Ghani, H., Virdee, B., & Salekzamankhani, S., 2023, A Deep

Learning Approach for Network Intrusion Detection Using a Small

Features Vector, Journal of Cybersecurity and Privacy, pp. 451-

463.

83- Gilhooly, K., J., 1996, Thinking: Directed, Undirected, and

Creative, Elsevier Science.

84- Gonzalez, P., and Zamarreno, J., 2005, Prediction Of Hourly

Energy Consumption In Buildings Based On A Feedback Artificial

Neural Network, Energy Build 37 595–601,

doi:10.1016/j.enbuild.2004.09.006.

195

 References

85- Grant, P., (1975). "Aims and Potentials of Design Methodology".

In: Basil Honikman ed. Responding to Social Change. Stroudsburg,

Pa.: Hutchinson and Ross, 1975, pp. 96-108.

86- Grant, P., (1982). Design by Objectives: Multiple Objective Design

Analysis and Evaluation in Architectural, Environmental and

Product Design. San Luis Obispo, Ca.: Design Methods Group.

87- Green, R., (1962). The Architect's Guide to Running a Job.

London: Architectural Press.

88- Gugelot, H., (1963). "Industrial Design in Practice". Zeitschrift der

Hochschule fur Gestaltung.

89- Gungama, M., (2017). Generative Algorithms in Alternative

Design Exploration, SHS Web of Conferences 41, 05003.

90- Haury, A., Gestraud, P., & Vert, J., 2011, The Influence of Feature

Selection Methods on Accuracy, Stability and Interpretability of

Molecular Signatures. PLoS ONE, 6(12), e28210.

http://dx.doi.org/10.1371/journal.pone.0028210.

91- Haugeland, J. (1985). Artificial intelligence: The very idea. MIT

Press.

92- Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of

Statistical Learning: Data Mining, Inference, And Prediction.

Springer.

93- Hays, J., & Efros, A. A. (2007). Scene Completion Using Millions

Of Photographs. ACM Transactions on Graphics (TOG), 26(3), 4.

94- He, Y., Liu, X., Zhang, H., Zheng, W., Zhao, F., Schnabel, M., and

Mei, Y., 2021, Hybrid Framework for Rapid Evaluation of Wind

Environment Around Buildings Through Parametric Design, CFD

Simulation, Image Processing and Machine Learning, Sustainable

Cities and Society 73 103092

http://dx.doi.org/10.1371/journal.pone.0028210

196

 References

95- Hechenbichler., K. & Schliep, K., 2004, Weighted K-Nearest-

Neighbor Techniques and Ordinal Classification. Institute Für

Statistik, Sonderforschungsbereich 386, Paper 399, p. 1-16

96- Hecht-Nielsen, R., 1990. Neurocomputing. Addison-Wesley,

Reading, MA.

97- Herr, C., López, R., & Serrentino, R. (2002). Generative

Architectural Design and Complexity Theory.

98- Heo, Y., and Zavala, V., 2012, Gaussian Process Modeling For

Measurement And Verification of Building Energy Savings,

Energy Build 53 7–18, doi:10.1016/j.enbuild.2012.06.024.

99- Hill, V., and Rowlands, P., 2008, Nature’s Code, AIP Conf. Proc.

1051, 117–126 (2008)

100- Hillier, B., Musgrove, J. and O’Sullivan, P. (1972).

Knowledge and design. In Environmental Design: Research and

Practice EDRA 3. University of California.

101- Hong, G., Choi, G., Eum, J., Lee, H., and Kim, D., 2022,

The Hourly Energy Consumption Prediction by KNN for Buildings

in Community Buildings. Buildings 12(10) 1636.

102- Hu, E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S.,

Wang, L., and Chen, W., 2021, LoRA: Low-Rank Adaptation of

Large Language Models arXiv:2106.09685 [cs.CL]

https://doi.org/10.48550/arXiv.2106.09685

103- Jabi, W., 2013, Parametric Design for Architecture,

Lauerence King Publishing Ltd, London.

104- Janssen, P., Stouffs, R., 2015. Types of parametric

modelling. In: Proceedings of the 20th International Conference of

https://doi.org/10.48550/arXiv.2106.09685

197

 References

Association for Computer-Aided Architectural Design Research in

Asia CAADRIA 2015, pp. 157e166.

105- Jones, J., Christopher, 1980, Design Methods, Wiley.

106- Kalay, Y.E., 1989. Modelling Objects and Environments

(Principles of Computer Aided Design). Wiley-Academy, New

York.

107- Karadag, I., Guzelci, O., and Alacam, S., 2022, EDU-AI: A

Twofold Machine Learning Model to Support Classroom Layout

Generation) Construction Innovation Vol. 23 No. 4, 2023 pp. 898-

914 Emerald Publishing Limited

108- Karras, J., Holynski, A., Wang, T., and Kemelmacher-

Shilzerman, I., 2023, DreamPose: Fashion Image-to-Video

Synthesis via Stable Diffusion - arXiv:2304.06025v1 [cs.CV] 12

Apr 2023

109- Kesavaraj G. & Sukumaran S., 2013, A Study on

Classification Techniques in Data Mining. In Computing,

Communications and Networking Technologies (ICCCNT), 2013

Fourth International Conference on, pp. 1-7.

110- Khabazi, Z., 2012, Generative Algorithms (Using

Grasshopper), Digital Publication.

111- Knight, T.W, 2000, Shape Grammars in Education and

Practice: History and Prospects. Online paper, Department of

Architecture, MIT

112- Kolarevic, B., 2003, Architecture in the Digital Age -

Design and Manufacturing, Spon Press, UK.

113- Kooa, B., La, S., Cho, N., and Yu, Y., 2019, Using Support

Vector Machines to Classify Building Elements for Checking the

198

 References

Semantic Integrity of Building Information Models, Automation in

Construction 98 183–194

114- Kozlowski, T., 2013, The Beginnings of Contemporary

Expressionism, Technical Transactions, Vol. 110.

115- Krause, J., 2003. Reflections: the creative process of

generative design in architecture. In: Proceedings of the 6th

International Conference on Generative Art.

116- Krawczyk, Robert J., 2002, Architectural Interpretation of

Cellular Automata. Illinois Institute of Technology, College of

Architecture, USA, Generative Art

117- Kristiansen, T., Jamil, F., Hameed, I., and Hamdy, M., 2022,

Predicting Annual Illuminance and Operative Temperature in

Residential Buildings Using Artificial Neural Networks, Building

and Environment 217 109031

118- Kuang, Z., Zhang, J., Huang, Y., and Li, Y., 2023,

Advancing Urban Renewal: An Automated Approach to

Generating Historical Arcade Facades with Stable Diffusion

Models - https://doi.org/10.48550/arXiv.2311.11590

119- Kurzweil, R. (1990). The Age of Intelligent Machines. MIT

Press.

120- Lakzaeian, F., 2020, Point Cloud Segmentation and

Classification of Structural Elements in Multiplanar Masonry

Building Facades, Automation in Construction 118 103232

121- Latour, B., 1987, Science in Action – How to Follow

Scientists and Engineers through Society – Harvard University

Press -Massachusetts.

122- Lawson, B., 1980, Creative Thinking, In Book: The Study

of Real Skills Vol. 2, MTP Press..

https://doi.org/10.48550/arXiv.2311.11590

199

 References

123- Lawson, B., 2005, How Designers Think – 4th Edition,

Routledge, London, p.129

124- Lawson, B., 1990, How Designers Think – 2nd Edition,

Routledge, London

125- Lawson, B., 1993, The Art of the Process, London: RIBA,

pp. 6-10.

126- Lang, Jon, (1987). Creating Architectural Theory: The Role

of the Behavioral Sciences in Environmental Design. New York:

VanNostrand Reinhold Company.

127- Latour, B. (1987) Science in Action: How to Follow

Scientists and Engineers through Society. Harvard University

Press, Cambridge.

128- Levin, P., H., 1966, Decision Making in Urban Design,

Building Research Station Note EN51/66. Herts, UK: Building

Research Station, Gartson.

129- Liu, C., Shen, J., Ren, Y., and Zheng, H., 2021, Pipes of AI

– Machine Learning Assisted 3D Modeling Design CDRF 2020,

Proceedings of the 2020 DigitalFUTURES, pp. 17–26

130- Liu, Y., Fang, C., Yang, Z., Wang, X., Zhou, Z., Deng, Q.,

and Liang, L., 2022, Exploration on Machine Learning Layout

Generation of Chinese Private Garden in Southern Yangtze, (Eds.):

CDRF 2021, Proceedings of the 2021 DigitalFUTURES, pp. 35–

44.

131- Mahmoodi, A., 2001, The design process in architecture: a

pedagogic approach using interactive thinking. PhD thesis,

University of Leeds.

200

 References

132- Malaeb, J., and Ma, W., 2019, Artificial Intelligence in

Architecture - General Understanding and Prospective Studies,

Shanghai Jiao Tong University.

133- Maldonado, M., 2014, Digital Diagrams as Spatial Design

Tools, Session 2 - Advanced Research and Digital Tools

134- Mandow, L., Perez-de-la-Cruz, J., Rodriguez-Gavilan, A.,

and Ruiz-Montiel, M., 2020, Architectural Planning with Shape

Grammars and Reinforcement Learning: Habitability and Energy

Efficiency, Engineering Applications of Artificial Intelligence 96

103909

135- Martinez, N., 2017, Suggestive Drawing Among Human

and Artificial Intelligences, Harvard Graduate School of Design,

Cambridge, MA.

136- Mavromatidis, L., Bykalyuk, A., and Lequay, H., 2013,

Development of Polynomial Regression Models for Composite

Dynamic Envelopes’ Thermal Performance Forecasting. Applied

Energy Vol. 104, pp. 379-391

137- McCormack, J., Dorin, A., and Innocent, T., 2004.

Generative design: a paradigm for design research. In: Proceedings

of Futureground. Design Research Society, Melbourne.

138- McGilchrist, I. (2009). The master and his emissary: The

divided brain and the making of the Western world. Yale University

Press.

139- Mildenhall, B., Srinivasan, P., Tancik, M., Barron, J.,

Ramamoorthi, R., and Ng. R., 2020, NeRF: Representing Scenes

as Neural Radiance Fields for View Synthesis

https://doi.org/10.48550/arXiv.2003.08934

https://doi.org/10.48550/arXiv.2003.08934

201

 References

140- Millan, E., Belmonte, M., Boned, F., Gavilanes, J., Perez-

de-la-Cruz, J., and Diaz-Lopez, C., 2022, Using Machine Learning

Techniques for Architectural Design Tracking: An Experimental

Study of The Design of a Shelter, Journal of Building Engineering

51 104223

141- Miller, C., and Nagy, Z., 2018, A Review of Unsupervised

Statistical Learning and Visual Analytics Techniques Applied to

Performance Analysis of Nonresidential Buildings, Renew.

Sustain. Energy Rev. 81 1365–1377,

doi:10.1016/j.rser.2017.05.124.

142- Millet, K., Buehler, F., Du, G., and Kokkoris, M., 2023.

Defending Humankind: Anthropocentric Bias in the Appreciation

of AI Art. Computers in Human Behavior 143 (2023), 9 pages.

https://doi.org/10.1016/j.chb. 2023.107707

143- Mitchell, W.J., 1977, Computer-Aided Architectural

Design, Van Nostrand Reinhold, New York.

144- Mitchell, W. J., 2005. Placing words: Symbols, space, and

the city. MIT Press.

145- Mocanu, E., Nguyen, P., Gibescu, M., and Kling, W., 2016,

Deep Learning for Estimating Building Energy Consumption,

Sustain. Energy, Grids Networks 6 91–99,

doi:10.1016/j.segan.2016.02.005.

146- Mohammed., M., Khan, M., and Bashier, E., 2017,

Machine Learning Algorithms and Applications., Taylor & Francis

Group, LLC., Florida, USA/

147- Moretti, L., 1971, Ricera Mathematica in Architettura e

Urbanistica. Moebius IV (1), 30-53

https://doi.org/10.1016/j.chb.%202023.107707

202

 References

148- Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., and Chen, M.,

2022, Point-E: A System for Generating 3D Point Clouds from

Complex Prompts https://doi.org/10.48550/arXiv.2212.0875

149- Nicholas, P., and Zwiezyscki, M., 2018, Machine Learning

for Architectural Design: Practices and Infrastructure, International

Journal of Architectural Computing

150- Nilsson, N. J. (1998). Artificial Intelligence: A New

Synthesis. Morgan Kaufmann.

151- Ostertagova, E., 2012, Modelling Using Polynomial

Regression, SciVerse ScienceDirect, Procedia Engineering 48, p.

500-506

152- Ostertagová, E., 2011, Applied Statistic (in Slovak). Elfa

Košice, Slovakia, p. 161, ISBN 978-80-8086-171-1.

153- Oxman, R., 2006, Theory and design in the First Digital

Age. Des. Stud. 27, 229-265.

154- Oxman, R., 2017. Thinking difference: Theories and

models of parametric design thinking. Design Studies, 52, 4–39

155- Peng, X., Chen, R., Yu, K., Ye, F., and Xue, W., 2017, An

Improved Weighted k-Nearest Neighbor Algorithm for Indoor

Localization. Wireless Personal Communications, v. 96, n. 2, p.

2239-2251, 2017.

156- Peters, T., 2013, Computation works: The building of

algorithmic thought. Architectural Design, 83(2), 8–15

157- Ploennings, J., and Berger, M., 2023, AI in Architecture

Ploennigs and Berger AI in Civil Engineering (2023) 2:8

https://doi.org/10.1007/s43503-023-00018-y

https://doi.org/10.1007/s43503-023-00018-y

203

 References

158- Poole, D., Mackworth, A., & Goebel, R. (1998).

Computational Intelligence: A Logical Approach. Oxford

University Press.

159- Popper, K., (1963). Conjectures and Refutations: The

Growth of Scientific Knowledge. London: Routledge and Kegan

Paul.

160- Qin, W., Chen, L., Zhang, B., Chen, W., and Luo, H., 2023,

NeoDescriber: An Image-To-Text Model for Automatic Style

Description of Neoclassical Architecture, Expert Systems with

Applications 231 (2023) 120706

161- Quinlan, J., 1993, C4.5: Programs for Machine Learning,

Morgan Kaufmann Publishers, Massachusetts, USA.

162- Ragot, M., Martin, N., and Cojean, S., 2020. AI-Generated

vs. Human Artworks. A Perception Bias Towards Artificial

Intelligence? In Extended Abstracts of the 2020 CHI Conference

on Human Factors in Computing Systems (CHIEA ’20).

Association for Computing Machinery, New York, NY, USA, 1–

10. https://doi.org/10.1145/3334480.3382892

163- Rahman, A., 2018, Applications of Machine Learning,

Deep Learning and Reduced-Order Models, Mechanincal

Engineering department, The University of Utah.

164- Rahman, A. and Smith, A., 2018, Predicting Heating

Demand and Sizing a Stratified Thermal Storage Tank Using Deep

Learning Algorithms, Appl. Energy. 228, 108–121,

doi:10.1016/j.apenergy 2018.06.064.

165- Rahman, A. and Smith, A., 2017, Predicting Fuel

Consumption For Commercial Buildings With Machine Learning

204

 References

Algorithms, Energy Build 152 341–358,

doi:10.1016/j.enbuild.2017.07.017.

166- Rahman, A., Srikumar, V., Smith, A., 2018, Predicting

Electricity Consumption For Commercial And Residential

Buildings Using Deep Recurrent Neural Networks, Appl. Energy

212 372–385, doi:10.1016/j.apenergy.2017.12.051

167- Reffat, R., 2008, Investigating Patterns of Contemporary

Architecture Using Data Mining Techniques, Digital Applications

in Construction, eCAADe 26, pp. 601-608.

168- Rich, E., & Knight, K. (1991). Artificial Intelligence (2nd

ed.). McGraw-Hill.

169- Rittel, H. W. J., 1972, On the Planning Crisis: Systems

Analysis of the first And Second Generation. Bed-riftsøkonomen,

8: 390–398; Translated in Protzen and Harris (2010), pp. 151–165.

170- Robert, J. K., 2002, Architectural Interpretation of Cellular

Automata. Generative Art.

171- Robinson, C., et., Al, 2017, Machine Learning Approaches

For Estimating Commercial Building Energy Consumption, Appl.

Energy 208 889–904, doi:10.1016/j.apenergy.2017.09.060.

172- Rombach, R., Blattmann, A., Lorenz, D., Esser, P., &

Ommer, B., 2022. High-resolution image synthesis with latent

diffusion models. Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 10684–10695.

173- Rowe, P., 1987, Design Thinking, The Massachusetts

Institute of Technology.

174- Roy, W., Sari, M., Berawi, M., Zagloel, T.,

Madyaningarum, N., Miraj, P., Pranoto, A., and Susantono, B.,

205

 References

2023, Machine Learning-Based Energy Use Prediction for The

Smart Building Energy Management System

175- Royal College of Art (1979). Design in general education.

London, UK: Department of Design Research, Royal College of

Art.

176- Russell, S., & Norvig, P. (2010). Artificial Intelligence: A

Modern Approach (3rd ed.). Prentice Hall.

177- Rzevski, G., Woolman, D., and Trafford, D.B., (1980). Validation

of Design Methodology, Design Studies, Vol. 1, Issue 6, pp. 325-

328

178- Salvadori, Mario G., (1974). "Is Automated Design Possible?" In:

R. Spillers ed. Basic Questions of Design Theory. New York:

American Elsevier. pp. 95-102.

179- Samuel, A., 1959, Some Studies in Machine Learning Using the

Game Of Checkers. IBM Journal of Research and Development,

3(3), 210-229.

180- Schalkoff, R.J., 1997. Artificial Neural Networks. McGraw-Hill,

New York.

181- Schon, D., (1984). The Reflective Practitioner. New York: Basic

Books.

182- Schumacher, P., 2008, Parametricism as Style: Parametric

Manifesto. In: The Darkside Club, 11th Architecture Biennale,

Venice, 11 Septembler.

183- Sternberg, R. J. (1997). Thinking styles. New York: Cambridge

University Press.

184- Simon, Herbert A., (1957). Models of Man. New York: John

Wiley.

185- Simon, Herbert A., (1960). The New Science of Management

Decisions. N.Y.: Harper.

206

 References

186- Simon, Herbert, (1969). The Sciences of the Artificial.

Cambridge, Mass.: MIT Press.

187- Khean, N., Fabbri, A., & Haesler, MH 2018 ’Learning Machine

Learning as an Architect, How To? Presenting And Evaluating a

Grasshopper Based Platform to Teach Architecture Students

Machine Learning’, Computing A Better Tomorrow - 36th eCAADE,

Lodz, Poland, pp. 95-102

188- Sebestyen, A., 2020, Machine Learning Methods in Energy

Simulations for Architects and Designers - The Implementation of

Supervised Machine Learning in The Context of The Computational

Design Process, Architecture and Fabrication in the cognitive age,

eCAADe 2020.

189- Segal, M., 2003, Machine Learning Benchmarks and Random

Forest Regression, Center for Bioinformatics & Molecular

Biostatistics, University of California, San Francisco

190- Sekhar, S., Roy, R., and Balas, V., 2018, Estimating Heating Load

In Buildings Using Multivariate Adaptive Regression Splines,

Extreme Learning Machine, A Hybrid Model of MARS and ELM,

Renew. Sustain. Energy Rev. 82 4256–4268,

doi:10.1016/j.rser.2017.05.249.

191- Shakiban C. and Berstedt J.E., 1998, Generalized Koch

Snowflakes. In Bridges: Mathematical Connections in Art, Music,

and Science

192- Shalunts, et. Al., 2011, Architectural Style Classification of

Building Façade Windows, Advances in Visual Computing - 7th

International Symposium, ISVC 2011, Las Vegas, NV, USA,

September 26-28, 2011. Proceedings, Part II

207

 References

193- Singh, M., Haxhimusa, Y., and Sablatnig, R., 2022, Early-Stage

Design Support Combining Machine Learning and Building

Information Modelling, Automation in Construction – 136

194- Singh, V., and Gu, N., (2012). Towards an Integrated Generative

Design Framework, Design Studies, Vol. 33, Issue 2, pp. 185-207.

195- Soleimani, A., 2019, Computational Design Thinking and

Thinking Design Computing, University of Oregon | College of

Design School of Architecture & Environment

196- Sidey-Gibbons, J., & Sidey-Gibbons, C., 2019, Machine

Learning in Medicine: A Practical Introduction. BMC Medical

Research Methodology, 19, http://dx.doi.org/10.1186/s12874-019-

0681-4.

197- Soofi, A., 2017, Classification Techniques in Machine Learning:

Applications and Issues, Journal of Basic & Applied Sciences, Vol.

13, pp. 459-465

198- Soleimani, A., 2019, Computational Design Thinking and

Thinking Design Computing, Reynolds Symposium: Education by

Design. Portland, Oregon, October 18-19, 2019.

199- Stiny, G., 1985, Computing with Form and Meaning in

Architecture. Journal of Architectural Education, 39(1): 7-19

200- Stiny, G., and Gips, J., Shape Grammars and the Generative

Specification of Painting and Sculpture, C V Freiman (ed.)

Information Processing 71 (Amsterdam: North-Holland, 1972)

1460-1465.

201- Studer, Raymond, (1970). "The Dynamics of Behaviour-

Contingent Physical Systems". In: Harold Proshansky et al. Ed.

208

 References

Environmental Psychology: Man and his Physical Setting. New

York: Holt, Reinehart and Winston.

202- Sun, C., Zhou, Y., and Han, Y., 2022, Automatic Generation of

Architecture Facade for Historical Urban Renovation Using

Generative Adversarial Network, Building and Environment 212

(2022) 108781

203- Sun, M., Zhang, F., Duarte, F., and Ratti, C., 2022, Understanding

Architecture Age and Style Through Deep Learning, Cities 128

103787

204- Szeliski, R. (2010). Computer vision: Algorithms and

applications. Springer.

205- Tamke, M., Nicholas, P., and Zwierzycki, M., 2018, Machine

Learning for Architectural Design: Practices and Infrastructure,

International Journal of Architectural Computing 16(2): pp. 123-

143

206- Takizawa, A., and Furuta, A., 2017, 3D Spatial Analysis Method

with First-Person Viewpoint by Deep Convolutional Neural

Network with Omnidirectional RGB and Depth Images,

Proceedings of the 35th eCAADe Conference At: Sapienza

University of Rome, Italy Volume: 2

207- Tansas, A., and Xifara, A., Accurate Quantitative Estimation of

Energy Performance of Residential Buildings Using Statistical

Machine Learning Tools, Energy Build 49 (2012) 560–567

https://doi.org/10.1016/j.enbuild.2012.03.003

208- Tedeschi, A., 2014, AAD Algorithms-Aided Design: Parametric

Strategies Using Grasshopper, Le Penseur, Italy.

209

 References

209- Terzidis, K., 2003. Expressive Form: A Conceptual Approach to

Computational Design. Spon Press, New York.

210- Terzidis, K., 2004. Algorithmic design: a paradigm shift in

Architecture?. In: Proceedings of the 22nd eCAADe Conference,

pp. 201e207.

211- Terzidis, K., 2006, Algorithmic Architecture, first ed. Elsevier

Ltd.

212- Tovey, M., 1984, Designing with Both Halves of the Brain,

Design Studies 5, pp. 219-228

213- Topuz, B., & Alp, N. (2023). Machine Learning in Architecture.

Automation in Construction, Vol 154.

214- Turing, A. M. (1950). Computing Machinery And Intelligence.

Mind, 59(236), 433–460.

215- Uyanik, G., & Guler, N., 2013, A Study on Multiple Linear

Regression Analysis., Procedia - Social and Behavioral Sciences

106, pp. 234-240.

216- Uzair, M., Chun, D., Zeeshan, Han, H., Jeon, G., and Chen, K.,

2019, A Review of The Applications of Artificial Intelligence and

Big Data to Buildings for Energy-Efficiency and A Comfortable

Indoor Living Environment. Energy & Buildings – Science Direct

217- Uzun, C., and Colakoglu, M., 2019, Architectural Drawing

Recognition A Case Study for Training the Learning Algorithm

with Architectural Plan and Section Drawing Images, Conference:

37 Education and Research in Computer Aided Architectural

Design in Europe and XXIII Iberoamerican Society of Digital

Graphics, Joint Conference (N. 1).

210

 References

218- Wallas, G. (1926). The art of thought. New York, NY: Harcourt,

Brace and Company.

219- Wang, Bo., Zhang, S., Zhang, J., and Cai, Z., 2022, Architectural

Style Classification Based on CNN And Channel–Spatial

Attention, Signal, Image, and Video Processing Springer Nature

2022

220- Witt, A., 2018, Grayboxing. Log, 43, 69–77.

https://www.jstor.org/stable/26588482

221- Wu, L., Zhang, C., Xue, T., Freeman, B., and Tenenbaum, J.,

2016, Learning a Probabilistic Latent Space of Object Shapes via

3D Generative-Adversarial Modeling, NeurIPS

222- Xu, Z., Tao, D., Zhang, Y., Wu, J., and Tsoi, A., 2014, -

Architectural Style Classification Using Multinomial Latent

Logistic Regression, (Eds.): ECCV 2014, Part I, LNCS 8689, pp.

600–615, 2014. Springer International Publishing Switzerland

2014

223- Yang, J., Rivard, H., and Zmeureanu, R., 2005, On-Line Building

Energy Prediction Using Adaptive Artificial Neural Networks,

Energy Build 37 (2005) 1250–1259,

doi:10.1016/j.enbuild.2005.02.005.

224- Yazici, S., 2020, A Machine Learning Model Driven by Geometry,

Material, and Structural Performance Data in Architectural Design

Process, Making Through Code – Built by Data and The

Architectural Illustration Vol.1, eCAADe 38, pp. 411-418.

225- Yarowsky, D. (1995). Unsupervised Word Sense Disambiguation

Rivaling Supervised Methods. Proceedings of the 33rd Annual

211

 References

Meeting on Association for Computational Linguistics (pp. 189-

196).

226- Yun, L., Luck, R., Mago, P., and Cho, H., 2012, Building Hourly

Thermal Load Prediction Using An Indexed ARX Model, Energy

Build 54 (2012) 225–233, doi:10.1016/j.enbuild.2012.08.007.

227- Yieldiz, B., Bilbao, J., and Sproul, A., 2017, A Review and

Analysis of Regression and Machine Learning Models On

Commercial Building Electricity Load Forecasting, Renew.

Sustain. Energy Rev. 73 1104–1122,

doi:10.1016/j.rser.2017.02.023

228- Yilmaz, S., 1999, Evolution of the Architectural Form

Based on The Geometrical Concepts, PhD Thesis (Izmir: Institute

of Technology).

229- Yilmaz, G., and Koparan, T., 2016, The Effect of Designed

Geometry Teaching Lesson to the Candidate Teachers' Van Hiele

Geometric Thinking Level, Journal of Education and Training

Studies.

230- Yu, Z., Fung, B. C., Haghighat, F., Yoshino, H., &

Morofsky, E. (2010). A Decision Tree Method for Building Energy

Demand Modeling. Energy and Buildings, 42(10), 1637–1646.

231- Yucong, W., & Bo, W. (2020). EA-XGBoost: A Novel

Evolutionary Algorithm Based XGBOOST Model for Predicting

Energy Consumption in Buildings. Energy Reports, 6, 2189–2197.

232- Zarei, Y., 2012, The Challenges of Parametric Design in

Architecture Today: Mapping the Design Practice. Master Thesis.

University of Manchester.

233- .Zboinska, M.A., 2015, Hybrid CAD/E Platform Supporting

Exploratory Architectural Design. CAD Computer Aided Design

59, 64-84.

212

 References

234- Zhang, P., & Wei-guo, X., 2018. Quasicrystal Structure Inspired

Spatial Tessellation in Generative Design.

235- Zheng, H., and Yuan, P., 2021, A Generative Architectural and

Urban Design Method Through Artificial, Building and

Environment 205 (2021) 108178

236- Zheng, H., (2018), Architectural Drawings Recognition and

Generation through Machine Learning, ACADIA 2018.

Websites:

1- Bevans, R., 2020, “Simple Linear Regression: An Easy

Introduction & Examples”,

https://www.scribbr.com/statistics/simple-linear-regression/, Last

Access: 18-8-2023.

2- Biswal, A. (2023). 7 Types of Artificial Intelligence That You

Should Know in 2023. Simplilearn.

https://www.simplilearn.com/tutorials/artificial-intelligence-

tutorial/types-of-artificial-intelligence, Last Access: 24-9-2024.

3- Caldwell, B., Dake, D., Sadly, M., and Ulch, L., 2000, Integrated

HOTS Thinking Model, Department of Art and Design, Iowa State

University.

4- Great learning Team, 2022, What is Ridge Regression,

https://www.mygreatlearning.com/blog/what-is-ridge-regression/,

Last Access: 16-8-2023.

5- Hohenadel, K., (2020). What Is Contemporary Architecture?

https://www.thespruce.com/what-is-contemporary-architecture-

4769079, Last visit: 21/4/2021.

https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/types-of-artificial-intelligence
https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/types-of-artificial-intelligence
https://www.mygreatlearning.com/blog/what-is-ridge-regression/

213

 References

6- Kriesel, D., 2005, A brief introduction to Neural networks, Univ.

Bonn Semin. Proc.

http://www.dkriesel.com/_media/science/neuronalenetze-en-

zeta2-2col-dkrieselcom.pdf.

7- Malik, S, Harode, R., and Kunwar, A., 2020, XGBoost: A Deep

Dive into Boosting, https://medium.com/sfu-cspmp/xgboost-a-

deep-dive-into-boosting-f06c9c41349 Last Accessed: 16-8-2023.

8- McGee, V., 2023, What Is Coding and What Is It Used For?

https://www.computerscience.org/resources/what-is-coding-used-

for/, Last Accessed: 24-August, 2023

9- Rayman, P., 2017, What Is Transformation Matrix and How to Use

It, https://forum.patagames.com/posts/t501-What-Is-

Transformation-Matrix-and-How-to-Use-It, Last Accessed: 24-

August, 2023

10- Sawantt, S., 2021, Grasshopper 3D: A Modeling Software

Redefining The Design Process, https://parametric-

architecture.com/grasshopper-3d-a-modeling-software-redefining-

the-design-process/, last access: 14/10/2024.

11- Solomonoff, G., 2023, The Meeting of the Minds That Launched

AI, https://spectrum.ieee.org/dartmouth-ai-workshop, last access:

14/10/2024.

214

 Appendix A

Appendices

Appendix A (Glossary)

Accuracy: A metric in classification that measures the ratio of correctly

predicted instances to the total instances.

AdaBoost (Adaptive Boosting): An ensemble learning method that

combines weak learners into a strong learner. It assigns weights to

instances in the dataset, allowing subsequent weak learners to focus on the

misclassified instances from the previous ones.

Algorithm: A finite sequence of instructions followed by a computer

system.

Algorithmic Design: Design process that relies on algorithms, step-by-

step procedures, or formulas, to generate and manipulate design elements.

API (Application Programming Interface): A set of rules and tools that

allows different software applications to communicate with each other.

APIs define the methods and data formats for requests and responses.

Artificial intelligence (AI): The simulation of human intelligence in

machines that are programmed to think and learn, enabling them to

perform tasks that typically require human intelligence.

Artificial general intelligence (AGI): The representation of generalized

human cognitive abilities in software so that, faced with an unfamiliar task,

the AGI system could find a solution.

Artificial narrow intelligence (ANI): A type of AI that is focused on

performing a specific task or set of tasks.

Artificial super intelligence (ASI): A speculative type of AI that surpasses

human intelligence in all respects.

Artificial Neural Network (ANN): Computational models inspired by the

structure and function of biological neural networks, used in machine

learning to recognize patterns and make decisions.

215

 Glossary

Area Under the Curve (AUC): The area under the Receiver Operating

Characteristic (ROC) curve. AUC is a single value summary of the ROC

curve, where a higher AUC generally indicates better model performance.

Automation: Handling a process with machines or software so that less

human input is needed.

Bagging An ensemble learning technique that leverages bootstrapping to

improve the performance and robustness of machine learning models. In

bagging, multiple models (often of the same type, such as decision trees)

are trained on different bootstrap samples of the dataset. The final

prediction is obtained by aggregating the predictions of individual models,

typically through averaging (for regression) or voting (for classification).

Bagging helps reduce overfitting and enhances the model's generalization

capability.

Bard: A chatbot developed by Google, released in March 2023.

Best-Fit Line: In statistics, the line that best represents the relationship

between two variables, typically determined through methods like linear

regression.

Bias: The assumptions that an AI makes to simplify its tasks.

Big data: Very large datasets that normal data-processing software can’t

handle.

Bing Chat: An AI chatbot feature integrated into Bing, released in

February 2023.

Boosting: An ensemble learning technique where multiple weak models

are combined sequentially to create a strong model, with each model

giving more weight to misclassified instances.

Bootstrapping: a resampling technique in which multiple subsets, called

bootstrap samples, are generated by randomly sampling with replacement

from the original dataset. It is commonly used in statistics and machine

learning to assess the variability of a statistic, estimate confidence

intervals, or improve the robustness of model training.

216

 Appendix A

Categorical Data: Data which consists of variables that can take on a

limited set of discrete values or categories.

Chatbot: A software application that mimics human conversation, usually

through text.

ChatGPT: An AI chatbot released by OpenAI in November 2022

Classification: A type of supervised machine learning task where the goal

is to categorize input data into predefined classes or categories.

Classification Report: A summary of the performance of a classification

model. It typically includes metrics such as precision, recall, F1 score, and

accuracy, providing a comprehensive evaluation of how well the model is

classifying instances into different classes.

Coding: The process of writing instructions for a computer to execute,

typically using a programming language.

Computational Design: The use of computational tools and techniques,

often involving algorithms, to assist in the creation and manipulation of

design elements.

Computer Vision: A field of artificial intelligence that focuses on enabling

machines to interpret and understand visual information from the world,

often involving image and video analysis.

Continuous Data: Data which represents variables that can take an infinite

number of values within a given range.

CNN (Convolutional Neural Network): A type of neural network

architecture designed for processing structured grid data, particularly

images. It uses convolutional layers to automatically learn hierarchical

features from the input data.

Correlation Matrix: A table showing correlation coefficients between

variables. Each cell in the table represents the correlation between two

variables, with values ranging from -1 to 1. It is often used in statistics and

data analysis to understand relationships between different variables.

217

 Glossary

Cost Function: A function that measures the difference between predicted

values and actual values, guiding the learning process in machine learning

algorithms.

Cross-Validation: A technique used to assess the performance of a

machine learning model by dividing the dataset into multiple subsets. The

model is trained on some of these subsets and tested on the remaining

subset. This process is repeated multiple times, and performance metrics

are averaged, providing a more robust evaluation of the model's

generalization capability.

Data Resampling: Techniques such as oversampling or undersampling

used to address imbalances in class distribution within a dataset.

Data set in ML and AI: A collection of data used for training, testing, and

validating machine learning and artificial intelligence models. It typically

includes input features and corresponding output labels for supervised

learning or only input features for unsupervised learning.

Decision Trees: A fundamental machine learning algorithm that

recursively splits the data based on features to make decisions. Each

internal node represents a decision based on a feature, and each leaf node

represents an output or class label.

Deep learning: A subfield of machine learning that involves the use of

artificial neural networks, particularly deep neural networks with multiple

layers (deep architectures). These networks are capable of automatically

learning hierarchical representations of data, leading to powerful models

for tasks such as image recognition, natural language processing, and

more.

Diffusion: The process by which something (e.g., information, substances)

spreads or moves from one place to another within a medium. In the

context of machine learning and AI diffusion models are a class of

generative models that use a diffusion process to model the generation of

images. In these models, a latent image is iteratively transformed through

a series of steps, introducing noise at each step. The process gradually

218

 Appendix A

refines the image, and the noise is controlled in a way that enables the

generation of high-quality and diverse images.

Discriminator: A neural network that evaluates input data and tries to

distinguish between real and generated data. The goal of the discriminator

is to correctly classify whether the input data comes from the real dataset

or was produced by the generator.

Dimensionality Reduction: The process of reducing the number of

features (variables) in a dataset. It aims to retain the most important

information while minimizing the loss of data, often improving

computational efficiency, and mitigating the curse of dimensionality.

Ensemble Learning: A machine learning technique where multiple models

are combined to improve overall performance and accuracy. Common

methods include bagging (e.g., Random Forest) and boosting (e.g.,

AdaBoost).

Exploratory Data Analysis (EDA): The process of visually and

statistically analyzing datasets to uncover patterns, trends, and anomalies

before applying machine learning algorithms.

F1 Score: A metric in classification that combines precision and recall into

a single value, balancing false positives and false negatives.

Feature importance: The measure of the impact of each feature (input

variable) on the model's predictions.

Features: The input variables or attributes used by machine learning

algorithms to make predictions.

Form Finding: In design and engineering, it refers to the process of

determining the optimal form or shape of a structure based on specified

constraints and criteria.

Form Making: In the context of design, it generally refers to the process

of creating physical or digital forms, shapes, or structures.

219

 Glossary

GAN (Generative Adversarial Network): A type of artificial intelligence

model consisting of two neural networks, a generator, and a discriminator,

trained adversarially to generate realistic data.

Generative AI: AI systems that generate output according to a learning

mechanism.

Generative Design: An approach in design and engineering where

algorithms are used to explore a range of possible design solutions based

on specified criteria, enabling the creation of innovative and optimized

designs.

Generative pre-trained transformer (GPT): A type of LLM used in

ChatGPT and other AI applications.

Generator: A neural network responsible for generating synthetic data. It

takes random noise as input and transforms it into data that ideally is

indistinguishable from real data.

Gradient Descent: An optimization algorithm used to minimize the cost

function in machine learning by adjusting model parameters iteratively in

the direction of steepest descent.

K-Fold Cross-Validation: A specific type of cross-validation where the

dataset is divided into 'k' subsets or folds. The model is trained 'k' times,

each time using a different fold as the test set and the remaining folds as

the training set. The performance metrics are then averaged over the 'k'

iterations, providing a more reliable estimate of the model's performance

compared to a single train-test split. Common values for 'k' are 5 or 10 in

practice.

k-NN (k-Nearest Neighbors): A type of algorithm used for classification

and regression tasks, where an object is classified by the majority vote of

its k nearest neighbors.

Large language model (LLM): A neural net trained on large amounts of

text to imitate human language.

220

 Appendix A

Machine learning (ML): The study of how AI acquires knowledge from

training data.

Mean Absolute Error (MAE): A measure of the average absolute

difference between predicted and actual values in a regression problem.

Mean Squared Error (MSE): A metric in regression analysis that

measures the average squared difference between predicted and actual

values.

MidJourney: An AI image generator released in July 2022.

Natural language processing (NLP): The study of interaction between

computers and human language.

NeRF (Neural Radiance Fields): a novel approach to 3D scene

representation and rendering using neural networks. It models a scene as a

continuous 3D function that maps 3D spatial coordinates to scene color

and density. NeRF has been applied to generate highly detailed and

realistic renderings of scenes, making it particularly useful for computer

graphics and virtual reality applications.

Non-Generative AI: AI models or systems that don't generate new content

or data but instead focus on analyzing, classifying, or making predictions

on existing data.

Normalization: The scaling of features to a standard range, often between

0 and 1. It ensures that different features with varying scales contribute

equally to the model, preventing dominance by features with larger

magnitudes.

OpenAI: A leading AI company that developed ChatGPT and DALL-E.

One-Hot Encoding: is a technique to represent categorical variables as

binary vectors. Each category is mapped to a unique binary value, creating

a sparse matrix where only one element is "hot" (1) while others are "cold"

(0).

221

 Glossary

Overfitting: A modeling error that occurs when a machine learning

algorithm captures noise or random fluctuations in the training data,

leading to poor performance on new, unseen data.

Parameter: A variable in an AI system that it uses to make predictions.

Parametric Design: A design approach that uses parameters and rules to

create variations within a system, allowing for flexible and dynamic

designs based on changing parameters.

Precision: A metric in classification that measures the proportion of

predicted positive instances that are actually positive.

Principal Component Analysis (PCA): a dimensionality reduction

technique used to transform high-dimensional data into a lower-

dimensional representation while retaining as much of the original

variance as possible. It identifies the principal components, which are

linear combinations of the original features, and ranks them by their ability

to explain variance.

Programming: The process of giving instructions to a computer (using

computer code).

Prompt: The input from the user to which the AI system responds.

R2 Score (Coefficient of Determination): A metric that represents the

proportion of the variance in the dependent variable that is predictable

from the independent variables.

Random Forest: An ensemble learning method that constructs a multitude

of decision trees during training and outputs the mode of the classes for

classification tasks or the average prediction for regression tasks.

Recall (Sensitivity or True Positive Rate): A metric in classification that

measures the proportion of actual positive instances correctly predicted by

the model.

Regularization: A technique used in machine learning to prevent

overfitting by adding a penalty term to the model's cost function. It

222

 Appendix A

discourages overly complex models by penalizing large coefficients,

promoting a balance between model complexity and accuracy.

Reinforcement Learning: A type of machine learning where an agent

learns to make decisions by interacting with an environment. The agent

receives feedback in the form of rewards or penalties based on the actions

it takes.

Regression: A statistical technique used to model and analyze the

relationship between a dependent variable and one or more independent

variables. Or a type of supervised learning where the goal is to predict a

continuous outcome variable based on one or more input features.

RhinoCommon: A .NET-based framework for developing software that

integrates with Rhino, a 3D modeling software. It allows developers to

create custom applications, plugins, and scripts to automate design and

modeling tasks within Rhino.

Ridge: Refers to Ridge Regression, a linear regression technique that adds

a penalty term based on the squared values of the coefficients, helping to

prevent overfitting.

RNN (Recurrent Neural Network): A type of neural network architecture

that is well-suited for processing sequential data. It has connections that

allow information to be passed from one step of the sequence to the next,

enabling it to capture temporal dependencies in data.

ROC Curve (Receiver Operating Characteristic): A graphical

representation of the trade-off between the true positive rate and false

positive rate at various thresholds usually used with classification

problems.

Root Mean Squared Error (RMSE): The square root of the mean squared

error, providing a measure of the average magnitude of errors in

predictions.

Scikit-Learn: An open-source machine learning library for Python. It

provides a variety of tools for data analysis and machine learning,

223

 Glossary

including algorithms for classification, regression, clustering, and model

evaluation.

Scripting: Writing scripts, which are sets of instructions written in a

scripting language, for automating tasks or processes.

SDK (Software Development Kit): A set of software development tools

that allows developers to create applications for a certain software

package, hardware platform, computer system, or operating system.

SMOTE (Synthetic Minority Over-sampling Technique): A technique

used in machine learning to address class imbalance by generating

synthetic samples for the minority class.

Stable Diffusion: A process where the spreading or movement of a

substance or information is steady and does not result in rapid or extreme

changes. Stability in diffusion implies a more controlled and gradual

progression.

Supervised Learning: A type of machine learning where the model is

trained on a labeled dataset, meaning it is provided with input-output pairs

to learn the mapping between input data and corresponding output.

Support Vector Machine (SVM): A supervised machine learning

algorithm used for classification and regression tasks. SVM finds the

hyperplane that best separates data into different classes in a high-

dimensional space. It aims to maximize the margin between classes and

can handle linear and non-linear relationships through the use of different

kernel functions.

Targets: The output variable that machine learning algorithms aim to

predict.

Test Data Set: A subset of data used to evaluate the performance of a

trained machine learning model on new, unseen instances.

Training Data Set: The subset of data used to train a machine learning

model.

Turing test: A test of a machine’s ability to display human intelligence.

224

 Appendix A

Underfitting: A modeling error that occurs when a machine learning

algorithm is too simple to capture the underlying patterns in the training

data, resulting in poor performance on both the training and new data.

Unsupervised Learning: A type of machine learning where the model is

trained on unlabeled data, and the system tries to learn the patterns and

relationships within the data without explicit guidance on the output.

Validation Data Set: A separate subset of data used to tune and optimize

model hyperparameters during training.

XGBoost (Extreme Gradient Boosting): An efficient and scalable

implementation of gradient boosting. It is designed for speed and

performance and is widely used for both classification and regression

tasks.

225

 Mathematical Background: Formulas and Equations

Appendix B (Formulas and Equations)

1- Regression

Linear regression:

Any linear regression equation (without error) takes the following

form:

�̂� = 𝑏𝑋 + 𝑎
Where:

�̂�: Predicted values of Y

b: Slope = Rate of predicted ↑/↓ for Y scores for each unit increase

in X.

a: Y-intercept = level of Y when X = 0

Univariate linear regression:

Univariate linear regression focuses on determining the

relationship between one independent (explanatory variable)

variable and one dependent variable.

In a linear regression equation, the hypothesis, parameters, cost

function, and goals are determined as follows:

Hypothesis: ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥

Parameters: 𝜃0, 𝜃1

Cost Function: 𝐽(𝜃0, 𝜃1) =
1

2𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))

2𝑚
𝑖=1

Goal: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝜃0, 𝜃1)

In order to minimize the cost, a gradient descent method is used

which has the following equation:

Repeat until convergence: 𝜃𝑗 ∶= 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
 𝐽(𝜃0, 𝜃1)

Where 𝛼 is the learning rate of the algorithm which can control the

jump size of the weight update in each iteration.

226

 Appendix B

The gradient descent graph in both 2D and 3D spaces could be

presented as follows:

Gradient Descent in 2D Space (Left) and in 3D Space (Right)

(https://www.analyticsvidhya.com/blog/2020/10/what-does-gradient-descent-actually-mean/,

https://www.hackerearth.com/blog/developers/3-types-gradient-descent-algorithms-small-large-

data-sets/)

General Gradient Descent Equations:

 𝜃0 ∶= 𝜃0 − 𝛼
1

𝑚
∑ (ℎ𝜃(𝑥𝑖) − 𝑦𝑖)

𝑚
𝑖=1

𝜃1 ∶= 𝜃1 − 𝛼
1

𝑚
∑((ℎ𝜃(𝑥𝑖) − 𝑦𝑖)

𝑚

𝑖=1

𝑥𝑖)

https://www.analyticsvidhya.com/blog/2020/10/what-does-gradient-descent-actually-mean/

227

 Mathematical Background: Formulas and Equations

Linear regression with Multi Variables (Multivariate)

Multivariate regression is a technique that estimates a single

regression model with more than one outcome variable.

n = number of features

x(i) = input (features) of ith training example

xj
(i) = value of features j in ith training example (j: row number, i:

column number)

Hypothesis: ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯+ 𝜃𝑛𝑥𝑛 …

Multivariate

For convenience of notation, define 𝑥0 = 1.

ℎ𝜃(𝑥) = [𝜃0 𝜃1 𝜃2 … 𝜃𝑛] ∙

[

𝑥0

𝑥1

𝑥2

…
𝑥𝑛]

= 𝜃𝑇 ∙ 𝑥 = 𝜃0 + 𝜃1𝑥1 +

 𝜃2𝑥2 + ⋯+ 𝜃𝑛𝑥𝑛

Note that X =

[

𝑥0

𝑥1

𝑥2

…
𝑥𝑛]

𝜖 ℝ𝑛+1 and 𝜃 =

[

𝜃0

𝜃1

𝜃2

…
𝜃𝑛]

𝜖 ℝ𝑛+1 and 𝜃𝑇 =

 [𝜃0 𝜃1 𝜃2 … 𝜃𝑛] = (n + 1) x 1 matrix..

Parameters: 𝜃0, 𝜃1, … 𝜃𝑛

Cost Function: 𝐽(𝜃0, 𝜃1) =
1

2𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))

2𝑚
𝑖=1

Goal: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝜃0, 𝜃1,𝜃2, …𝜃𝑛)

In this scenario, the gradient descent equation will be:

Repeat until convergence: {

𝜃0 ∶= 𝜃0 − 𝛼
1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)) . 𝑥0

(𝑖)

𝑚

𝑖=1

𝜃1 ∶= 𝜃1 − 𝛼
1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)) . 𝑥1

(𝑖)

𝑚

𝑖=1

𝜃2 ∶= 𝜃2 − 𝛼
1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)) . 𝑥2

(𝑖)

𝑚

𝑖=1

…

}

And the general gradient descent equation will be:

228

 Appendix B

Repeat until convergence: {

𝜃𝑗 ∶= 𝜃𝑗 − 𝛼
1

𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)) . 𝑥𝑗

(𝑖)𝑚
𝑖=1 for j := 0…n}

XGBoost

XGBoost is one of the most popular and efficient implementations

of the Gradient Boosted Trees algorithm, a supervised learning

method that is based on function approximation by optimizing

specific loss functions as well as applying several regularization

techniques.

The objective function (loss function and regularization) at

iteration t that needs to be minimized is the following:

The gradient boosting ensemble technique operates through a

series of straightforward steps to enhance the predictive power of

a model:

Initialization: A base model (F0) is established to make initial

predictions for the target variable y. The differences between the

actual values and (F0) predictions represent the residuals.

Model Fit to Residuals: A new model (h1) is then fitted specifically

to the residuals obtained from the initial model. This second model

is designed to capture the patterns or information that the first

model failed to predict accurately.

Boosting and Model Combination: The boosted model (F1) is

formed by combining the initial model (F0) with the new model (h1)

This amalgamation results in an improved model (F1) with a lower

mean squared error compared to (F0). The process can be iteratively

repeated for (m) iterations, with each new model capturing and

refining the residuals from the previous ensemble, ultimately

reducing prediction errors to the extent possible. This iterative

approach enhances the overall performance of the ensemble by

addressing deficiencies in the predictions made by earlier models.

229

 Mathematical Background: Formulas and Equations

𝐹𝑚(𝑥) < − 𝐹𝑚−1(𝑥) + ℎ𝑚(𝑥)

F0(x) should be a function which minimizes the loss function or

MSE (mean squared error), in this case:

𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑𝐿(𝑦𝑖2 𝛾)

𝑛

𝑖=1

𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑𝐿(𝑦𝑖2 𝛾) =

𝑛

𝑖=1

𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑(𝑦𝑖 − 𝛾)2

𝑛

𝑖=1

Taking the first differential of the above equation with respect to γ,

it is seen that the function minimizes at the mean i=1nyin. So, the

boosting model could be initiated with:

𝐹0(𝑥) =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛

F0(x) gives the predictions from the first stage of the model. Now,

the residual error for each instance is (yi – F0(x)).

The residuals from F0(x) could be used to create h1(x). h1(x) will

be a regression tree which will try and reduce the residuals from

the previous step. The output of h1(x) won’t be a prediction of y;

instead, it will help in predicting the successive function F1(x)

which will bring down the residuals.

The additive model h1(x) computes the mean of the residuals (y –

F0) at each leaf of the tree. The boosted function F1(x) is obtained

by summing F0(x) and h1(x). This way h1(x) learns from the

residuals of F0(x) and suppresses it in F1(x).

This can be repeated for 2 more iterations to compute h2(x) and

h3(x). Each of these additive learners, hm(x), will make use of the

residuals from the preceding function, Fm-1(x).

2- Classification

The specific equations used in classification in machine learning

can vary depending on the algorithm being employed.

Logistic Regression:

230

 Appendix B

The logistic regression equation models the probability that the

dependent variable (x) is 1 as a function of the independent

variables (x1, x2, …, xn) and their corresponding coefficients (b1,

b2, …, bn).

Logistic regression uses a logistic function called a sigmoid

function to map predictions and their probabilities. The sigmoid

function refers to an S-shaped curve that converts any real value to

a range between 0 and 1.

The sigmoid function (
1

1+𝑒−𝑧) ensures that the output is between

0 and 1.

𝑓(𝑥) =
𝐿

1 + 𝑒−𝑘(𝑥−𝑥0)

Where:

f(x) is the output of the function.

L is the curve's maximum value.

e is bae of natural logarithms

K is logistic growth rate or steepness of the curve.

x0 is the x value of the sigmoid midpoint.

and x is a real number.

The functions could be written as:

𝑃 =
1

1 + 𝑒−(𝑎+𝑏𝑋)

where P is the probability of a 1 (the proportion of 1s, the mean of

Y), e is the base of the natural logarithm (about 2.718) and a and b

are the parameters of the model. The value of a yields P when X is

zero, and b adjusts how quickly the probability changes with

changing X a single unit (There can be standardized and

unstandardized b weights in logistic regression, just as in ordinary

linear regression). Because the relation between X and P is

231

 Mathematical Background: Formulas and Equations

nonlinear, b does not have a straightforward interpretation in this

model as it does in ordinary linear regression.

Decision Trees

Decision trees employ a tree-like flowchart structure to illustrate

predictions derived from a sequence of feature-based divisions.

The process initiates at a root node, where the dataset is split based

on specific features. Subsequently, this branching continues until

reaching terminal nodes known as leaves, where final decisions or

predictions are made based on the characteristics of the data within

those leaves.

In the context of decision trees, the concept of impurity is crucial

in determining how to split the data effectively. The goal is to create

splits that lead to homogeneous subsets, where all instances share

the same class label, making the split "pure." A "pure" split means

that after the split, the resulting subsets ideally contain instances

belonging to only one class, making it easier to make accurate

predictions for that subset. In binary classification, this would mean

that a split results in subsets where one contains instances labeled

"yes" and the other contains instances labeled "no." The decision

tree algorithm aims to iteratively create such pure splits to

effectively classify instances based on the selected features. The

measure of impurity (or purity) helps guide this decision. Common

impurity measures include Gini impurity and entropy.

Mathematically Gini index can be written as:

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 − ∑(𝑃𝑖)
2

𝑛

𝑖=1

= 1 − [(𝑃+)2 + (𝑃−)2]

Where P+ is the probability of a positive class and P_ is the

probability of a negative class.

For the right split, the Gini Index will be 0.5.

Weighted Gini index is calculated afterwards. That is the total Gini

index of this split. Similarly, this algorithm will try to find the Gini

232

 Appendix B

index of all the splits possible and will choose that feature for the

root node which will give the lowest Gini index. The lowest Gini

index means low impurity.

Entropy has a mathematical formula using logarithmic function as

follows:

𝐸(𝑆) = −𝑝(+)𝑙𝑜𝑔𝑝(+) − 𝑝(−)𝑙𝑜𝑔𝑝(−)

However, many boosting algorithms use the Gini index as their

parameter because logarithmic calculations present in the entropy

equation take more time than the Gini index.

The key distinction between decision trees and random forests lies

in their approach to modeling and predicting outcomes. Random

Forest, classified as a bagging method, deviates from the singular

nature of decision trees by constructing an ensemble of decision

trees. This ensemble is created by training each tree on a distinct

subset of the original dataset, a process known as bootstrapping.

This unique feature significantly contributes to mitigating

overfitting, a common challenge associated with individual

decision trees that tend to capture noise in the training data. By

aggregating the predictions of multiple trees, Random Forest

produces a more robust and generalized model. Furthermore, its

versatility is evident in its applicability to both classification and

regression problems. In classification tasks, the ensemble

combines the class predictions of individual trees, while in

regression tasks, it averages the predictions for continuous

outcomes. The utilization of Random Forest thus stands as an

effective strategy for enhancing predictive accuracy, overcoming

overfitting concerns, and accommodating diverse machine learning

scenarios.

3- Evaluation

Evaluation metrics for regression include R-squared, MSE, MAE,

and RMSE. Those metrics can be calculated as follows:

233

 Mathematical Background: Formulas and Equations

R-squared measures the proportion of the variance in the dependent

variable that is predictable from the independent variables. RSS is

the sum of squared residuals (model prediction errors), and TSS is

the total sum of squares.

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆

MSE calculates the average squared difference between actual (𝑌𝑖)

and predicted (�̂�𝑖) values. It penalizes larger errors more heavily

due to the squaring operation.

𝑀𝑆𝐸 =
1

𝑛−(𝑘+1)
 ∑ (𝑌𝑖 − �̂�𝑖)

2𝑛
𝑖=1

RMSE is the square root of MSE, providing a measure in the same

unit as the target variable. It offers an interpretable scale for the

average prediction error.

𝑅𝑀𝑆𝐸 = √
1

𝑛 − (𝑘 + 1)
 ∑(𝑌𝑖 − �̂�𝑖)2

𝑛

𝑖=1

MAE calculates the average absolute difference between actual (𝑌𝑖)

and predicted (�̂�𝑖) values. It provides a more interpretable metric

that is less sensitive to outliers compared to MSE.

𝑀𝐴𝐸 =
1

𝑛
 ∑|𝑌𝑖 − �̂�𝑖|

𝑛

𝑖=1

In these formulas, n represents the number of observations in the

dataset, 𝑌𝑖 is the actual value, and �̂�𝑖 is the predicted value.

Evaluation metrics for classification include Accuracy, Precision,

Recall, and F1. Those metrics can be calculated as follows:

Accuracy measures the proportion of correctly classified instances

out of the total instances. It provides an overall assessment of the

model's correctness.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

Precision quantifies the accuracy of positive predictions. It is the

ratio of correctly predicted positive observations to the total

predicted positives.

234

 Appendix B

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

Recall assesses the model's ability to capture all relevant instances.

It is the ratio of correctly predicted positive observations to the total

actual positives.

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑅𝑒𝑐𝑎𝑙𝑙)

=
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

The F1 Score is the harmonic means of precision and recall. It

provides a balanced measure that considers both false positives and

false negatives.

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

In these formulas, "True Positives" are instances correctly

identified as positive, "False Positives" are instances incorrectly

identified as positive, and "False Negatives" are instances

incorrectly identified as negative.

4- Normalization

Normalization is a process used in machine learning to scale

numerical features to a standard range, typically between 0 and 1.

One common normalization formula is:

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥 − min (𝑋)

max(𝑋) − min (𝑋)

Here:

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is the normalized value of the feature.

x is the original value of the feature.

min(X) is the minimum value of the feature in the dataset.

max(X) is the maximum value of the feature in the dataset.

This formula ensures that the feature values are linearly

transformed to a range between 0 and 1, with 0 representing the

minimum value and 1 representing the maximum value.

Normalization helps prevent features with larger scales from

235

 Mathematical Background: Formulas and Equations

dominating the learning process, especially in algorithms sensitive

to the scale of input features, such as gradient-based optimization

algorithms.

5- Regularization

Regularization is a technique used in machine learning to prevent

overfitting by adding a penalty term to the model's cost function.

For linear regression, one common form of regularization is L2

regularization (also known as Ridge regularization). The formula

for the cost function with L2 regularization is:

𝐽(𝜃) = 𝑀𝑆𝐸 + 𝜆 ∑ 𝜃𝑖
2

𝑛

𝑖=1

Here:

𝐽(𝜃) is the regularized cost function.

MSE is the Mean Squared Error (without regularization).

𝜆 is the regularization parameter, controlling the strength of the

regularization.

𝜃𝑖 are the model parameters.

The regularization term 𝜆 ∑ 𝜃𝑖
2𝑛

𝑖=1 penalizes large values of the

parameters 𝜃𝑖. The parameter 𝜆 determines the trade-off between

fitting the data well and keeping the model parameters small.

Higher values of 𝜆 result in stronger regularization.

In the context of regularization, L1 regularization (Lasso

regularization) is another common approach, and it adds the

absolute values of the parameters to the cost function. The general

form of the cost function with L1 regularization is:

𝐽(𝜃) = 𝑀𝑆𝐸 + 𝜆 ∑ |𝜃𝑖|
𝑛

𝑖=1

236

 Appendix B

Regularization helps to prevent the model from becoming too

complex and overfitting the training data, improving its ability to

generalize to new, unseen data.

6- K-Cross Validation:

The k-fold cross-validation process involves dividing the dataset

into k subsets or folds. The general steps for k-fold cross-validation

are as follows:

1. Dividing the Dataset: Splitting the dataset into k approximately

equal-sized folds.

2. Iteration (k Times):

a) Train-Test Split: In each iteration, one of the k folds is used

as the test set, and the remaining k-1 folds are used as the

training set.

b) Model Training: Train the model on the training set.

3. Performance Metric Calculation: Evaluate the model's

performance on the test set for each iteration.

4. Average Performance: Calculate the average performance

metric over all k iterations.

Now, the mathematical formulas for k-fold cross-validation:

1. Test Set Index in each Iteration:

• Test set index in iteration 𝑖 = 𝑖 𝑚𝑜𝑑 𝑘

• Where 𝑖 is the iteration index (0 to k-1)

2. Performance Metric Calculation in each Iteration:

• Let Metrici be the performance metric in iteration i.

• The average performance metric (Avg_Metric) is

calculated as:

𝐴𝑣𝑔𝑀𝑒𝑡𝑟𝑖𝑐 =
1

𝑘
 ∑ 𝑀𝑒𝑡𝑟𝑖𝑐𝑖

𝑘−1

𝑖=0

237

 Mathematical Background: Formulas and Equations

This generalizes the k-fold cross-validation process

mathematically. It's important to note that various performance

metrics (such as accuracy, precision, recall, etc.) can be used in

place of "Metric" depending on the specific evaluation criteria for

the machine learning task.

238

 Appendix C

Appendix C (Default Parameters and

Hyperparameters Used for ML Models)

This appendix specifies the parameters and hyperparameters of different

ML models used in this research for regression and classification tasks. As

mentioned in chapter 9, Scikit-Learn Python Module is used for regression

and classification. This module comes with different models which are

easily called using simple lines of code. The models come with default

parameters and hyperparameters which were not modified.2

Regression Models:

Random Forest Regressor:

Parameter Default Value

n_estimators 100

criterion

{“squared_error”, “absolute_error”,

“friedman_mse”, “poisson”}

squared_error

max_depth None

min_samples_split 2

min_samples_leaf 1

min_weight_fraction_leaf 1.0

max_leaf_nodes None

min_impurity_decrease 0.0

bootstrap True

oob_score False

n_jobs None

random_state None

verbose 0

warm_start True

ccp_alpha 0.0

max_samples None

Linear Regression

2 https://scikit-learn.org/stable/modules/classes.html

239

 Default Parameters and Hyperparameters Used in ML Models

Parameter Default

Value

fit_intercept True

Copy_X True

positive False

Ridge

Parameter Default

Value

alpha 1.0

fit_intercept True

copy_X True

max_iter None

tol 1e-4

solver {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’,

‘sag’, ‘saga’, ‘lbfgs’}, default=’auto’
auto

positive False

random_state None

k-NN

Parameter Default Value

n_neighbors 5

weights{‘uniform’, ‘distance’} unifor

algorithm{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’} auto

leaf_size 30

p 2

metric ’minkowski’

metric_params None

n_jobs None

Decision Tree

Parameter Default Value

criterion{“squared_error”, “friedman_mse”,

“absolute_error”, “poisson”}
squared_error

splitter{“best”, “random”} best

240

 Appendix C

max_depth None

min_samples_split 2

min_samples_leaf 1

min_weight_fraction_leaf 0.0

max_features {“auto”, “sqrt”, “log2”} None

random_state None

max_leaf_nodes None

min_impurity_decrease 0.0

ccp_alpha 0.0

XGBRegressor

Parameter Default Value

Booster Type gbtree

Learning Task reg:squarederror

n_estimators 100

learning_rate 0.3

max_depth 6

min_child_weight 1

Gamma 0

Subsample 1.0

colsample_bytree 1.0

lambda 1

alpha 0

Classification Models:

Random Forest

Parameter Default

Value

n_estimators 100

criterion{“gini”, “entropy”, “log_loss”} gini

max_depth None

min_samples_split 2

min_samples_leaf 1

min_weight_fraction_leaf 0.0

max_features sqrt

max_leaf_nodes None

min_impurity_decrease 0.0

bootstrap True

241

 Default Parameters and Hyperparameters Used in ML Models

oob_score False

n_jobs None

random_state None

verbose 0

warm_start False

class_weight None

ccp_alpha 0.0

max_samples None

k-NN

Parameter Default Value

n_neighbors 5

weights :{‘uniform’, ‘distance’} ‘uniform’

algorithm{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’} auto

leaf_size 30

p 2

metric Minkowski

metric_params None

n_jobs None

Decision Tree

Parameter Default

Value

criterion{“gini”, “entropy”, “log_loss”} gini

splitter best

max_depth None

min_samples_split 2

min_samples_leaf 1

min_weight_fraction_leaf 0.0

max_features None

max_leaf_nodes None

min_impurity_decrease 0.0

random_state None

class_weight None

ccp_alpha 0.0

AdaBoost

Parameter Default Value

242

 Appendix C

estimator None

n_estimators 50

learning_rate 1.0

algorithm : {‘SAMME’, ‘SAMME.R’} SAMME.R

random_state None

base_estimator None

SVC

Parameter Default Value

penalty{‘l1’, ‘l2’} l2

loss{‘hinge’, ‘squared_hinge’} squared_hinge

dual True

tol 1e-4

C 1.0

multi_class{‘ovr’, ‘crammer_singer’} ovr

fit_intercept True

intercept_scaling 1.0

class_weight None

verbose 0

random_state None

max_iter 1000

243

 LLM Experiment

Conversation with ChatGPT v3.5 to brainstorm the form making of an

exhibition for Mercedes-Benz.

Q1: Architect: Imagine that you are my architectural design partner to

discuss and form a concept of a new design project.

ChatGPT: Certainly! I'm excited to collaborate with you on your

architectural design project. To get started, could you provide some initial

details about the project? What type of building or space are we designing,

and are there any specific requirements or preferences you have in mind?

Additionally, do you have any particular themes, styles, or inspirations

you'd like to explore in the design?

Q2: Architect: We are designing a car exhibition for Mercedes-Benz. The

project will have a wide entrance, exhibition spaces with many forms of

show like physical, VR, holograms, video shows, etc., as well as some

functional spaces like restrooms, cafeteria, and administration spaces.

I am thinking of a contemporary design style that should symbolize and

express the core concepts of the firm (Mercedes-Benz). And right now, we

need to brainstorm the form-making process.

ChatGPT: Great! Designing a car exhibition for Mercedes-Benz sounds

like a fantastic project. Let's dive into the form-making process and explore

some concepts for the overall design. Since we want to capture the essence

of Mercedes-Benz and convey their brand identity, here are a few initial

ideas to consider:

• Fluid Lines and Elegance: Incorporate fluid lines and elegant

curves in the architecture to reflect the sleek and dynamic design

of Mercedes-Benz cars. Consider using materials with reflective

surfaces to evoke the polished finish often found in luxury cars.

• Showcase of Innovation: Integrate cutting-edge technology into the

design to reflect the innovation associated with Mercedes-Benz.

Use LED displays, interactive touchscreens, and advanced lighting

systems to create an immersive and futuristic experience.

244

 Appendix D

• Spatial Hierarchy: Design the exhibition spaces with a clear

hierarchy, emphasizing key car models and innovations. Create

focal points within the exhibition area to draw attention to flagship

vehicles or groundbreaking technologies.

• Branding Elements: Integrate Mercedes-Benz branding elements

into the architecture, such as the iconic logo, in a subtle and

sophisticated manner. Explore the use of branded colors and

textures that align with the company's visual identity.

• Multi-sensory Experience: Incorporate a variety of sensory

experiences, including virtual reality (VR), holograms, and

dynamic video displays to engage visitors on multiple levels.

• Consider the use of ambient sounds that evoke the sensation of

being on the road or in a high-tech automotive environment.

• Green Design: Infuse sustainable design principles into the project,

aligning with the growing emphasis on eco-friendly practices.

Consider incorporating greenery and natural elements to create a

harmonious and inviting atmosphere.

• Spatial Flexibility: Design flexible exhibition spaces that can adapt

to different types of showcases, ensuring versatility for various

events and car presentations.

Let's discuss these concepts further and refine them based on your

preferences. Are there any specific aspects you'd like to emphasize or any

particular features you envision for the exhibition space?

Q3: Architect: Yes, we need to dive deeper in the form-making aspects.

How should the building look like, and I am thinking to have an analogy

from nature that expresses Mercedes-Benz codes and concepts

ChatGPT: Certainly, delving deeper into the form-making aspects and

drawing inspiration from nature can result in a unique and meaningful

design. Let's explore the analogy from nature to express Mercedes-Benz

codes and concepts. Here are a few nature-inspired ideas:

245

 LLM Experiment

• Flowing Lines and Organic Forms: Take inspiration from the

streamlined shapes found in nature, such as the curves of a river or

the organic forms of plant leaves. Consider incorporating these

flowing lines into the architecture, creating a sense of movement

and elegance that mirrors the design philosophy of Mercedes-Benz.

• Biomorphic Architecture: Explore biomorphic architecture, which

mimics the forms and structures found in living organisms. Use

organic shapes and patterns reminiscent of natural elements,

providing a visual connection to the brand's emphasis on

innovation and evolution.

• Tree-Inspired Canopy: Design a canopy structure inspired by the

branching and interwoven patterns of trees. This canopy can serve

as a unifying element over the entrance and exhibition spaces,

providing shade and a sense of cohesion while symbolizing growth

and strength.

• Reflective Surfaces Inspired by Water: Draw inspiration from the

reflective qualities of water surfaces, like a calm lake or a flowing

stream. Use reflective materials on certain surfaces to create a

dynamic play of light, enhancing the sense of luxury and

sophistication.

• Geometric Patterns Inspired by Crystals: Consider incorporating

geometric patterns inspired by the precision and clarity of crystals.

These patterns can be integrated into the design of structural

elements or even as artistic installations, emphasizing the precision

and craftsmanship associated with Mercedes-Benz.

• Landscaped Courtyards: Create landscaped courtyards with

carefully selected vegetation, emphasizing a connection to nature.

These green spaces can serve as areas for relaxation and reflection,

providing a contrast to the high-tech exhibition spaces.

• Dynamic Facade Inspired by Wind Patterns: Look to wind patterns

as inspiration for a dynamic and responsive facade. Design

elements that move or adjust based on environmental conditions,

246

 Appendix D

symbolizing adaptability, and responsiveness—qualities associated

with Mercedes-Benz.

As we explore these nature-inspired concepts, please feel free to provide

feedback or let me know if there's a particular direction you find intriguing.

We can further refine the ideas to ensure they align seamlessly with the

vision for the Mercedes-Benz exhibition space.

Q4: Architect: instead of expressing the precision and craftsmanship using

Crystal patterns, let's suggest another pattern that expresses Mercedes-

Benz sustainability.

Absolutely, let's explore a pattern inspired by sustainability for expressing

precision and craftsmanship. One compelling option could be the use of

"Geometric Patterns Inspired by Sustainable Materials."

Consider incorporating patterns reminiscent of sustainable materials like

bamboo, recycled wood, or even recycled metals. These materials can be

translated into geometric patterns that symbolize environmental

responsibility and the commitment to sustainability. The repetition of these

patterns can create a visually striking and cohesive design element

throughout the exhibition space.

This not only aligns with the sustainability aspect but also emphasizes

precision in the use of materials and craftsmanship in creating a

harmonious design. Additionally, using sustainable materials in the

construction of the exhibition space reinforces Mercedes-Benz's

commitment to environmental consciousness.

How does this idea resonate with you, and is there a specific sustainable

material or concept you'd like to emphasize within the geometric patterns?

Q5: Architect: How could the geometry inspired by bamboo look like?

ChatGPT: Designing geometry inspired by bamboo can add a natural and

sustainable aesthetic to the exhibition space. Here are some design

elements and principles that could be incorporated:

247

 LLM Experiment

Vertical Rhythm: Mimic the vertical rhythm found in bamboo stalks. Use

vertical lines or columns to create a sense of height and rhythm throughout

the space.

These vertical elements can be part of the structural design, interior

partitions, or even incorporated into artistic installations.

Segmentation and Joints: Emulate the segmented structure of bamboo

stalks with distinct joints. These joints can be represented through the use

of varying materials, textures, or color changes.

Consider using contrasting materials to highlight these joints, showcasing

the precision and craftsmanship in the design.

Natural Curves and Tapers: Integrate gentle curves and tapers reminiscent

of bamboo stalks. This can be applied to the layout of pathways, the

curvature of walls, or even in the design of furniture and fixtures. These

natural curves add a sense of fluidity and organic beauty to the space.

Latticework Patterns: Incorporate latticework patterns inspired by bamboo

weaving techniques. These patterns can be applied to screens, partitions,

or as decorative elements within the exhibition spaces. The latticework not

only adds a visual appeal but also allows for the play of light and shadow,

creating a dynamic and engaging atmosphere.

Natural Color Palette: Draw inspiration from the natural colors of bamboo,

such as earthy greens and browns. Use a palette that reflects the warmth

and sustainability associated with natural materials. Incorporate these

colors into furnishings, finishes, and decorative elements throughout the

space.

Modularity and Flexibility: Take inspiration from bamboo's modularity

and flexibility in design. Create modular elements that can be rearranged

or repurposed, promoting adaptability and sustainability in the use of

space.

By integrating these elements, the exhibition space can evoke the essence

of bamboo while emphasizing precision and sustainability. This design

approach not only aligns with Mercedes-Benz's commitment to

248

 Appendix D

environmental responsibility but also creates a visually captivating and

cohesive experience for visitors. How does this concept resonate with your

vision for the project?

Q6: Architect: how can we adopt such concept to le Corbusier’s regulating

lines?

ChatGPT: Combining the concept of bamboo-inspired geometry with Le

Corbusier's regulating lines involves incorporating the principles of both

into the design. Le Corbusier's regulating lines, based on his Modulor

system, emphasize human proportions and geometric harmony. Here's how

you can integrate these two concepts:

Vertical Modules Inspired by Bamboo: Use Le Corbusier's modular system

to establish vertical regulating lines based on human proportions. Align the

vertical rhythm of the regulating lines with the vertical segments of the

bamboo-inspired design. This creates a sense of harmony and proportion

within the space.

Human-Scale Integration: Leverage the Modulor system to determine the

scale of various elements within the exhibition space, such as display areas,

partitions, and seating.

Apply the bamboo-inspired geometry within these modules, ensuring that

the natural elements align with the human-scale proportions defined by Le

Corbusier.

Segmented Joints within Regulating Lines: Integrate the segmented joints

inspired by bamboo within the regulating lines. This creates a visually

cohesive and harmonious relationship between the precision of Le

Corbusier's geometric principles and the organic, sustainable elements

inspired by bamboo.

Curvilinear Forms Aligned with the Modulor: Apply Le Corbusier's

principles of modularity to introduce curvilinear forms within the

exhibition space. Incorporate the natural curves and tapers inspired by

bamboo, ensuring that these organic elements align with the modular scale

defined by Le Corbusier.

249

 LLM Experiment

Latticework Patterns within Proportional Modules: Utilize Le Corbusier's

proportional modules to guide the placement and design of latticework

patterns inspired by bamboo. Ensure that the latticework patterns align

with the regulating lines and modular grid, reinforcing a sense of order and

proportionality.

Natural Color Palette and Modulor Harmony:

Integrate the natural color palette inspired by bamboo within the Modulor

system. Harmonize the earthy greens and browns with the proportional

modules, creating a balanced and visually appealing color scheme.

By integrating the bamboo-inspired geometry within the framework of Le

Corbusier's regulating lines, you create a design that marries organic,

sustainable elements with precise, human-centered proportions. This

approach not only aligns with the principles of both concepts but also

results in a sophisticated and harmonious exhibition space for Mercedes-

Benz. How does this synthesis of ideas resonate with your vision for the

project?

 جامعة عين شمس
 كلية الهندسة

 قسم الهندسة المعمارية

 رسالة مقدمة من

 أيمن فهمي سالم نعبد الرحم
 جامعة عين شمس – 2019ماجستير العلوم في العمارة

 جامعة عين شمس – 2015بكالوريوس الهندسة المعمارية

 تحت إشراف:

 أ.د. ياسر محمد منصور
 أستاذ نظريات العمارة

 جامعة عين شمس

 أ.د. حازم طلعت الدالي
 أستاذ نظريات العمارة

 جامعة عين شمس

2024

 ترسيم عملية الفكرة المعمارية من خلال توظيف الذكاء الاصطناعي في الوصول إلى التشكيل

 الحكم والمناقشةلجنة

 عضو لجنة الحكم والمناقشة التوقيع

 سمير صادق حسنيأ.د.

عين جامعة . أستاذ نظريات العمارة بكلية الهندسة
 شمس

 أ.د. ياسر محمد منصور

أستاذ نظريات العمارة بكلية الهندسة جامعة عين
 شمس)مشرفاً(

 .شريف مراد عبد القادر أ.د.

 أستاذ العمارة بكلية الهندسة بالجامعة الأميريكية

 حازم طلعت الدالي أ.د.
أستاذ نظريات العمارة بكلية الهندسة جامعة عين

 شمس)مشرفاً(

أيمن فهمي سالم نعبد الرحم :الاسم

ترسيم عملية الفكرة المعمارية من خلال توظيف الذكاء الرسالة:عنوان
 الاصطناعي في الوصول إلى التشكيل

دكتوراه الفلسفة في العمارة الدرجة:

 تاريخ مناقشة البحث:

 الدراسات العليا:

 / أجيزت الرسالة بتاريخ: /

 موافقة مجلس الجامعة: موافقة مجلس الكلية: ختم الإجازة

 أ

 ملخص البحث

 ملخص البحث

أدت التطورات السدددددريعدة في التعلم اىلي إلى العدديدد من التطبيقدات العمليدة في مختلف لقدد

ا في اسددتكشدداف إمكانات تعلم اىلة وقد المجالات. بدأ المهندسددون المعماريون والباحنون أيضددً

لتعزيز عملهم. ومع ذلك، غالبًا ما تفشل التطبيقات الحالية في توفير نماذج معمارية دقيقة وسهلة

يسدددتخدمها المهندسدددون والتيوالرسدددم المتعارف عليها الاسدددتخدام ضدددمن برامم التصدددميم

نهجدًا جدديددًا يعزز انددسدددددة الترميز في حدث بفي ادذا الالمعمداريون. ولمواجهدة ادذا التحددق، نقددم

مات المعمارية إلى أنواع بيانات يمكن فهمها بواسدطة اىلة، منل وعملية خوارزمية لترجمة المعل

بارامترية . يبدأ المسدار المقتر من تصدميم فيلا نصدوصالصدحيحة وال رقاموالأ الأرقام الكسدرية

نشددداء مجموعة ذلك لإ#، وC لغة البرمجةباسدددتخدام و Rhinoceros3d باسدددتخدام برنامم

، نم تددريدن نمداذج تعلم اىلدة بداسدددددتخددام المعداملات)المتغيرات(بيداندات كبيرة عن طريت تغيير

 المعاملاتمجموعة البيانات. يشدددمل النموذج البارامترل الذق تم إنشددداوه مجموعة واسدددعة من

اد التجداويف، وخصدددددائص ، وارتفداع الأرضددددديدات، وأبعد حوائطالمترابطدة، بمدا في ذلدك أبعداد ال

النوافدذ، ومسددددداحدة البنداء، وأبعداد الأرف. يتم تنفيدذ النموذج بددكملدغ بداسدددددتخددام لغدة البرمجدة

RhinoCommon API وC يسهل النموذج البارامترل الناتم التخزين التلقائي للبيانات .#

 وتم في نطدا البحدث اختبدارمنسدددددت لاسدددددتخددامدغ مبداشدددددرة في تعلم اىلدة. CSVفي ملف

 تم إنشدداواا من النموذج والتي بياناتمن الخوارزميات تعلم اىلة المختلفة على أربع مجموعات

المتعلقدة املاتالمتعلقدة بدالمنداطت، وواحددة للتنبو بدالمعد بدالمعداملاتمجموعدة بيداندات للتنبو واي

بمعلمدات النموذج الأخرل، وواحددة للتنبو بوجود النوافدذ في كدل جددار، وأخرل للتنبو بعرف

. المعداملاتالنوافدذ. تتطلدن مجموعدات البيداندات خوارزميدات الانحددار والتصدددددنيف للتنبو بجميع

بداسدددددتخددام طر التعلم المجمعدة مع جميع مجموعدات جيددةتحقيت نتدائم وقدد نتم عن التجربدة

 0.99و 0.79و 0.97تصدددددل إلى R2مهدام الانحددار إلى درجدة وقدد وصدددددلدت نتدائم البيداندات.

% في مهمة 98الأخرل ومجموعات بيانات عرف النوافذ ودقة تصل إلى والمعاملاتللمناطت

يانات الاختبار. تسدددلط اذه حسدددان جميع النتائم على مجموعة ب وقد تمتصدددنيف وجود النوافذ.

 النتدائم الضدددددوء على فعداليدة نهجندا في توليدد تنبوات معمدارية دقيقدة من خلال تقنيدات التعلم اىلي

 .والتي تعد ذات أامية بالغة في عملية أتمتة النمذجة المعمارية

الصدددندو الأسدددود، التفكير التصدددميمي المعمارق، الذكاء الاصدددطناعي، الكلمات المفتاحية:

، التعلم اىلي، الانحدار، التصدنيف، الشدبكات العصدبية، الوصدول إلى التشدكيلالتصدميم التوليدق،

 الترميز، البرمجة.

 تمهيد .1

تبين أن أسدالين التصدميم المعمارية التي يسدتخدمها المهندسدون المعماريون عادة اي الأكنر

 ً طريقة تصدميم الصدندو الاسدود حيث يولد مفهوم التصدميم في الأسدالين. وتشدمل اذه غموضدا

يريددون أن الكنير من المهنددسدددددين المعمداريين فدنن بدالطبع، و وحدده.عقدل المهنددس المعمدارق

 ن

 ملخص البحث

يكونوا فريدين من نوعهم، وكل المهندسدين المعماريين يحصدلون على لغتهم ومفرداتهم الخاصدة

في الهنددسدددددة المعمداريدة التي ينظر إليهدا بطريقدة مدا على أنهدا متكررة وتعبر عن المهنددس

شدد فيها تنالمعمارق نفسدغ. ومع ذلك، فنن عملية التصدميم لا تكون أبداً خطية. واي عملية دورية

المعمدداريددة المهندددس الفكرة التطورات والتحريرات من خلال تحليددل للدددخول في حلقددة من

المعمارق في كل مرحلة وبعد كل خطوة. واذه العملية الدورية تجعل من الصددعن شددر عملية

 .التصميم

ومن نداحيدة أخرل، أنر ظهور الحقبدة الرقميدة على العدديدد من مجدالات الفن والعلوم على حد

عن سدددواء، بما في ذلك الهندسدددة المعمارية. في البداية، تم التفكير في التصدددميم على الأورا

الرسددومات. وفي الوقت الحاضددر، تسددتخدم مئات البرامم الحاسددوبية كددوات لمسدداعدة طريت

المهندس المعمارق على ترجمة أفكاره الخاصدددة التي من الموكد أنها أصدددبحت أكنر تعقيداً مع

المواد الجديدة وتقنيات التصددنيع التي سددمحت بسددهولة بناء المباني ذات الشددكل الحر. لم تتوقف

قفزة في حدنت قط في مسددداعدة المهندسدددين المعماريين للتعبير عن أنفسدددهم، ولكنالتكنولوجيا ف

 مليةع يمكن وصدفغ بدنغ التوليدقالتصدميم و. توليدقعندما تم إدخال التصدميم ال المجال المعمارق

د اىلة عددا معينا من النواتم)التصدددميمات(اسدددتنادا إلى البيانات التي تهغذل بها. وقد شدددهد يتول

تغيراً في دور المعمارق بعد اذه القفزة حيث تحول من تصدميم بديلين مجال التصدميم المعمارق

إلى تزويدد اىلدة بتلدك القيود ومعروفدة أو نلاندة لمبنى معين يسدددددتندد إلى قيود ومتغيرات مختلفدة

والمتغيرات ومجموعدة من الخوارزميدات لتوليدد مئدات وربمدا اىلاف من البددائدل بدل وتصدددددنيفهدا

تحقيت وذلك عن طريتلمسداعدة المهندس المعمارق على اختيار أفضدل البدائل من وجهة نظره

 .حل المشاكل والقيود

تصدددميم وقد شدددهد اذا التغيير في الدور الكنير من النقد من المصدددممين الذين يعتقدون أن

بديلين أو نلانة بدائل مدروسة جيداً يمكن أن تكون أكنر كفاءة ومهنية من اىلاف من التصميمات

غير المدروسة. ليس فقط التدنير على دور المهندس المعمارق الذق تعرف للانتقاد، ولكن أيضاً

 .أفضل مجموعة من البدائل من اىلاف منها لاختيارالوقت الذق تستغرقغ مرحلة صنع القرار

والتي تعبر أيضداً عن -اىن، ماذا لو تم تغذية اىلة بالمتغيرات، القيود، والعلاقات المناسدبة

من خلال خوارزميدات التي يمكن أن تجعدل اىلدة تولدد أشدددددكدال -طريقدة المعمدارق في التفكير

مقبولدة ومددروسدددددة جيدداً بددلاً من توليدد اىلافى وعلاوة على ذلدك، مداذا لو طهبقدت تكنولوجيدات

الذكاء الاصدددطناعي والتعلم اىلي بحيث يمكن ل لة أن تتعلم من المعمارق اسدددتناداً إلى خياراتغ

الذق يزوداا بالبيانات للحصددددول الشددددخص وقراراتغ ويمكنها أن تكون قادرة على التفكير منل

 ىمحددةعلى نتائم

مع العدديدد من نجداحداً في العدديدد من الميدادين الدذكداء الاصدددددطنداعي في الوقدت الحداضدددددر، حقت

أنظمدة الدذكداء الأدوات المتداحدة لعدامدة الجمهور لاسدددددتخددامهدا. كمدا أن المعرفدة التي تسدددددتندد إليهدا

واسدتخدامها بشدكل مباشدر في مختلف وصدول الجميع إليها يمكناي أكنر انتشداراً و الاصدطناعي

 وتطبيقدات AI التجدارن مع تطبيقدات. في الهنددسدددددة المعمداريدة، أجريدت العدديدد من التطبيقدات

 ج

 ملخص البحث

ML لسدددنوات عديدة، اىن. وأفضدددى ظهور اذا البرنامم إلى إتاحة فرص جديدة للمهندسدددين

وضددددع الفكرة المعماريين الذين بدأوا باسددددتخدام نماذج توليد الصددددور للمسدددداعدة في مرحلة

اليوم انتشددرت، فضددلاً عن المشدداريع التصددورية، ووضددع الخطط، وما إلى ذلك. كما المعمارية

نماذج الذكاء الاصدددطناعي التوليديةتطبيقات إنتاج الفيديو والنماذج. ومع ذلك، تسدددتخدم نماذج

وادذه .نلانيدة الأبعدادلتوليدد نمداذج NERF ، أو نمداذجvoxels، أو point cloudsمندل

النمداذج لا تولدد نمداذج معمداريدة قدابلدة للتطوير. وعلاوة على ذلدك، أهجرق المزيدد من التجدارن

 وغيره. ،والتصنيفدة للابتكار في مجالات التخطيط، والتنبو بالمواد، غير المول التطبيقاتعلى

في التصميم MLو AIاستخدام دراسدةالأسدئلة السدابقة من خلال عن للإجابةالبحث اذا يهدف

واذا يتطلن دراسدة متعمقة لسسدلون المعمارق المسدتخدم التشدكيل.في الوصدول إلى المعمارق

لتوليدد بهدا ىلدة ا تغدذيدةومحركداتدغ إلى متغيرات وقيود مفهومدة يتعين معداملاتدغمن أجدل ترجمدة

يهدف تعبر عن المهندس المعمارق والمنتم النهائي المرغون فيغ. وبالإضدافة إلى ذلك، تصداميم

اختبار اسدتخدام الترميز في اذا التطبيت نظراً لأن الترميز يهنظر إليغ على أنغ يضديف البحث إلى

في تطبيقات مختلفة من تعلم اىلةيسددتخدم والذق طار في التصددميم المعمارق الإ اذا الكنير إلى

للحصدددددول على معلومدات عن MLختبر العدديدد من نمداذج يث عمليدة النمدذجدة. كمدا أن البحد

 النماذج التي تناسن اذه التطبيقات بشكل جيد.

 يةمشكلة البحثال .2

إلا أنغ يصددداحبغ بعف -مهما بدل مميزاً ومونراً في عملية التصدددميم المعمارق- التوليدقإن التصدددميم

في اذه العملية يتم توليد آلاف الحلول والبدائل التصدميمية .المشداكل وخصدوصداً في مراحل اتخاذ القرار

والتي يمكن الاختيدار من بينهدا للتطوير. ومع ادذا، انداك العدديدد من البددائدل لا يمكن الاعتمداد عليهدا بنداءً

على عوامل عديدة مونرة منل قوانين البناء، الشدددكل المعمارق، بيئة الأفراد، العلاقات بين الفراغات، او

 تفضيلات المعمارق الجمالية والفنية والتي تخص تكوين الكتلة المعمارية. حتى

بهذا الصددددد، نرل أن كنير من المعماريين يسدددتهلكون الكنير من الوقت لتنظيم وترتين أفضدددل البدائل

يتم تحدديداا لطر المولدة ليتم دراسددددتهدا وتطويراا. بالإضددددافة لذلك، فننغ كلمدا كنرت المعداملات التي

 الأفكار الناتجة والتي تودق لاستهلاك وقت أكبر في اتخاذ القرارات.زادت التصميم التوليدق، كلما

طيع بنفسدددها تحليل وفرز النتائم الأفضدددل والتي تحقت ما ت كذلك، تحتاج اىلة للكنير من المعلومات لتسددد

يتطلبغ المشددروع بالإضددافة إلى ما يعبر عن شددخصددية المعمارق والمتمنلة في صددندو الأفكار الأسددود

حتى تسددتطيع تحسددين النتائم ويتمكن المعمارق من الاعتماد عليها في اتخاذ القرارات لتقليل عدد النتائم

 قيمة تصميمية أفضل بدلاً من عدد أكبر من البدائل.المولدة والتي تتميز ب

الوقت المسددتغر في تصددميم المبنى يدخذ الكنير من سدداعات العمل. حتى تصددميم المزيد من النماذج إن

الكنير من الوقت على الرغم من أن الأسددددلون قد يكون قد تم تحديده الأولية للمبنى سددددوف يسددددتغر

 .بالفعل

 د

 ملخص البحث

التي تولد صدوراً)التصدميماتى(من التوليديةفي ادخار الوقت، توجد بعف النماذج AI وللاسدتفادة من

ويسدتخدمها المعماريون على نطا واسدع في الوقت الحاضدر. ومع ذلك، تدتي منل والمناظير اتخططمال

اذه التطبيقات مع العديد من القضددددايا المتعلقة بصددددحة، وإبداع، وحتى وظيفة النتيجة التي نعتقد أنغ لا

 .ينبغي حتى اعتباراا منتجا معماريا

أتمتة بعف المهام في مرحلة التصدميم، تم تجرين بعف تطبيقات التصدنيف والتراجع وبغرفوأخيراً،

للتنبو أو تصدنيف المواد، والبارامترات المعمارية، وما إلى ذلك. ومع ذلك، لا يمكننا أن نتتبع أق تجارن

يمكن اسدتخدامها مباشدرة في مراحل أخرل منل التصدميم تعلم اىلة من خلال نظام ةلإنشداء نماذج معماري

 .التخطيطي وتطوير التصميم

يعتبران اليوم متقددمين جداً، فنن انداك العدديد الذكاء الاصددددطنداعي وتعلم اىلةوعلى الرغم من أن مجدال

من المفاايم في اذا الميدان بحاجة إلى إعادة النظر فيها من جانن المهندسدددين المعماريين لتسدددخير قوة

 اىلة في تشغيل المهام التي تستغر وقتاً طويلاً.

 فرضية البحث .3

ويمكن التصدددميمي.ن طريقة تفكير المعمارق تهعتبر عملية يمكن تتبعها في مرحلة التفكير إ

 منتم لتودق إلى تتجمع معاملاتترجمة اذه العملية، مقرونة بمفردات الأسددلون المعمارق، إلى

 المعاملاتلما يحدث في أذاان المهندس المعمارق في اذه العملية. وإذا ما درسدددت اذه يشدددبغ

مناسدبة ودقيقة يمكن توليديةدراسدة جيدة وأدخلت بشدكل جيد إلى اىلة، يمكن ل لة أن توفر بدائل

أن تقلل من الوقت المسددتهلك في عملية صددنع القرار. وبالإضددافة إلى ذلك، يمكن ل لة أن تتعلم

من خيارات المهندس المعمارق ومن نم تعطي بدائل أكنر دقة وأكنر صدددلة بالموضدددوع إما في

إلى عهد جديد من تودقالمرحلة التالية أو حتى في المشددروع التالي. ويمكن ىلية التعلم اذه أن

 .اىلية -المفاايم المعمارية التفاعلية البشرية

 بحثلل الأهداف الرئيسية .4

يهدف اذا البحث لترسديم طراز العمارة المعاصدرة بمعاملاتغ ومرادفاتغ المتعلقة بالتشدكيل،

واسدتخدام التصدميم التوليدق لتوليد تصدميمات مختلفة مع توظيف الذكاء الاصدطناعي وتعلم اىلة

ذق لتتعلم من القرارات التي يتخذاا المصددمم مما يقلل الاحتمالات التصددميمية الناتجة بالتعلم وال

تدخذ اىلة فيغ شددخصددية المعمارق مما يولد أفكاراً تصددميمية مشددابهة لما قد ينتم منغ باسددتخدام

 الطريقة التقليدية في التصميم.

 بحثلل الأهداف الفرعية .5

 :التالية الفرعية من اذا البحث من خلال الأادافالرئيسية ف اادمكن تحقيت الأي

 .ا المختلفةوأساليبه ةعملية التصميم المعمارق التقليدي تعريف •

 ه

 ملخص البحث

بما في ذلك الصددددندو المعمارق،في التفكير الاسددددتعارات المسددددتخدمة عريف بعفت •

 .الرمادقوالصندو الابيف،الصندو الاسود،

 .الأسلون المعمارق المعاصر تحليل •

 .م مفردات وعناصر أسلون العمارة المعاصريرست •

إلى معاملات يمكن استخدامها في أسالين التصميم ترجمة مفردات الأسلون المعمارق •
 التوليدق الحدينة.

عن طريت توليدديدةتطبيت بعف العلاقدات بين البدارامترات من أجدل تشدددددكيدل نمداذج •

 .الترميز

لفهم قدراتهما وتقرير كيفية الاسدددتفادة تحليل تطبيقات الذكاء الاصدددطناعي وتعلم اىلة •

 .منهما

 تعلم اىلة.باستخدام في النمذجة المعمارية وضع إطار لصنع القرار •

اىلدددةسدددددتدخددددام ا • تدعدلدم ت تدقدنديدددات وضدددددع صدددددلددة صدددددمديدمددداتفدي ذات
بطابع/أسددلون/خيارات/أفضددليات المهندس المعمارق/المشددروع والخيارات والأفضددليات

 السابقة التي اتخذاا المهندس المعمارق في اذا الصدد.

 نطاق البحث .6

ويمكن مجموعة نماذج الذكاء الاصدطناعي.من تحديداً تعلم اىلة ذا البحث موجغ نحو اسدتقصداء نماذجا

أن تتنبد أو تصدددنف أو تجمع البيانات اسدددتناداً إلى مجموعات البيانات التي تتعلم منها. تعلم اىلة لنماذج

البيانات غير المرئية بناء على مفاايم رياضدية على التعميم تسدتطيع جديدة ولكن بيانات تنتملذلك فهي لا

الدذكداء ومع ذلدك، يجرق التحقيت في طدائفدة أوسددددع من نمداذج .من الجبر الخطي، الأسددددداليدن الرقميدة

 .لفهم وتحليل الاختلافات بين المفاايم والتطبيقات على حد سواء الاصطناعي

وبالإضافة إلى ذلك، بما أن نتيجة اذا النوع من التطبيقات يمكن اعتباراا " تصميماً مبتكراً "، فنن تحليل

طبت بها ضدرورق للحصدول على معلومات عن الكيفية التي يمكن أن ت التوليدقكيفية عمل نظم التصدميم

 .ختلفةأنظمة تعلم اىلة الم

وللعمل على تعلم اىلات، يوصدددى بدن يتم بناء نمذجة التصدددميم المعمارق من خلال الترميز، وبالتالي،

لتوليد نماذج فنن البحث موجغ أيضددا نحو إجراء دراسددة شدداملة عن كيفية تسددخير القوة وحرية الترميز

باسددددتخدام لغة من خلال الترميز تهاجم نمذفيلا معاصددددرة وته تم تصددددميم. ولهذا الغرف، نلانية الأبعاد

 rhinoceros 3dبدددبدددرندددامدددم Grasshopper 3dتدددطدددبددديدددت فدددي #C الدددبدددرمدددجدددة

 .RhinoCommon APIباستخدام

 و

 ملخص البحث

 600لدددددد معاملاتمجموعة بيانات تحتوق على قيم الحصدول على والنتيجة من اذه الخطوة الأولى اي

نموذج أولي للفيلا المعاصدرة اسدتنادا إلى بعف الحالات ذات الصدلة بنجمالي مسداحة البناء التي تتراو

، وأبعداد الأرف، وغير ذلدك من ا كدان شدددددارع او مبنىالجدار اذا مد ومتر مربع، 1000و 200بين

 إنالبناء والترميز حيث عمليةأسدلون " معاصدر " لتسدهيل ذاتليكون السديناريواات. وقد اختيرت الفيلا

 تعلم اىلدة ، وتددريدن نظدامالفيلا معداملاتالرئيسددددي او إيجداد علاقدة بين مدا يقرن من مدائدة من الغرف

)البلد(في . وللسدددبن نفسدددغ، لم يدرج موقع الفيلاالمعاملات واختبار إذا كان يمكن العنور على نمط بين

 .المعادلة

لكل من الشدددبكات العصدددبية الاصدددطناعيةو تعلم اىلةوقد اختبرت خوارزميات مختلفة من خوارزميات

التي أسدندت إما للتنبو بقيم البارامترات أو لتصدنيف بعف البارامترات وتحقيت والانحدارمهام التصدنيف

 ادف البحث.

 منهج البحث .7

يتم اتبداع منهجيدات متتداليدة في ادذا البحدث لتحقيت الهددف العدام مندغ والأادداف الجزئيدة، وتشدددددمدل
 اذه المنهجيات التالي:

 التطبيق المنهجية

 التحليل النقدق

 تعريف التفكير وحل المشكلة

 تعريف التفكير المعمارق

 فهم التعقيدات المختلفة في التصميم المعمارق

 تحليل عملية التصميم المعمارق وتكوين الكتلة

 نماط والأشكال المستخدمة في التصميم المعاصرترسيم الأ

 الاصطناعي وتعلم اىلة وتطبيقاتهما وأنواعهماتعريف الذكاء

 دراسات تحليلية
تحليدل اسدددددتخدامات الذكاء الاصدددددطناعي وتعلم اىلة في التصدددددميم

 المعمارق

 تجارن عملية

 تحويل العناصر المعمارية لعوامل يتم استخدامها في البرمجة.

 كتابة برنامم للتصميم التوليدق من خلال البرمجة.

معلومات عن معاملات التصدميم يمكن اسدتخدامها لتمرين أنظمة إنتاج

 تعلم اىلة

 تحديد المشكلات ومعرفة أفضل أنظمة تعلم اىلة لحلها

 ز

 ملخص البحث

تطبيت أنظمدة تعلم اىلدة لتسدددددطيع اىلدة أن تتعلم من المعمدارق عن

طريت ترسديم البيانات والتنبو أو التصدنيف للمعاملات المتعلقة بالمبنى

 الدراسةتحت

الهيكددل الندداتم عن الأبعدداد نلاني النموذج لتعددديددل الترميز تطبيت

المقتر ليسددتطيع المعمارق التدخل في مرحلة التعليم ومرحلة تطوير

 النتيجة بطريقة سهلة.

 البحث هيكل -1

 يرتبط ايكل البحث بمنهجغ في توزيع أجزائغ وأبوابغ:

 عملية التصميم المعماري من الإنسان إلى الآلة الجزء الأول:

يتناول الجزء الأول من البحث تحليلاً لمفاايم مرتبطة بعملية التصددددميم المعمارق والتفكير

 المعمارق وكيف تحولت اليوم للاعتماد على اىلة بشكل كبير في اتخاذ القرارات.

 التفكير التصميمي المعمارق: الصندو الأسود أم الصندو الزجاجيالبان الأول:

في البدان الأول يتم تعريف التفكير ومفهوم حدل المشدددددكلدة ومفهوم التفكير التصدددددميمي

المعمارق. كما يتم عرف أنواع التصددميم وبعف الاسددتعارات المتعلقة بالتصددميم والتفكير

منل الصدندو الأسدود والأبيف والرمادق. ويتم عرف التعقيدات الملازمة لمجال التصدميم

يتعرف البدان الأول لعمليدة التصدددددميم يم النتداج المعمدارق.المعمدارق وعرف كيفيدة تقي

المعمارق وبعف طرقها بالإضافة لما وصلت إليغ العملية اليوم. ويتم شر تدنير التكنولوجيا

 الحدينة في اذا المجال.

 ترسيم مكونات التشكيل في العمارة البان الناني:

في اذا البان، يتم تعريف التكوين المعمارق وخصددددائصددددغ وتمييز الفر بين أنواع توليد

التشدكيل والتي تشدكل تكوين التشدكيل والوصدول إلى التشدكيل. وفي نهاية البان، يتم عرف

 وتحليل بعف الأنماط والعناصر المتكررة في العمارة المعاصرة.

الترميز في التصدددميم الحوسدددبي كقاعدة لاسدددتخدام الذكاء الاصدددطناعي في البان النالث:

 الوصول للتشكيل

في البان النالث يتم تعريف التفكير التصدددميمي الحسدددابي وكيفية نشددددتغ. كما يتم التعريف

ببعف المصددطلحات التي نتجت عن اتباع اذا النهم والتفرقة بينها. ويركز البان على توليد

 ملخص البحث

الوصددول للتشددكيل. نم يتم التعمت في التفكير في التكوينات المعمارية كمعلومات واسددتخدام

 الخوارزميات والمعاملات في التصميم المعمارق.

كدذلدك يتعرف ادذا البدان لمفهوم الترميز وكيفيدة عمدل برامم النمدذجدة الحداسدددددوبيدة. نم يتم

شدر مفهوم لغات البرمجة المرئية والتحيزات المصداحبة لعملية النمذجة المعمارية. ويطر

البان تطبيت الترميز في نمذجة التكوينات المعمارية للاستفادة بالقوة والحرية المصاحبة لهذه

 .العملية

الجزء الثااني: تكاامال الترميز وتعلم الآلاة والااكااء الاصاااااطنااعي مم عملياة التصاااااميم

 لاستخدام الاكاء الاصطناعي في إنشاء التشكيل(هيكل) المعماري

يركز الجزء النداني على عرف اسدددددتخددام الترميز في النمدذجدة نلانيدة الأبعداد في العمدارة

لشدر مفاايم وأنواع الذكاء الاصدطناعي وأنظمة تعلم اىلة المختلفة واسدتخداماتها بالإضدافة

كمدا يطر الحداليدة والمحتملدة في مجدال التصدددددميم المعمدارق وتكوين التشدددددكيدل المعمدارق.

الجزء الناني ايكل عملي لاسددتخدام تقنيات تعلم اىلة في عملية الوصددول للتشددكيل ونمذجة

 التكوينات المعمارية.

 في مجال العمارة البان الربع: الذكاء الاصطناعي وتعلم اىلة

في البان الرابع، يتم تعريف الذكاء الاصطناعي وتعلم اىلة وتاريخ نشدة اذا العلم بالإضافة

لأنواع كلا التخصدددددصدددددين. ويتطر البدان للبيداندات التي يتعدامدل بهدا تعلم اىلدة وبعف

لهذا المجال. وينتهي البان بشددددر بعف طر تقييم أداء أنظمة تعلم الخوارزميات كتطبيت

كمدا يتم في ادذا البدان يتم عرف العدديدد من اسدددددتخددامدات أنظمدة الدذكداء اىلدة المختلفدة.

 الاصطناعي التوليدية وغير التوليدية في العمارة والمقارنة بينها وتقييمها.

ً يطر البان تشدكيكاً في قدرات أنظمة الذكاء الاصدطناعي التوليدية في عملية الرابع أيضدا

التصددميم المعمارق لمخاوف من ضددمنها أصددالة النتيجة. ويتناول البان بعف الاسددتخدامات

 المقترحة لكلا النوعين من أنظمة الذكاء الاصطناعي)التوليدية وغير التوليدية(.

توليدد التشدددددكيدل المعمدارق: تطبيت خوارزميدات تعلم الالدة على بيداندات :الخدامسالبدان

 البارامترات المعمارية

المشدددكلة ونطا التجربة والمواد والطر المسدددتخدمة بها في اذا البان. كما يتم يديتم تحد

نلاني الأبعداد للمبنى تحدت التجربدة وكيفيدة اسدددددتخراج جدداول جشدددددر كيفيدة ترميز النموذ

بيانات ملائمة لاسددددتخدامها في أنظمة تعلم اىلة المختلفة. كذلك يتم شددددر الهيكل المقتر

والذق يبدأ بترميز النموذج نلاني الأبعاد وتحضدير جداول البيانات نم تحليل ودراسدة البيانات

وتجهيزاا بطر مختلفة للاسدددتخدام المباشدددر مع تقنيات تعلم وإيجاد العلاقات بينها لتعديلها

اىلة. نم يتم شدر كيفية تقسديم البيانات لبيانات تسدتخدم في تمرين الأنظمة وبيانات تسدتخدم

 في الاختبار قبل عرف طريقة تمرين الأنظمة المختلفة.

 ط

 ملخص البحث

 تحليل تعلم اىلة والنتائم :السادسالبان

في البدان الأخير يتم عرف وتحليدل نتدائم تعلم الأنظمدة المختلفدة ومقدارنتهدا مع بعضدددددهدا

البعف. نم يتم توضدددديف كيفية اسددددتخدام النتيجة للتنبو بالمعاملات المختلفة التي يتم إدخالها

لنموذج الترميز للحصدددددول على نموذج نلاني الأبعداد يمكن التعدديدل عليدغ من قبدل المعمدارق

 وسهلة. وينتهي البان بمناقشة النتائم. بطريقة سريعة

 النتائج والتوصيات

بنداءً على ترتيدن الأجزاء والأبوان يتم عرف النتدائم المتعلقدة بدالددراسدددددة ابتدداءً من بعف

اىراء التحليلية لاسددددتخدام الذكاء الاصددددطناعي وتعلم اىلة في عملية التصددددميم المعمارق

للتجربدة التي تم عملهدا وتوضددددديحهدا في البدان الأخير. وينتهي البحدث ببعف وصدددددولاً

 ة مستقبلية بنمكانها تطوير النتيجة والإضافة إليها بشكل كبير.التوصيات لأفكار بحني

