Ain Shams University
Faculty of Engineering
Department of Architecture

MAPPING THE ARCHITECTURAL CONCEPT PROCESS BY UTILIZING ARTIFICIAL
INTELLIGENCE IN

FORM FINDING

S L) J g sl oo liaa¥) olSH) Caui 55 I (e ey Jlancal) 380 uee agus 53

A Thesis Presented in Partial Fulfillment of the Requirements for Doctor
of Philosophy in Architecture Engineering by:

Abdulrahman Ayman Fahmy Salem
M.Sc. - Architecture - 2019 — Ain Shams University
B.Sc. - Architecture - 2015 — Ain Shams University

Supervised by:

Professor Dr. Yasser Mohamed Mansour
Professor of Theories of Architecture
Ain Shams University

Professor Dr. Hazem Talaat El Daly
Professor of Theories of Architecture
Ain Shams University

2024

Statement

This thesis is submitted to Ain Shams University for the Ph.D. degree in
Architecture.

The work included in this thesis was carried out by the researcher at the
Department of Architecture, Faculty of Engineering, Ain Shams
University, and During the Period from June 7, 2021, to October 2024.

No Part of this thesis has been submitted for a degree of a qualification at
any other university or institute.

Name Abdulrahman Ayman Fahmy Salem

Signature

Date

Board of Examiners

Name: Abdulrahman Ayman Fahmy Salem

Thesis Titlee MAPPING THE ARCHITECTURAL
CONCEPT PROCESS BY UTILIZING ARTIFICIAL
INTELLIGENCE IN FORM FINDING

Degree: Doctor of Philosophy in Architecture
Thesis Defense Date: [eeeeenns [evvianinnns

Board . Signature
Professor Dr. Samir Sadek Hosny
Professor of Architecture, Department of
Architecture - Faculty of Engineering, Ain Shams
JUniversity.
Professor Dr. Yasser Mohammed Mansour
Professor of Theories of Architecture, Department
of Architecture - Faculty of Engineering, Ain
_Shams University.
Professor Dr. Sherif Morad Abdelkader
Professor of Architecture, Department of
Architecture - Faculty of Engineering, The
_American University in Cairo. Gt
Professor Dr. Hazem Talaat Eldaly
Professor of Theories of Architecture, Department
of Architecture - Faculty of Engineering, Ain

Shams University.

Post Graduate Studies:

Approval stamp Faculty council approval

The thesis was approved on University council approval

Researcher Data

Name: Abdulrahman Ayman Fahmy Salem

Job: Assistant Lecturer at the Faculty of Engineering — Ain Shams
University

Department: Architecture

Degree: Doctor of Philosophy

Code: 035983

Birthday: 02-02-1993

Bachelor: Architecture — June/2015

Master of Science: Building Technology — November/2019
ORCID: 0000-0002-7258-3431

E-mail: abdulrahmanfahmy@eng.asu.edu.eg

Acknowledgements

First, of all I would love to thank Allah for helping me through the
hard times and for rewarding me with such a milestone in my academic
life which T hope could help researchers and students locally and

worldwide in the future.

To my beloved father... This achievement is for you. You have always been
there for me whenever I needed support and whenever I needed to talk and
express my depression. No words can describe how proud I am to be your

son.

To my beloved mother, thank you for always being beside me and never

giving up on me in the hardest times and for your encouragement and love.

To my precious wife, thanks for being there for me in hard times. Being in

my life is a precious gift from Allah.

To my dear son, the love of my life, and Allah’s precious gift. You may be
tiny now, but you always made me laugh and feel happy whenever [needed
it.

I would also love to show my sincere gratitude for the dear professor
Yasser Mansour, my mentor and who has always been my source of light

every time I felt lost. Without your guidance and knowledge, I would have

never reached this place.

To the dear professor Hazem Eldaly, this work would have never been

completed, without your patience, guidance, and knowledge all the way.

No words can describe how grateful and lucky I am to be a student of

yours.

To my brother, my sister, my dearest friend Amer, my dear beloved Aunt
Fawgqeya, Ahmed, and Mohammed Essam, family, and friends as well for

their encouragement and support.

And to the great ML engineer Ali Hussein for his valuable effort in
revising the ML process and code used, without your kind help and

patience, I would not have reached this moment. Thank you from my heart.

And finally, to knowledge...] WANT MORE!

i

Abstract

The rapid advancements in machine learning (ML) have led to numerous
practical applications across various fields. Architects and researchers
have also begun exploring the potential of ML to enhance their work.
However, existing applications often fail to provide precise and readily
usable architectural models within the standard design software used by
architects. To address this challenge, we present a novel approach that
leverages coding geometry in an algorithmic process to translate
architectural parameters into machine-understandable data types, such as
doubles, integers, and strings. The suggested pipeline starts from modeling
a parametric villa on Rhinoceros3d with C# code, creating a large dataset
by changing the parameters, and then training ML models with the dataset.
The parametric model generated encompasses a wide range of interrelated
parameters, including wall dimensions, floor heights, recesses dimensions,
window characteristics, building area, setbacks, and land dimensions. The
entire model is implemented using RhinoCommon API and C#
programming language. The resulting parametric model facilitates
automatic storage of data in a CSV file formatted to be used directly in
ML. We tested different ML algorithms in this research on four datasets
created from the model. A dataset to predict parameters related to the areas,
one to predict parameters related to other form parameters, one to predict
windows’ existence in each wall, and another to predict windows’ widths.
The datasets require both regression and classification algorithms to
predict all the parameters. Impressive results are yielded with ensemble
learning methods with all datasets. Regression tasks could reach an R2
score as high as 0.97, 0.79, and 0.99 for areas, other parameters, and
windows’ widths datasets and 98% accuracy in the windows’ existence
classification task. All results are computed on the test dataset. These
findings highlight the efficacy of this approach in generating accurate
architectural predictions through ML techniques.

il

Keywords

Black box, architectural design thinking, artificial intelligence, generative
design, form finding, machine learning, regression, classification, neural

networks, coding, programming.

List of Acronyms

Abbreviation
AD
AdaBoost
AGI
Abbreviation
Al
ANI
ANN
API
ASI

BERT

CD
CNN
CRNN
CVv
DL
DNN
DT
GAN
k-NN
LLM
LSTM
MAE
ML
MLP
MSE
NLP
PCA
PD
RelLU

v

Term
Algorithmic Design
Adaptive Boosting
Anrtificial General Intelligence
Term
Artificial Intelligence
Artificial Narrow Intelligence
Artificial Neural Network
Application Programming Interface
Artificial Super Intelligence
Bidirectional Encoder Representation from
Transformers
Computational Design
Convolutional Neural Network
Convolutional Recurrent Neural Network
Computer Vision
Deep Learning
Deep Neural Network
Decision Tree
Generative Adversarial Network
k-Nearest Neighbor
Large Language Model
Long Short-Term Memory
Mean Absolute Error
Machine Learning
Multi-Layer Perceptron
Mean Squared Error
Natural Language Processing
Principal Component Analysis
Parametric Design
Rectified Linear Unit

RF Random Forest

RNN Recurrent Neural Network

SDK Software Development Kit

SVvC Support Vector Classification

SVM Support Vector Machine

SVR Support Vector Regression

VAE Variational AutoEncoder

VPL Visual Programming Language
XGBoost eXtreme Gradient Boosting

For a Glossary: Please, refer to appendix A.

Contents
N 115301 4| S ST PRRPTRRP i
Board of EXaMINETScuvviiiiiiiiiieiiii i il
Researcher Datacccvvviiiii e v
ACKNOWICAZEMENLS ...t i
ADSITACE ..ttt i
KEYWOTAS ... v
LiSt Of ACTONYIMS....cvviiiiieiiieieeeee s v
L10) 111S) 111 PO PO PPPPPPRTOPPPRR \4
List Of FIGUIESooviiiiiiiiiccc s 1
5 TS o) B 1 o) (<SSR X1v
| B © 1S o7 1o PRSP XV
II. Problem Definition........ccccoviviiiiiiniiiiiiiiee e XVvii
III. Research AlMcccccoiiiiiieieiiiiie e e xviil
IV. Research Hypothesis.........ccoceiiiiiiiiiiiiiinc Xix
V. Literature REeVIEW.......cccveiiiiieiiiic s XiX
VI. Research Methods and ToOISccccoviiiiiiiiiiiiiiiiie e XXIX
VII. Research Scope & Limitations........cccevveiiiieiiniiniinieiiseennns XXX
VIII. Research StrucCture..........ccocveviieiiiieiiiie e XXXI1
[. Framework of the Study ..o XXXV
Chapter 1: Architectural Design Thinking and Process............c.cccoovvnenne. 1

1 22 1o < 1

1.1 Thinking and problem-solving...........cccccevvriieiiiiiniiinieiiices 2
1.2 Architectural design thinking...........c.ccevvviiiiiiiiin, 6
1.3 The black box vs the glass box vs the grey box metaphors 11
1.4 Design methodologiescccciviiiiiiiiiciiecsee e 13
1.5 Architectural design ProCessc.ceoireerieiiirieenieeieneeseenenees 16
1.6 New technologies effects on the design processcccceevveenne. 18
1.7 Complexities in architectural design........ccccovvvriiiiiiiciiennnnn. 20
SUMIMATY ..o 23
Chapter 2: Mapping the Elements of Forms in Architecture................... 25
Preface. ... 25
2.1 Characteristics of architectural formscccccvvveiiniiinennnn, 25

2.2 Form generation in architectural design: form making vs. form
FINAING . 30

2.3 Mapping and analyzing the elements and motifs of contemporary
forms 36

SUMMATY ..o 44
Chapter 3: Coding in computational design: A base for utilizing Al in
architectural form findingccocviiiiiiii s 46
Preface ..o 46
3.1 Computational design thinkingc.cccocvviiiiiiiiiiiiiin, 47
3.2 The roots of computational design............cceveveriviriicrieiieennens 50
3.3 A taxonomy of computational design terms............ccccveeriunennne 52
3.4 Generative form finding.........cccooeviiiiiiiiii 57
3.5 Architectural forms as informationc.c.ccceviiiiiiiiiiiennns 60
3.6 Coding as a PractiCecocouviiiiiiniiiiiiiie e 62
3.7 How Modeling Software Workc.cccovvviiiiiiiniiiiiiice, 63
3.8 Visual Programming Language............ccccoovvviiiniiniicniiiiecnnns 66
3.9 Biasin Modeling Processes and Leveraging Power, Freedom, and
Spruceness 0f COAING.......cccviviiiiiiiiiiie e 68
SUMMATY ..o 73

vi

Chapter 4 Artificial Intelligence and Machine Learning in Architecture76

Prefaceee e 76
4.1 Al Definition and HiStOTYccoovvriiiiiiiiiecic e 77
4.2 Types and Applications of Al.........ccccevviiiiiiiniiiiniiec e 79
4.3 Generative and Non-Generative Al..........c.ccecviiiiininiiieennnn, 81
4.4 ML Definition and TYPEScccevveriiiiiiiiiieiiiie e 86
4.5 Data Sets I ML.......cooiiiiiiiiieiiecee e 88
4.6 ML AIZOTItRMS ..ot 90
4.7 A Review on Using Non-Gen-Al in Architecture 94
4.8 A Review on Using Gen-Al in Architectureccocvrnennnne 102
4.9 Generative Al Drawbacks in Architectural Design................. 112
4.10 Generative and Non-Generative Al Usage Possibilities in
Architectural DeSIZNcccveiiiiiiiiiieiie e 117
SUMIMATY ..o 120
Chapter 5: Architectural Form Generation: Applying Machine Learning
Algorithms on Architectural Parameters Datasetscccccovvverirnennn, 124
Preface. ... 124
5.1 A Framework for Utilizing Machine Learning in Form
GENETATION ...ttt ettt et e e nnee e 124
5.2 Problem Definition, Scope, and Limitations.............c.ccecuvene 132
5.3 Methods and TOOIScoeoieiiiiiieiieee e 133
54 Coding an Architectural Design Model............cccooeriiiiiennns 134
5.4.1 Modeling the Project.........ccoovveieieieiene e, 134
5.4.2 Parametric relationships..........ccccceviiviiieiiiiccecie e, 136
543 Resulting sample.........cccoiiiii e, 137
5.5 Generating A Machine-Learning Ready Dataset..................... 138
55.1 Dataset1 (form dataset):.....c.ccccooeiiiiiiieiiiiiieiie e 140
5.5.2 Dataset 2 (Windows data Set):cccocereriririenininniennn, 141
5.6 Data Correlations..........ccverierriiiienii e 141
5.7 Data Pre-Processingcccooeviiviiieiiniiniieiise e 143
5.7.1 Cleaning continUOUS data...........ccccerververenerenesineeieneans 144

5.7.2 Cleaning categorical data..............cccccevveveiieereeresiennn, 145

5.8 Data splitting and choosing features and targets.................... 145
5.8.1 Formdata set Splitting.........ccccvvvvviiiiiiiiniiieeeeee, 146
5.8.2 Windows data set Splittingcccceevveveiiienn e, 148

5.9 Data ReSamplingcccoccveiiiiiiiiiieiiiieseeneeecsee e 150

5.10 Train-Test SPIIttINGc.cooveriiiiiieiice s 152

5.11 Training Modelsccoveiiiiiiiiiiiii e 152

SUMIMATY ..o e 154

Chapter 6: Machine Learning Analysis and Results.............c.cccovenenne. 156

Prefaceooeieiee e 156

6.1 Feature IMPOTtANCEcveiveriieiiiiresieeite et 156

6.2 Evaluation MEtriCSccceeiiiiiiiniiiiiee e 157
6.2.1 Evaluating regression performance..............cccocvevvereennenn. 158
6.2.2 Evaluating classification performance.............c.ccocoerueneen. 158

6.3 Model learning analysiscoccereeririenienieeseese e 159
6.3.1 Form data set analysiS.........cccccevvvereiiieiieie e, 159
6.3.2 Windows data set analysisccccooererenininieninieeen, 164

6.4 PrediCtioNnScceviiiiieiiiie e 171

6.5 Model FINe-Tuning........cccceviviiiiiiiieiiiieiiciier e 172

6.6 DISCUSSIONviiuiiiiiiieiiie ittt 172

SUMMATY ..o 175

Research ConcluSION........ccoiviiiiiiiieiee e 179
FUture DIr€CtioNnScccuviiiieiiiiiiiesiec et 184
RETOTENCES....eiiiiiieiiii e 186
APPENAICES ...ttt 214
AEBU g aSadl A0 | ccli
Coatll GAALA L \

viii

List of Figures

FIGURE 1-1 CEREBRAL CORTEX (HUMAN BRAIN) -
HTTPS://MY.CLEVELANDCLINIC.ORG/HEALTH/ARTICLES/23073-CEREBRAL-CORTEX (LAST ACCESS:
14/11/2023) cuvieeeeeeeeceeee e Y

FIGURE 1-2 DESIGN PROCESS (ARCHER, 1969, P.94 AND P.100)

FIGURE 1-3 THE DESIGN PROCESS: ANALYSIS, SYNTHESIS, AND EVALUATION (DUERK 1993, p. 18).....14

FIGURE 1-4 THE ENVIRONMENTAL MODEL OF THE DESIGN PROCESS (BROADBENT, 1988, . 467)....... 16

FIGURE 1-5 - FRANK GEHRY'S GUGGENHEIM BILBAO -
HTTPS://ARCHITIZER.COM/BLOG/PRACTICE/TOOLS/HOW-ARCHITECTURE-IS-BORN-FRANK-GEHRY/

FIGURE 1-6- SOLAR RADIATION OPTIMIZATION WITH GRASSHOPPER / GALAPAGOS / DIVA BY YAZDANI
STUDIO, HTTPS://YAZDANISTUDIORESEARCH.WORDPRESS.COM/2015/02/09/BUILDING-
OPTIMIZATION-TOOLS-THE-GRASSHOPPER-DEFINITION-AND-BREAKDOWN/covvenveenrecrrecrenne 19

FIGURE 1-7- DIGITAL FABRICATION TECHNIQUE TO EXTRACT INFORMATION ABOUT ELEMENTS USING
GENERATION, GRASSHOPPER, AND RHINOCEROS3D — BY ANTONIO TURIELLO,

HTTPS://WWW.GRASSHOPPER3D.COM/GROUP/GENERATION.coveeenreeereeereeereesresenneeenns 20
FIGURE 2-1 - PLATONIC SOLIDS, HILL, V., AND ROWLANDS, P., 2008, NATURE’S CODEccvvene.. 28
FIGURE 2-2 - GEOMETRICAL ANALYSES OF MASON'S MARKS ON DIFFERENTDRAWINGS OF GOTHIC

CATHEDRALS, FRANZ VON RHIZA, STUDIEN UBER STEINMERTZ ZEICHEN,1917, pP. 44-45........ 28
FIGURE 2-3 - DIAGRAMS OF ST. PETER CHURCH BY BRAMANTE, YILMAZ, 2016, EVOLUTION OF THE

ARCHITECTURAL FORM BASED ON THE GEOMETRICAL CONCEPTS ...eevvveeverereeenreeenneeeeseeennnes 29
FIGURE 2-4 WORKING MODEL OF THE 1989 VITRA DESIGN MUSEUM IN GERMANY BY GEHRY, FRANK O.

GEHRY, COURTESY FRANK GEHRY PAPERS AT THE GETTY RESEARCH INSTITUTE ..evveevveeinreeenneene 34
FIGURE 2-5 SYSTEMIZATION AND COMPOSITION BY JEAN-NICOLAS-LOUIS DURAND -

HTTPS://WWW.SENSESATLAS.COM/JEAN-NICOLAS-LOUIS-DURAND/ ...evvveivreieeirireeeinvereeennns 34

FIGURE 2-6 - LOUIS SULLIVAN, PLATE 2, DETAIL, FROM A SYSTEM OF ARCHITECTURAL ORNAMENT
ACCORDING WITH THE PHILOSOPHY OF MAN'S POWER (NEW YORK: AIA PRESS, 1924; REPRINT

L1934 oot e e e e e e e e et eeaae e e nareeeeaareeeeenaneas 35
FIGURE 2-7 - HOUSE |V - TRANSFORMATIONS SERIES BY PETER EISENMAN -

HTTPS://EISENMANARCHITECTS.COM/HOUSE-IV-1971ovviiiieeiieeeeee e eeeeee s e 35
FIGURE 2-8 — ARCHITECTURAL ORDERS FROM GREEK, ROMAN, AND TUSCAN ERAS,

HTTPS://BLOG.STEPHENS.EDU/ARH101GLOSSARY/ ?GLOSSARY=0RDERevvrrerrrreeeinrereennnns 38

FIGURE 2-9 — GEOMETRICAL BAR TRACERY, ELY CATHEDRAL, LADY CHAPEL, WEST WINDOW (LEFT),
RAYONNANT BAR TRACERY ABOVE THE SOUTH ROSE WINDOW IN NOTRE-DAME DE PARIS (RIGHT)
(HTTPS://EN.WIKIPEDIA.ORG/WIKI/TRACERY) ...veeereeereeeireesreeeireesteeesseeeteeenseesnresenseeenns 38

FIGURE 2-10- CALIPHAL-STYLE ARCHES OF THE TAIFA PALACE (11TH CENTURY) IN THE ALCAZABA OF
MALAGA, SPAIN, HTTPS://EN.WIKIPEDIA.ORG/WIKI/HORSESHOE_ARCH#CITE_NOTE-:02-739

FIGURE 2-11 —(A) GREEK KEY ON A STOVE IN THE IN THE D.A. STURDZA HOUSE, IN BUCHAREST,
HTTPS://EN.WIKIPEDIA.ORG/WIKI/FILE:GREEK_KEY_ON_A_STOVE_IN_THE_IN_THE_D.A. STUR
DzA_HOUSE, IN_BUCHAREST.JPG, (B) ZIGZAG MOTIF ON SMITH AND CHAMBERS BUILDING,
NAPIER, NEW ZEALAND. HTTPS://EDITION.CNN.COM/STYLE/ARTICLE/NAPIER-ART-DECO-

ARCHITECTURE/INDEX.HTIML. vt evtetteuteatesteeteeteeteeseessessessessesseesasseessessensensessessesssessessensas 40
FIGURE 2-12- RIETVELD SCHRODER HOUSE,
HTTPS://EN.WIKIPEDIA.ORG/WIKI/RIETVELD_SCHR%C3%B6DER_HOUSEcccevverreeenreennns 40

X

FIGURE 2-13- USING SOLID STRONG WALLS IN CONTEMPORARY DESIGNS (VILLA BY RYMAR STUDIO
(LEFT), 21 VILLA BY SAAD AL OMAYRAH (RIGHT)),
HTTPS://RYMARSTUDIO.COM/RESIDENTIALARCHITECTURE,
HTTPS://WWW.BEHANCE.NET/GALLERY/148907457/21-VILLA-BY-DEPTH-OF-FIELD........... 43

FIGURE 2-14- USING LOUVERS AS ARCHITECTURAL PATTERN IN CONTEMPORARY DESIGNS (CONDOMINIO
TERRAS DE TOSCANA, BY LIMA ARQUITETOS (LEFT), CB HOISE, INDONESIA, BY STUDIO AVANA
(RIGHT) - HTTP://WWW.LIMAARQUITETOS.COM/PROJETOS/RESIDENCIA-BR/,
HTTPS://WWW.BEHANCE.NET/GALLERY/98916083/CB-HOUSEcvveeveeerreereecreeerenenne 43

FIGURE 2-15- USING SKEWED AND RECESSED ELEMENTS TO HIGHLIGHT OPENINGS (VILLA IN UAE BY
NISREEN KAYYALI (LEFT), VIEWPOINT HOUSE, QUEZON CITY, PHILIPPINES BY JIM CAUMERON
DESIGN (RIGHT)) - HTTPS://WWW.INSTAGRAM.COM/NISREENKAYYALI/,
HTTPS://WWW.ARCHDAILY.COM/951932/VIEWPOINT-HOUSE-JIM-CAUMERON-
DESIGN?AD_MEDIUMZGALLERY ...veuveeureeureereeeseereesseeseesessaesseesseesseeseeseessesssssseessesssens 44

FIGURE 3-1- SEQUENTIAL VS. CONCURRENT VS. PARALLEL DESIGN PROCESSES
(HTTPS://WWW.LINKEDIN.COM/PULSE/CONCURRENCY-VS-PARALLELISM-2-SIDES-SAME-COIN-
KHAJA=SHAIK=/) 1eetveeereeteeiteecte et ecte ettt et e eteeete e beebeeabesaaestaesaeesseesseenseenseessessaenseesseesens 48

FIGURE 3-2- INTERACTION BETWEEN COMPONENTS FORMS THE WHOLE DESIGN IDEAccuveennee... 49

FIGURE 3-3- (LEFT) A BOX AS GEOMETRY VS. A BOX WITH GEOMETRIC EXISTENCE CHARACTERISTICS,
(RIGHT) A BOX IS CONSIDERED A CONTAINER OF MANY INFORMATION RATHER THAN A SIMPLE
GEOMETRY. 1ttt eteeeteeesteeeeteeesteeeeseeessaeeasseessseeasseessseessseesaseensseesassesnseesaseesnseesseessseess 49

FIGURE 3-4 — VILLA DESIGN BY LE CORBUSIER
(HTTPS://MELISSABILGECELIK.WORDPRESS.COM/2018/10/31/REGULATING-LINES-LE-

CORBUSIER/) c.veeuveeeteeueeetteeteeeteeeteeteeteetestaestaesaeesseeeseenbeeabeeasesssanbeenbaenbeeabesasesanesanens 51
FIGURE 3-5- GRAPHITE AND RED PENCIL ON VERSO OF HOTEL NACIONAL STATIONARY BY MIES VAN DER
ROHE (HTTPS://WWW.MOMA.ORG/COLLECTION/WORKS/87415)covvreerreireeerreeerveenne 51

FIGURE 3-6 - CONCEPTUAL REPRESENTATION OF THE TERMS’ EXTENSION REGARDING THE CD PARADIGM,
BY CAETANO, A., ET. AL., 2019, COMPUTATIONAL DESIGN IN ARCHITECTURE: DEFINING

PARAMETRIC, GENERATIVE, AND ALGORITHMIC DESIGN. ..ccuuvrerernreeeenirereseireeesnneeessmneeesennne 56
FIGURE 3-7- NUMBER OF TIMES EACH CD TERM APPEARED IN THE LITERATURE BETWEEN 1978 AND

2018 BY CAETANO, ET. AL, 2019 ..ottt s 57
FIGURE 3-8- SHAPE GRAMMARS (MIT - COMPUTATIONAL DESIGN |: THEORY AND APPLICATIONS - FALL

2005 LECTURE 7) teeeiutteeeeitteeeeeiteeestteeeesiteeesesaaeeessseaeesstaeesesssssessseaessssssesassssesnssenaans 59

FIGURE 3-9- LEFT: L-SYSTEMS (CHIU, P., 02015, THE STRUCTURE OF L-SYSTEM), RIGHT: EXAMPLES OF
GEOMETRICALLY SELF-SIMILAR FRACTALS. (A) THE MANDELBROT SET. THE " CURVE " (B) AND THE
" SNOWFLAKE " (C), DESCRIBED BY NIELS FABIAN HELGE VON KOCH (1870-1924), AND THE "
SIERPINSKI TRIANGLE " (D), DESCRIBED BY THE MATHEMATICIAN WACLAW SIERP — DI LEVA, A,
ET. AL, 2013, FRACTALS IN THE NEUROSCIENCES, PART |: GENERAL PRINCIPLES AND BASIC
INEUROSCIENCES ...vvveeeeutresesseeeeeeseeesaseesesasssesasssseesassesesssssesassssssssssssssssssessssssssessssnnes 59
FIGURE 3-10- COMPONENTS OF GENERIC CELLULAR AUTOMATON - LEAO, S., ET. AL., 2004,
SIMULATING URBAN GROWTH IN A DEVELOPING NATION’S REGION USING A CELLULAR
AUTOMATA-BASED IMIODEL.....eeeeeutiieeiiteeeesitieeeeitteeeeetaeeeesateeeeesseeeeessseeesstseeeessesesnsneens
FIGURE 3-11- DOMAIN BOX CREATION AS AN ALGORITHM
FIGURE 3-12 - GRASSHOPPER3D DEFINITION ARRANGEMENT ...cuuvvrrererieeeserreeseneneessnnneesssnnessnnnns
FIGURE 3-13 — RHINOCOMMON API - HTTPS://DEVELOPER.RHINO3D.COM/API/RHINOCOMMONY/.... 70
FIGURE 3-14- Box STRUCT IN RHINOCOMMON AP -
HTTPS://DEVELOPER.RHINO3D.COM/API/RHINOCOMMON/RHINO.GEOMETRY.BOXvvrennnee 70

FIGURE 3-15 - PARAMETRIC VILLA C# SCRIPT CREATED USING C# COMPONENT IN GRASSHOPPER- BY
THE AUTHOR 1. ctttitteeeeeeeritieeeeeeeeesaetateeeseesseassanaeeeeessasnsasaeeeaessesssssaneeesssssnnnsanneessnannns 72

FIGURE 4-1- THE DENOISING PROCESS USED BY STABLE DIFFUSION.
HTTPS://EN.WIKIPEDIA.ORG/WIKI/STABLE_DIFFUSION#/MEDIA/FILE:X-
Y_PLOT_OF_ALGORITHMICALLY-GENERATED_AI_ART_OF_EUROPEAN-

STYLE_CASTLE_IN_JAPAN_DEMONSTRATING_DDIM_DIFFUSION_STEPS.PNG......cceerereranunnnnes 83
FIGURE 4-2 — NERF PIPELINE - MILDENHALL, B., ET. AL., 2020, NERF: REPRESENTING SCENES AS
NEURAL RADIANCE FIELDS FOR VIEW SYNTHESIS c.eeeveeererreieeeeereeereeeeeeereeeeereeereeeseseseeeseseeens 85
FIGURE 4-3- ARCHITECTURE OF A DEEP ANN - HTTPS://FREECONTENT.MANNING.COM/NEURAL-
NETWORK-ARCHITECTURES/, LAST ACCESS: 30-8-2023eeeivieereeerieeireeereeereesreeenseeenns 94
FIGURE 4-4 ARCHITECTURE SUBFIELDS IN 60 ARTICLES DISCUSSING APPLYING ML IN ARCHITECTURE
(Topuz, B., AND ALP, N., 2023, MACHINE LEARNING IN ARCHITECTURE).....ceeevureeernrreeennnns 95
FIGURE 4-5 - DESIGNED CAPITALS WITH ML - CuDzIK, J., 2018, ARTIFICIAL INTELLIGENCE AIDED
ARCHITECTURAL DESIGN....ceiiiiiiieieieieiecececeeeeee et eee eeeeeaeaeaeees 98

FIGURE 4-6 - EXPECTED FORMS AND PREDICTED FORMS FROM TEST DATASET - ZHENG, H., AND YUAN, P.,
2021, A GENERATIVE ARCHITECTURAL AND URBAN DESIGN METHOD THROUGH ARTIFICIAL 99

FIGURE 4-7 - GM ALGORITHM IMPLEMENTED TOWARDS PREDICTION OF PANEL CLUSTERS BASED ON THE
AREA SIZE AND PLANARITY OF PANELS. - YAZICI, C., 2020, A MACHINE-LEARNING MODEL DRIVEN
BY GEOMETRY, MATERIAL AND STRUCTURAL PERFORMANCE DATA IN ARCHITECTURAL DESIGN
PROCESS +..vevveuvesveeeeseiseeseeseeseessessessesasasesseessessesseseesesesesssesseseessensesetesesatesseeresnseneen 100

FIGURE 4-8 - DIFFERENT INPUT—OUTPUT TRAINING SETS AND THE ACHIEVED ACCURACY — TAMKE, M., ET.
AL, 2018, MACHINE LEARNING FOR ARCHITECTURAL DESIGN: PRACTICES AND INFRASTRUCTURE

FIGURE 4-9 - RESULTING FURNISHED UNITS (CHAILLOUS, S, 2019., Al & ARCHITECTURE — AN
EXPERIMENTAL PERSPECTIVE — HARVARD UNIVERSITY GSD)....cvvveeeiiieeeeiiieecieee e 103
FIGURE 4-10- 15TH FLOOR PROCESSED UNDER EACH STYLE: BAROQUE (FAR-LEFT), MANHATTAN
(CENTER-LEFT), ROW-HOUSE (CENTER-RIGHT), VICTORIAN (FAR-RIGHT) (CHAILLOUS, S, 2019.,
Al & ARCHITECTURE — AN EXPERIMENTAL PERSPECTIVE — HARVARD UNIVERSITY GSD)......... 104
FIGURE 4-11 - ITERATIVE AND COLLABORATIVE HUMAN—MACHINE WORKFLOW FOR ARCHITECTURAL
FLOOR PLAN GENERATION. (AALAEI, M., ET. AL., 2023, ARCHITECTURAL LAYOUT GENERATION
USING A GRAPH-CONSTRAINED CONDITIONAL GENERATIVE ADVERSARIAL NETWORK (GAN)) ..105
FIGURE 4-12 - TEST RESULTS ON THE VALIDATION DATA SET OF EDU-AI (KARADAG, I., ET. AL., 2022,
EDU-AI: A TWOFOLD MACHINE LEARNING MODEL TO SUPPORT CLASSROOM LAYOUT GENERATION)

FIGURE 4-13 - A SUBGRAPH, THAT IS, BUILDING BLOCK, DISCOVERED BY THE DNN HIGHLIGHTED WITHIN
THE LARGER GRAPH OF A HOME (AS., |., ET. AL, 2023, ARTIFICIAL INTELLIGENCE IN
ARCHITECTURE: GENERATING CONCEPTUAL DESIGN VIA DEEP LEARNING) .veevvvveeveenreeeiveennns 106

FIGURE 4-14 - GENERATED FACADES FOR THE HARBIN CENTRAL STEER (SUN, C., ET. AL., 2022,
AUTOMATIC GENERATION OF ARCHITECTURE FACADE FOR HISTORICAL URBAN RENOVATION USING
GENERATIVE ADVERSARIAL NETWORK) «.vveeeeiuriieeeireeeeitreeeeeiteeeeeesreeeesaseeeesseeseensseessnnsenas 107

FIGURE 4-15 — (LEFT) MINIMAL WORKFLOW FOR MIDJOURNEY (A—D), DALL: E 2 (E—H), AND STABLE
DIFFUSION (I—L) (PLOENNINGS, J., AND BERGER, M., 2023, Al IN ARCHITECTURE), (RIGHT)
REFINEMENT AND VARIANT GENERATION IN MIDJOURNEY (A—C), DALL: E 2 (D—F), AND STABLE
DIFFUSION FOR A WALKWAY (G) AND A SECOND STORY (H, 1) - (PLOENNINGS, J., AND BERGER, M.,
2023, AlIN ARCHITECTURE) t1eeeuvreeesurereeesureeesassesesssseesasssssesasssesesssssesssssssssasssnsesssnees 108

X1

FIGURE 4-16 - BASE INPUT SKETCH FOR Al GENERATION (BAO, Y AND XIANG, C., 2023 - EXPLORATION
OF CONCEPTUAL DESIGN GENERATION BASED ON THE DEEP LEARNING MODEL-DISCUSSING THE
APPLICATION OF Al GENERATOR TO THE PRELIMINARY ARCHITECTURAL DESIGN PROCESS) 108

FIGURE 4-17- RENDERING GENERATION RESULTS MADE BY MIDJOURNEY, STABLE DIFFUSION AND DALL-
E 2 (FROM LEFT TO RIGHT RESPECTIVELY). (BAO, Y AND XIANG, C., 2023 - EXPLORATION OF
CONCEPTUAL DESIGN GENERATION BASED ON THE DEEP LEARNING MODEL-DISCUSSING THE
APPLICATION OF Al GENERATOR TO THE PRELIMINARY ARCHITECTURAL DESIGN PROCESS) 108

FIGURE 4-18- ARCADE FACADE RENEWAL BASED ON PROMPT AND CONTROLNET. - KUANG, Z., ET. AL,
2023, ADVANCING URBAN RENEWAL: AN AUTOMATED APPROACH TO GENERATING HISTORICAL
ARCADE FACADES WITH STABLE DIFFUSION IMIODELS........uuvvirieeeeeeriiirreeeeeseseiinrneeeeseeenans 109

FIGURE 4-19 - OBJECT GENERATION VIA 26-ACTIONS MODEL - FROM LEFT TO RIGHT, INPUT VOXEL
GEOMETRIES, VOXELS, PIPES, AND SMOOTHENED MESHES. AKIZUKO, Y., ET. AL., 2020,
GENERATIVE MODELING WITH DESIGN CONSTRAINTS — REINFORCEMENT LEARNING FOR OBJECT

GENERATION v veeeetteeeetesteeteeseestetesseetesesesesseensessessessesaseresssereessessensessesteseseresnsessenes 110
FIGURE 4-20 - TRANSFERRED IMAGE TRANSLATION (LIU, C., ET. AL., 2021, PIPES OF Al — MACHINE

LEARNING ASSISTED 3D IMIODELING DESIGN) +...vevievieeeeeteieseeeeeseeereeeeeeeeseseresesereenneneas 111
FIGURE 5-1- SUGGESTED MACHINE LEARNING FRAMEWORK FOR REGRESSION AND CLASSIFICATION

TASKS IN ARCHITECTURAL MODELING = BY THE AUTHORc.veiviveeteereeeeeeeee st etesveereenneneas 132

FIGURE 5-9 — POINT-BISERIAL CORRELATION BETWEEN FEATURES AND BINARY TARGETS IN DATA SET 2

(CLASSIFICATION) ..vvveeeetreeeeereeeeeteeeeeeae e e eeteeeeeteeeeesareeeeesaeeeeeeaseeeensteeeeesseeessneeeens 143
FIGURE 5-10 - ROOFS LABELSuuuvvtteeeesieitrrteeesesssuniereeesessssssssseeesssssssssssseasessssnssnsesseesssnnns 144
FIGURE 5-11 - HEATMAP SHOWING CORRELATIONS BETWEEN THE VARIABLES IN THE DATASET (BY THE

AUTHOR) ettt e ettt e ettt e e ettt e e e ettt e e e ttee e e eabaeeeeateeeeeaaaeeesabaseeeastaeeeansaeesssseaesasseeenannes 146
FIGURE 5-12 - HEATMAP SHOWING CORRELATIONS BETWEEN THE VARIABLES OF THE FORM AREAS DATA

SET (BY THE AUTHOR) c..ttteeeitieeeeitteeeeetieeeestteeeeateeeeessaeeesasaseeenssaeeeansseessasseeessssssesnnnes 147
FIGURE 5-13- HEATMAP SHOWING CORRELATIONS BETWEEN THE VARIABLES OF THE FORM REST-OF-

PARAMETERS DATA SET (BY THE AUTHOR) ..vvveeeeireeeeireeeeentreeeeeneeeeeetneeeensseeeenseeeessneeeens 148

FIGURE 5-14 - CORRELATION MATRIX HEATMAP BETWEEN CONTINUOUS TARGETS AND FEATURES....... 149
FIGURE 5-15 - POINT-BISERIAL CORRELATION BETWEEN BINARY TARGETS AND FEATURES ...149
FIGURE 5-16 - COUNT PLOTS OF TARGETS OF THE WINDOWS DATA SET BEFORE APPLYING SMOTE.....151
FIGURE 5-17 - COUNT PLOTS OF TARGETS OF THE WINDOWS DATA SET AFTER APPLYING SMOTE....... 152

FIGURE 6-1 - FEATURE IMPORTANCE SCORE FOR A RANDOM FOREST REGRESSORcceeeveieieieieieinnn. 157
FIGURE 6-2 - COMPARISON OF THE REGRESSION METRICS BETWEEN THE 9 TRAINED MODELS FOR THE
AREAS SUB-DATA SET. 1eteiuurrrreeresssasunreeeeessessonnreseeessssssnsssseeesesssssssssseesessssssssssessesssnsnns 160
FIGURE 6-3- TRAINING LOSS AND VALIDATION LOSS DURING TRAINING THE FEED-FORWARD MLP ON THE
AREAS REGRESSION SUB-DATA SETuuuurreeeeeseesunrreeeesesssssssnneeesessssssssnessessssssssssessesssnsns 161
FIGURE 6-4 - AVERAGED SCATTER PLOT ON TEST DATA SET WITH THE BEST-FIT LINE CREATED BY RANDOM
FOREST REGRESSOR (AREAS SUB-DATA SET) 1..uutieeeitieeeeitreeeeeireeeestreseessseeesesseseesaseesennnns 161

Xii

FIGURE 6-5 - COMPARISON OF THE REGRESSION METRICS BETWEEN THE 9 TRAINED MODELS FOR THE

REST OF PARAMETERS SUB-DATA SET. ...uuuvvrreeeeeeisiurrrnneeesesssnnssneeesssessssnrssesssessnsssnseesens 162
FIGURE 6-6- TRAINING LOSS AND VALIDATION LOSS DURING TRAINING THE FEED-FORWARD MLP ON THE
REST OF PARAMETERS REGRESSION SUB-DATA SET....uuvvrvrerereserenrrereeeseessssrnnseesssessnsssneeeeens 163
FIGURE 6-7 - AVERAGED SCATTER PLOT WITH BEST-FIT LINE CREATED BY RANDOM FOREST REGRESSOR
THE REST OF PARAMETERS SUB-DATA SET ...vvvuvuuurererurereresssssesssssssssssssnsssssnsssssssssssssssnsnnnns 164
FIGURE 6-8- COMPARISON OF SCORES BETWEEN THE 7 ALGORITHMS USED WITH THE WINDOWS WIDTH
SUB-DATA SET 1uutttetttutuuieeeeettuesuneseeeeetesssanesesereasssnsesesessssssnssesesessssssnssesesensssnsneseeenens 165
FIGURE 6-9- TRAINING LOSS AND VALIDATION LOSS DURING TRAINING THE FEED-FORWARD MLP ON THE
WINDOWS WIDTH REGRESSION DATA SET ..eeeeeeeuurrrreeeessssennrnreeesessssssssnessessssssssssnesesssennes 166
FIGURE 6-10 - AVERAGED SCATTER PLOT WITH BEST-FIT LINE CREATED BY XGBOOST REGRESSOR WITH
THE WINDOWS WIDTHS SUB-DATA SET ..uvvvvvreeeeeeesurrnreeesesssssssnneseessssssssssnneesssssssssssseeses 167
FIGURE 6-11 - COMPARISON OF THE METRICS ACHIEVED BY THE 6 CLASSIFICATION ALGORITHMS TRAINED
WITH THE WINDOWS EXISTENCE SUB-DATA SET. 1eieteieieieieieieieeeieeeeeieeereeerereresesesereseseseseeens 168

FIGURE 6-15 - THE CONFUSION MATRICES OF THE 12 CLASSIFIERS OF THE DECISION TREE MODEL 171
FIGURE 6-16 STAGE 1: TIME AND EFFORT ESTIMATION FOR Al/HUMAN (LEFT) AND HUMAN
DESIGN/CODING (RIGHT) «vveevveereeesreeenteeesieeesseeessreessseessseessseessseessseessessneens
FIGURE 6-17- STAGE 2: TIME AND EFFORT ESTIMATION FOR Al/HUMAN INTERVENTION
FIGURE 6-18- OVERALL: DESIGN INTERVENTION ESTIMATIONveevuveeriieeeireesireennreesiveessneessseennes

xiil

List of Tables

TABLE 1-1 SUMMARY OF STYLES OF THINKING (STERNBERG, 1997, P. 27) weeevcvieeieeeeieeeieeeieeesieeenns 4
TABLE 1-2 TWO TYPES OF THINKING DESCRIBED BY INTELLECTUALS (URL-2, CALDWELJ, ET AL., 2000) .4
TABLE 1-3 - CAPON'S CATEGORIZATION OF THE SIX ELEMENTS OF GOOD ARCHITECTURE (CAPON, 19994,

TABLE 1-4 DEFINITION OF 20 CENTURY ARCHITECTS OF ARCHITECTURE. THESE TERMS ARE COMPARED
WITH THE ORIGINAL VITRUVIAN CATEGORIES (INTRODUCED BY CAPON, 19998, Pp. 349-353,
COMPILED BY MAHMOODI, 2001, P. 55) ...uuviiiiiiieeieiieececiiee et eteeeeeivee e eetveeeeevreeeennns 8

TABLE 2-1- ANALOGUE FORM MAKING THEORIES (EL IRAQI AND EL DALY, 2017) ..ccevvveereeiveennnne 32

TABLE 2-2 ANALYSIS OF COMMON CONTEMPORARY MOTIFS .

TABLE 5-1 - SAMPLE DATA SHAPE.ctttiiieieiitiieeeeeeseiittreesesssesssraeeeeessssnsseeseessssssnsssneeesssnsns

TABLE 5-3 - FEATURES AND TARGETS OF THE IMIODELevvieeieeeiiieieeeee et ee e ee e
TABLE 5-4 — MACHINE LEARNING PROBLEM TYPES IN THIS STUDY ...cieieieieieieieieieieieieeeeeeeeeeeeeneeeeens
TABLE 5-5- DIFFERENT MODELS TRAINED FOR REGRESSION AND CLASSIFICATION TASKS
TABLE 6-1- COMPARISON OF THE REGRESSION METRICS BETWEEN THE 9 TRAINED MODELS FOR THE AREAS

SUB-DATA SET 1iiieieieieieieieieieeeeeeeeeeeeeeeeeee e et eeeeeeeeeeeteeaeeeeeeeateeaeetaeeeeeeteeereeereeererererararees 160
TABLE 6-2- COMPARISON OF THE REGRESSION METRICS BETWEEN THE 9 TRAINED MODELS FOR THE AREAS
SUB-DATA SET .uutttreeeeeeeiurrereeesesssasnsreeeeesssasassssseesssessnssssssesesssnsssssssseesssesssssssssesssnnnns 162
TABLE 6-3- COMPARISON OF THE REGRESSION METRICS BETWEEN THE 7 TRAINED MODELS FOR THE
WINDOWS WIDTH SUB-DATA SET..ceieieieieieieeeieieieeeeetereeeeeeeeeeeeeeeseresesesesesesesesssesesssssssseees 165
TABLE 6-4- COMPARISON OF THE CLASSIFICATION METRICS BETWEEN THE 6 TRAINED MODELS FOR THE
WINDOWS EXISTENCE SUB-DATA SETeieieieieieieierereeeeereeeeeeereeeeeeeresereresesesesesesseesesssessseeees 168
TABLE 6-5 — RANDOM FOREST METRICS SCORES FOR ROOFS DATA SET ...ccvvvviieieeeeeeeeeiceee e e eeveanes 173
TABLE 6-6 - METRICS COMPARISON BETWEEN DIFFERENT ALGORITHMS TRAINED ON THE WINDOWS
WIDTHS SUB-DATA SET 1iitiiieieieieieieieieieieieieieteietetetesetetetesesesetesesesesesesesesesesssesesesssssenens 174

X1V

Introduction ||| G

1. Overview

Architectural design methods commonly employed by architects are often
regarded as vague and difficult to formalize. Among these is the "black
box" design approach, where the generation of design concepts occurs
solely in the architect's mind without external articulation. This approach
aligns with the desire of many architects to express individuality, resulting
in the development of a personal architectural language or style. However,
this individual expression can lead to a degree of repetitiveness, as
architects often reproduce similar forms that reflect their personal design
philosophies (Schon, 1984). Furthermore, the design process itself is
inherently non-linear. It follows a cyclic, iterative pattern in which an
initial concept undergoes continuous development and refinement through
the architect's critical analysis at each stage of the design process. This
iterative nature complicates the explanation and formal documentation of
how the design process functions in practice (Lawson, 2006).

The advent of the digital era has had a profound impact on various fields,
including architecture. Initially, architectural design was conceptualized
through manual sketches on paper. Today, however, architects rely on a
wide range of digital tools and software to translate increasingly complex
ideas, which have been made possible by the development of new
materials and fabrication techniques. These advancements have facilitated
the construction of free-form buildings, once difficult to realize through
traditional methods (Kolarevic, 2003). The digital revolution did not stop
at merely aiding architects in expressing their ideas; it brought about a
significant paradigm shift with the introduction of generative design. In
generative design, software generates numerous design alternatives based
on input variables, constraints, and algorithms. This allows the architect to
explore a vast array of potential solutions, as opposed to manually
developing only a few alternatives (Mitchell, 2005).

This shift has prompted critical debate within the architectural community.
Some argue that manually generating a small number of well-considered
design alternatives is more efficient and professional than sifting through
thousands of machine-generated options, many of which may lack

XV

_ Introduction

coherence or thorough analysis (Oxman, 2017). Moreover, the sheer
volume of alternatives produced through generative design can overwhelm
architects during the decision-making phase, delaying the selection of the
optimal design solution (Duarte, 2001).

However, what if machines were able to produce fewer, but more refined,
alternatives? By incorporating architect-specific variables, constraints, and
algorithms—reflecting the architect’s design logic—it might be possible to
generate fewer, but well-studied, design solutions. Additionally, applying
artificial intelligence (AI) and machine learning (ML) technologies could
enable the machine to "learn" from the architect’s preferences, decisions,
and design style, allowing it to generate outcomes that align more closely
with the architect’s intentions (Gero & Kannengiesser, 2014).

Al has seen rapid advancements across many industries, with an increasing
number of tools becoming publicly accessible. In the field of architecture,
generative Al applications are being explored for a range of tasks, from
conceptual design and visualization to automatic generation of plans
(Burry, 2016). However, generative Al technologies like point-clouds,
voxels, or NeRF models, while effective for visual outputs, often fail to
produce architectural models that are clean and developable. There are
ongoing experiments with non-generative Al applications for tasks such as
material prediction, classification, and urban planning (Peters, 2013).

This research explores the potential of AI and ML in architectural design,
specifically in form-finding and form-making processes. A critical aspect
of this investigation is the translation of architectural style and vocabulary
into quantifiable variables and constraints that can be processed by Al to
generate designs that not only meet technical requirements but also align
with the architect’s creative vision. Moreover, the integration of coding and
algorithms in this framework is analyzed, as it provides a more structured
approach to utilizing ML in the design process. Several ML models are
tested and evaluated to determine their suitability for these applications,
contributing insights into the development of Al-assisted design
frameworks.

XVvi

Introduction ||| G

II. Problem Definition

Generative design, as beneficial as it might seem, has some shortcomings,

especially in the decision-making phase. In this process, thousands of
variations are produced so that the architect could choose a suitable design
to develop. However, many of these variations might not be reliable nor
logical depending on many aspects like building codes, architectural style,
human behavior, spaces relations, or even architects’ aesthetic sense and
artistic preferences regarding form making. In this manner, architects
might consume a lot of time trying to sort out the best generated ideas for
further studies and design development. In addition, the more the architect
provides the program with constraints and variables, the more ideas the
program will generate leading to more time consumption in the decision-
making phase.

On the other hand, the machine needs a lot of information to sort out the
best alternatives and ignore the ones which do not imply the architect’s
character which shapes his own black box of ideas, id Est, optimizes the
results and so that has a role in the decision-making process leading to a
smaller number of variations with a better design quality rather than a
larger quantity.

The time spent designing a building takes a lot of manhours. Even
designing more prototypes of the building will still take a lot of time
although the style may be already determined.

To utilize Al in time saving, some generative Al models which generates
photos (designs?) of plans and perspectives is present and is being used
extensively by architects nowadays. However, such applications come
with many issues regarding authenticity, creativity, and even functionality
of the result which we argue should not be even considered an architectural
product.

Finally, to automate some tasks in the design phase, some classification
and regression applications have been experimented to predict or classify
materials, architectural parameters, etc. However, we could not trace any
trials to create architectural form models through ML which could be

Xvil

_ Introduction

directly used in other phases such as schematic design and design
development.

Although AI and ML field is considered highly developed today, many
concepts in this field need to be revisited by architects to harness the power
within the machine in automating time-consuming tasks.

IIl. Research Aim

This research aims at utilizing ML in decision-making so that the machine

could learn from previous decisions and lower down the probabilities of
the resulting architectural forms by taking on the architect’s character
resulting in models and alternatives close to what the architect could design
with a normal black box design approach. In this sense, the idea of getting
the machine to decide values of architectural parameters which forms a
building model through a framework which utilizes ML is the main aim.

The aim of this research could be achieved through the following
objectives:

e Defining the architectural design process, and architectural design
thinking.

e Defining metaphors in architectural thinking including black box,
glass box, and gray box.

e Investigating and mapping the vocabulary and elements of
contemporary architecture style.

e Applying certain relations between the parameters to form
generative models through coding.

e Investigating Al and ML applications to understand their
capabilities and decide how to benefit from them.
Defining a framework for decision-making using ML.
Driving a methodology framework for utilizing ML to generate
designs that are relevant to the architect’s/project’s patterns and
previous choices and preferences took by the architect in this
regard.

xviii

Introduction ||| G

1V. Research Hypothesis

An architect’s way of thinking is considered a process that could be
traceable in the conception thinking phase (grey box). This process
coupled with the vocabulary of an architectural style could be translated
into parameters that shall combine to produce the result of what occurs in
the mind of the architect in this very process. If these parameters are well
studied and well introduced to the machine through ‘coding’, the machine
could provide relevant and precise generative designs that could speed up
decision-making. In addition, the machine could learn from the architect’s
choices and thus give more precise and more relevant designs either in the
next phase or even the next project. This ML mechanism could take
architecture to a new era of human-machine interactive architectural
conceptualization.

V. Literature Review

This review briefly shows the previous work and research done
considering architectural design methods, contemporary architecture,
generative design, algorithmic design, and applying Al in architecture. The
review includes investigations about different design methods including
the black box and the glass box, explanation of architectural design
literature, explorations in contemporary architecture motifs and finding its
patterns, generative design, and algorithmic design as design methods with
its pros and cons, and different applications and terminology of Al and ML
in architecture field.

- Previous literature regarding architectural design methods:

Since the Greeks, propositional knowledge which asks
epistemological questions about the evidence of asserted claims
and truth, or falsity has been the focus of western philosophical
studies. Design problems which are hard to define according to
Lawson (1980) relate to various epistemological questions and
while designers search for answers in the design process, they
contribute to the interpretation of a design problem. In this process,
designers could modify the rules when processing the information

XiX

_ Introduction

XX

leading to a paradigmatic revolution where either a new entity
arises, or an entire system falls (Rittel, 1972).

Architectural design has seen many attempts to be defined. It is
defined in terms of certain fields of knowledge as Rowe’s thoughts
of it as being located in an ambivalent position between technical
science and forms of fine art (Rowe, 1987). Vitruvius defined
design as providing three main factors which are firmness,
commodity, and delight. However, the accepted theory of
successful designs evaluation is more likely based on Vitruvius’
three factors, and this is seen in contemporary linguistic studies
using terms which are used by Vitruvius like semantic, pragmatic,
and syntactic.

Architectural design as defined above has five important
components that designers should consider throughout design
process phases. These components are aesthetics, culture,
environment, structure and materials, and economics and social
influence. Also, it has methods which include six approaches:
“black box”, “glass box”, problem structure, control, observation,
and evolution (Broadbent, 1969). Studying these methods is
important to recapture the activities involved with design decision-
making so that architects could follow defined procedures from
formulating a program to achieving an effective and efficient final
solution.

In the “black box” approach, mystery and creativity are the two
main characteristics of the design process. The process usually
occurs in the designer’s mind therefore it is hard to analyze the
design. However, techniques like brainstorming and applying
synetics could help to visualize the process itself.

On the other hand, the “glass box” approach, design is analyzed
based on the logical process and decision sequence of the design.
The process in this case is a sequential events entity including
identification, analysis, synthesis, and evaluation. According to
Broadbent, (1969), this approach could be applied through some

Introduction ||| G

methods including operational research, critical path, systems
analysis, set theory, logical model, “feed-forward”, and design
territory map. Also, in this approach, two distinct design structures
are observed which are a sequential process such as the sequential
structure of the design process with its twelve major chronological
phases included in the handbook from the Royal Institute of British
Architects (RIBA) and an iterative/cyclic process where a feedback
loop before the completion of the project is attached to different
phases as in Levin’s eleven stages in the decision sequence. This
approach has seen criticism because it focuses on art development
rather than concerning for actual buildings’ practical aspects.

The problem structure method is composed of many variations
including morphological analysis, inter-connected decision areas,
decomposition analysis and relational theory. According to
Aismow (1962), the design process is divided into seven phases:
feasibility study, preliminary, detailed design, planning for
production, consumption, and retirement. In the preliminary
design, a best design is identified from a number of alternatives.

However, an evolution of design methods appeared after Popper’s
systems approach to problem solving as well as his philosophy of
science applying the deductive method of testing. Therefore,
architectural design methods could be described as an iterative
process based on trial-and-error which relies on experience,
knowledge, and intuition. And so, According to Rzevski, 1980,
design process has four features: investigative, creative, rational,
and decision-making process. This problem-solving framework
involves four steps which are problem understanding, tentative
solution generation, iterative testing and refining of details, and
finally, design solution outputting. This solution suggests new
design problems in the future.

XX1

_ Introduction

xxil

Previous literature regarding generative design and algorithmic
design:

Dorst, K., 2003, explains how design problems in architecture are
open-ended, ill-structured, and unique and how solving such
problems requires problem-specific and experimental
methodology. In this manner, architects are not allowed to solely
rely on predefined methodologies nor approved solutions to similar
problems. Architectural problems are complex and have a wide
range of subconscious factors on various levels that range from
building codes to aesthetic aspects. The complexity of such
problems requires the reasoning, guessing, and intuitive decision-
making of an architect.

In recent years, generative design has evolved when form-finding
techniques were introduced through computational tools. This
approach revolutionized architectural design and production where
new design paths were offered to architects favoring
computationally generated complexities over predictable
relationships between form and presentation. Thus, the emphasis
was shifted from “form making” to “form finding” (Kolarevic,
2003).

According to Agkathidis, A., 2015, generative design could be
described as a method by which the form is generated based on
rules or algorithms which are often derived from computational
tools as processing and scripting platforms. Being influenced by
Jacques Derrida’s deconstruction theory, Peter Eisenman applied
design techniques such as fractals, scaling, overlay, and
superposition in relation to rules of order and thus designed several
projects on this basis. This could be thought of as the first
contemporary generative design attempt before the advent of
digital architecture and various software which offered new
possibilities.

Agakathidis, A., 2015, briefs generative design techniques as:

Introduction ||| G

1- continuous surface (soft mesh, double-curved shells, and
hyperboloids)

2- Modularity and accumulation (interlocking units and irregular
units)

3- Deformation and subtraction (twisted block and porous space)
4- Algorithmic patterns (tessellated planes and Voronoi surface)
5- Triangulation (3D Penrose pattern and faceted loft).

Generative design is usually criticized for disconnecting the output
from its context and users. This could lead to decreasing spatial
quality and integration of the building within the wurban
environment. In addition, it is criticized for disconnecting the
architect from drafting techniques and physical modelling which
once formed the essential foundations of architectural education,
risking the loss of material effects and properties.

Generative algorithms are defined as parametric ways that could
handle geometry in design problems (Khabazi, 2012). Using this
type of algorithms, designers could utilize a lot of possibilities
regarding geometric computing and also manage large amounts of
data and calculations easier than conventional geometry methods.
This approach is not only limited to predetermined experiments but
rather serves the exploration of unlimited potentials. (Gunagama,
2017).

Maldonado, 2014, describes an algorithm as a cooking recipe with
a step-by-step guide. According to this description, an algorithm in
architecture requires limitations in design which are analogous to
the variables and parameters in a cooking recipe. Therefore,
variables and parameters are necessary for an algorithm system. In
this context, variables are entities which change in the system while
the parameters are entities that are used to unify or connect various
variables of an equation (Gunagama, 2017). Gunagama concludes
that despite of the various alternatives that could be developed
through generative design, the breadth of the definition of optimal

xxiii

_ Introduction

XXiv

design as well as the lack of ‘the ability to translate verbal ideas to
mathematical’ could lead to limitation in the resulting alternatives.

Also, according to Singh, V., 2012, adopting generative design
(GD) systems in architecture is meant to support human designers
through computational capabilities as well as automate parts of the
design process. The commonly used generative design techniques
according to him are shape grammars, L-systems, cellular
automata, genetic algorithms, and swarm intelligence. Also, most
of the existing generative design systems are derived from one of
these techniques.

In addition, Krause, J., 2003, experienced the generative design
process in architecture, and described it as a teaching process where
the architect is a teacher, and the computer is the student. Krause
claimed that a person cannot really understand something until he
teaches it to a computer. He described the process steps as follows:

1- Start with a goal.

2- Describe consistencies.

3- Formalize code parts.

4- Set range potential.

5- Evaluate output.

6- Add complexity.

7- Increase tectonic potential.

8- Iterate.
Previous literature regarding contemporary architecture:

In 1929 Hugh Ferriss published his book The Metropolis of
Tomorrow. He presented designs of various functions imagining
the city of the future. In one of his drawings, Night in the Science
Zone, he presented a skyscraper without any details rising from
amidst the houses surrounding it. He included a poem to this
drawing: “Buildings like crystals. Walls of transparent glass.

Introduction ||| G

Ordinary glass hollow bricks covering the steel grid. Without
Gothic art: without acanthus leaves: without memories of the plant
world. The mineral kingdom. Glittering stalagmites. Forms as cold
as ice. Mathematics. Night in the Science Zone.” These words
formed later the manifesto of the future generations of
expressionist architects.

According to Kozlowski, 2013, the advent of contemporary
expressionism in architecture has seen light through Zaha Hadid’s
design of the Peak Hong Kong Club in 1983. All of the trends like
cubism, futurism, formism, etc. are considered the languages of
‘expressionism’.

Hohenadel, K., 2020, answers the question “what is contemporary
architecture?” as the current style of architecture where building
built according to current trends in a time would be considered
contemporary architecture. The author claims that the
characteristics and elements of contemporary architecture include
curved lines, rounded forms, unconventional volumes, asymmetry,
free-form shapes, open floor plans, large windows, green roofs,
living walls, integration into the surrounding landscape, integrated
smart technologies, and integrated customizable LED lighting. In
addition, flat roofs, geometric simplicity, open spaces,
environmental considerations, and volumes compositions could be
considered motifs of the contemporary architecture.

Reffat, R., 2008, investigated patterns of contemporary architecture
in Saudi Arabia using data mining (DM) techniques. Reffat
suggests that every place gains its character by certain patterns of
events which are not necessarily human events. The elements of
the building (walls, windows, rooms, doors, etc.) repeat a lot, but
they vary every time they occur. Hence, the fact that the elements
themselves vary says that they are not the repeating events. The
events in this case could be the patterns of relationships between
the elements. Each of these patterns is a three-part rule expressing
the relation between context, problem, and solution. The author

XXV

_ Introduction

XXV

claimed that traditional methods of data analysis including
spreadsheets and ad-hoc queries were capable of only creating
informative reports from data and could not analyse the contents of
these reports and thus not adequate. So, he used data mining which
is a process which discovers patterns and relationships in data
which may could be used to make valid predictions through a
variety of data analysis tools. Data mining functions were
performed including summarization, association, classification,
prediction, and clustering. The studied building characteristics
regarding form and facades were the organization of the building
(centralized, linear, radial, cluster, or grid), building orientation,
building height, main entry fagade direction, fenestration pattern,
shading devices, glazing, building envelope, external finishes, and
fagade style. A lot of characteristics were not studied including the
dimensions of glazing, repetitive motifs, and form generation
variables. The data mining process includes data pre-processing
where noisy and incomplete data are removed, data transformation
where data is stored in various tables, and data warehousing, which
is the process of visioning, planning, building, using, managing,
maintaining, and enhancing data bases. Data could be stored in
WEKA'’s data warehouse which is composed of ML algorithms for
solving real-world data mining problems. Reffat used WEKA and
IBM intelligent miners for mining the data.

Previous literature regarding AI and ML:

On the other hand, the advent of Al in the world has affected a lot
of fields including architecture. Applying Al in the architectural
discipline has been investigated in many research and experiments
recently.

Chaillou, S., 2019, studied the application of Al to floor plans
generation and analysis. The goal took the usual sequence of Al
applications in the architectural field which has 3 steps: generation,
classification, and presentation where users can browse through the
generated design alternatives. However, their study dealt with the

Introduction ||| G

design process as a sequential process with successive design steps
which contradicts with the cyclical nature of the design process
where a designer thinks, analyses, develops, and analyses again
until a satisfying and problem-solving solution appears. The
researcher used two of Al’s main fields of investigation in their
study: analytics and generative adversarial neural networks (GAN).
The GANs -as any machine-learning model- could Ilearn
statistically significant phenomena among data presented to them.
However, their structure is made of two key models which are the
Generator and the Discriminator. GANs could generate a loop
between the two models to refine their relevant images generation
ability. The Discriminator works to recognize images from a set of
data. On the other hand, the Generator works in creating images
which resemble images from the same dataset. In this study, the
machine took 250 iterations to be able to build some sort of
intuition for itself after being trained for a day and a half. Before
those iterations, the initial attempts were imprecise. In order to
qualify the results, 6 aspects of the floor plan design were used as
metrics including footprint and orientation. Each metric is
translated to numbers, colours, or matrices to establish a proper
communication with the computer about its characteristics and
shape. From this study, the qualifying or classification phase is a
crucial phase in Al applications because the finer the metrics are
provided, the better and higher will the quality of the generated
options be.

Also, Zheng, H., 2018, and Martinez, N., 2017, investigated GANs
as design assistants where they studied the idea of creating a loop
between the designer and the machine to refine the design process.

According to Malaeb, J., and Ma, W., 2019, the developed
understanding of how human brain works led to changes in the
concept of Al where a machine focuses on mapping human
behavior rather than only carrying out complex calculations and
working as a memory. Al mostly works with deep learning and
natural language processing technologies. By processing large

XXVil

_ Introduction

Xxviii

amounts of data and classifying it based on patterns recognition,
machines could be trained to accomplish specific tasks. The
authors mention that various attempts to introduce Al to the
architectural field exist. However, most of the trials are partially
applying Al because they require human intervention and
monitoring to do a major part of the work. Again, the authors
confirm a main concern with Al where data inaccuracies always
reflect on the results. That is why limitations of Al in creative fields
are obvious where a machine learns from data. In addition, the
authors tackled deep learning and explained that it involves feeding
the machine with a lot of data that could help making decisions
about other data. The data is fed through neural networks which
could extract numerical values of the data which pass through them
and then classify the data according to the answers received.

Also, Bishop, 2006, defines ML as a subset of Al It is “the
scientific study of algorithms and statistical models that computer
systems use to perform a specific task without using explicit
instructions, relying on patterns and inference instead.” A
mathematical model based on sample data known as “training data”
is built by ML algorithms. This model helps to make predictions or
decisions without being explicitly programmed to perform the task.

Last but not least, As, 1., et. al., 2018, tackled the idea of applying
deep neural network (DNN) to extract design into essential
building blocks based on functional performance criteria and then
recombining them into new designs. The idea is based on a
historical event from the 16th century in Spain where the Italian
architect Giacomo Barozzi da Vignola was hired by the king Philip
IT to initiate a competition to design a monastery in Madrid. 22
architects submitted their entries, but Vignola composed a new
design from the 22 submitted designs by collaging bits and pieces
instead of choosing a winning project. However, the king was
impressed although the idea does not seem to be ethical in today’s
profession’s morals. The authors investigated two ML methods for
design generation which are DNNs for convolution and

Introduction ||| G

representation learning and GANSs. In the first method, a graph
convolutional neural network is used to discover essential building
blocks which respond to certain functional criteria. After that, the
building blocks are merged into new designs with the use of graph-
theory methods and data about the proximity of nodes in latent
vector embeddings. However, DNNs are not set up to generate new
designs, instead, they are very effective at classification and
discovery. The second method (GANs) is considered a new version
of DNNs which the authors used to merge building blocks into new
compositions. At the end, the researchers confirmed the initial
validation of graph-processing DNNs in generating novel
conceptual designs although some limitations and constraints were
faced including the complexity of architecture field (design scope)
where they only focused on the function and not the aesthetical and
structural aspects, design data work where some design samples
could not be labelled nor converted to graphs on Revit API’s BIM
format, and the evaluation of generated designs where the authors
did not deal with quantitative evaluation of the new compositions.
As, L., et. al., 2018, also suggest non-manifold topology as an
alternative method to graph presentation which could allow the
representation of walls, corridors, and enclosed spaces by
topological objects like faces, shells, and cells.

VI. Research Methods and Tools

The research goes through different successive methodologies to achieve

its aim and objectives. These methodologies are:

Methodology Application
Defining thinking and problem-solving
Defining architectural thinking
Critical Investigating complexities in architectural design
Analysis Analyzing the design process and form generation
Mapping contemporary architecture patterns and motifs
Investigating generative design and algorithmic design

XXiX

_ Introduction

Investigating Al and ML definitions, types, and
applications
Case Studies ' Analyzing Al and ML applications in architecture
Turning the elements of a building into parameters
through algorithms building.
Writing a generative design program through coding
Generating a parameters data set that could be used to
train ML models
Identifying the problems and deciding the proper ML
Experiments | models and tasks
Applying ML so that the machine could learn from the
architect by mapping the data set and predict/classify the
parameters of the building under study
Applying coding to fine-tune the resulting 3d-model so
that the architect can interfere in both teaching the
machine and modifying the result easily.

VII. Research Scope & Limitations

This research is directed towards investigating ML supervised learning
models specifically from Al models. ML models could predict, classify, or
cluster data based on the data sets they learn from. So, models do not
‘generate’ new data but generalize to unseen data based on mathematical
concepts from linear algebra, numeric methods, and optimization.
Supervised learning is chosen so that the machine can predict numbers and
classes which map to architectural parameters defined by the architect as
the framework targets a human-centered design approach. Other
applications like clustering could not help with the intended product.

However, a wider spectrum of Al models is investigated to understand and
analyze the differences between generative and discriminative Al in terms
of concepts and applications.

In addition, as this type of application’s result could be considered
‘generative design’, analysis of how generative design systems work is
necessary to gain insights about how ML applications could be different.

XXX

Introduction ||| G

To work with ML, it is recommended that architectural design modeling
be done through coding, so, the research is also directed towards a
thorough study on how to harness the power and freedom of coding in form
generation. The suggested framework allows the architect to create design
options as samples used for training. The architect’s designs (data set)
totally depend on their choice. In this case the architect should judge those
designs themselves because whatever the data set looks like, if a pattern
exists between the building requirements and target building parameters,
the framework should work as intended, and the accuracy of ML models
should be high. To test the framework, a contemporary building is designed
and modelled through coding in C# in Grasshopper3d for Rhinoceros3d 7
using RhinoCommon API which were chosen for the fast interface and
processing of algorithms. Other software could have resulted in the same
result.

For simplicity in the framework’s validation stage in this research, the
result from this first step is a data set containing tangible form proportions-
related parameters values of 600 prototypes of the contemporary villa
consciously designed by the author (an architect) based on some cases
related to the total built-up area which ranges between 200 and 1000 m?,
the neighbor types, setbacks, land dimensions, and other scenarios. The
villa was chosen to have a ‘contemporary’ style for ease of geometry in
building and coding as the main concept is to find a relationship between
almost a hundred of parameters of the villa, and to train the ML system and
test if it could find a pattern between them. For the sake of simplicity, the
location of the villa (country) was not included in the equation.

Different ML and ANN algorithms were tested for both classification and
regression tasks which were assigned to either predict values of the
parameters or to classify some parameters and achieve the aim of the
research.

XxXx1

_ Introduction

VIII. Research Structure

Chapter Subtitles Methodology

- Thinking and Problem-

Solving

2- Architectural Design

Thinking

3- The Black Box vs the Glass

Box vs the Gray Box

Metaphors

Design Methodologies

5- Architectural Design

Process !

6- New Technologies Effects on

the Design Process !

7- Complexities in

Architectural Design

8- Evaluation of Architectural
Design Outcome

Chapter 1:
Architectural Design Thinking and Process
+

Critical Analysis and Case Studies

1- Characteristics of
Architectural Forms

2- Form Generation in
Architectural Design

3- Mapping and Analyzing the
Elements and Motifs of
Contemporary Forms

Chapter 2:
Mapping the Elements
of Forms in
Architecture

[%2]
(5]
=
{5
Q
s
o
]
[%2]
]
(&S]
[<3]
=
<=
(&S]
1
<
(S
(@]
|-
Y—
[%2]
%]
(5]
(&
(@]
S
o
=
=
[%2]
[<5]
(@]
IS
Lo
=
]
(&
[<3]
=
<=
(&S]
1
<
—i
]
1S
©
o

XXxil

Introduction [G

Al Definition and History
2- Types and Applications of Al

QL
=)
c g
2 = 3- Generative and Non-
a) :?’ Generative Al
S = 4- Machine Learning 0
— (<5}
2 o Definition and Types 5
S c . . =1
= g 5- Data Sets in Machine n
c I+ q [B)
o o3 Learn_lng _ §
<q’§ o 6- Machine Learning =
= %‘_ = Algorithms | =
= IS 7- A Review on Using Non-Gen -
< Oo Al in Architecture i ‘_E
£ < 8- A Review on Using Gen Al <
s 2 in Architecture : S
I} i L2
g = 9- Generative Al Drawbacks in £
= 2 Architectural Design : =
N = 10- Generative and Non-
< 'S Generative Al Usage
o =
<

Possibilities in Architectural
Design '

Xxxiii

_ Introduction

: 1- Problem Definition, Scope,

) And Limitation

;225;@&?5' 2- Materials and Methods

Form 3- Coding an Architectural

- Generation: Design Model

~ Applying 4- Generating a Machine-
Machine Learning Ready Data Set

: Learning 5- Data Correlations

- Algorithms 6- Data Pre-Processing :

on 7- Data Splitting and Choosing =

 Architectural Features and Targets 5 £
Parameters . =
Data Sets 8- Data Resampling 3

9- Train-Test Splitting o
Training Models

Feature Importance
Evaluation Metrics
Model Learning Analysis
Predictions

Chapter 6:
Machine
Learning

Analysis and

Results Model Fine-Tuning
Discussion and Conclusion

Research Conclusion and Future Direction

XXX1V

Introduction [G

1. Framework of the Study

Coding a Parametric Model

-

e
3
]
|
©
[
"
g
£
8
a

walls Lengthe

— Walls Dep!

relation Matrix @ .

walls Heig

foofzDimendons

Windows Dimarzicas -

s Locations

Mudlons Spacing=

e
Handoen Forest Chass,

Parsing CSV Data to The Model

Model Validation A
v o : P £

% Ranum ot ey

g .o Rogresaian ! . Cassfication ghocz Kghoost Clas
' Hicge RadmsNeighberztlass
R Seere l' Accuracy KN::Tl Na:nl:ra R (-l\‘—_m::‘(‘)N;sllhbu Class,
Mean Adsoliee Erroe H Precision urcar Rag Lpoizas
' Recall Pobynomial Reg
' - Dacisinn Tree Reg
' MiPRog

Suggested Machine Learning Framework for Regression and Classification Tasks in Architectural
Design Modeling - By the Author

XXXV

36

Part 1: Architectural Design Process from

Architects to Machines

Chapter 1

Chapter 1: Architectural Design Thinking and
Process

Preface

Architectural design is a very complicated process which exhibits a very
large number of parameters and possibilities. In his book “How Designers
Think”, Bryan Lawson argues that the essence of design necessitates
different ways of thinking. As the author describes, thinking could be either
in closed systems or adventurous. But with all the parameters that affect
architects’ decisions and ways of thinking, how is it possible to map every
idea that sparks in the designers’ brain or even the design process? Those
parameters can be quantitative as the legal constraints, technical aspects,
financial aspects, and clients’ desired number of rooms in a building. And
they can be qualitative including architectural theories, psychological
factors, architects’ philosophical approaches, and aesthetical aspects which
usually depend on the designer’s favored architectural style, language, and
motifs.

Architectural innovation has always drawn inspiration from the concealed
depths of black boxes as well as the transparent clarity of glass boxes. And
the design thinking process in architecture, often considered a vague
merger of intuition, expertise, and inspiration, has been metaphorically
likened to a black box — a mysterious entity in which decisions are made
and ideas take shape, shielded from external scrutiny. Yet, counter to this
notion is the transparent principles of the glass box, where design decisions
are laid bare for all to witness, fostering collaboration, critique, and shared
understanding.

This chapter explores what architectural design thinking is through an
investigation of different design thinking styles and design types as well as
how to define good architecture. Different complexities in design thinking
are explained leading to the important questioning of whether architectural
design thinking should be encapsulated in a black box or a glass box after
explaining the two metaphors. This chapter is an invitation to critically
reflect on the metaphors that define the understanding of the architectural

Architectural Design Thinking and Process

design process. It challenges preconceived notions, encourages thoughtful
examination, and paves the way for a deeper comprehension of the
multifaceted nature of design thinking in architecture.

Design is a strategic approach to problem-solving, leveraging creative
abilities that integrate elements from both the arts and sciences to address
diverse challenges. While designers employ various problem-solving
methods, they typically adhere to an established pattern or sequence of
steps that have proven effective in realizing designs from the initial
concept to their completion. Whether performed consciously or
subconsciously, the design process is a fundamental aspect integral to
nearly every project.

In the realm of architecture, the design process and methodology play a
crucial role in crafting innovative solutions. Numerous studies have delved
into design methodologies, engaging in critical analysis, evaluation,
comparison, and the proposition of alternative approaches for creative
problem-solving. These studies serve a dual purpose: assisting designers
in understanding their distinctive styles and presenting novel options for
achieving solutions.

The stimulus for such research lies in recognizing that each architect
operates within their unique conceptual frameworks. These frameworks
not only aid in setting boundaries and defining objectives but also enhance
communication within extensive networks of collaborators. In summary,
the passage underscores the structured yet creative essence of the design
process and emphasizes ongoing efforts to refine it through
methodological exploration.

In this chapter, the term architectural design process is explained, and
different methodologies are discussed. Also, the effects of other disciplines
on the process are discussed as well as the effects of today’s technology on
different architectural design processes.

1.1 Thinking and problem-solving

Understanding the design process requires insight into human cognition
and thinking, as highlighted by Lawson (1990) and Caldwell, et. Al.

2

Chapter 1

(2000). Psychologists believe creativity is linked to brain function and
neural processes, with individuals varying in their cognitive wiring. Since
ancient times, the debate over the origins of knowledge—whether it is
acquired through experience (empiricism) or inherent (nativism)—has
intrigued thinkers like Plato and Aristotle. Rowe (1987) identifies two
themes in problem-solving: one grounded in mental processes governed by
lawlike relationships and the other in behavioral, non-mentalistic terms.
The evolution of design thought in architecture has been shaped by five
key psychological perspectives: Associationism, The Wurzburg School,
The Gestalt Movement, Behaviorism, and Cognitivism.

Associationism viewed creative problem-solving as mechanistic and
atomistic, while The Wurzburg School, led by Kulpe, emphasized task-
oriented act theories, influencing principles like Sullivan's "form follows
function." The Gestalt movement introduced holistic principles,
emphasizing whole units in perception and problem-solving, impacting
architectural design through comprehensive images. Behaviorism focused
on observable behavior and stimulus-response models, influencing
practical approaches like climate-responsive design. Cognitivism,
integrating Gestalt psychology, views the mind as an information
processor, relevant in the modern context due to the complexity and
volume of information in contemporary design projects (Mahmoodi,
2001).

Thinking styles are diverse and categorized into problem-directed,
undirected, and creative thinking (Gilhooly, 1996). Directed thinking
involves solving well-defined problems using state-action or problem
reduction methods. Undirected thinking, such as daydreaming, often
occurs in the pre-concept phase, potentially leading to innovative design
ideas. Creative thinking, characterized by Wallas (1926) in four phases—
Preparation, Incubation, Illumination, and Verification—generates novel
and valuable products. Styles of thinking, defined as preferred ways of
thinking (Mahmoodi, 2001), vary among individuals, with societal
perceptions of capability influenced by the fit between thinking styles and
tasks. Exploring these styles enhances the understanding of how
architectural designers approach problem-solving.

3

Architectural Design Thinking and Process

Table 1-1 summarizes thinking styles using Sternberg's (1997) metaphor
of governments, which have diverse functions (legislative, executive,
judicial), forms (monarchic, hierarchic, oligarchic, anarchic), levels
(global, local), orientations (external, internal), and leanings (liberal,
conservative). Similarly, styles should consider these various aspects of
individual functioning.

Table 1-1 Summary of Styles of Thinking (Sternberg, 1997, p. 27)

Functions Forms Levels Scope Leanings

Legislative Monarchic
9 . Hierarchic Global Internal Liberal
Executive . . .
- Oligarchic Local External | Conservative
Judicial .
Anarchic

Mental self-government has three functions—Legislative (creating rules),
Executive (following rules), and Judicial (evaluating rules)—and
manifests in styles akin to government forms: monarchic (focused),
hierarchic (priority-setting), oligarchic (balancing goals), and anarchic
(creative). These styles vary by level, with global thinkers addressing
abstract issues and local thinkers focusing on details; by scope, with
internal thinkers being introverted and task-oriented, and external thinkers
being extroverted and people-oriented; and by leaning, with liberals
seeking change and conservatives preferring structure.

Since classical times, it has long been recognized that the human brain
possesses two distinct modes of thinking and understanding (Table 1-2).

Table 1-2 Two Types of Thinking described by intellectuals (URL-2, CaldwelJ, et al., 2000)

Left Brain Right Brain
Maslow Rational Intuitive
Bruner Rational Metaphoric
Koestler Associative Thinking | Bisociative Thinking
De Bono Vertical Horizontal or Lateral
Bronowski Deductive Imaginative

Chapter 1

Shopenhauer Objective Subjective

Freud Secondary Process Primary Process

Jung Causal Acausal

Langer Discursive Symbolism | Presentational Symbolism
Neisser Sequential Processing = Multiple Processing
Kubie Conscious Processing | Preconscious Processing

The human brain consists of two cerebral hemispheres (Figure 1-1), with
the left hemisphere typically dominant. The left hemisphere is slightly
larger, and the two are connected by the Corpus Callosum. Roger Sperry's
split-brain experiments in the 1950s revealed distinct functions for the left
and right hemispheres, each controlling the opposite side of the body.

Cerebral cortex
Hemispheres Sulci

Cerebrum

Frontal Temporal
Parietal = Occipital

Front view Side view (outside)

Figure 1-1 Cerebral Cortex (Human Brain) - https://my.clevelandclinic.org/health/articles/23073-
cerebral-cortex (Last Access: 14/11/2023)

Different brain regions process information differently, with visual word
perception and word meaning involving distinct areas. Human actions and
thoughts are controlled by one dominant hemisphere. Initially, hemispheric
differences were thought to be based on behavior modality, with the left
hemisphere specialized for language and reasoning, and the right for music

Architectural Design Thinking and Process

and vision. This evolved into a distinction between a "rational" left
hemisphere and an "intuitive" right hemisphere. More recently, discussions
emphasize a "left-analytic" and "right-holistic" mode of information
processing, suggesting each hemisphere has a distinct cognitive style. The
left is associated with sequential, analytic thinking, common in Western
societies, while the right is linked to holistic, intuitive thinking, more
prevalent in Eastern cultures and religions (McGilchrist, 1., 2009).

The present discussions on hemisphere characteristics should not imply
that thinking activities are exclusively determined by either the left or right
hemisphere. The design process benefits from the interaction between the
two hemispheres, leading to well-rounded thoughts and actions.

According to Tovey (1984), designing and problem-solving engage both
hemispheres by matching analytically processed problem models with
holistically processed solution patterns. Evidence indicates that both
hemispheres contribute in parallel during higher-level mental activities,
exchanging information. Both types of thinking are crucial in addressing
design problems, but the dominant hemisphere may vary based on the
adopted strategy.

Understanding how the human brain thinks remains a crucial subject that
helps us to understand how any thinking or problem-solving process
occurs in the human’s mind. From a further perspective, understanding
how architects think and solve problems will be a very important
discussion in the coming years because of the spread of Al applications in
architectural design recently which will have higher chances to be
developed once frameworks of how architects think are developed, Al can
learn from these frameworks and act accordingly.

1.2 Architectural design thinking

Architectural design involves solving diverse problems, including site
issues, social effects, space planning, construction technologies,
environmental aspects, legal constraints, and cost. This process requires
thinking skills like analysis, synthesis, and evaluation, encompassing both
well-defined and ill-defined aspects. Not all problem-solving thoughts are

Chapter 1

documented; some remain in the architect's mind until a complete solution
emerges. Definitions of architecture vary, often blending art and science.
Influential figures like John Ruskin, Le Corbusier, Louis Kahn, and Norval
White emphasize both the physical and mental aspects of architecture.
Ruskin and William Morris view architecture as Building + Art. Conway
and Roenisch (1994) note its Greek origin meaning 'builder, yet
architecture is broader, affecting social, cultural, and economic aspects.
Capon (1999) categorizes architecture using Aristotle's six categories:
Substance (construction), Relation (context), Quantity (form), Quality
(meaning), Acting, and being Acted upon. This multi-disciplinary identity
shapes lives and societies, requiring characteristics like uniqueness and
positive psychological impacts. Capon organizes the six elements of good
architecture into two main categories as in table 1-3.

Table 1-3 - Capon's categorization of the six elements of good architecture (Capon, 1999a, P. 181)

Primary Categories
Greek categories Architectural elements
. Form., Pattern, Structure, Geometry, etc.

Quantity :

- Function, Needs, Effects, Exchange, etc.
Activity . .
Quality Meaning, Association, Resemblance,

Style, etc.

Secondary Categories
Substance Construction, Materials, Design, etc.
Relation Context, Community, Nature, Feeling, etc.
Will Spirit, Power, Politics, Attitudes, etc.

Capon (1999a) examines Aristotle's categories of good in architecture by
aligning them with ancient Greek virtues and professional practice values.
He identifies two main categories: Primary and Secondary. The primary
category aligns Greek virtues such as Justice, Temperance, and Wisdom
with professional values like Impartiality, Efficiency, and Integrity. The
secondary category connects virtues like Duty, Love, and Courage with
values such as Responsibility, Respect, and Motivation.

Architectural Design Thinking and Process

Capon builds on these models by incorporating Aristotle's principles of
good performance into six architectural principles, categorized into
primary and secondary elements. Primary principles include:

1. Impartiality of Form: Objectivity in form.

2. Efficiency of Function: Efficiency and economy in function.

3. Integrity of Meaning: Propriety and integrity in meaning.
Secondary principles are:

4. Obligations of Construction: Responsibility in design and
construction.

5. Regard for Context: Sympathy for context and community.

6. Motivation of Spirit: Motivation and conviction in will and spirit.

In the second volume of his book, Capon examines definitions of
architecture provided by several 20th-century architects across different
years and texts. He endeavors to categorize their perspectives under the
three Vitruvian categories, as outlined in Capon (1999a). Mahmoodi, 2001
compiled the definitions as in table 1-4:

Table 1-4 Definition of 20- century architects of architecture. These terms are compared with the

original Vitruvian categories (Introduced by Capon, 1999b, pp. 349-353, compiled by Mahmoodi,
2001, p. 55)

VItruvius, Firmittas Utilitas Venstustas
*2000Years | (Eirmness) (Commodity) (Delight)
ago

Geoffrey Construction Convenience Aesthetics
Scott, 1914

Auguste Material Use Beauty

Perret, 1923

Le Corbusier, | Construction Utilitarian needs Custom/tradition
1923

Le Corbusier, | Construction Needs Mathematics/harmony
1923

Le Corbusier, | Constructing Living Conceiving
1923

Le Corbusier, | Economy Sociology Aesthetics
1923

Chapter 1

Walter Technology Economy Form
Gropius, 1924

Walter Construction Economy Design
Gropius, 1924

Walter Technical Economic Aesthetic
Gropius, 1924

Walter Technical Social Aesthetic
Gropius, 1924

Walter Structure Function Intellect
Gropius, 1924

Ludwig Mies | Technical Economic Cultural
van der Rohe,

1928

Ludwig Mies | Material Functional Spiritual
van der Rohe,

1928

Ludwig Mies | Technical Economic Architectural
van der Rohe

ASNOVA, Technical Economic Plastic expression
1931 plausibility feasibility

Nikolaus Construction Function Style
Pevsner, 1943

Reyner Ban | Structural Social Academic
bam, 1960

L. Benevolo, | Technical Social Cultural
1960

Christian Technical Functional Aesthetic
Norberg-

Schulz,

(1963)

Christian Physical Social Cultural
Norberg-

Schulz

Christian Techniques Building task Form/semantics
Norberg-

Schulz

Robert Structure Programme Expression
Venturi, 1966

N. L. Park, | Construction Function Aesthetics
1968

N. L. Park, | Physical Behavioural Conceptual
1968

George Baird, | Technique Function Form

1969

Architectural Design Thinking and Process

Charles Jenks, | Technics Function Form

1969

L Ligo, 1974 | Technics Function Form

David Canter, | Physical Actions Conceptions
1977 attributes

R. Krier, 1982 | Construction Function Form

M. Foster, | Structure Design Style

1983

The prevailing definitions concerning the three Vitruvian categories are as
follows: Firmness aligns most closely with aspects like construction and
technique; Commodity relates primarily to economic and social
considerations; and Delight pertains to the formal and aesthetic aspects of
architecture. The only concern in Capon’s studies was referencing to
Vitruvius’: Firmitas (firmness), Utilitas (commodity), and Vensutas
(delight) because the three elements are seen as complementary to each
other rather than separable. If delight is separated from commodity, it could
imply that delight serves no fundamental purpose. In addition, firmness
and commodity are considered main contributors to delight. And in this
sense, architectural design thinking is involved with problems that are
related to those three cores. Although, the three cores are redescribed from
time to time, they remain the main cores to assess an architectural design
either as good one or not from a general perspective.

Lawson (1990) argues that architectural design defies strict boundaries,
involving subjective value judgments and a blend of problem discovery
and resolution. Mahmoodi (2001) suggests that despite its intuitive nature,
design approaches can be categorized by types. Broadbent's (1988)
comprehensive categorization includes Pragmatic, Typologic, Analogic,
and Syntactic Design. Pragmatic Design employs trial-and-error processes
based on physical factors, while Typologic (iconic) Design utilizes pre-
established solutions. Analogic Design draws inspiration from various
sources to foster new insights, while Syntactic Design (canonic) operates
within rule-based systems, often geometric. Mahmoodi notes that
architects often combine multiple design types within a project to address
unique challenges effectively.

10

Chapter 1

1.3 The black box vs the glass box vs the grey box metaphors

Creative activities within the design process unfold organically, reflecting
its iterative and dynamic nature (Lawson, 1993; Lang, 1987; Broadbent,
1969). Designers engage in continuous exploration, synthesizing diverse
information, making intuitive leaps, and forging unexpected connections
to generate innovative solutions. Bruno Latour's metaphorical concept of
the black box, introduced in 1987, symbolizes encapsulated knowledge
known to specialists but often perceived as unknowable (Latour, 1987).
Black boxes serve as ready-made solutions, offering practical outcomes
without necessitating exhaustive internal understanding (Witt, 2018).

Norbert Wiener's dichotomy of black and glass boxes underscores the
trade-off between usability and comprehensive understanding in design
operations. The "black box" approach, as elucidated by Lawson (1993) and
echoed by Lang (1987) and Broadbent (1969), conceptualizes design as an
abstract and internalized mental activity. This perspective highlights
design's multifaceted and subjective nature, encouraging the use of
techniques like brainstorming and synectics to illuminate the creative
process (Lawson, 1993). Within this framework, the design process is seen
as a complex interplay between analytical and holistic thinking, involving
the integration of problem models with visual-spatial and symbolically
coded solution patterns (Tovey, 1984).The "black box" approach to design
refers to viewing the creative and mysterious aspects of the design process
as an abstract and internalized mental activity within the designer. In this
perspective, design is seen as a complex and subjective process that defies
easy analysis. While traditional analytical methods may struggle to dissect
the intricacies of design thinking, techniques like brainstorming and the
application of synectics are considered helpful in providing a glimpse into
the visualization and ideation aspects of the design process.

Throughout history, designers have fluctuated between black boxing and
glass boxing in their relationship with mathematics, representing informed
action (glassboxing) and pragmatic approaches (blackboxing) (Witt,
2018). The "glass box" (glass box) design method, emphasized by
Broadbent (1969) and Archer (1969), analyzes the design process

11

Architectural Design Thinking and Process

systematically, considering identifiable events such as identification,
analysis, synthesis, and evaluation. This approach utilizes various methods
like systems analysis and set theory, providing a logical framework for
problem-solving. Figure 1-2 shows the design process as proposed by
Archer, 1969.

reiterative problem

’\ solving routine

REAL WORLD

branching of the
problem into its
logical parts

advance through
the program

Figure 1-2 Design process (Archer, 1969, p.94 and p.100)

The "glass box" design approach was criticized by Sullivan and Hillier
(1972) for prioritizing artistic development over building quality. In
response, the evolution of design methods integrates concepts from
Popper's philosophy of science, emphasizing conjecture and refutation to
bridge the gap between science and art in the design process.

In 2018, Witt., A., wrote in Log Journal vol 43 introducing a new term
called ‘greyboxing’. Witt introduced the concept of "greyboxing,"
highlighting its significance in contemporary software development,
particularly in the integration of mathematical techniques into digital
design. Grey boxing involves orchestrating combinations of black and
glass boxes to create novel functions, offering a unique perspective on how
mathematical ideas infiltrate architecture. This approach, reminiscent of
architecture's historical assimilation of mathematical techniques,
facilitates the creation of new operational networks by opportunistically
appropriating instrumental knowledge without requiring exhaustive
technical understanding.

12

Chapter 1

In the current digital landscape, the use of neural networks exemplifies the
gray boxing approach, where the network extracts formal rules from a
diverse collection of images to generate novel architectural forms. The
process involves navigating through layers of black boxes, emphasizing
the importance of curated training sets as a common currency for distilling
formal rules. Witt positions these techniques within the broader context of
black boxing, gray boxing, and glass boxing approaches in design history,
underscoring their enduring relevance and adaptability across disciplines.
In general, Witt’s description paints grayboxing as a resilient and effective
strategy, allowing for creative adaptation and integration of mathematical
concepts, computer science, Al., and many other fields into the design
process.

1.4 Design methodologies

Mahmoodi (2001) distinguishes between 'design methods' and 'design
methodology', where the former refers to techniques and procedures, while
the latter encompasses the broader strategy and process of applying these
methods within the realms of analysis, synthesis, and evaluation.
Architecture history traces back the concept of architectural designing to
Vitruvius, with later contributions from Alberti (1485), Descartes (1637),
Laugier (1753), and Le Corbusier (1923), each emphasizing aspects of
problem-solving, decomposition, and composition in the design process.
Contemporary architects and critics view the design process as a blend of
reason and intuition, described as "learning-by-doing" (Grant, 1975, 1982;
Schon, 1984). Today, the focus is on incorporating user behavior and
enhancing the built environment for sustainability, with Mahmoodi
identifying two major models of design methodologies: 'the systematic
model' and 'the environmental model'.

The systematic model

Throughout history, societal shifts have significantly influenced the design
process. In the Middle Ages, architecture revolved around religious
buildings, while today, civic and business structures dominate urban
landscapes. Post-World Wars, Modernism emerged, emphasizing
simplicity and speed. Mahmoodi (2001) introduced the '"stage-phase

13

Architectural Design Thinking and Process

approach" in design methodology, influenced by Green (1962), Cutler and
Cutler (1982), and others. Broadbent (1973) highlighted engineering's
impact on design theory, while Asimow (1962) outlined problem-solving
phases. Gugelot (1963) introduced a six-stage method for design
education. The AIA's model (Duerk, 1993) includes Pre-Design,
Schematic Design, and other steps. Salvadori (1974) divided architectural
praxis into Programming, Schematic, and other phases. Duerk (1993)
emphasized interactive processes between Analysis, Synthesis, and
Evaluation. Figure 1-3 shows the proposed design process by Duerk
(1993).

v ¥ » ¥
PROBLEM - Analysis - Synthesis » Evaluation - SOLUTION

Designing a Bulidiny
Designing 8 Bulkding Elaboration o H Pt
U eton : Choice | rototype
iy tle H d ¥ H Compositit
i Alternative Generation | Aicgament g H ompomon
Y , H Selection i Model
! Variety Generation | ! : !
H Proposing H Convergence : Plan
Variety Reduction ' Section
Divergence < H ! ¥
S Consolidation H 3D Views
Future State A i
................................... oot
i
|
|
Goals and Objectives »Concepts «
Performance ’ Ideas
Requirements : Parties
! Performance Criteria Design Ideas
Design Criterla * Proposals
Constraints H Images
Values H Archetype

Figure 1-3 The Design Process: Analysis, Synthesis, and Evaluation (Duerk 1993, p. 18)

As seen from the figure, Duerk’s model suggests cyclical relation between
activities with no order of priorities. In addition, the model separates the
activities each set in its own category where this does not meet what
happens in practice where many activities are inseparable.

Advancements in technology with the introduction of Building
Information Modeling (BIM) has reshaped the design process in the AEC

14

Chapter 1

industry. BIM integrates inputs from all disciplines involved in a project,
facilitating synthesis, analysis, and evaluation in a unified framework.
Optimization techniques are applied to various design aspects, such as
views, structure, daylighting, and ventilation. This integrated approach
emphasizes the importance of rational decision-making in the design
process.

In the 1960s, early environmental design models leaned towards discrete,
sequential decision processes influenced by "rational" decision-making
models (Simon, 1957, 1960, 1969). Newell, Shaw, and Simon's 1957 paper
introduced the information processing theory, emphasizing cognitive
processes (Rowe, 1987). Lang (1987) highlights Studer's (1970) model,
focusing on defining function, designing form, building, and evaluating.
Computer-aided design approaches, like ICADS, emerged, emphasizing
collaborative decision-support systems. Mahmoodi (2001) criticizes
overreliance on computer systems in design, advocating for human
involvement in decision-making.

The environmental model

According to Mahmoodi (2001), the 'environmental model' in design
methodology incorporates environmental considerations and human
sciences. Lang (1987) advocates for an argumentative design process,
delineating phases like Intelligence, Design, Choice, Implementation, and
Post-implementation Evaluation. This mirrors professional praxis, which
includes Programming, Design, Evaluation and Decision, Construction,
and Post-occupancy Evaluation (Lang, 1987). Intelligence activities in
design involve problem identification and understanding, goal
formulation, and environmental evaluation (Lang, 1987). Mahmoodi
(2021) supports the environmental approach, stressing the context-
dependent nature of problem perceptions and definitions. However,
criticisms include the perceived linearity of the model, even in its
interactive form (Mahmoodi, 2001). Another model by Professor
Broadbent (1988) incorporates Popper's (1963) "conjecture" and
"refutations." The model explores different design types (conjectures),
including Pragmatic, Typologic, Analogic, and Syntactic Design. It also

15

Architectural Design Thinking and Process

examines the fit of spaces to activities, environmental filtering, cultural
symbolism, and environmental impact (refutations) (figure 1-4).

Briefing
Pragmatic Design
Conjectures Typologic Design
Analogic Design
[Analysis L Syntactic Design
?
Synthesis

Fit of spaces to activities
v Environmental filtering
Evaluation Refutations Cultural symbolism
Economic performance
Environmental impact

4

Implementation

Figure 1-4 The environmental model of the design process (Broadbent, 1988, p. 467)

Professor Broadbent (1988, p.459) clarifies that his model of the design
process deviates from so-called "linear" models. Instead, he describes it as
a "map" of the "design territory." Later in the same text, he emphasizes that
the design process is not confined to a linear sequence and can commence
at any point within his model.

Broadbent's latest proposal reflects the contemporary architectural design
process, involving iterative analysis and evaluation after each design
iteration. Stakeholders assess various aspects like environmental, social,
aesthetic, functional, cultural, and economic factors until the building's
performance is reviewed and decisions are made.

1.5 Architectural design process

Design process methodology, established as a distinct discipline in the
1960s, has evolved beyond traditional approaches like 'drawings and

16

Chapter 1

patterns.' Although these conventional methods persist, the field has
embraced more diverse and advanced techniques.

As design methodology gained recognition as an independent field,
scholars like J. Christopher Jones, in his 1980 book "Design Methods:
Seeds of Human Future," highlighted the intricacies of the design process.
Jones identified three key operations: gathering information, testing design
decisions, and evaluating their appropriateness. He also categorized the
design process into unconscious and conscious intellectual activities,
tapping into both intuitive and rational thinking.

Architectural design profoundly influences project outcomes, shaping
functionality, aesthetics, user experience, and sustainability. Decisions
made during design impact budget, regulations, and adaptability.
Collaborative approaches are crucial for success.

Design, as discussed by Chandrasegaran, Kisselburgh, & Ramani (2012),
is an iterative process aiming to achieve functionality through form
proposal and analysis. However, in the contemporary context, design
expands beyond functionality, integrating intellect and technicalities
(Royal College of Art, 1979; Cross, 2006). Architects are challenged to
infuse creativity into projects, enhancing user experiences while meeting
functional needs (Levin, 1966).

Contemporary design thinking diverges from traditional linear
methodologies (Abowardah, 2016). Rather than following a strict
sequence of analysis, synthesis, and evaluation, modern approaches allow
for flexible engagement of different thinking modes throughout the
process. This adaptability acknowledges the complexity of design
activities. Abowardah (2016) explored practical design methodologies by
analyzing insights from renowned architects like Frank Gehry, Zaha
Hadid, Toyo Ito, and Peter Zumthor. Gehry's process, for example,
involves sketching continuously, drawing inspiration from sculptors and
painters. Despite appearing sequential, his method incorporates trial and
error, resembling Broadbent's cyclic approach between analysis and
evaluation. Figurel-5 shows Frank Gehry’s sketch of Guggenheim Bilbao
against the constructed version.

17

Architectural Design Thinking and Process

Figure 1-5 - Frank Gehry's Guggenheim Bilbao - https://architizer.com/blog/practice/tools/how-
architecture-is-born-frank-gehry/

Zaha Hadid Architects utilize digital techniques, known as 'form finding',
relying on mathematical studies and optimization for structure,
daylighting, and ventilation. Their process remains within the analysis-
evaluation cycle, prioritizing digital methods before synthesis.
Additionally, Toyo Ito's approach is similar, focusing on integrating with
nature through digital tools like Voronoi, aiming to break away from
homogeneity in cityscapes. Moreover, Peter Zumthor follows a
comparable process but emphasizes space and materials in the analysis
phase, relying on physical models for concept evaluation.

Abowardah (2016) outlines the design process into three phases: analyzing
knowledge, developing tools, and invention, aligning with Broadbent's
suggested approach influenced by Popper's thoughts. Architectural firms
globally invest in research and development to automate processes and
enhance efficiency.

1.6 New technologies effects on the design process

New technologies have revolutionized the design process, particularly in
the analysis and evaluation stages. Instead of relying solely on sketching

18

Chapter 1

or modeling, advanced design techniques driven by developments in
materials and construction allow for more innovative solutions. Architects
now trust computers to find optimal forms based on various considerations
like environmental impact, spatial relations, and structural analysis.
However, architects still direct these approaches based on project goals,
ensuring that the final design meets objectives and can be feasibly
constructed. Figure 1-6 shows how decisions could be made and buildings
forms could be optimized based on solar radiation simulations.

Figure 1-6- Solar Radiation Optimization with Grasshopper / Galapagos / DIVA by Yazdani
Studio, https://yazdanistudioresearch.wordpress.com/2015/02/09/building-optimization-tools-the-
grasshopper-definition-and-breakdown/

After this result, the product is refuted and evaluated against other design
problems and aspects until a final decision is made.

Moreover, the approach to deal with the building as information which are
sometimes complicated led to changes in the implementation phase where
the required product of the process is no longer 2D drawings, but a building
information model containing every single element to be constructed and
showing the relations and quantities of the elements.

In addition, the development in digital fabrication specialization led to a
groundbreaking leap in the preparation of the construction drawings which

19

Architectural Design Thinking and Process

made building complex geometries very easy and well organized in site.
Figure 1-7 shows the use of Grasshopper for Rhinoceros3D in digital
fabrication, numbering the surfaces, and extracting all of the information
needed for site fabrication. Different plugins are developed to automate the
extraction of such information.

DIGITAL
FABRICATION

WAFFLE

Figure 1-7- Digital Fabrication Technique to Extract Information about Elements Using
Generation, Grasshopper, and Rhinoceros3d — by Antonio Turiello,
https://www.grasshopper3d.com/group/generation

Other techniques such as procedural modeling, simulations, kinetic
architecture, and more, also led to many changes in the design process.
These techniques will be discussed in chapter 2.

To conclude, recent technologies did not affect the design process
suggested by Broadbent, 1988, per say, but it affected the phases in a very
strong and efficient way that made the cyclic process between analysis and
evaluation much smoother and made the intervention of different design
types and modes applicable at any stage of the cyclic process.

1.7 Complexities in architectural design

Since Vitruvius, architectural evaluation has revolved around firmness,
commodity, and delight. Attempts to quantify delight, such as through the
golden ratio or modular grids, have persisted throughout history. Today,
environmental parameters can be quantified using tools and building
codes, enabling assessments of factors like daylighting and power
consumption.

20

Chapter 1

However, assessing functionality faces challenges due to the uniqueness of
each design. Support tools are often used late in the process, hindering
early identification of imperfections. Post-occupancy evaluations focus on
design confirmation rather than comprehensive quality quantification
(Mahmoodi, 2001).

To improve design quality assessment, there's a need for research into tools
that accommodate design uniqueness and can be applied in the early
phases. Bridging the gap between support tools and design requirements is
crucial. Without such advancements, aesthetic assessment will remain
subjective, relying solely on designers' perspectives of beauty and
proportions.

It is crucial to understand the difference between problem solving and
designing. In problem-solving, designers typically seek logical solutions
to specific issues, whereas in designing, they create a comprehensive
solution that addresses multiple design problems. Designing involves more
effort, as designers need to integrate both creative and logical solutions.
Despite the complexity of design, the notion of breaking down design
problems into constituent parts for easier solutions is challenging, as
Professor Lawson notes (1993), emphasizing the need to consider the
entire problem or a multitude of issues simultaneously. Architects can face
many challenges in design categorized by the author as: complexities
within thinking, complexities in problems definition, complexities within
the design process, complexities in decision making, and complexities
resulting from rapid development in technology.

Complexities in Problems Definition

Architectural design involves solving complex problems, from client
requirements to environmental impacts. These intertwined issues create a
network of decisions for architects. Defining problems accurately is
challenging due to many non-quantifiable aspects of architecture, leading
to uncertainties. Lateral thinking is essential, as solutions may emerge
unexpectedly, but delving deeper can reveal further complexities,
perpetuating a cycle of problem-solving.

21

Architectural Design Thinking and Process

Complexities within Thinking

Design thinking involves multifaceted problem-solving influenced by
cognitive styles like divergent vs. convergent and impulsive vs. reflective
thinking. Architects balance these styles to tackle design challenges
effectively, leveraging different modes of thinking within the same task to
innovate.

Complexities within the Process

The design process encompasses analysis, synthesis, and evaluation,
involving data collection, idea generation, and solution selection. It's
recognized as a series of internalized operations, with designers
transforming inputs into outputs, raising questions about the intuitive
process governing human thinking in design.

Complexities in Decision-Making

Architectural design requires intricate decision-making due to varied and
interconnected problems. Conflicting decisions can arise, leading to
complex trade-offs. Some problems require creative problem-solving,
while others rely on design principles and standards, though these may
have shortcomings.

Complexities Resulting from Rapid Technological Development

Technological advancements, like BIM and Al, have revolutionized
architectural design, offering new opportunities and challenges. BIM
facilitates information integration, enhancing efficiency, while Al enables
tasks like visualization and parameter prediction. These developments
prompt questions about architects' roles and idea authenticity in the face of
evolving technology.

To conclude, architectural design is a very complex process because of the
many complexities encompassed in this activity associated with many
aspects like aesthetics, information, technology, constraints, and many
others that hinder the problem-solving process. Those complexities need
to be understood well to map how an architect solves the problems
resulting from them.

22

Chapter 1

Summary

This chapter delves into architectural design thinking, exploring its
complexities and evolution. It begins by examining the human brain's
cognitive processes, drawing from psychological studies on problem-
solving from Associationism to Cognitivism, highlighting the relevance of
Cognitivism in architectural thinking due to its emphasis on information
processing. Definitions of architecture and design types by Vitruvius and
Broadbent are discussed, revealing the challenge of forming a concrete
definition.

The exploration extends to understanding the architect's thought process
through black box and glass box metaphors, emphasizing the complexity
and non-linear nature of architectural design. Various complexities within
thinking, problem definition, design process, decision making, and
technology are examined, showcasing the multifaceted nature of
architectural design.

The chapter transitions to the Architectural Design Process, introducing J.
Christopher Jones' operations and tracing the evolution of design
methodologies since the 1960s. Mahmoodi's classification into systematic
and environmental models is discussed, along with specific models like
Broadbent's stage-phase model and Archer's design process flow chart.

Insights from renowned architects like Frank Gehry, Zaha Hadid, Toyo Ito,
and Peter Zumthor are incorporated, showcasing diverse design
approaches. Abowardah's investigation of practical models for design
methodology, analyzing famous architects' processes, is explored.

The impact of new technologies on the design process is examined,
highlighting advancements like solar radiation optimization tools and
Building Information Models (BIM), which have streamlined decision-
making and construction processes. The chapter concludes with a
discussion on evaluating architectural design outcomes, emphasizing the
need for early assessment to avoid problems. Parameters affecting form-
making, known as delight, are discussed, acknowledging the challenge of
assessing aesthetics due to changing principles throughout history.

23

Architectural Design Thinking and Process

In summary, the chapter provides a comprehensive overview of
architectural design thinking, from cognitive processes to practical
methodologies and the influence of technology, emphasizing the dynamic
and creative essence of design in architecture.

Yet, the question remains, can the process occurring in the architect’s mind
within a black box approach be mapped? Or can the architect themselves
map the process of thinking? Does the process remain the same for the
architect when a black box approach is taken regardless of the project?
Answering these questions could have a great impact on the architectural
design process. Especially if the answer is true, then supposedly a machine
can learn this process and act as a designer.

24

Chapter 2

Chapter 2: Mapping the Elements of Forms in
Architecture

Preface

Architectural form extends beyond the arrangement of physical space and
activities. According to Yilmaz (1999), it serves as a meaningful
instrument, signifying a connection with elements, their syntax, associated
meanings, and their impact on individuals. The reduction of form to the
mere selection and organization of elements is cautioned against; it should
not be seen solely as a tool for conveying meaning.

The foundational elements - point, line, plane, basic shapes, and solids -
historically influenced various conceptual geometries, continuing to play
a crucial role in contemporary architecture. These elements significantly
shape space and architectural form, contributing aesthetic, symbolic, and
conceptual depth to architectural design. Architects widely employ these
elements, particularly in the organization of architectural space.

When the use of elements is symbolic and serves as surface decoration, the
elements are usually referred to as motifs (Aamir, 2017).

In this chapter, architectural form is defined beside mentioning different
characteristics of form as well as its elements from points to solids. After
that, the difference between form making and form finding is highlighted
as a base for the upcoming question in next chapters whether Al could
serve in the form making or form finding. The chapter ends by discussing
how to map different contemporary architectural form elements and
motifs. This part will later be serving in translating those elements to
computational parameters that will be ‘learned’ by Al algorithms.

2.1 Characteristics of architectural forms
Erzen (2015) posits that in ancient times, the Greek 'idea' equated to the
Latin 'form," suggesting that form originates from an underlying idea or

purpose, making them inseparable. Bacon (1974) defines architectural
form as the intersection of mass and space, comprising elements like

25

Mapping the Elements of Forms in Architecture

texture, light modulation, and color, which collectively imbue space with
a distinct quality. Ching (1996) discusses the versatility of the term "form,"
encompassing external appearance, conditions of presentation, and formal
structure in art and design. In "Form, Space, and Order," Ching presents
form as both internal structure and external outline, emphasizing unity.
Forms have relational properties governing composition and arrangement,
including position, orientation, and visual inertia.

In architecture, forms are categorized as regular or irregular. Regular
forms, as per Ching (1996), typically exhibit stability and symmetry
around one or more axes. Even after dimensional changes or the
addition/subtraction of elements, their inherent regularity often remains.
Irregular forms, on the other hand, are asymmetrical and dynamic,
accommodating both solid masses and spatial voids. The spatial
organization of architectural elements, influenced by these forms, defines
compositions' visual dynamics and overall design (Ching, 1996).

Architectural form theories have evolved since ancient times, notably
influenced by Plato's multifaceted concept of form. The Renaissance
marked a shift towards viewing the Idea as originating in the artist's mind
rather than a unified essence. In the seventeenth century, Boullee
emphasized the epistemological meaning of form, prioritizing geometric
designs for instant perception. By the twentieth century, the Gestalt
psychology of form introduced by figures like Le Corbusier highlighted
the unity of perception and conception. However, there was a departure
from mental realms of form in favor of methodological approaches, with
figures like Alexander proposing mathematically based design
methodologies. Eisenman advocated for eliminating preconceived forms,
favoring generative grammar in the design process. The advent of
computers further transformed form, making it an expression of
universality and methodological rather than purely aesthetic or
epistemological (Plato, Renaissance, Boullee, Le Corbusier, Alexander,
Eisenman).

Geometry and form

26

Chapter 2

From Vitruvius' geometric ideals to modern approaches like Corbusian
regulating lines and Miesian modular grids, architectural design has relied
on mathematics (Burry, 2010). In ancient times, even the angle of
inclination of the Great Pyramid was determined through geometric
constructions (Yilmaz, 2016). During the Middle Ages and the
Renaissance, mathematical principles were considered divine and formed
the basis for designing beautiful buildings. Greek, Roman, and
Renaissance architects grounded their aesthetic rules in geometric ratios,
with geometry serving as the primary mathematical tool until the
seventeenth century. As buildings grew in complexity in the late nineteenth
century, a science of structural design emerged, employing sophisticated
geometric operations. Throughout history, the prevailing notion has been
that architectural form must adhere to mathematical principles,
establishing order through regularities, proportional systems, and synthetic
methods for generating forms. Architecture has aimed to emulate the
geometric order of nature, offering schemes for analyzing finished forms.

Yilmaz (2016) highlights how ancient Greek and Egyptian architects used
geometry and proportion to seek divine rules for form generation. They
established foundational units and precise geometrical systems, deriving
proportions from geometric figures to create clear and rational designs
with symmetry. Geometry represented divine truths in ancient Egypt,
influencing timeless design principles in Western theory. Pythagoras
influenced the distinction between matter and form, while Plato's theories
on ideal forms, based on Pythagorean ratios and Platonic solids, shaped
architectural design principles. (Figure 2-1).

27

Mapping the Elements of Forms in Architecture

A S

Tetrahedron Cube Octahedron
4 faces 6 faces 8 faces
4 verices 8 vertices 6 vertices

Dodecahedron Icosahedron
12 faces 20 faces
20 vertices 12 vertices Nested Platonic

solids

Figure 2-1 - Platonic Solids, Hill, V., and Rowlands, P, 2008, Natures Code

Architects later adapted Platonic Solids into practical building blocks like
the sphere, cylinder, cone, pyramid, and cube, reflecting a pragmatic
approach to architectural form.

Medieval architects used basic geometric shapes like circles, equilateral
triangles, and squares to create intricate forms in both section and plan,
embodying divine characteristics (Yielmaz, 2016). The Gothic cathedrals
employed two design schemes, Ad Quadratum and Ad Triangulum, for
proportioning building plans and facades, determining element sizes, and
creating repetitive ornamentation. (figure 2-2).

Figure 2-2 - geometrical analyses of mason's marks on differentdrawings of Gothic cathedrals,
Franz von Rhiza, Studien iiber Steinmertz Zeichen, 1917, pp. 44-45

28

Chapter 2

These geometrical principles were foundational in medieval building
design long before they were systematically codified during the
Renaissance.

During the Renaissance, architects like Alberti and Bramante applied
idealized geometric concepts influenced by Greek mathematical systems,
as outlined by Yilmaz, 2016. They viewed architecture as mathematics
translated into spatial units, applying Pythagorean ratios to create
proportional harmony in buildings. This period saw experimentation with
ideal forms and proportions, exemplified by Leonardo's Vitruvian Man,
reflecting a belief in buildings belonging to a higher order governed by

o) (0 el

Figure 2-3 - Diagrams of St. Peter Church by Bramante, Yilmaz, 2016, Evolution of the
Architectural Form Based on the Geometrical Concepts

universal truths.

In Baroque architecture, Guarini utilized dynamic geometrical operations
to create complex spatial designs, departing from Renaissance clarity
(Yilmaz, 2016). During the Enlightenment, architects like Boullee and
Ledoux employed ideal geometry symbolically, while Durand advocated
for simplicity and economy (Yilmaz, 2016). In the twentieth century,
architects such as Le Corbusier and Mies Van der Rohe embraced
Euclidean geometry, emphasizing rationality and integrity in design
(Yilmaz, 2016). A minority, including Frank Lloyd Wright, blended
geometric concepts with experimental psychology to design space
logically, integrating geometry, volumes, and functions harmoniously
based on geometric principles.

29

Mapping the Elements of Forms in Architecture

In general, architectural forms and spaces are composed of four
fundamental element types: points, lines, planes, and volumes. In the
context of architecture, these elements are typically three-dimensional
volumes defined by vertices (points), edges (lines), and surfaces (planes).
Each element type holds intrinsic characteristics within an architectural
context. Lines convey direction, emphasizing significant end points and
defining boundaries. The intersection of lines introduces a third point,
providing additional content for making relative judgments of distance and
angle. In architecture, a three-dimensional design can be envisioned
mentally before it materializes physically.

The perception of three-dimensional forms can vary based on factors such
as viewing angles, distances, lighting conditions, color, and texture.
However, certain elements can be considered independent of these variable
situations including shape, texture, light, color, size, and scale (Yilmaz,
2016). Forms could be significantly manipulated by changing these
elements. However, shapes and sizes remain the most relating aspects to
how a form is perceived.

Additionally, Yilmaz (2016) emphasizes that design strategies, such as
unity, balance, contrast, harmony, rthythm, and proportion, play a crucial
role in shaping the overall concept of a "whole" throughout the design
process, whether in two-dimensional or three-dimensional contexts. Today,
parametric design empowers architects to craft visually appealing fagade
patterns, seamlessly integrating complex surfaces with digital fabrication
techniques. These patterns, enhanced by strategies like repetition, rhythm,
harmony, and unity, often serve as the focal point, requiring minimal
manipulation of the form itself.

2.2 Form generation in architectural design: form making vs. form

finding

The reciprocal relationship between mathematics and information
technology (IT) has led to the development of new mathematical tools,
particularly in the field of architecture. This evolution goes beyond
creating variations of functional solutions, drafting, modeling, and

30

Chapter 2

presenting—it extends to the actual generation of forms. This approach is
known as the form-generation process. Initially rooted in using rules and
algorithms for architectural forming in a one-way process, the form-
generation process has evolved to incorporate a comprehensive set of
parametric equations. These equations can be recorded and revisited at any
stage of the design, allowing for dynamic changes to parameters and
subsequently altering the entire design solution swiftly (El Iraqi and El
Daly, 2017).

The generation of architectural forms involves a range of techniques and
methodologies, often categorized into form-making and form-finding
processes. While the form-making process emphasizes the subjective,
intuitive, and creative aspects of design, the form-finding process relies on
mathematical rules, algorithms, or constraints to guide the generation of
architectural forms. The choice between these approaches often depends
on the goals of the design, the preferences of the architect, and the intended
expression or functionality of the final structure. Many architects may
incorporate elements of both processes, striking a balance between creative
freedom and systematic control in their design methodologies. In
contemporary architectural practices, forms are increasingly designed to
align with specific parameters and functions.

Form making:

According to El Iraqi and El Daly, 2017, form making is a creative process
driven by intuition and imagination, often preceding analysis and design
constraints. This direct embodiment of ideas into forms can be facilitated
through conventional or computational mediums, sometimes resembling
sculpture with a focus on form over function.

In the realm of architectural creativity, diverse theories have profoundly
shaped form making. Anchored in principles like intuition,
unpredictability, metaphorization, and departure from strict logic, these
theories offer architects unique perspectives. Intuition guides architects
beyond analytical rigidity, while unpredictability injects spontaneity.
Metaphorization relies on symbolic associations, fostering imaginative
structures. Rejecting strict logic encourages exploration of

31

Mapping the Elements of Forms in Architecture

unconventional, non-linear approaches, leading to organic and innovative
forms. Established theories like Wallas's stages of incubation, and concepts

such as Genploration and synectics, further enrich the creative toolkit.

Embracing these theories allows architects to synthesize intuition,
metaphor, and unpredictability, transcending conventional boundaries in

architectural form creation. Some of these theories are mentioned in table

2-1.

Table 2-1- Analogue Form Making Theories (El Iraqi and El Daly, 2017)

i i i Role in Form i
ey GOt L Making
Intuition refers to the | Architects rely on
ability to foresee | intuitive processes to
Intuition without _necessarily generate ideas
understanding the ! directly without a
process. rigid analytical

____________________ approach.
Unpredictability Form making
emphasizes the | benefits from

unexpected nature of
creative processes.

elements that are not
pre-determined,

introducing
spontaneity and
____________________ unigueness.
Metaphorization Metaphors serve as
involves using ! powerful tools for
Metaphorization metaphqrs _ and generating novel and
associations in the i imaginative forms,
creative process. connecting diverse
____________________ concepts.
This perspective | Architects explore
challenges the notion of | unconventional and
. strict logical processes | non-linear
No Logic) 9. .
in creativity. approaches, allowing
for more organic and
____________________ innovative forms.
Theories of Wallas proposed_ a The mcubz_mon stage
. theory of creativity | allows ideas to
Incubation (Wallas) | . . .
involving stages like | develop

32

Chapter 2

' preparation, incubation, ! subconsciously,

E " illumination, and | contributing to the
v ' verification. creative process.
Genploration focuses | Architects explore
Genploration on the exploration of | generic elements that
(Finke, Ward and | generic structures and | can be adapted and
Smith) elements in creativity. | transformed into
____________________ unique forms.
i ' Redundant generation i Architects i
| - involves creating | experiment with |
i Redundant i variations of a concept | multiple iterations, |
| Generation (Lem) " until a novel solution | allowing for |
i | emerges. ' unexpected and !
e | innovative forms.
: ' Synectics emphasizes ! Architects draw |
i ' making connections ! inspiration from |
i ' between seemingly | diverse sources, |
i Synectics (Gordon) | unrelated concepts. fostering creative |
i i | connections and |
| | ' generating novel ;
i i i forms. |

The integration of these theories provides architects with a rich toolkit for
form making. By embracing intuition, unpredictability, metaphorization,
and alternative logic, architects can push the boundaries of creativity and
produce innovative architectural forms.

In recent decades, digital systems have revolutionized architectural design,
impacting geometric representation and design synthesis. Methodologies
like fuzzy modeling and random functions, highlighted by El Iraqi and El
Daly, 2017, offer innovative approaches. Fuzzy modeling introduces
imprecise images akin to architectural sketching, while random functions
challenge architects to transform computer-generated shapes, rooted in
chaos theory. Integration of 3D digitizing allows seamless navigation
between real and digital environments, as seen in Gehry's work, blending
tangible and virtual realms in architectural design. (figure 2-4).

33

Mapping the Elements of Forms in Architecture

Figure 2-4 Working model of the 1989 Vitra Design Museum in Germany by Gehry, Frank O.
Gehry, courtesy Frank Gehry Papers at the Getty Research Institute

Form finding

Form finding in architecture involves discovering and shaping
architectural forms exclusively derived from function, employing rules,
constraints, and algorithms within a "generator." This process, outlined by
El Iraqi and El Daly, 2017, encompasses both analogue and digital
methods. Analogue form finding, exemplified by architects like Jean-
Nicolas-Louis Durand, utilizes mathematical rules or transformational
principles to generate architectural forms (figure 2-5).

[Vt y oy

DIVERKES DISFOSITIONS D KDITICES PARTICULIERS A LA VILLE

Aot e pranycd carye de logu Aune s

Figure 2-5 Systemization and Composition by Jean-Nicolas-Louis Durand -
https://www.sensesatlas.com/jean-nicolas-louis-durand/

34

Chapter 2

Similarly, Louis Sullivan employed analogue methods to describe
processes for reproducing floral ornamentation based on geometrical
constructs (figure 2-6).

MANIFULATION OF THE ORGANIC
I)

COMPOUND LEAF:

DRRIVATIVES OF THI ABOVE TE
EXPAISI0NS OF DUFFRAING IDRNTTTFES OF T

TREHNICAL MORPROLEGY EF N0, 7 INFO N0, |1 FLASTIC CHANDIS, FOLLOWING MATURE'S METHOD OF LINDLATING EXKEGY. SAME METIOO,

Figure 2-6 - Louis Sullivan, Plate 2, detail, from A System of Architectural Ornament According
with the Philosophy of Man's Power (New York: AIA Press, 1924, reprint 1934).

Le Corbusier's Five Points of Architecture exemplifies an analogue
generative system predating widespread computational use in architecture.
Similarly, Peter Eisenman employed analogue transformational rules in
design synthesis, creating a system allowing infinite expressions with

finite means. Eisenman's approach is evident in his designs of a series of
houses as seen in figure 2-7.

Figure 2-7 - House IV - Transformations Series by Peter Eisenman -
https.//eisenmanarchitects.com/House-1V-1971

35

Mapping the Elements of Forms in Architecture

Digital form-finding in architecture involves the use of computational tools
to generate various forms, ranging from orthogonal conventional shapes
using basic shape algebra and formal logic to complex three-dimensional
curves and folding surfaces using trigonometric parameterized functions.
Computational algorithmic modeling is a process that applies rules and
algorithms within a computational medium, but it lacks the potential for
changing a rule with direct manipulation applied to the end result. When
the process includes a feedback loop allowing for the modification of rules,
it is considered a form generation process, whether it's generative or
parametric. Digital form-finding types of process including computational
modeling, algorithmic modeling, generative modeling, and parametric
modeling will be discussed in chapter 3.

2.3 Mapping and analyzing the elements and motifs of

contemporary forms

In computer science, an architectural style is a set of design rules or
conventions that dictate how the elements and relations of a software
system should be organized. It represents a family of systems with a shared
set of design goals and constraints. Architectural styles define a specific
way in which components (such as modules, classes, or objects) and
connectors (communication channels, protocols) are arranged to achieve
certain architectural qualities like performance, modifiability, or
reusability. An architectural pattern, on the other hand, provides a higher-
level abstraction compared to architectural styles. It describes a
fundamental structural organization schema for software systems,
specifying the overall structure of the system and the patterns for the
relationships between its components. Architectural patterns go beyond
specifying individual elements and connections; they define a set of
predefined subsystems, their responsibilities, and also include rules and
guidelines for organizing interactions between these subsystems. In
summary, architectural styles focus on the manner in which components
and connectors are used, while architectural patterns provide a broader,
higher-level template for organizing the overall structure of a software
system, including predefined subsystems and their relationships. Both

36

Chapter 2

concepts are crucial in guiding the design and development of complex
software systems, helping architects make informed decisions based on
established best practices and design principles (Clement, P., et. al. 2011).

The same definitions can be directly applied to architectural design of
buildings. When the difference between the terms ‘architectural pattern’
and ‘architectural style’ is discussed, both terms result in an architectural
approach. However, architectural patterns tend to relate to certain
problems in a certain context. For instance, an architectural style tends to
relate how architectural elements and components are composed focusing
on the approach. On the other hand, architectural patterns relate how the
resulting architectural approach may solve problems in different contexts
including environmental, social, psychological, and economic aspects.

Architectural design motifs are recurring, often symbolic, themes that are
used in the design of buildings and structures. These motifs can be derived
from various sources, including cultural, historical, religious, or natural
influences. They are employed to create a sense of unity, rthythm, and
visual interest in the architecture. Motifs relate to the architectural style
more than patterns. They mostly tend to symbolize and give meanings or
just symbolize how an architect expresses his beliefs of good architecture
regarding proportions, aesthetics, and other design strategies.

Examples of Motifs in Architectural Design include the following:

Architectural Orders:

Classical architecture introduced the concept of orders, including Doric,
Ionic, and Corinthian, each with distinct styles for columns and
entablatures. Orders define the arrangement of architectural elements,
contributing to the overall style and cohesion of a building or tradition.
Figure 2-8 shows how the use of different classical orders as motifs differs
according to columns and entablature types and proportions as well
decoration elements.

37

Mapping the Elements of Forms in Architecture

5 o « [(o= = et
7 ST f == ———
D | DAD
? —— k| —— _T ,—':L'
I St —
v G L — %
It (e] ‘.’—T
T [‘ |
1]

GB ‘ GBG

‘ ‘ i j J J)
‘ = B0, g = é
L4 = S -

Greek Doric lonic Connthian luscan Roman Dori¢ Composite

Figure 2-8 — Architectural Orders from Greek, Roman, and Tuscan Eras,
https://blog.stephens.edu/arhl01glossary/? glossarv=order

Gothic Tracery

Gothic tracery (figure 2-9), prominent in cathedrals, comprises intricate
patterns of intersecting ribs in windows. It enhances aesthetics and
establishes a cohesive motif for Gothic architecture through rhythmic
recurrence across architectural elements.

Figure 2-9 — Geometrical bar tracery, Ely Cathedral, Lady Chapel, west window (left), Rayonnant
bar tracery above the south rose window in Notre-Dame de Paris (Right)
(https://en.wikipedia.org/wiki/Tracery)

Moorish Arch Motif

The horseshoe arch (figure 2-10) in Islamic architecture, originally from
early Christian art during the Roman Empire, is a defining motif

38

https://blog.stephens.edu/arh101glossary/?glossary=order

Chapter 2

characterized by its rounded shape widening at the base. Adorned with
intricate patterns and calligraphy, it recurs in doorways, windows, and
arcades, contributing to the unique visual language of Islamic architectural
styles (Marcias, G., 1954).

Figure 2-10- Caliphal-style arches of the Taifa palace (11th century) in the Alcazaba of Mdlaga,
Spain, https://en.wikipedia.org/wiki/Horseshoe archi#cite note-:02-7

Greek Key Pattern

The Greek Key pattern, a continuous linear motif in classical design,
consists of repeated geometric shapes forming a meandering line. Often
used as a decorative border or frieze, its repetitive presence adds rhythm
and unity to architectural elements, defining motifs in classical and
neoclassical structures. Figure 2-11 (a) shows Greek key on a stove in the
in the D.A. Sturdza House, in Bucharest.

Art Deco Zigzag Motif

Art Deco architecture features the distinctive zigzag motif (figure 2-11
(b)), marked by sharp, angular lines. Seen in friezes, cornices, and facade
layouts, this pattern represents a departure from traditional ornamentation.
Its repetition across elements embodies the dynamic and modern aesthetic
of the Art Deco movement in the early to mid-20th century..

39

Mapping the Elements of Forms in Architecture

Figure 2-11 —(a) Greek key on a stove in the in the D.A. Sturdza House, in Bucharest,
https.//en.wikipedia.org/wiki/File: Greek key on a stove in the in the D.A. Sturdza House, in
_Bucharest.jpg, (b) Zigzag Motif on Smith and Chambers building, Napier, New Zealand.
https://edition.cnn.com/style/article/napier-art-deco-architecture/index. html

Modernist Grid Motif

Modernist architecture adopts the grid motif, featuring regular and
geometric arrangements of elements like windows and columns. Architects
such as Ludwig Mies van Der Rohe, Le Corbusier, and Peter Eisenman
apply this motif, inspired by Piet Mondrian's lines. Gerrit Rietveld,
influenced by Mondrian, incorporated similar elements into Mrs. Truus
Schroder-Schrider's house in Utrecht, Netherlands (figure 2-12). The
pervasive repetition of the grid motif reinforces modernist principles of
clarity and rationality, becoming a hallmark of the architectural style.

Figure 2-12- Rietveld Schréder House,
https.//en.wikipedia.org/wiki/Rietveld Schr%C3%B6der House

Following Le Corbusier and Mies Van Der Rohe, architects like Alvaro
Siza, Kenzo Tange, Gordon Bunshaft, Richard Meyer, and Tadao Ando
embraced the grid motif. Today, this motif is ubiquitous in contemporary

40

https://en.wikipedia.org/wiki/File:Greek_key_on_a_stove_in_the_in_the_D.A._Sturdza_House,_in_Bucharest.jpg
https://en.wikipedia.org/wiki/File:Greek_key_on_a_stove_in_the_in_the_D.A._Sturdza_House,_in_Bucharest.jpg
https://en.wikipedia.org/wiki/Rietveld_Schr%C3%B6der_House

Chapter 2

villas and private residential buildings worldwide. Factors such as high

construction costs and fast-paced social lives have contributed to its

widespread adoption. As a result, designs are becoming increasingly
similar, with architects employing a common language, as seen in the

analysis of common motifs in Table 2-2.

Table 2-2 Analysis of Common Contemporary Motifs

MO Project Photo

Description

- C shaped slab with
thickness around 40 cm on
the first floor

- C shaped terrace elevation
on ground floor

- Theterrace is recessed from
the ground floor edge.

- Glazing facades inside the

slab edges
https://www.flickr.com/photos/aareps/901

9441462/in/album-72157636835800726/

- C shaped slab with
thickness around 40 cm on
the first floor

- L shaped terrace elevation
on ground floor

- Terrace is on the ground
floor edge

- Glazing facades inside the
slab edges

Private villa in Vilnius, Lithuania
by ngarchitects

41

Mapping the Elements of Forms in Architecture

C shaped slab with

thickness around 30 cm on

the first floor

- L shaped terrace elevation
on ground floor

- Theterrace is recessed from
the ground floor edge.

- Glazing facades and

stonework inside the slab

edges

C shaped slab with

thickness around 30 cm on

the first floor

- L shaped terrace elevation
on ground floor

- The terrace is on the ground
floor edge.

- Glazing facades inside the

slab edges

EH House, Pilar, Argentina by

Estudio GMARQ.
https://www.archdaily.com/906904/eh-
house-estudio-

- C shaped slab with
thickness around 70 cm on
the first floor

- L shaped terrace elevation
on ground floor

- Theterrace is recessed from
the ground floor edge.

- Glazing facades and
woodwork inside the slab
edges

Twelve by Jaime Salva, Santa

Ponga, Mallorca, Spain.
https://homeadore.com/2020/07/27/twelve

Chapter 2

salva/?utm_source=feedburner&utm_me
dium=feed&utm_campaign=Feed:+home
adore+(HomeAdore)

Other motifs appear strongly in contemporary villas and residential
buildings, including the use of repeated solid blocks with light or opening
gaps (figure 2-13), the use of stripped louvers more as an architectural
pattern (figure 2-14), and the use of skewed recessed blocks which usually
frame openings (figure 2-15). Even some of these motifs are composed
together to form a different look.

Figure 2-13- Using solid strong walls in contemporary designs (villa by Rymar Studio (left), 21
Villa by Saad Al Omayrah (right)), https://rvmarstudio.com/residentialarchitecture,
https://www.behance.net/gallery/148907457/21-Villa-By-Depth-of-Field

"\ 4 - y ‘ R T ¥

Jl;'nl wult‘

Y

Figure 2-14- Using louvers as architectural pattern in contemporary designs (Condominio Terras
de Toscana, by Lima Arquitetos (left), CB hoise, Indonesia, by Studio Avana (vight) -
http://www.limaarquitetos.com/projetos/residencia-br/,
https://www.behance.net/gallery/98916083/CB-House

43

https://rymarstudio.com/residentialarchitecture
http://www.limaarquitetos.com/projetos/residencia-br/

Mapping the Elements of Forms in Architecture

Figure 2-15- Using skewed and recessed elements to highlight openings (Villa in UAE by Nisreen
Kayyali (left), Viewpoint House, Quezon City, Philippines by Jim Caumeron Design (right)) -
https://www.instagram.com/nisreenkayyali/, htips://www.archdaily.com/951932/viewpoint-house-
Jjim-caumeron-design?ad _medium=gallery

These motifs contribute to the visual language of architecture and are often
used to communicate cultural, historical, or artistic references. Architects
use motifs to create a sense of unity and coherence in the design, tying
together various elements of a building into a harmonious whole.

Summary

In this chapter, the definition of architectural form is explored tracing its
origin to the Latin term equivalent to idea. Over time, architects expanded
this definition to encompass the intersection of mass and space,
highlighting the multifaceted nature of forms beyond mere aesthetics.
From ancient times to the present, theories on form have evolved,
reflecting shifts from epistemological to methodological perspectives due
to societal and economic developments. Geometry has played a crucial
role, with historical roots linking it to divine principles, now utilized for
rationalizing designs amidst technological advancements.

Conceptual elements such as points, lines, surfaces, and solids were
analyzed, with points deemed particularly influential in form development
due to their ability to establish relationships and parametrically define
elements. Visual elements and design strategies like form, size, proportion,
repetition, rhythm, harmony, and unity were discussed for their impact on
form perception and design aesthetics, especially with advancements in
digital fabrication techniques facilitating patterned facades and forms.

44

https://www.instagram.com/nisreenkayyali/

Chapter 2

Form making, characterized by subjective and intuitive aspects, was
juxtaposed with form finding, which relies on mathematical rules for
problem-solving. Architectural patterns, driven by problem-solving
approaches within specific contexts, were contrasted with architectural
styles focused on compositional elements' formation. Notable motifs,
including architectural orders of the Greeks, Gothic tracery, Moorish
arches, Greek key patterns, Art Deco zigzags, and modernist grids, were
analyzed for their significance and influence on architectural styles.

Contemporary architectural motifs and styles, observed in villas and
residential buildings, exhibited recurring patterns such as exposed slabs,
recessed glazing facades, L-shaped terraces, repeated solid blocks with
openings, stripped louvers, and skewed recessed blocks. These motifs
reflect cultural, religious, and aesthetic considerations, shaping
architectural compositions.

In the subsequent part, these motifs will be incorporated into designed
models to educate Al on architectural aesthetics and styles.

45

Coding in computational design: A base for utilizing Al in
architectural form finding

Chapter 3: Coding in computational design: A base
for utilizing AI in architectural form finding

Preface

Computational design in architecture utilizes computational tools and
processes, including algorithms, scripting, and programming, to inform,
generate, and optimize solutions. This approach often intersects with
parametric design but encompasses a broader range of techniques.
Parameters such as wall length, window size, and spatial relationships
influence spatial experience, aesthetics, environmental interaction, and
resource consumption. Architects' evolving expertise shapes their unique
design approaches.

Parametric design translates architectural models into parameters and
defines their relationships. Changing one parameter can alter others due to
their interconnections. Architects use data types like numbers, booleans, or
strings to create parametric models, which can include regulations like
setbacks and heights. This algorithmic thinking allows for easy
adjustments and maintains design consistency (Jabi, W., 2013). Software
like Grasshopper for Rhinoceros3d and Dynamo for Revit arrange models
as interconnected algorithms.

In September 2007, Rutten, D. developed the "Explicit History" plugin for
Rhinoceros3d, which created a visible history of operations. This evolved
into Grasshopper3d, enabling visual coding and forming the basis of
parametric design with real-time modifications. Similar visual
programming languages followed, including Dynamo for Revit,
Marionette for Vectorworks, Param-O for Archicad, VizPro for Sketchup,
and SIII for Blender, enhancing modeling capabilities (Sawantt, S., 2021).

Coding, defined as instructing a machine to perform tasks, underpins
architectural software by transforming geometry through mathematical
operations. Mastery of a software's coding language allows architects to
use the software more effectively, reducing user interface biases. Coding
provides tools like iterations, conditional statements, and extensive
libraries for tasks such as data visualization and array manipulation,

46

Chapter 3

expanding design possibilities. Coding enables architects to perceive
geometry as containers of information, enriching their design
understanding.

This chapter discusses computational design as a design thinking
approach, exploring its roots and presenting a taxonomy of methodologies.
It reviews the generative form-finding approach, analyzes architectural
forms as information and examines algorithm formation based on form
elements, advocating for coding over visual programming languages.
Additionally, the chapter provides an overview of coding practices,
software functionality, and the importance of coding for its power and
freedom, avoiding biases in visual programming and conventional
modeling.

3.1 Computational design thinking

Computational design in architecture integrates advanced computational
capabilities to automate, parallelize, and enhance various aspects of the
design process. It enables architects to efficiently manage information,
incorporate changes seamlessly, and explore diverse design possibilities
through automation and algorithms, aligning with contemporary
architectural demands.

Oxford Dictionary defines computation as "the action of mathematical
calculation" and "the use of computers, especially as a subject of research
or study." The Cambridge Advanced Learner's Dictionary & Thesaurus
adds that it is "the act or process of calculating an answer or amount by
using a machine." In architecture, Oxman (2006) describes computational
design (CD) as design processes that fully utilize computers for their
computational abilities rather than as electronic drawing boards. Terzidis
(2006) defines CD as the entire process leading to a final result through
digital tools. Thus, CD can be expressed as a design process leveraging
computational capabilities through various activities (Caetano, I., et al.,
2019) including automating design procedures through deduction,
induction or abstract, parallelizing design tasks by breaking down the
design process into smaller, more manageable components that can be

47

Coding in computational design: A base for utilizing Al in
architectural form finding

processed simultaneously (figure 3-1), incorporating and propagating
changes and assisting in form-finding processes.

Sequential Concurrent Parallel

end end end

RS

: o
NEESE

: o—0 ‘
start start start

Figure 3-1- Sequential vs. Concurrent vs. Parallel Design Processes
(https://www.linkedin.com/pulse/concurrency-vs-parallelism-2-sides-same-coin-khaja-shaik-/)

According to Menges, A., and Ahlquist, S. (2011), computational design
(CD) is crucial because it shifts the perception, purpose, and production of
form by utilizing information processing and interactions between
elements, emphasizing systems thinking over by-element thinking.
Systems thinking views every aspect of a form as part of a hierarchical
structure of components. Menges and Ahlquist argue that computation is
not necessarily related to computer use and should not be confused with
computerization, which involves automation and digitization. They assert
that computational methods can codify, analyze, systematize, and
synthesize mental processes without digital tools.

Aristotle's definition of 'holism' underpins the understanding of systems as
wholes greater than the sum of their parts. Descartes emphasized
understanding processes through simple causalities, while Christopher
Alexander highlighted that a system's overall behavior results from the
interaction among its parts. Understanding these interactions is critical
(figure 3-2).

48

Chapter 3

Figure 3-2- Interaction between Components Forms the Whole Design Idea

Glenn Wilcox argues that design computing views geometric forms as
containers of information, not just shapes. Thus, a simple box is perceived
not merely as a geometric object but as an entity with characteristics like
height, length, and width. (figure 3-3 (left). In computational design
thinking, a box is viewed as a container of information defining its
characteristics and relationships with other architectural elements (figure
3-3 (right)). This box consists of points that determine distances between
each other and other elements. Each surface of the box has attributes like
color and texture, along with a center point. The box's center point and
each point's coordinates (X, Y, Z) provide valuable data for spatial
positioning. Extracting this information facilitates transformations and
establishes relationships with other objects and their components.

‘ COLORS

VOLUME

Figure 3-3- (left) A box as geometry vs. a box with geometric existence characteristics, (right) A
box is considered a container of many information rather than a simple geometry.

Thinking about architectural elements through the lens of computational
thinking, adds many layers of control and freedom to the way the elements
are interacting to form spaces and architectural forms through the fast-
developing tools in computers. Additionally, extracting those relations as

49

Coding in computational design: A base for utilizing Al in
architectural form finding

parameters can serve as a basis for utilizing different ML in the form
finding process.

3.2 The roots of computational design

The influence of geometry, proportion, and numerical principles in
architecture dates back to ancient times (Burry, M., 2010). Vitruvius is
credited with establishing the Vitruvian Triad—Firmitas (Durability),
Utilitas (Utility), and Venustas (Beauty)—as the fundamental principles of
architecture. Vitruvius emphasized the importance of geometric ideals,
particularly Order and Arrangement (Ordinatio). He highlighted that the
thoughtful organization of architectural elements creates a cohesive and
visually pleasing composition, contributing to the overall harmony and
effectiveness of the design.

The concept of the golden ratio, often denoted by the Greek letter phi (o),
has been known and utilized since ancient times, and it is not attributed to
a single individual. The golden ratio is an irrational number, approximately
equal to 1.618033988749895, and it appears in various mathematical and
natural contexts. It is often expressed as the ratio of two quantities, where
the whole is to the larger part as the larger part is to the smaller part.

The term "golden ratio" itself is relatively modern, coined in the 19th
century. Mathematicians and artists throughout history, however, have
been aware of and fascinated by this ratio. Ancient Greek mathematicians,
including Euclid, explored the mathematical properties of the golden ratio,
and it has been observed in the architecture of ancient civilizations, such
as the Parthenon in Athens. The Italian mathematician Leonardo
Fibonacci, in his "Liber Abaci" (1202), introduced the Fibonacci sequence,
which is closely related to the golden ratio. However, it's important to note
that while Fibonacci popularized the sequence, the golden ratio itself was
known and used before his time.

Le Corbusier introduced the concept of "regulating lines" in his design
principles. As observed in figure 3-4, these lines served as a framework for
organizing and proportioning buildings. They were based on mathematical
principles and were intended to provide a rational and harmonious basis

50

Chapter 3

for architectural composition. According to Le Corbusier, regulating lines,
be they circular, square, or linear, manifest as helpful and regular points
that intricately bring diverse elements together. The placement of angles in
a precise manner is underscored as a mechanism for uniting varied
qualities of architectural elements, fostering a sense of order and cohesion.

Figure 3-4 — Villa Design by Le Corbusier
(https://melissabilgecelik.wordpress.com/2018/10/3 1/regulating-lines-le-corbusier/)

Additionally, Ludwig Mies van der Rohe frequently employed modular
grids as a foundational design principle to manifest his commitment to
simplicity and order. The modular grids (figure 3-5) provided a framework
for organizing elements and spatial configurations, enabling rational and
flexible compositions. Mies's grids balanced order with adaptability,
accommodating various functions precisely. The Barcelona Pavilion and
the Farnsworth House exemplify the enduring impact of his modular grid
system on modern architectural design.

Figure 3-5- Graphite and red pencil on verso of Hotel Nacional stationary by Mies Van der Rohe
(https://www.moma.org/collection/works/87415)

51

https://www.moma.org/collection/works/87415

Coding in computational design: A base for utilizing Al in
architectural form finding

Today, the intensive use of CD is seen in the work of many architects who
apply generative design techniques and optimization especially in the form
finding process. Numbers and computation became a very important
aspect in designs as will be discussed in section 3-4.

3.3 A taxonomy of computational design terms

The emergence of computation-based approaches in design has seen
widespread adoption among architects and design professionals in recent
decades. However, diverse terminologies such as computational,
parametric, generative, algorithmic, performance-based, and evolutionary
design have led to ambiguity and hindered communication within the field.
This variability reflects the dynamic nature of computational design,
rooted in a rich history dating back to the 1960s, influenced by pioneers
like Ivan Sutherland (Caetano, A., et. Al, 2019).

Sutherland's concepts of design variation and parametric instances
catalyzed the shift toward computational design. In the 1970s, efforts to
formalize CD emerged, leading to its recognition as a distinct field within
architecture in the 1980s. By the 1990s, computational design had
solidified its presence, with dedicated conferences and journals. However,
in the last two decades, it has evolved beyond automating drafting tasks to
encompass diverse computation-based methods.

Contemporary computational design integrates techniques like building
simulation, evolutionary optimization, and novel fabrication methods,
driving innovative design approaches. As computational design continues
to evolve, it remains at the forefront of architectural exploration, shaping
the conceptualization and realization of built environments. In this section
different CD related terms are reviewed, defining how each approach is
involved in CD including CAD, parametric design, generative design,
algorithmic design, and other related terms.

Computer-Aided Design (CAD) emerged in the late 1950s and early
1960s, with Ivan Sutherland's "Sketchpad" in the 1960s introducing
interactive graphic design systems. The 1970s saw the development of
commercial CAD systems like DAC-1 and CALMA for electronic design

52

Chapter 3

and manufacturing. The 1980s brought 3D CAD and the rise of desktop
workstations, with Autodesk's AutoCAD becoming widely used in 1982.
CAD became mainstream in the 1990s, with standardization efforts
making it accessible across industries. It aids in creating, modifying,
analyzing, and optimizing designs, improving workflow efficiency,
quality, and documentation, and contributing to manufacturing design
databases.

The history of digital design (DD) traces back to the 1950s and 1960s when
early digital computers were primarily used for scientific and military
purposes. Ivan Sutherland's "Sketchpad" in the early 1960s laid the
foundation for digital design, marking the inception of digital tools in the
design process. In the 1970s, computer graphics emerged, enabling
designers to manipulate and visualize images on digital displays.
Autodesk's AutoCAD in 1982 played a pivotal role in the widespread
adoption of digital design tools. After that, the 1990s witnessed the
democratization of digital design with the rise of personal computers and
software like Adobe Photoshop, Illustrator, Rhino, and 3ds Max.

In the 21st century, the integration of digital design into various disciplines
accelerated, exemplified by the rise of parametric design and algorithmic
modeling. Today, digital design encompasses various fields from graphic
and web design to product design, animation, and virtual reality.
Advancements in technologies like augmented reality, Al, and generative
design continue to shape the landscape of digital design, empowering
designers to bring their visions to life in unimaginable ways.

Caetano, A, et. Al., 2019 argue that parametric design (PD) in architecture
utilizes parameters and algorithms to create adaptable architectural forms,
offering a wide range of design possibilities. Moretti (1971) describes PD
as investigating relationships between design dimensions, while Kalay
(1989) focuses on dynamic geometric representations. Szalapaj (2001)
emphasizes geometric constraints, and Kolarevic (2003) views PD as
declaring design parameters rather than specific shapes, allowing for
multiple solutions. Eggert (2004) stresses PD's optimization capacity,
while Schumacher (2008) sees it as a contemporary architectural style.

53

Coding in computational design: A base for utilizing Al in
architectural form finding

Woodbury (2010) highlights PD's associative nature, and Elghandour
(2014) views it as code-based design. Zboinska (2015) categorizes PD
under Algorithmic Design, emphasizing algorithmic processes. Zarei
(2012) subdivides PD into conceptual modeling and
construction/manufacturing categories.

Parameters enable designers to establish relationships and constraints
governing the design, allowing exploration within a coherent system.
Janssen and Stoufs (2015) categorize PD into object, associative, data-
flow, and procedural modeling, providing comprehensive tools for
designers across the design process.

Soleimani (2019) advocates for integrating parametrics into architecture
programs through three interconnected approaches. Firstly, the system-
based approach emphasizes studying architecture as complex subsystems
rather than individual objects, engaging with spatial, material, social, and
structural elements for harmonious coexistence. Secondly, the algorithmic,
rule-based approach promotes computational thinking, using algorithms to
create active relationships between design intent and outcome, yielding
alternative design possibilities. Lastly, the interdisciplinary approach
encourages architects to draw from diverse disciplines like philosophy,
biology, mathematics, and computer science to address evolving
challenges creatively. These approaches serve as essential pillars for the
transformative integration of parametric design in architectural education.

Generative design (GD) employs computational systems to autonomously
explore and generate potential solutions, akin to nature's evolutionary
mechanisms. It surpasses the autonomy of Parametric Design (PD) by
utilizing more autonomous algorithmic descriptions (Caetano, A, et. Al.,
2019). GD systems, as defined by Mitchell (1977), generate solutions to
design challenges without continuous direct input from the designer.
Fischer and Herr (2001) characterize GD as a methodology where
designers interface with generative systems, exploring and evolving
solutions through computational means. Frazer (2002) compares GD to
evolutionary processes in nature, highlighting its dynamic and iterative
nature. Krause (2003) notes GD's autonomy in creating architectural

54

Chapter 3

structures or spaces, while McCormack (2004) describes it as generating
complex designs from simple specifications. Bukhari (2011) positions GD
as a subtype of Algorithmic Design (AD), utilizing algorithms to produce
diverse solutions. These perspectives underscore GD's dynamic,
algorithmically driven nature and its capacity to autonomously evolve and
fulfill design criteria.

Algorithmic design (AD), according to Caetano, A, et. Al., 2019, leverages
algorithms to generate models, establishing a clear correlation between the
algorithm and the resulting design. This transparency enables users to trace
and understand how different elements of the model are generated. AD
provides generative capabilities through algorithms and enhances
transparency and understanding throughout the design process. An
algorithm, as defined by the Cambridge Dictionary, is a set of
mathematical instructions or rules to solve a problem. Terzidis (2003,
2004) describes AD as generating space and form through rule-based logic
inherent in architectural programs and language. Bukhari and Caldas
(2011, 2008) note that AD includes both generative design and
evolutionary design methods, employing fitness functions to guide the
search process. Oxman (2017) emphasizes the procedural nature of AD,
involving the explicit coding of instructions to generate digital forms.
Zboinska (2015) views AD as a paradigm built upon Parametric Design
(PD) tools, utilizing simple rules and relationships to produce complex
geometries. Together, these perspectives define AD as a versatile paradigm
encompassing various computational design methods.

Caetano, A, et. Al., 2019, suggested a conceptual overlap and inconsistent
use of terms related to CD, with a specific focus on PD, GD, and AD. They
illustrated this conceptual overlap using a Venn diagram (figure 3-6),
indicating that AD is a subset of GD and shares a non-empty intersection
with PD.

55

Coding in computational design: A base for utilizing Al in
architectural form finding

Figure 3-6 - Conceptual representation of the terms’ extension regarding the CD paradigm, by
Caetano, A., et. Al., 2019, Computational design in architecture: Defining parametric, generative, and

algorithmic design.

Caetano, A, et. Al., 2019, argue that there are multiple cases of overlaps:

1-

AD (Both GD and PD): Designing an algorithm that generates a
facade based on a set of parameters like the dimensions, size, and
distribution of different elements.

GD, PD, but not AD: Designing through optimization, however, the
relations between the parameters and the optimization mechanism
is difficult.

GD but neither PD nor AD: Using cellular automata in design
where the rules are not parametric, and the outcome is nearly
impossible to directly infer from the rules of the automaton.

PD but neither AD nor GD: Designing an element such as a wall
allowing users to change the parameters without requiring explicit
use of algorithms.

GD, AD, but not PD occurs in digital fabrication when a computer
numerical control machine operates, executes a program that is
often automatically generated and entirely non-parametric.

Last but not least, and according to Caetano, A., et. Al, 2019,
"performance-based design" is the third most used term after PD and GD,

but less prevalent than Parametric Design (PD) and Generative Design

(GD). There is limited overlap with the term "performative design," which
is not as commonly used. They presented a bar diagram illustrating the

56

Chapter 3

frequency of appearance of each CD-related term in the literature from
1978 to 2018.

N = 666

H m CuminCAD

u WoS
Scopus

N = 380 m Science Direct

N =293

= 3 6 2 s
“ —3 — 9 —

Parametric Generative Performance-based Algorithmic Evolutionary Adaptive Performative Biomimetic Dynamic Kinetic
Design Design Design Design Design Design Design Design Design Design

Figure 3-7- Number of times each CD term appeared in the literature between 1978 and 2018 by
Caetano, et. Al, 2019

Overall, performance-based design integrates performance criteria
throughout the design process, prioritizing specific outcomes over
traditional standards. It's prevalent in architecture and engineering,
focusing on achieving desired performance goals. Evolutionary design,
adaptive design, performative design, and kinetic design are variations
within this approach.

GD utilizes algorithms to generate designs autonomously, emphasizing
computational processes to produce diverse solutions. AD, a subset of GD,
emphasizes traceability between algorithms and outcomes. PD relies on
parameters to describe designs, allowing flexibility and adaptability within
a defined framework. Understanding these terms is essential for employing
specific techniques and approaches in the design process.

3.4 Generative form finding

Generative form-finding is a design process rooted in rules or algorithms,
often facilitated by software like Rhinoceros, Grasshopper, Dynamo, and

57

Coding in computational design: A base for utilizing Al in
architectural form finding

scripting platforms. Eisenman's influence in the 80s and early 90s, inspired
by Derrida's deconstruction theory, introduced techniques like overlay,
fractals, and scaling, paving the way for contemporary generative design
attempts. Greg Lynn further advanced the field with techniques such as
NURBS and splines, leading to the emergence of 'blob architecture.'

With the advancement of computational and scripting tools, digital
fabrication became more accessible, enabling explorations in paneling,
optimization, simulations, and algorithmic design. Generative design
leverages computers to explore solutions, sometimes through algorithms,
and employs evolutionary optimizers to reach design goals. This approach
shifts the focus from the final form to the underlying logic of design,
externalizing the designer's intelligence into generative systems. Various
tools like shape grammars, parametric variations, and evolutionary
algorithms enable designers to encode rules and algorithms, guiding form
generation. Additionally, newer tools explore randomness and chaos in
form generation, broadening the spectrum of generative design
possibilities. (El Iraqi, A., and El Daly, H., 2017).

According to El Iraqi, A., and El Daly, H., 2017, generative design systems
can be broadly classified into two categories: linguistic generative systems
where the emphasis is on encoding design rules and logic (syntax) in a
language-like structure that govern and shape the design (semantics) and
biological generative systems which draw inspiration from natural
processes, particularly those related to evolution. Genetic Algorithms and
Cellular Automata are examples of biological generative tools.

Linguistic generative systems includes shape grammars, developed by
Stiny and Gips in 1972, which formalize rules for generating shapes or
forms, particularly useful in architecture and urban planning, L-systems,
which was introduced by Lindenmayer, model growth processes,
especially for self-replicating structures like plants, and fractals, being
complex shapes with self-similarity, generated through recursive
algorithms and have applications in diverse fields for creating intricate and
visually appealing forms.

58

Chapter 3

imitial shape il shipe

design

Figure 3-8- Shape Grammars (MIT - Computational Design I: Theory And Applications - Fall
2005 Lecture 7)

A c

Figure 3-9- Left: L-Systems (Chiu, P, 02015, The Structure of L-System), Right: Examples of
geometrically self-similar fractals. (A) The Mandelbrot set. The " curve " (B) and the " snowflake
"(C), described by Niels Fabian Helge von Koch (1870—1924), and the " Sierpinski triangle "
(D), described by the mathematician Waclaw Sierp — Di Leva, A., et. Al, 2013, Fractals in the
Neurosciences, Part I: General Principles and Basic Neurosciences

Biological generative systems include genetic algorithms which mimic
natural selection to find optimal solutions by creating populations,
evaluating fitness, and using genetic operators like crossover and mutation.
Solutions are represented as individuals (phenotypes) with encoded
parameters (genotypes), genes, alleles, and chromosomes. GAs evolve
over generations toward optimal solutions. They also include Cellular
automata (CA) which are discrete computational models where cell states
evolve based on rules determined by neighboring cells (Robert J., K.,
2002). CA is used in generative design to create complex patterns and
simulate dynamic systems.

59

Coding in computational design: A base for utilizing Al in
architectural form finding

Cell States

Neighbourhood (N)

Transition Rule (T) Example:

“If there are three or more cells with state 'non-vacant’ in the
neighborhood of a central cell with state 'vacant’, this central cell

will become ‘non-vacant’ in the next time step; otherwise it will remain
vacant"."

Figure 3-10- Components of Generic Cellular Automaton - Leao, S., et. Al., 2004, Simulating
Urban Growth in a Developing Nation s Region Using a Cellular Automata-Based Model

In essence, the generative form finding represents a pivotal moment in
design evolution, where technology becomes a co-creator, pushing the
boundaries of what is conceivable and achievable in architecture and
engineering. Algorithms and parametric models drive the creation of
complex, self-adaptive structures. This union facilitates not only the
exploration of diverse design possibilities but also the optimization of
forms based on performance criteria.

3.5 Architectural forms as information

The use of computer-aided tools in architectural design, as highlighted by
Jabi (2013), has facilitated the creation of more complex designs,
especially with the emergence of scripting tools that offer architects greater
control over design elements. Architectural forms serve as repositories of
valuable information in computational design, encompassing geometric,
material, environmental, cultural, and experiential data. This information
influences design decisions and can be utilized to optimize designs for
sustainability, functionality, and user experience. Each parameter of a
building influences its spatial aspects and user interaction, underscoring
the importance of understanding these factors. Furthermore, translating
architectural information into datasets for ML algorithms enables pattern
recognition and prediction, driving innovation and efficiency in design
processes. Overall, treating architectural forms as information enhances
design thinking and enables a deeper understanding of the relationship

60

Chapter 3

between physical space and digital design. And the best way to deal with
large quantities of information is through algorithms.

The advent of parametric design software such as Grasshopper for Rhino
and Dynamo for Revit shifted the way architectural modeling tasks are
done from a conventional method of drawing to creation-by-algorithms.
Algorithms require input data/parameters and steps/operations/conditions
on those parameters to reach a final output. For instance, a simple example
of an algorithm for solid wall creation requires inputs such as points, a
rectangle, or a surface. In the case of a rectangle, an operation of converting
it to a surface, and then extruding it and in case of a surface, only extrusion
process is required. Now, if an architect needs to adjust the wall
parametrically, they can change the rectangle dimensions or the extrusion
height. Transformations are operations applied on the shape that could
change its position, angle, scale, etc. and each is considered an
operation/rule applied within the algorithm to reach the final output.
Copying the wall, connecting walls and slabs, opening walls, transforming
items to respect setbacks, and more are examples of rules applied to the
same algorithm to reach a building rather than a wall. Afterwards, adjusting
any parameter within the same framework of the algorithm maintaining its
structure will be easy. However, the number of parameters can be critical
because regardless of how many parameters an architect adds to the
algorithm, relations between those parameters should be kept clear in order
to maintain the algorithm’s readability and function. And so, the way an
architect can algorithmically decompose a building and find the proper
relationships between its components can be very complex. Especially,
with a large number of components each related to another. But what is
guaranteed is that each design will be a product of a well-structured and
connected algorithm that maps exactly how the architect thinks and what
decisions have been made. And there comes the importance of parametric
design approach where an architect could use hundreds of parameters that
together shape the form while being interrelated directly so that changing
a parameter could affect other parameters.

61

Coding in computational design: A base for utilizing Al in
architectural form finding

3.6 Coding as a Practice

"Coding" typically refers to the act of writing code, which is a set of
instructions written in a programming language. This can involve
translating a specific algorithm or set of tasks into a language that a
computer can understand and execute. Coding is often considered a more
casual term, and it can be used to describe both the broader process of
writing code and the specific act of writing individual lines or blocks of
code. In the Oxford Languages Dictionary, the term ‘code’ is defined as a
‘system of words, letters, figures, or symbols used to represent others,
especially for the purposes of secrecy’ and ‘program instructions.’ Also,
the term ‘coding’ is defined as ‘the process of assigning a code to
something for classification or identification’ and ‘the process or activity
of writing computer programs’ (Oxford Languages Dictionary).

From these definitions, coding is not a process that is exclusively related
to computers. Human mental processes could be done through coding. In
fact, coding becomes a general activity that involves ciphering data,
analyzing, and synthesizing it to solve problems. In qualitative research,
coding is essential for organizing and analyzing data, assigning labels to
segments of qualitative data to identify patterns and insights.

While coding and programming are often used interchangeably,
programming encompasses the entire software development process,
including coding, problem-solving, testing, and maintenance. It requires a
comprehensive understanding of the software development life cycle. In
practice, coding involves writing instructions for software to perform
specific tasks, often hidden behind a graphical user interface (GUI). When
a user interacts with a GUI, such as clicking a button, it triggers a series of
processes between the front end (GUI) and back end (software logic),
ultimately executing the desired action. This process could be broken down
simply into the following steps: user interaction in the GUI triggers event
handling in the front end, where the software captures and processes the
user's action. This information is communicated to the back end, which
determines the appropriate response based on the user input. The software's
logic executes the action, translating high-level code into machine code for

62

Chapter 3

the computer's CPU to process. If necessary, the software may undergo
compilation before execution. The updated GUI provides feedback to the
user, indicating that the action has been completed. This seamless process
ensures intuitive and responsive user experiences in software applications.

The GUI triggers actions in the software's logic, leading to the generation
and execution of machine code by the computer's hardware. The process
varies by programming language: C/C++ directly translates code to native
code, Java to bytecode, C# to an intermediate language, which is then Just-
In-Time (JIT) compiled to native code, and Python to bytecode executed
by its interpreter. This variation affects how code is executed and
optimized.

Machine code, written in binary or hexadecimal notation, is specific to a
computer's architecture and operating system. Developers typically use
higher-level programming languages and rely on compilers or interpreters
to generate machine code. The actual instructions executed depend on
factors like the programming language, operating system's API, and
hardware architecture. Lower-level languages like C/C++ may use system-
specific functions to interact with the OS, while higher-level languages like
Java/Python delegate interaction to the runtime environment or interpreter.
Understanding coding principles empowers users to leverage machines
fully, fostering creativity in task execution and potentially innovating new
functions.

3.7 How Modeling Software Work

Programs, or software, are sets of instructions enabling computers to
perform tasks, essential for computing's functionality. Programmers and
software developers design, create, and maintain software, shaping
applications that empower computers. Modeling software like Rhinoceros,
3ds Max, Revit, and Maya interact with computer hardware to create and
manipulate 3D models. Developed using high-level languages such as C++
or C#, they employ frameworks for GUI, event handling, and rendering.
GUI facilitates user interaction, with inputs processed through event
handling. Core functionalities, like surface modeling, employ complex
algorithms implemented using high-level languages. 3D rendering engines

63

Coding in computational design: A base for utilizing Al in
architectural form finding

interface with the GPU for realistic visuals. File operations use libraries
for compatibility with standard formats, integrating with OS APIs for tasks
like file management. Custom scripting and plugins, often in Python,
extend functionality. Memory management and multi-threading
considerations optimize performance, making them indispensable tools in
design, animation, architecture, and engineering.

Modeling and rendering geometry

Geometry modeling algorithms in 3D software, like Bezier surfaces and
NURBS, use mathematical representations to define and manipulate
geometry. Implemented in languages such as C++, C#, or Python, these
algorithms compute points on the geometry based on mathematical
formulations, often employing techniques like De Casteljau's algorithm for
Bezier surfaces. Rendering processes, facilitated by OpenGL or DirectX,
utilize GPU acceleration for real-time visualization, incorporating shading
and lighting algorithms for realism. The GUI allows user interaction for
operations like selection, translation, and scaling, with event handling
mechanisms triggering updates. Optimization techniques enhance
performance with complex geometry. The rendering pipeline, used by
libraries like OpenGL, converts 3D data into visual images, with shaders
enabling custom visual effects for enhanced realism. Translation to
machine code involves compiling high-level language code into CPU-
executable instructions, typically written in languages like C++.

The rendering pipeline encompasses a series of mathematical operations
and algorithms translated into machine code instructions for efficient
execution on a computer's hardware. This includes transforming vertices,
applying view transformations, projecting coordinates, and clipping to
ensure visibility, followed by rasterization to determine pixel coverage.
Vertex and fragment shaders, compiled from high-level shading languages
like GLSL or HLSL, handle shading operations in parallel on the GPU.
Texture mapping involves calculating texture coordinates and sampling,
while depth testing compares pixel depths for drawing order. Alpha
blending logic is applied for transparency, and frame buffer operations
manage pixel storage and display updates. Optimization techniques are

64

Chapter 3

employed during compilation to generate efficient machine code,
leveraging parallelism, particularly in GPU programming, for
simultaneous execution of shader operations on multiple vertices or
fragments.

The compilation process translates high-level code into an intermediate
representation like bytecode or assembly code. During linking and loading,
this representation is further translated into machine code specific to the
CPU or GPU architecture, resulting in an executable program runnable on
the hardware.

Software documentation

Software documentation is a comprehensive set of written materials that
serves to describe, explain, and guide various aspects of a software system.
The information in software documentation is often divided into task
categories, including evaluating, planning, setting up or installing,
customizing, administering, using, and maintaining. Different types of
documentation play crucial roles throughout software development life
cycle and there are mainly two types which are internal and external
software documentation. Internal software documentation serves as a
valuable resource within a company including administrative
documentation which includes administrative guidelines, roadmaps, and
product requirements and developers’ documentation which offers clear
instructions to developers on how to build the software. On the other hand,
external documentation includes user documentation which provides
guidance on product usage to the end-users, developer documentation
which focuses on system-related details including how to invoke the API,
and just-in-time documentation used where immediate support is needed
for customer-facing queries, minimizing the need for users to refer to
additional documents or FAQs.

APIs and SDKs

API (Application Programming Interface) and SDK (Software
Development Kit) are essential tools in software development, each

65

Coding in computational design: A base for utilizing Al in
architectural form finding

serving distinct purposes. An API defines rules for software component
interaction, enabling developers to access functionality without exposing
internal details. On the other hand, an SDK is a comprehensive package
containing tools, libraries, and resources for building applications on
specific platforms or frameworks. While APIs specify interaction rules,
SDKs provide a complete development environment, including APIs,
documentation, sample code, tutorials, and other tools.

3.8 Visual Programming Language

Visual programming languages (VPLs) use graphical elements like icons
and symbols to represent programming logic, aiming to simplify coding
and make it accessible to non-programmers. The concept of VPLs has
evolved over decades, originating from the early development of graphical
user interfaces. In architecture, visual programming emerged alongside
computational design and parametricism, allowing architects to explore
algorithms and dynamic parameters in design processes. Grasshopper,
integrated with Rhino 3D modeling software, played a significant role in
popularizing visual programming by offering a user-friendly interface for
creating parametric designs. This approach facilitated interdisciplinary
collaboration and streamlined architectural practices. Figure 3-11 shows
an algorithm that creates a box using domains in the X, Y, and Z directions,
and then moves it to the Z direction.

T R L P T R T D e
APL PP T L &
Penpectier v

2O R0 0- .

Lo ERA®SIN G

SEEDUNI P AAIRROVA T
t %

Sl

Figure 3-11- Domain Box Creation as An Algorithm

66

Chapter 3

In the background of such an algorithm, each component runs a certain line
of code that executes the function. The XY Plane component runs a ‘Plane’
struct property ‘Worldly’, the domain box component runs a ‘Box’ Class
constructor, the construct domain component runs an ‘Interval’ Struct, the
unit Z component runs a ‘Vector3d’ struct ‘ZAxis’ property, and the move
component runs a ‘Translation’ method from the ‘Transform’ struct in
RhinoCommon. The required parameters such as domain values and unit
Z, vector value, etc., are considered input variables in the code.

Conventional modeling techniques in architecture often involve manually
drawing shapes and structures, which can be non-algorithmic and non-
parametric. This process may lead to inefficiencies when editing geometry
and may require recreating geometry from scratch for complex tasks.
Visual Programming Languages (VPLs) offer a graphical representation of
programming concepts, allowing users to intuitively understand and
manipulate program logic.

While VPLs enhance accessibility to programming, they may face
challenges in expressing complex algorithms and handling large-scale
tasks compared to text-based languages. They could lead to
misrepresentation of a project algorithm due to the huge number of
components on the screen that are connected to each other with wires
resulting in a very tedious and unarranged virtual working space as shown
in figure 3-12.

Figure 3-12 - Grasshopper3d Definition Arrangement

67

Coding in computational design: A base for utilizing Al in
architectural form finding

In summary, VPLs provide a graphical approach to coding, offering
intuitive interfaces and visual representations of code structures. While
they enhance accessibility, challenges exist, such as managing complexity
in larger projects.

3.9 Bias in Modeling Processes and Leveraging Power, Freedom,

and Spruceness of Coding

Bias in modeling processes arises from both software design and
educational factors. Conventional modeling approaches limit creativity by
dictating how geometry is built, often restricting users to predefined
methods within the software's GUI. This bias impedes the ability to treat
geometry as dynamic information, hindering the full utilization of
mathematical operations in design. For example, in such software,
architects may lack flexibility in constructing shapes or evaluating
surfaces, leading to limitations in modifying and building upon geometry.
Curve manipulation is particularly challenging, with divisions often
resulting in kinks and disruptions to smoothness. Overall, conventional
approaches constrain architects to predefined methods and limit their
ability to fully leverage mathematical operations in the design process.

Parametric modeling addresses limitations in conventional approaches by
enabling mathematical manipulation of geometry. However, educational
bias persists as architects often learn software through predefined methods,
hindering creative thinking. Users may favor easier modeling approaches,
leading to a narrow perspective on software capabilities. Additionally,
tutorials often focus on tools rather than mathematical principles, further
limiting understanding. Overall, bias in modeling software restricts both
thinking and modeling processes for architects.

Architectural design through coding empowers architects to innovate by
fostering computational thinking, facilitating the creation of complex
forms, optimized spatial layouts, and innovative design solutions.

The power of coding lies in automating repetitive tasks, speeding up
design iteration, and exploring various possibilities. Functions like

68

Chapter 3

iterations and conditionals are fundamental, offering control over code
flow and flexibility. Iterations, via loops, enhance efficiency by repeating
tasks and processing data sets, crucial for automation and batch processing.
Conditionals enable decision-making, executing code blocks based on
conditions, vital for error handling and user interaction. Together, they
form the foundation for dynamic and efficient coding, handling diverse
scenarios and data precisely. Additionally, coding facilitates interactions
with the operating system, simplifying tasks like exporting model data as
photos or spreadsheets for use in other disciplines, reducing reliance on
multiple software tools.

The freedom offered by coding in architectural design liberates architects
from traditional constraints, enabling them to express design intent
algorithmically through parametric models. This dynamic approach fosters
flexibility, facilitating efficient design modifications in response to
evolving project needs or client feedback. Working with the modeling
software's API empowers architects to freely explore its functions and
modeling methods, aligning with project requirements and enhancing the
design process.

Rhinoceros3d SDK

RhinoCommon, McNeel & Associates' cross-platform .NET plugin SDK
for Rhinoceros3d, offers extensive capabilities for extending and
integrating functionalities within Rhino. Primarily designed for .NET
languages like C#, it provides a versatile API with a robust geometry
library at its core. Beyond basic scripting, RhinoCommon enables task
automation and the development of custom plugins, enhancing Rhino's
native features with bespoke tools. Its cross-platform compatibility ensures
seamless operation across various operating systems, and supported by an
active community, developers can tailor solutions to diverse design and
engineering needs effectively. Figure 3-13 shows the RhinoCommon API
website exhibiting all of the namespaces and their different classes and
structs.

69

Coding in computational design: A base for utilizing Al in
architectural form finding

= 4 RhinoCommon API searc Q vsANDOLDER v B @

* Rhino
AngleUnitSystem

AntialiasLevel Rh|n0 namespace

» BitmapExtensions

/ Rhino

) Contains commonly-used value types and classes used in Rhino.
» DisplayDevicelnfo

» DocumentEventArgs S —
» DocumentOpenEventArgs

» DocumentSaveEventArgs Rhino.ApplicationSettings Static settings global to the entire Rhino application
» GpuDevicelnfo
» [EpsilonComparable Rhino.Collections

» [EpsilonF Comparable
» IndexPair Rhino.Commands
» IRhinoDocObserver

» LengthValue Rhino.Display
LengthValue. StringFormat

» PersistentSettings Rhino.DocObjects The DocObjects namespace contains types that carrespond to geometry that is found in

» PersistentSettingsConverter a document. Generally, these types reference an attribute and have a distinctive ID.

» PersistentSettingsEventArgs Rhino.FilelO

» PersistentSettingsEventArgs<T>

» PersistentSettingsSavedEventArgs Rhino.Geometry The Geometry namespace cantains gesmetric types used in Rhino. Examples are lines,
ReadFileResult curves, meshes and boundary representations

» RhinoApp Rhino.Input Classes related to getting user input for things like points, objects, and numbers

» RhinoApp.CommandLineTextWriter

Figure 3-13 — RhinoCommon API - https://developer.rhino3d.com/api/rhinocommon/

To construct a box through coding using the API, the 'Box' struct offers six
different constructors tailored for various scenarios. These constructors
include methods for creating a box from a bounding box, copying another
box, constructing it with a base plane and bounding box, using a base plane

and a generic piece of geometry, requiring a base plane and a list of points
(at least 2), and finally, one that needs a base plane and three intervals in
each Cartesian coordinate (figure 3-14).

RhinoCommon API searc VBANDOLDER ~ # “#-

» AnnotationBase " Box: references

AnnoctationType
» Are A Constructors (6)
» ArcCurve
» AreaMassProperties Box(BoundingBox bbox) Initializes a new Box that mimics a BoundingBox struct

The orientation plane of the Box is coincident with the World X plane
» Arrowhead

» BezierCurve

" BesterSirlace Benx(Bax: other) Copy constructor

BlendContinuity

BlendType
» BoundingBox Box(Plane basePlane, BoundingBox iz 2 world aligned bo from & base plane and s bounding bos
¥ Box boundingbox)

» Constructors
» Properties

Box(Plane basePlane, GeometryBase Initializes a box that contains a generic piece of geometry. This box will be aligned with
» Methods geometry) an arbitrary plane
» Brep
» BrepEdge
» BrepFace Box(Plane basePlane, Initializes the smallest box that contains a set of paints
BrepFace. ShrinkDisableSide [Enumerable<Point3d> points)
» BrepLoop
BrepLoopType
» BrepRegion Box(Plane basePlane, Interval xSize, Initializes a new box from a base Plane and three Intervals

Interval ySize, Interval zSize)
+ BrepRegionFaceSide nterval ySize, Interval zSize]

Figure 3-14- Box Struct in RhinoCommon API -
https://developer.rhino3d.com/api/rhinocommon/rhino.geometry.box

Also, under the ‘Box’ struct, a list of properties (usually mathematical)
related to the box are exhibited in order to gain all the possible information

70

Chapter 3

from it like its area, volume, orientation plane, center, X, Y, and Z intervals.
Moreover, a set of methods are present for box geometries which facilitate
getting more information about boxes like their corners, if it contains a
certain point or another box, the closest point to a box, converting the box
to a Boundary Representation (Brep) object, and transforming the box.

The spruceness of coding in architecture refers to the cleanliness and
efficiency achieved through well-organized and concise code. It
emphasizes modular scripting, enhancing collaboration and sharing of
design methodologies within the architectural community. This approach
improves code readability, scalability of design solutions, and logical
thinking skills for architects. In software like Grasshopper and Dynamo, a
single coding component can create, modify, and transform every building
component, resulting in a tidy virtual workspace. Figure 3-15 shows how
tidy a virtual working environment can get with coding.

71

=
—

en
A=
S
=
=
S
=
=
2
Q
]
R
=
=
<

ing Al i

A base for utiliz

Coding in computational design

p
P 4
e
P “e. .o\\\\ 7 “““\\\\\
v,
G \\\ 5

w\\\
\ \

i

il

NN

Figure 3-15 - Parametric Villa C# Script Created using C# Component in Grasshopper- By the

Author

72

Chapter 3

In general, integrating coding into architectural design modeling
empowers architects with the computational tools needed to transcend
traditional design boundaries. It provides the power to create intricate and
responsive designs, the freedom to explore diverse possibilities, and the
spruceness of well-crafted, efficient code. This symbiotic relationship
between coding and architectural design opens new horizons for creativity,
efficiency, and collaboration within the field of architecture.

Summary

In conclusion, this chapter provides a comprehensive exploration of
computational design as a transformative design thinking approach. It
delves into the historical roots of computational design and presents a
nuanced taxonomy that encapsulates the diverse approaches that have
emerged under its expansive umbrella. The focal point of the chapter
revolves around the in-depth examination of the generative form-finding
approach, shedding light on its principles and applications in architecture.
The collaborative engagement between designers and computational tools
enables the externalization of design intelligence, fostering a dynamic and
iterative design process. As designers increasingly leverage generative
algorithms, shape grammars, and other computational techniques, the
creative landscape expands, providing a rich platform for exploration,
experimentation, and the realization of novel design solutions.

By analyzing architectural forms as a source of information for
computational design, architectural forms become not only design
outcomes but also repositories of data that inform and shape the
computational design process. A crucial aspect discussed in the chapter is
the translation of this information into algorithms. The formation of
algorithms, rooted in the extracted information from architectural forms,
serves as a pivotal step in the computational design approach. In the next
part integrating coding, ML, and Al in the architectural design process is
discussed.

This chapter delves into the evolution of parametric design and visual
programming in architecture, tracing its roots back to the 'Explicit History'
plugin for Rhinoceros3d software released in September 2007. The

73

Coding in computational design: A base for utilizing Al in
architectural form finding

concept of 'visual coding' emerged, forming the basis for parametric
design, where architects gain full control over parameters and real-time
modifications. Coding, defined as the direct means to instruct machines,
is explored as an integral part of architectural design and modeling.
Architectural software communicates with machines through coding and
mathematics, using transformations like altering coordinate systems to
visualize geometry. Mastery of coding languages empowers architects to
understand software mechanics deeply, reducing biases inherent in user
interfaces. The chapter emphasizes the power of coding, incorporating
built-in functions such as iterations and conditional statements for precise
design control. Additionally, the integration of libraries in programming
languages enhances the capabilities of architectural modeling, from data
visualization to working with matrices and arrays.

In essence, coding is presented as a transformative practice in architecture,
enabling architects to read geometry as containers of information rather
than mere shapes. The chapter concludes by highlighting the importance
of coding as a modeling approach, emphasizing its power and freedom to
overcome biases in visual programming languages and conventional
modeling methods.

74

Part 2: Integrating Al in the Architectural

Design Process (A Framework for
Utilizing Al in Form Generation)

75

Artificial Intelligence and Machine Learning in Architecture

Chapter 4 Artificial Intelligence and Machine
Learning in Architecture

Preface

Today, Al and ML stand as pillars of transformative forces, reshaping the
understanding of what machines can achieve. This chapter begins with the
fundamental definition of AI. The definition of AI is multifaceted,
encapsulating the development of machines and systems endowed with the
capacity to perform tasks that traditionally require human intelligence.
From rule-based systems to advanced neural networks, the breadth of Al's
definition encompasses a spectrum of capabilities that continues to expand
with technological advancements. Machine Learning, a subset of Al, forms
the backbone of intelligent systems. It is the engine that enables machines
to learn from data and improve their performance over time. The interplay
between Al and ML is symbiotic, with ML providing the adaptive
capabilities that empower Al to navigate dynamic environments.

Khean et al. (2018) highlighted architecture as one of the slowest industries
to integrate Al and ML due to factors like traditional practices prioritizing
craftsmanship and artistic expression, limited data availability, and the
complexity of design. They underscored the importance of architect-Al
interaction for favorable outcomes. This aligns with the "human-centered
AI" approach, emphasizing collaboration between Al systems and human
experts to enhance architects' capabilities and creativity, rather than
replacing them.

In this chapter, the history of Al from the early philosophical musings to
pivotal moments that have shaped the field is reviewed. In addition,
generative Al (Gen-Al) and non-generative Al (Non-Gen-Al) are
explored. The fundamental differences between systems designed for
specific domains and those aiming to replicate human-like cognitive
abilities across a spectrum of tasks is discussed. These distinctions have
profound implications, not only in technical realms but also in ethical and
societal dimensions. Moreover, some of the Gen-Al and non-Gen Al

76

Chapter 4

applications in architecture are reviewed and how these applications can
be involved in the design process is discussed. Additionally, building on
what was discussed earlier in chapter 1 regarding design thinking and
architectural design process, the authenticity of Gen-Al products is
questioned with a focus on generated images. Gen-Al is analyzed as a
concept regarding how it could affect the design process, proposing a
theory on how Gen-Al could fit in the process rather than dramatically
changing it in a way contradicting with the essence of architectural design.
After that, architectural visualization field and whether it directly affects
the design process or not is discussed. Finally, how non-gen- Al could be
integrated into the design process is explained.

4.1 Al Definition and History

Al refers to the simulation of human intelligence in machines that are
programmed to think and learn like humans. It involves the development
of computer systems capable of performing tasks that typically require
human intelligence. These tasks include learning from experience (ML),
understanding natural language, recognizing patterns, solving problems,
and adapting to new situations.

Al can be approached through four perspectives, as outlined by Russell
and Norvig (2010): thinking humanly, acting humanly, thinking rationally,
and acting rationally. Thinking humanly, proposed by Haugeland (1985)
and Bellman (1987), envisions Al as machines with minds, capable of
human-like thought processes. Acting humanly, as described by Kurzweil
(1990) and Rich and Knight (1991), focuses on creating machines that
perform tasks requiring human intelligence. Thinking rationally,
articulated by Charniak and McDermott (1985) and Winston (1992),
explores Al as the study of mental faculties through computational models.
Acting rationally, defined by Poole et al. (1998) and Nilsson (1998), views
Al as the design of intelligent agents capable of exhibiting intelligent
behavior. These perspectives converge on Al's core components: learning,
reasoning, problem-solving, and creativity, drawing from diverse
disciplines such as psychology, mathematics, linguistics, neuroscience,
philosophy, and computer engineering.

77

Artificial Intelligence and Machine Learning in Architecture

Alan Turing's seminal 1950 article, "Computing Machinery and
Intelligence," laid the foundation for Al, introducing the Turing Test and
pioneering concepts like machine learning and reinforcement learning.
Preceding this, Turing began discussing Al in 1947 lectures at the London
Mathematical Society. In 1956, the Dartmouth workshop convened
prominent figures like John McCarthy, Allen Newell, and Herbert Simon,
marking the formal inception of Al as a field. McCarthy's creation of Lisp
in 1958 revolutionized Al programming. The period between 1952 and
1969 witnessed key Al applications like the General Problem Solver (GPS)
by Newell and Simon, and Arthur Samuel's checker Al player. The late
1960s and early 1970s saw a shift toward knowledge-based systems,
exemplified by projects like DENDRAL and MY CIN, while the late 1970s
marked the commercialization of Al. The mid-1980s experienced both
progress, with neural networks challenging symbolic approaches, and
setbacks, known as the "AI Winter." Subsequent years emphasized
empirical experiments and real-world applications, with the late 1990s and
early 2000s witnessing a shift to data-centric approaches. In the 21st
century, Al advancements have focused on intelligent agents, integration
with the Internet, and the pursuit of human-level Al, with ethical
considerations driving research and development (Solomonoft, G., 2023).

In the evolution of computer science over the past six decades, there has
been a notable shift from algorithm-centric approaches to a focus on the
significance of data in Al development. This shift, highlighted by
Yarowsky's 1995 work on word-sense disambiguation and Banko and
Brill's 2001 study, emphasizes that the quality and quantity of available
data may outweigh the importance of algorithm choice. Yarowsky's
approach demonstrated achieving high accuracy without labeled examples
by leveraging vast unannotated text corpora, while Banko and Brill's study
showed that increased data volume can surpass algorithmic variations in
performance. Further evidence from Hays and Efros (2007) illustrates how
algorithmic performance improves with a larger collection of images,
reinforcing the impact of data scale on Al outcomes. This data-driven
paradigm suggests a potential solution to the "knowledge bottleneck" in
Al, where comprehensive system knowledge is acquired through learning

78

Chapter 4

rather than manual knowledge engineering, given sufficient data for
training algorithms. These developments signal a resurgence in Al
applications, potentially marking the end of the "AI Winter" era and
ushering in a new era of innovation across diverse industries, as
acknowledged by Kurzweil's recognition of Al's pervasive integration into
various sectors.

4.2 Types and Applications of AI

This section presents various types of Al based on its capabilities and
functionality as well as different applications of Al.

Al Types

Biswal, A., 2023 categorizes Al into several types based on its capabilities,
including Artificial Narrow Intelligence (ANI), Artificial General
Intelligence (AGI), Artificial Superintelligence (ASI), and Singularity.
ANI, also known as weak Al is specialized in performing specific tasks
and encompasses the first and second waves of Al, involving expert
systems, artificial neural networks, and data mining, among others. ANI
systems excel in tasks like image recognition, speech recognition, natural
language processing, recommendation engines, machine translation, and
self-driving cars, but are limited to these tasks and lack generalization
abilities. AGI, on the other hand, aims to mimic human-level intelligence
across a broad range of tasks, possessing adaptability, learning capabilities,
complex reasoning, and potentially self-awareness. ASI is a speculative
type of Al that surpasses human intelligence in all aspects, potentially
capable of recursive self-improvement. The Singularity refers to Al
achieving autonomy and intelligence to break free from human control,
leading to an intelligence explosion. The development of AGI is seen as a
prerequisite for the Singularity, although there is uncertainty surrounding
its occurrence and timeline.

Al types based on functionality include various categories, each
delineating specific attributes and capabilities. Reactive Machines,
exemplified by IBM's Deep Blue, operate solely on current input data
without drawing from past experiences, limiting their adaptability beyond

79

Artificial Intelligence and Machine Learning in Architecture

predefined tasks. Limited Memory Al strikes a balance by incorporating
short-term memory, crucial for tasks like autonomous driving systems,
exemplified by Mitsubishi Electric's advancements in this field. Theory of
Mind Al endeavors to endow machines with the ability to understand and
attribute mental states to themselves and others, showcased by creations
like Kismet and Sophia. Lastly, Self-Awareness in Al pertains to
recognizing one's own mental states, from basic understanding to nuanced
awareness, with implications for enhancing human-machine interactions
and system performance. While fully self-aware Al remains theoretical,
ongoing research explores its ethical implications and technical feasibility,
aiming to advance Al towards higher levels of self-awareness (Boucher,
2020).

AI Applications

Applications of Al include expert systems, ML, NLP, computer vision,
speech, planning, and robotics.

ML is a branch of Al that focuses on creating systems that can learn from
data and make decisions or predictions based on that data. ML can be
applied to various domains, such as computer vision, natural language
processing, recommender systems, and more. Additionally, Natural
Language Processing (NLP) is a specialized field within Al that focuses
on the interaction between computers and human languages. Its
overarching goal is to equip computers with the ability to comprehend,
analyze, generate, and manipulate natural language texts and speech. The
applications of NLP span a wide range and include machine translation,
speech recognition, sentiment analysis, information extraction, text
summarization, question answering, and the creation of chatbots.

Expert systems are Al-driven computer programs designed to tackle
complex issues within defined domains. They consist of a knowledge base,
an inference engine, and a user interface. Drawing from facts and rules
sourced from human experts or authoritative references, the inference
engine employs logical reasoning to derive new conclusions. The user
interface enables interaction, allowing users to ask questions, offer
feedback, or update the knowledge base. Despite their utility, expert

80

Chapter 4

systems may falter when faced with unforeseen circumstances and
typically lack common sense or inventive problem-solving capabilities.

Computer vision is an integral field within Al that empowers machines to
comprehend and make decisions based on visual information, mirroring
human vision capabilities. Some common computer vision algorithms
include Sobel, Prewitt, or Canny for image filtering and edge detection,
ANNSs for image classification, object detection, and image segmentation,
U-Net for image segmentation, SIFT (Scale-Invariant Feature Transform)
and SURF (Speeded Up Robust Features) for feature extraction, Lucas-
Kanade and Horn-Schunck for estimating the motion of objects in
consecutive frames of a video, and Eigenface, Fisherfaces, and Local
Binary Patterns (LBP) for face recognition (Szeliski, R., 2010).

Last but not least, Al Planning is a specialized field within Al dedicated to
the development and execution of plans to achieve specific goals. The core
tasks in Al Planning involve determining a sequence of actions that
transition from an initial state to a desired goal state, followed by the
execution of these actions in either a real or simulated environment.

4.3 Generative and Non-Generative Al

Generative Al (Gen-Al) and non-generative Al (Non-Gen Al) represent
two broad categories of Al systems based on their capabilities and
functionalities.

Gen-Al

In January 2021, a breakthrough in Al creative abilities was announced
when DALL-E was open for the public to experiment with. DALL-E is a
platform that converts text to images through generative Al. In July 2022,
another breakthrough in Al creative abilities was announced when
MidJourney was open for the public to experiment with. MidJourney is
another text-to-image generative Al model, but it was resulting in more
realistic generated images with more options.

Since then, DALL-E and MidJourney were developed, and new versions
were published gradually with more options including inpainting,

81

Artificial Intelligence and Machine Learning in Architecture

outpainting, and image-to-image generation reaching DALL-E v3 and
MidJourney 5 at the time of writing this research. Also, other image
generation models were developed including Adobe Firefly and stable
diffusion.

Of course, Many fields have leveraged the power of such models and
capabilities and the architectural field is no exception and many
applications of using image generation Al models in architecture were
explored in section 7.2.2.

In fact, the advent of both generative and non-generative Al has
significantly transformed the architectural design process. Generative Al,
with its prowess in divergent thinking and algorithmic creativity, has
become a catalyst for idea generation. Furthermore, generative Al
facilitates collaboration between architects and machines, fostering a
symbiotic relationship that leverages the strengths of both.

Gen Al refers to systems that have the ability to generate similar new
content, often in the form of images, text, sound, 3d models, speech, code,
video, etc. These systems can create outputs that are not explicitly present
in their training data by understanding the distribution of data.

Text Generation

Text generation techniques encompass a diverse array of algorithms and
models aimed at producing coherent and contextually relevant textual
content across various domains. Markov Models leverage probability-
based predictions, while Recurrent Neural Networks (RNNs) process
sequences with hidden states to capture context. Long Short-Term Memory
(LSTM) Networks overcome limitations in capturing long-range
dependencies, and Generative Adversarial Networks (GANs) produce
realistic text through an adversarial training process. Transformers, like
BERT, utilize self-attention mechanisms to enhance contextual
understanding, and Large Language Models (LLMs) represent a
cornerstone in natural language processing (NLP), pre-trained on extensive
text corpora. LLMs, such as GPT and BERT, demonstrate remarkable
performance in tasks like text generation and classification. They are

82

Chapter 4

adaptable across various domains, from general language understanding to
domain-specific applications like medical data analysis. With their
pervasive applications in education, healthcare, customer service, and
beyond, LLMs are shaping the future of human-computer interaction and
information processing.

Image Generation

Image generation Al encompasses algorithms and models designed to
create new images, leveraging deep learning architectures trained on large
datasets. Key approaches include Generative Adversarial Networks
(GANSs), Variational Autoencoders (VAEs), PixelCNN/RNN, Deep
Dream, CLIP, and DALL-E. GANSs, like DCGAN and StyleGAN, produce
diverse images, while VAEs capture latent representations.
PixelCNN/RNN generate images pixel by pixel, Deep Dream enhances
patterns, CLIP generates images from textual prompts, and DALL-E
generates images based on textual descriptions by directly creating pixels
in the generation process. It does not explicitly involve a separate noising
and denoising mechanism. Stable diffusion algorithms, such as Diffusion
with Denoising Priors (DDPM) and Noise-Contrastive Estimation (NCE),
use controlled noise to transform images gradually, contributing to realistic
and diverse image generation (figure 4-1).

Steps: 1 Steps: 2 Steps: 3 Steps. 5 Steps: 8

Steps: 10 Steps: 15 Steps: 20 Steps: 30 Steps: 40

Figure 4-1- The denoising process used by Stable Diffusion.
https://en.wikipedia.org/wiki/Stable Diffusiontt/media/File:X-Y plot of algorithmically-
generated Al art of European-

stvle_castle_in_Japan_demonstrating DDIM _diffusion_steps.png

83

https://en.wikipedia.org/wiki/Stable_Diffusion#/media/File:X-Y_plot_of_algorithmically-generated_AI_art_of_European-style_castle_in_Japan_demonstrating_DDIM_diffusion_steps.png
https://en.wikipedia.org/wiki/Stable_Diffusion#/media/File:X-Y_plot_of_algorithmically-generated_AI_art_of_European-style_castle_in_Japan_demonstrating_DDIM_diffusion_steps.png
https://en.wikipedia.org/wiki/Stable_Diffusion#/media/File:X-Y_plot_of_algorithmically-generated_AI_art_of_European-style_castle_in_Japan_demonstrating_DDIM_diffusion_steps.png

Artificial Intelligence and Machine Learning in Architecture

Last but not least, inpainting and outpainting techniques, utilizing
generative models, fill in missing or extend image content. These methods
cater to various image generation requirements, highlighting the versatility
and significance of Al in creating visually compelling content.

Videos Generation

Video generation in Al uses advanced techniques to create realistic and
dynamic video content, simulating the appearance and motion of real-
world videos. This field, part of generative modeling, leverages models
like GANs, RNNs, LSTM networks, VAEs, 3D CNNs, and flow-based
models to understand and synthesize dynamic visual content. GANs
employ adversarial training to create realistic video sequences, capturing
temporal and spatial patterns from video datasets. RNNs and LSTM
networks handle temporal dependencies between frames, predicting the
next frame to maintain coherent sequences. VAEs learn probabilistic
distributions from training videos, sampling from these distributions to
produce diverse video sequences. 3D CNNs process video data in three
dimensions, capturing spatial and temporal features simultaneously from
video volumes. Flow-based models focus on learning motion and
transformations between frames, generating videos with realistic motion
by modeling the underlying dynamics. These algorithms, trained on large
video datasets, adjust model parameters to minimize the difference
between generated and real videos, resulting in the creation of diverse and
realistic visual content.

3D Models Generation

3D model generation in Al involves using advanced techniques to create
three-dimensional representations of objects, scenes, or environments
from 2D images, point clouds, or other input data, enabling Al systems to
understand and replicate the three-dimensional nature of the physical
world. Several notable models and algorithms are employed for this task,
each leveraging different approaches. Depth Estimation Networks use
CNNss to predict depth information from 2D images, learning from datasets
containing RGB images and corresponding ground truth depth maps. Point
Cloud Generative Models, including PointNet and PointNet++, generate

84

Chapter 4

3D point clouds representing object surfaces, trained on datasets with 3D
point cloud representations. Volumetric Representations with 3D CNNs
divide 3D space into small cubes (voxels) and use CNNs to learn and
generate volumetric representations from 2D images.

GANSs are adapted for 3D model generation through adversarial training,
refining the generator's ability to create realistic 3D structures from input
data such as 3D models or point clouds. Multi-View Synthesis uses
multiple 2D images from different viewpoints to synthesize a coherent 3D
representation, leveraging neural rendering techniques and training on
datasets of multi-view images.

Neural Radiance Fields (NeRF), introduced by Mildenhall, B., et al., 2020,
represents 3D scenes as continuous functions outputting color and density
for any 3D point, excelling at modeling complex scenes with detailed
geometry and appearance. NeRF is trained on images captured from
different viewpoints and uses ray marching to estimate color and density
values, allowing for realistic and high-fidelity 3D representation. These
algorithms are trained on diverse datasets containing 2D images, 3D point
clouds, or volumetric representations, adjusting model parameters to
minimize differences between generated 3D structures and real-world
examples, thus enabling the reproduction of intricate three-dimensional
scenes and objects.
Input Images Optimize NeRF Render new views

FAG AP G ard

AN IES

FaWarge

RFHNANAFES

PR EFEELEN ey

LEBRIFRET D oy
e grTED F

3
E v Y A
2RVET LR 6 2
CRANBGAFBNA 20\ B

PEHE BRI

Figure 4-2 — NeRF pipeline - Mildenhall, B., et. AL, 2020, NeRF: Representing Scenes as Neural
Radiance Fields for View Synthesis

The examples of algorithms mentioned in this section showcase the
versatility of generative Al in creating content across visual art, music,
text, and more. As the field continues to advance, generative models are
likely to contribute to various creative and practical applications.

85

Artificial Intelligence and Machine Learning in Architecture

Non-Gen-AI

Non-generative Al focuses on tasks such as classification, regression,
pattern recognition, and prediction, rather than generating new content.
These systems are trained on labeled datasets to learn the relationship
between features and labels. Applications include image classification with
CNNs, where objects within images are identified and categorized, and
NLP models for sentiment analysis, such as BERT or LSTM, which
determine the sentiment of a given text. Regression models are widely used
in finance for predicting stock prices based on historical data. Other
applications of non-generative Al include clustering, association rules,
dimensionality reduction, object detection, and face recognition. These
models excel in prediction and pattern recognition, making them valuable
tools across various domains.

In summary, generative Al focuses on creating new and original content,
while non-generative Al is more oriented toward tasks that involve
classification, regression, and pattern recognition without the explicit
generation of new data. Both approaches have their own strengths and
applications, and the choice between generative and non-generative Al
depends on the specific requirements of the task at hand.

4.4 ML Definition and Types

Non-generative Al (ML) excels in analytical support, aiding architects in
data analysis, simulation, and visualization. It contributes to realistic
renderings, project management optimization, and quality assurance.
However, the integration of Al in architecture poses challenges, including
ethical considerations regarding biases, the delicate balance between
technological efficiency and human creativity, and the need for architects
to adapt to evolving workflows. In navigating these challenges, architects
can harness the benefits of Al to enhance their design processes, ensuring
a harmonious integration of technological advancements with traditional
practices.

ML is a sub-set of Al which aids in discovering intricate patterns within
data, utilizing good generalization on unseen data with very precise

86

Chapter 4

predictions. In ML several disciplines meet such as database, data mining,
pattern recognitions, etc. This process does not require explicit
programming of ML algorithms and meanwhile, many explorations in
applying ML are being widely conducted in different fields. ML algorithms
could be categorized as supervised learning, unsupervised learning, and
reinforcement learning. Specific types of data are used with ML algorithms
including images, text, numbers, and sounds. However, all these types
require the ability to be transformed into numerical values so that they can
be processed by machines. In architectural form design, numerical
predictions require being labeled to be used in their predefined parameters
afterwards to generate a model.

Types of ML

Machine learning can be broadly categorized into three main types based
on the learning style and approach:

Supervised Learning

In supervised learning, the algorithm is trained on a labeled dataset, where
each input data point is paired with its corresponding output or target. The
goal is to learn mapping from inputs to outputs, enabling the algorithm to
make predictions or classify new, unseen data. ML supervised learning
algorithms perform both regression and classification tasks. Regression
quantifies the relationship between input and target variables, predicting
numerical values, suitable for predicting architectural parameters like
lengths, widths, heights, and distances. Classification categorizes inputs
into classes, useful for making binary decisions in architectural models,
such as detecting the presence of windows in a wall. Artificial Neural
Networks (ANNs), a subcategory of ML under deep learning, consist of
interconnected nodes or perceptrons and have advanced significantly,
enhancing capabilities in both regression and classification tasks.

Unsupervised Learning

Unsupervised learning deals with unlabeled data, exploring its inherent
structure and patterns without explicit guidance to discover relationships,
clusters, or representations within the data. Key techniques include

87

Artificial Intelligence and Machine Learning in Architecture

clustering algorithms, which group similar data points; dimensionality
reduction algorithms, which reduce feature numbers while preserving
essential information; and association rules, which describe relationships
among items in a dataset. Association rules are commonly used in market
basket analysis to identify products frequently purchased together. An
association rule is typically written in the form "If {X}, then {Y},"
indicating the relationship between two itemsets. These techniques help
uncover patterns, correlations, and co-occurrences in data.

Reinforcement Learning

Reinforcement learning involves an agent learning to make decisions by
interacting with an environment and receiving feedback in the form of
rewards or penalties. The agent, which is the decision-making entity, learns
optimal strategies over time through its actions. The environment is the
external system with which the agent interacts. Examples of applications
include game playing, where agents learn through trial and error, and
robotics, where robots learn to perform tasks in a physical environment.

These three types represent the fundamental paradigms in ml, each serving
different purposes and applications. Additionally, there are hybrid
approaches and specialized techniques within these categories,
contributing to the diversity and richness of the field.

4.5 Data Sets in ML

In ML, a data set is a collection of data points that are used for training,
testing, and evaluating machine learning models. Datasets play a crucial
role in the development and assessment of ML algorithms, allowing
models to learn patterns and make predictions based on the provided
information. Data provided to algorithms could be in many forms
including numerical, text, images, audio, videos, etc. according to the
problem under study.

Any data set consists of features or input variables (attributes) which the
model uses to make predictions. Inputs could be either numeric or
categorical and this defines the problem and how it is approached. On the

88

Chapter 4

other hand, labels or outputs are the desired output or target values that the
model aims to predict.

Data sets could be either labeled or unlabeled. While labeled data are data
which contain input features with corresponding labels, unlabeled data
contain only input features without corresponding labels. Labeled data is
used to train supervised learning models for either regression or
classification tasks. On the other hand, in unsupervised learning and with
the absence of labels, the model’s task is to discover patterns or structures
in the data without explicit guidance.

Data set splitting

Data set splitting is a crucial step in machine learning, dividing a dataset
into training, validation, and testing subsets to assess model performance
and prevent overfitting. The training dataset, comprising input-output
pairs, is used to train the model. The testing dataset, separate from the
training set, evaluates the model's generalization to new data. A validation
dataset, distinct from both training and testing sets, helps tune
hyperparameters and avoid overfitting. For small datasets, a split of 70-
80% for training and 20-30% for testing is common. Large datasets allow
for an additional validation set, with splits typically being 60-70% for
training, 15-20% for validation, and 15-20% for testing. Random shuftling
ensures representative subsets, and stratified splitting maintains class
proportions in imbalanced datasets. Cross-validation, like k-fold, involves
multiple splits for robust evaluation.

Challenges associated with having an ML-ready data set

Handling datasets in machine learning poses several challenges that can
impede model generalization on unseen data. These challenges include
data quality, imbalance, dataset size, dimensionality, noise, and missing
values. Poor data quality can lead to biased models and inaccurate
predictions, while imbalanced class distributions can result in biased
models favoring majority classes. Noise and missing values further
complicate model training, requiring careful preprocessing. High-
dimensional spaces exacerbate the curse of dimensionality, necessitating

&9

Artificial Intelligence and Machine Learning in Architecture

techniques like feature selection and dimensionality reduction. Scaling and
normalization address numerical feature discrepancies, while one-hot
encoding handles categorical variables. Prior to model training, thorough
exploratory data analysis and cleaning are essential to ensure dataset
organization, balance, sufficiency, dimensionality, and cleanliness, as these
factors significantly impact model performance (Aggarwal, C., 2015).

4.6 ML Algorithms

Machine learning algorithms are computational methods or procedures
used by machines to learn from data and make predictions or decisions
without being explicitly programmed. These algorithms enable machines
to improve their performance on a specific task over time through the
experience gained from the data they process. There are various types of
machine learning algorithms, and they are explained in this section.

A) Regression

Regression analysis quantifies relationships between a dependent variable
(also known as the target variable) and independent variables (also known
as features or covariates), aiding predictions or inferences. Ordinary Least
Squares (OLS) is a common method, minimizing error sum of squares to
establish a 'best fit' line. Assumptions include uncorrelated, zero-mean, and
constant-variance errors for parameter estimation, with normal distribution
for hypothesis tests and interval estimation. Advanced tests verify these
assumptions for specific regression equations, making regression analysis
a vital tool across scientific disciplines.

Ensemble learning

Ensemble learning combines decisions from multiple ML models to reduce
error and enhance predictions compared to a single model. The maximum
voting technique is then applied to aggregated decisions for the final
prediction. In an ensemble of trees, each tree is grown based on a random
vector realization, and final predictions are generated through voting with
equal weights. Ensemble learning utilizes Bagging (parallel ensemble) and
Boosting (sequential ensemble) methods. Bagging, introduced by Breiman
in 1996, builds each tree using a bootstrap sample drawn with replacement

90

Chapter 4

from the training dataset. This reduces prediction errors by averaging and
variance reduction, as explained by Breiman in 1998 and further detailed
by Hastie et al. in 2001. Random forests further reduce variance by
minimizing correlation between aggregated quantities. Ensemble learning
algorithms include random forests, decision trees, XGBoost, etc.

A random forest regressor aim to reduce correlations by introducing an
additional level of randomness. These models utilize a random subset of
variables, selecting a subset of covariates at random. Cerquitelli, T., et al.
(2019), investigated the use of random forest and ridge regression to
forecast power consumption in buildings using the SPEC engine. Their
study demonstrated the effectiveness of these methods in forecasting both
fine-grained values and coarse levels of power consumption in buildings.
Breiman asserts that random forests possess two key advantages: They
achieve remarkable prediction accuracy. And this high accuracy is
achieved across a broad spectrum of settings for the single tuning
parameter utilized.

Additionally, Decision trees utilize a modified version of the C4.5
algorithm introduced by Quinlan in 1993. In regression trees, leaf nodes
can represent distinct values corresponding to the concept or include a
function for determining the value of the target attribute. Yu, Zhun, et al.
(2010), employed a decision tree algorithm to predict the energy
performance indexes of residential buildings, achieving a model accuracy
of 92%.

Last but not least, XGBoost, short for eXtreme Gradient Boosting, utilizes
additive modeling by sequentially incorporating new decision trees to
minimize loss through gradient descent. This strategy prevents overfitting
by integrating the outputs of existing trees with those of the new tree until
loss is minimized or a predefined tree limit is reached. Yucong, W., and
Bo. W., in 2020, introduced the EA-XGBoost model for predicting
buildings' energy consumption, achieving an R2 score of 0.93, an MAE of
46.82, and an RMSE 0f47.01.

91

Artificial Intelligence and Machine Learning in Architecture

Ridge

Ridge regression is a method used to improve model performance in the
presence of multicollinearity within the data. By utilizing L2
regularization, it tackles scenarios where multicollinearity results in
unbiased least-squares estimates and high variances, leading to substantial
deviations between predicted and actual values.

KNN

The k Nearest Neighbor (k-NN) method, categorized as a non-parametric
and supervised technique, requires three essential elements: a set of labeled
entities, a metric for calculating object distances or similarities, and the
specification of k, representing the number of nearest neighbors. In a study
by Hong, G., et al. (2022), the k-NN regressor was examined for predicting
hourly energy consumption in community buildings. The researchers
concluded that the algorithm's overall RMSE results fell within the
acceptable range according to ASHRAE guidelines.

Linear Regression

Linear regression is employed to assess the relationship between
independent and dependent variables, aiming to find optimal coefficients
(w =wl, ..., wn) that accurately represent a linear correlation. In a study
by Boukarta, S. (2021), linear regression was examined to predict the
annual energy demand for heating and cooling in residential buildings,
despite the small sample size of only 60 samples. Remarkably, the model
achieved an impressive R2 score of 0.94%.

Multivariate Polynomial Regression

Polynomial regression is a method that allows for flexible curve fitting,
particularly focusing on a single independent variable X. When applied to
situations with multiple independent variables, it is referred to as
Multivariate Polynomial Regression. In a study conducted by
Mavromatidis, L., et al. (2013), polynomial regression models were
investigated for predicting the thermal performance of composite dynamic

92

Chapter 4

building envelopes. The results of the models indicated errors that were
deemed acceptable under most conditions.

B) Classification

Classification is a data mining technique that is employed to predict the
categorization of data instances into specific groups. A set of classification
algorithms could be used to predict the classification of data including
Random Forest, k-NN, Radius Neighbor Classifier, and MLP. The main
difference between these algorithms when used in regression and when
used in classification is that instead of analyzing and predicting continuous
values, binary values are predicted.

C) ANNs and Deep Learning

ANNSs constitute a broad class of machine learning models inspired by the
human brain's functioning. They can be shallow or deep, with varying
numbers of layers. Deep learning, a subset of machine learning,
specifically focuses on neural networks with multiple hidden layers,
allowing for the creation of deep neural networks. This characteristic depth
enables deep learning models to automatically learn intricate hierarchical
representations of data, enhancing performance in handling complex
patterns. Deep learning algorithms include Multilayer Perceptron (MLP),
Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), Long Short-Term Memory (LSTM), and Transformer Models
(e.g., GPT, BERT). MLP, a type of ANN, is particularly effective in
regression tasks. It comprises artificial neurons, which take input values
and apply weights specific to the neuron before passing through an
activation function. Deep learning finds extensive applications in image
and speech recognition, natural language processing, and strategic gaming
due to its ability to learn hierarchical features automatically. Figure 4-3
shows the architecture of deep ANN.

93

Artificial Intelligence and Machine Learning in Architecture

Hidden Hidden Hidden
Input layer 1 layer 2 layer 3
layer ~
Qutput
layer
J

Figure 4-3- Architecture of a deep ANN - https://freecontent.manning.com/neural-network-
architectures/, Last Access: 30-8-2023

4.7 A Review on Using Non-Gen-Al in Architecture

Non-Gen-Al applications include tasks like classification, prediction,
pattern recognition, etc. This kind of application does not include creative
generation of new outputs such as images, text, 3d models, etc.

Non-Gen-Al offers a diverse range of applications in architectural projects,
spanning from project scheduling and cost estimation to energy
performance analysis and building code compliance. Machine learning
algorithms can optimize schedules, allocate resources, and predict delays,
while also assisting in estimating construction costs and analyzing building
designs for energy efficiency. Al tools can ensure compliance with
building codes, aid in site selection, and enhance facility management
through predictive maintenance and energy optimization. Additionally,
collaborative design tools powered by Al facilitate real-time collaboration
and intelligent design suggestions, while optimization algorithms help in
material selection based on factors like cost and sustainability.
Accessibility analysis further ensures compliance with accessibility
standards, making Al a valuable asset in various facets of architectural
design and management.

In 2023, Topuz, B., and Alp., N., reviewed the applications of ML in
different architectural design sub-disciplines with themes including CAD,

94

Chapter 4

Computer-Aided-Engineering (CAE), and Computer-Aided
Manufacturing (CAM). The researchers focused on 60 articles published
in different journals. These studies spanned 21 different areas in
architecture, addressing a myriad of challenges within each domain as
shown in figure 4-4.

User Experience
Space Design
Conceptual Design
Facade Design
Histarical Buildings or Structures
Extended Reality
Utrban Design
BIM
Computational Design
Sketching
Building Typology
Sustainability
Smart Buildings
High-nse Buildings
Building Performance
Design and Implementation
Digital Fabrication
Building Elements
Point Clouds or Object Recognition
Design Process
Applications and Infrastructure

®m CAD (Computer Aided Design) w CAE (Computer Aided Engineering) w CAM (Computer Aided Manufacturing) w Article Count

Figure 4-4 Architecture subfields in 60 articles discussing applying ML in architecture (Topuz, B.,
and Alp, N., 2023, Machine Learning in Architecture)

The breakdown exemplifies the extensive range of applications for
machine learning in architecture, showcasing its potential to address
problems related to design optimization, historic preservation,
sustainability, building performance, and many other facets of the
architectural process.

In the following discussion, different applications of non-gen-Al are
presented.

Sustainability and Energy Efficiency

Numerous studies within sustainable architecture have employed Machine
Learning (ML) techniques to optimize building energy efficiency and

95

Artificial Intelligence and Machine Learning in Architecture

consumption. For instance, Tansas and Xifara developed a statistical ML
framework to scrutinize the influence of variables like wall area and
glazing area on residential building heating and cooling loads,
emphasizing the accuracy of ML predictions aligned with the training data.
Chou and Bui, 2014 utilized various Al techniques to estimate heating and
cooling loads, with the ensemble approach and Support Vector Regression
standing out. Robinson et al., 2017 found that gradient boosting regression
models excelled in predicting commercial building energy consumption.

Also, Roy et al., 2023, explored advanced ML techniques for residential
buildings, while Deng et al., 2018 cautioned about nuanced performance
compared to linear regression for US commercial building energy use.
Studies by Rahman and Smith showcased ML's capability, including
Neural Networks and Gaussian process regression, in predicting fuel
consumption in commercial buildings. Additionally, Fan et al. applied
Deep Learning for short-term building cooling loads, demonstrating DL's
potential for accurate prediction models. Yang et al. introduced an adaptive
artificial neural network capable of predicting unexpected data behavior.
Gonzalez and Zamarreno employed a feedback ANN for short-term
electric load consumption prediction, highlighting its simplicity and
resource efficiency.

Moreover, Kristianse, T., et al., 2022, explored applying Artificial Neural
Networks (ANNSs) to predict annual daylight illuminance and operative
temperature, aiming to reduce simulation time, achieving a promising 96%
reduction in overall time using ANN models. These studies underscore the
versatility and effectiveness of Al and ML techniques in addressing various
challenges associated with electricity consumption prediction in diverse
building contexts. Additionally, Sebestyen, A., 2020, evaluated ML model
predictions of radiation values and sunlight hours compared to software
plugin metrics like Ladybug toolsets in Grasshopper3d for Rhinoceros3d.
In 2019, Feng et al. introduced a method blending parametric design with
ML algorithms to evaluate early-stage environmental performance in
building design, addressing uncertainties associated with design choices.
Singh, M., etal., 2022, developed a convolutional neural network approach
for energy prediction, addressing key challenges and providing

96

Chapter 4

interpretable BPS information through a web tool. He, Y., et al., 2021,
introduced a hybrid framework for rapid evaluation of pedestrian-level
wind environments in architectural sustainable design, demonstrating
efficiency and accuracy in providing design optimization information.
Collectively, these studies highlight ML's potential to enhance
sustainability and efficiency in architectural design and energy
consumption prediction.

Architectural Theories

Several studies have leveraged machine learning (ML) techniques to
enhance various aspects of architectural analysis and design. Uzun and
Colokoglu (2019) utilized a pretrained Faster-RCNN-Inception-V2-
COCO model to classify architectural drawings images into plans and
sections, highlighting challenges due to dataset size. Wang et al. (2022)
employed CNN-based models for classifying architectural styles,
achieving satisfactory performance with preprocessing and attention
mechanisms. Xu et al. (2014) addressed the multi-class problem in
architectural style classification wusing probabilistic analysis and
deformable part-based models. Sun et al. (2022) proposed a deep learning
framework for understanding architectural styles and age epochs,
demonstrating its effectiveness in analyzing building facades.

Moreover, Shalunts et al. (2011) successfully clustered facade elements by
architectural style using k-means, achieving high accuracy percentages
ranging between 92.5 and 98.1 according to the class. Alymani et al. (2019)
introduced a workflow combining database systems and unsupervised
learning algorithms to cluster architectural design aspects, highlighting the
efficacy of K-Means clustering. Millan et al. (2022) presented a
methodology utilizing data analysis and machine learning to track the
design process in architecture, revealing insights into design strategies and
problem-solving pathways. Qin et al. (2023) introduced the
"NeoDescriber" model for automatic identification and description of
Neoclassical buildings, achieving effective performance in classification
and detection tasks. These studies collectively demonstrate the diverse

97

Artificial Intelligence and Machine Learning in Architecture

applications and promising outcomes of ML in architectural analysis and
design.

Form Prediction

Cudzik and Radziszewski (2018) trained an artificial neural network
(ANN) to predict detailed configurations of Roman Corinthian order
capitals, positioning the algorithm as a co-designer capable of generating
potential spatial variations for examined forms. The dataset included
samples enabling the analysis of local deformation, with input data
comprising sample coordinate values, surface normal vectors, and volume
center plane deviations. Through the backpropagation of errors learning
procedure, the ANN was trained with 28,900 samples, resulting in a Mean
Square Error below 0.001. The successfully trained ANN demonstrated its
ability to generate three-dimensional variations of new capital forms based
on given input parameters, enhancing the design process by providing
computer-generated solutions. This research showcases the valuable role
of neural networks in architectural computational design, extending the
range of available design tools.

CF 3y
e WY =A

vE IS Eb

Figure 4-5 - Designed capitals with ML - Cudzik, J., 2018, Artificial Intelligence Aided
Architectural Design
Lakzaeian (2020) addressed challenges in multi-planar building facades
segmentation by introducing a specialized algorithm designed to
differentiate between structural and non-structural elements in complex
facades. The algorithm achieved a 98% accuracy for single complex
openings and an overall average accuracy of at least 91% when applied to
buildings in Dublin, Ireland. Additionally, Zheng and Yuan (2021)
developed a specialized artificial neural network aimed at enhancing the

98

Chapter 4

precision and computational efficiency of learning and generating 3D
geometries as vectorized models. This involved creating a custom data
structure with feature parameters aligned with the neural network's
requirements, resulting in improved design feature extraction.

1
-
|
=

Form Finding (Predicted)

(1,0,0.00.0,000) (0.1,0,00,0.000) (0.0.10.0,00.00) (0.0.0,1.0,0000) (0.0.00.1.0,000) (0.0.00,0.1.0,00) (0.0.00,0,0.1,00) (0.0.00.0,0,0.1.0) (0,0.00.0.0.00.1)

Straight Straight Gradual Gradual Gradual Conical Conical Gonical
No Lower No Lowar MiddioaUp No Lower MiddoaUp

Straight
MiddledUp
i Distorton Distortion Distorton Distortion Distortion Distortion

Distortion Distoriion

Loss: Loss: Loss: Loss: Loss: Loss: Loss! Loss: Loss:
0.074357 0.111984 0.144431 0.05081 0.403068 0.1381 0.056288 0.249417 0.490657

Figure 4-6 - Expected forms and predicted forms from test dataset - Zheng, H., and Yuan, P,
2021, A generative architectural and urban design method through artificial
The neural network's generative abilities demonstrate its predictive power,
efficiently learning and extrapolating geometric design features from
existing building data. This data-driven approach provides designers with
a powerful tool for informed and efficient design exploration.

BIM Models Semantics

In their 2018 study, Bloch, T., and Sacks, R., explored the classification of
room types in residential apartments using an ANN algorithm, comparing
it to rule-inferencing. The research highlighted the direct applicability of
machine learning to space classification, while rule-inferencing proved
unsuitable for this context. This underscores the importance of selecting
appropriate Al methods for specific BIM object classification challenges.
Similarly, in 2019, Koo, B., et al. utilized support vector machines (SVM)
to evaluate the semantic integrity of mappings between BIM elements and
IFC classes. Their approach, trained on a dataset of 4187 unique elements
from six architectural BIM models, demonstrated high accuracy in
classifying elements and subtypes within classes. These studies contribute
to automating quality checks in BIM deliverables and enhancing semantic
enrichment for domain-specific analysis.

99

Artificial Intelligence and Machine Learning in Architecture

Design and Fabrication

In 2020, Yazici, S. integrated ML and ANN algorithms with geometry,
material, and structural performance simulation data to support decision-
making processes. They trained an ANN, non-linear regression model
(NLR), and a Gaussian mixture model (GM) using data from structural
performance simulations to predict materials based on architectural
geometry and panel clusters on the shell model. The results demonstrated
fast solutions and accurate predictions, offering valuable insights for
decision-making.

c:20;s:4 c:10;s: 4 c:5;s:4

c:8;s:3
component (c); random seed (s)

Figure 4-7 - GM algorithm implemented towards prediction of panel clusters based on the area
size and planarity of panels. - Yazici, C., 2020, A machine-learning model driven by geometry,
material and structural performance data in architectural design process
In 2018, Tamke, M., et al. explored ML's application to enhance design
and fabrication adaptation in Robotic Incremental Sheet Forming (RISF).
ML was used to manage forming tolerances by creating, adapting, and
improving fabrication instructions. The integration of ML into fabrication
processes utilized data mining techniques and trained ML models on
physical outputs, acquired via 3D scanning of ten panels, yielding
approximately 45,000 samples. Two approaches were employed: a
regression-based method for local adjustments within panels and a neural-
network-based approach for predicting and adjusting entire panel
geometries. The regression-based method used in-process measurements
for achieving required tolerances, while the neural network predicted the

100

Chapter 4

final shape of the panel after fabrication, enabling adjustments based on
predicted springback.

training input training output prediction difference
R =\ o
g O\ g X -
< \ \ po—— \ W \
By N ALY LY { 3
'g ‘~(, AN TS L = 1K e
L L il (B
&~ input mesh 3d scan L~ 3d scan prediction
- T
L~ 1
(ot “
P e \
L 3dscan o= input mesh

Figure 4-8 - different input—output training sets and the achieved accuracy — Tamke, M., et. Al,
2018, Machine learning for architectural design: Practices and infrastructure

Layouts Design Evaluation

In 2020, Mandow, L., et al. explored sketch generation for energy-efficient
single-family dwellings using a combination of shape grammars and
reinforcement learning. Their approach involved defining shape grammar
rules and applying reinforcement learning to generate habitable and
energy-efficient sketches. The study highlighted the reinforcement
learning process and provided experimental results demonstrating
convergence, along with validation using energy simulation software.
Moreover, in 2017, Takizawa, A., and Furtura, A., investigated spatial
feature assessment using computer-generated modeling, VR, and deep
learning. They utilized a computer-generated model of a street in Osaka to
capture omnidirectional images, incorporating depth information at 50
observation points. Virtual reality preference evaluations informed the
training of deep convolutional neural networks (DCNNSs), revealing that
the model error rate was significantly lower for RGBD images as well as
the importance of integrating color/texture and geometric features for
enhanced spatial evaluations. This interdisciplinary approach offers
avenues for more accurate spatial analyses in urban environments,
although further foundational research is needed for widespread
applications.

101

Artificial Intelligence and Machine Learning in Architecture

4.8 A Review on Using Gen-Al in Architecture

As discussed in section 4.3, Gen-Al applications involve generating new
content, ideas, or solutions based on input data or predefined parameters.
In the context of architectural design, generative Al can play a significant
role in creating, modifying, or optimizing designs by leveraging algorithms
and computational models. In this section, some gen-Al applications in
architectural design used by researchers and architects today are reviewed.

A) Text Generation

Text generation Al models could be used in various fields of architecture.
In 2023, Caliskan, E., explored the potential applications of ChatGPT in
third-year architectural design studios. The research involved structuring
interviews with ChatGPT, with findings evaluated using the Delphi
technique among experts. ChatGPT demonstrated the ability to address
design issues but faced limitations in accessing maps and discerning
geopolitical entities. Beyond documented studies, architects increasingly
utilize large language models (LLMs) like ChatGPT, LlaMa, and Bard.
These models aid in generating prompts for image generation tasks,
conceptual design images, floor plans, and architectural details. Moreover,
the human-like text generated by LLMs facilitates direct communication
with clients and stakeholders, enabling architects to convey messages
effectively.

In an experiment utilizing ChatGPT v3.5, architects explored its role in
brainstorming architectural design concepts for a Mercedes-Benz
exhibition. Appendix D showcases the conversation, revealing ChatGPT's
organized responses and ability to ask pertinent questions, guiding the
discussion. The model demonstrated awareness of project criteria,
suggesting 1ideas aligned with Mercedes-Benz's precision and
craftsmanship ethos. Furthermore, ChatGPT's responses became more
specific as discussions progressed, highlighting its potential in generating
innovative design concepts through iterative questioning and refinement.
This process underscores the value of LLMs in enhancing brainstorming
phases, fostering creativity, and unlocking new design possibilities.

102

Chapter 4

B) Generating Layouts

Image generation Al in architecture has become an innovative and
influential tool, providing architects and designers with new ways to
conceptualize, visualize, and iterate on design ideas. There are several
applications through which image generation Al started to influence the
architectural field.

In 2019, Chaillous, S., utilized nested GANSs to generate a diverse array of
floor plan designs, employing a classification methodology for
exploration. These nested GANs enabled the capture of complexity in floor
plans and addressed challenges sequentially. Following this, a pipeline was
employed to produce finalized plans with walls and furniture. Utilizing
Boston's building footprints database, an algorithm was trained to generate
footprints based on the layouts. Subsequently, algorithms were trained with
over 700 annotated floor plans, each designated for a specific room count.
Lastly, a model was trained to furnish entire units and expanded to include
room-specific furnishing based on function (figure 4-9).

Figure 4-9 - Resulting Furnished Units (Chaillous, S, 2019., Al & Architecture — An Experimental
Perspective — Harvard University GSD)

The model was further developed to solve entire buildings, adding

windows and doors rationally. And the author applied a transfer-style

method to train the GAN to create plans based on a specific architectural

style as shown in figure (4-10).

103

Artificial Intelligence and Machine Learning in Architecture

A FER
i3
£ e \ »
R hGE
\(\ ‘ i "“:S_: ‘I
\ v i

Figure 4-10- 15th Floor Processed Under Each Style: Baroque (Far-Left), Manhattan (Center-
Left), Row-House (Center-Right), Victorian (Far-Right) (Chaillous, S, 2019., AI & Architecture —
An Experimental Perspective — Harvard University GSD)

Afterwards, the classification algorithm categorizes the generated floor
plans based on various criteria, aiding users in exploring different designs.
This user-oriented approach allows architects to intervene in the pipeline's

steps, making the process architect-centered.

Aalaei et al. (2023) explored architectural layout generation using graph-
constrained conditional GANSs, introducing methods for translating high-
level constraints like bubble diagrams and implementing a fully vectorized
workflow. Their key contribution involved applying a convolutional
message passing (CMP) approach, considering both topological and
geometric conditions. They presented a distinct network architecture and
an iterative pipeline utilizing three separate GAN models with unique
objectives. Figure 4-11 illustrates the proposed pipeline which includes
user input, model-generated layout, user modifications, and final
architectural plan and 3D model.

104

Chapter 4

| 92
%

Bedroom Bathroom Livingroom Kitchen Master room Dining room

&

%)
v
IS

Figure 4-11 - Iterative and collaborative human—machine workflow for architectural floor plan
generation. (Aalaei, M., et. Al., 2023, Architectural layout generation using a graph-constrained
conditional Generative Adversarial Network (GAN))

Karadag et al. (2022) trained a Pix2Pix GAN algorithm using two datasets
of educational school buildings’ space layouts. They developed two
algorithms: one generated footprints and suggested furniture layouts in
block zoning, while the other generated furniture drawings in the plans.
This innovative approach targeted the problem directly, instead of relying
on existing datasets. The model successfully generated outputs not only
from the training dataset but also from the validation dataset. Figure 4-12
displays the results of the trained model on the validation set.

Source Generated Target Source Generated Target Source Generated Target
L] , [2] — meon ——
S—|
f 38 I e =
! C— |
. L]
SSIM: 0.83 SSIM: 0.82 SSIM: 0.76
Source Generated Target Source Generated Target Source Generated Target
—r — p—
e = =]
| — =1]
=
SSIM: 0.80 SSIM: 0.77 SSIM: 0.82
— Wall Footprint W Student Desks W Lockers
= DoOr W Teacher's Desk Board
Opening it i B eabit il

Figure 4-12 - Test results on the validation data set of EDU-AI (Karadag, 1., et. AL, 2022, EDU-
Al: a twofold machine learning model to support classroom layout generation)

As, L., et. Al, 2018, presented a deep Neural Network (DNN) approach
utilizing graphs for the generation of conceptual designs. The system
demonstrated its capability to assess and score designs, decompose them
into fundamental building blocks (figure 4-13), and creatively recombine
them into novel compositions. Additionally, a Generative Adversarial
Network (GAN) method was introduced, capable of producing new
designs which were not present in the training set.

105

Artificial Intelligence and Machine Learning in Architecture

Terrace

Foyer

/
/

zos\ninlng

/ 202 ——— le‘l)l\.lg

Kitchew”” 2 -
Pantry /)o 3 BJIII =
204 206

Figure 4-13 - A subgraph, that is, building block, discovered by the DNN highlighted within the
larger graph of a home (4s., L, et. Al, 2023, Artificial intelligence in architecture: Generating
conceptual design via deep learning)

Also, Liu et al. (2022) utilized the Pix2Pix GAN algorithm to generate
private garden layout plans based on given site conditions, learning from

traditional Chinese private gardens.

C) Modifyving Images Contextually

Moreover, Sun et al. (2022) employed GANs to abstract historic
architecture styles and automatically generate stylized facades (figure 4-
14). Their study curated a bespoke dataset from Harbin Central Street,
implementing a data augmentation process. The generated designs were
quantitatively and qualitatively assessed, demonstrating high accuracy,
realism, and diversity. Two applications validated the feasibility and
adaptability of the proposed workflow, enhancing historic urban area
renovation design processes.

106

Chapter 4

Test 1 Test 2 Test 3 Test4 Test 5

Label

Generated Fagade-
Original dataset

Generated Fagade-
Augmented dataset

Figure 4-14 - Generated facades for the Harbin Central Steer (Sun, C., et. Al., 2022, Automatic
generation of architecture facade for historical urban renovation using generative adversarial
network)

D) Generating Images from Texts

Basarir and Erol (2021) proposed an Al framework to generate
architectural sketches based on client briefs, using semantic analysis and
visual pattern recognition. Additionally, Ploennings and Berger (2023)
explored the use of Al art platforms like Midjourney, DALL-E 2, and
Stable Diffusion in concept design, noting their effectiveness in ideation,
sketching, and modeling. They evaluated AI models' versatility in
architectural tasks, highlighting successes in generating inspirational
images and addressing challenges in responding to generic requests. The
study also analyzed 85 million MidJourney queries, revealing prevalent
usage patterns and suggesting structured workflows for interior and
exterior design (figure 4-15). These findings not only showcased the
current capabilities of image generation models in architectural design
tasks but also illuminated potential advancements and avenues for further
exploration in the integration of Al tools within the creative processes of
architecture.

107

Artificial Intelligence and Machine Learning in Architecture

(1) Final selection
£) Stable Diffusion inpaintec

Figure 4-15 — (left) Minimal workflow for Midjourney (a—d), DALL- E 2 (e—h), and Stable
Diffusion (i—l) (Ploennings, J., and Berger, M., 2023, Al in Architecture), (right) Refinement and
variant generation in Midjourney (a—c), DALL- E 2 (d—f), and Stable Diffusion for a walkway (g)

and a second story (h, i) - (Ploennings, J., and Berger, M., 2023, Al in Architecture)

E) Generating Images from Images and Text

Bao and Xiang (2023) examined Stable Diffusion, MidJourney, and
DALL-E 2 as smart assistants in preliminary design processes. They
analyzed the impact of Al activities on architects and students using a
survey with Al-generated images (figures 4-16 and 4-17). Results showed
Al's potential to optimize architectural design by reducing time and
enhancing visualization, with satisfactory performance reported by users.

ol

Figure 4-16 - Base input sketch for Al generation (Bao, Y and Xiang, C., 2023 - Exploration of
Conceptual Design Generation based on the Deep Learning Model-Discussing the Application of
Al Generator to the Preliminary Architectural Design Process)

Figure 4-17- Rendering generation results made by MidJourney, Stable Diffusion and DALL-E 2

(from left to right respectively). (Bao, Y and Xiang, C., 2023 - Exploration of Conceptual Design

Generation based on the Deep Learning Model-Discussing the Application of AI Generator to the
Preliminary Architectural Design Process)

Hu et al. (2021) introduced the Low-Rank Adaptation (LoRA) method,
optimizing large pre-trained language models for downstream tasks by

108

Chapter 4

decomposing weight updates (AW) and reducing trainable parameters.
During inference, the weight update is seamlessly merged into the main
weights without additional overhead, facilitated by a LoRA scaling factor
(o). Kuang et al. (2023) proposed a workflow using LoRA to generate
facade images of historical styles for urban renewal projects, preserving
the city's historical identity. Utilizing the LoRA and ControlNet models,
architects could automatically generate facade images of specific historical
styles. This approach efficiently preserved and integrated historical
architectural elements into urban renewal projects, contributing to the
maintenance of the city's historical identity.

Input Image ControlNet-MLSD Generated Image 1 Generated Image 2 Generated Image 3 Generated Image 4

Figure 4-18- Arcade facade renewal based on prompt and ControlNet. - Kuang, Z., et. Al, 2023,
Advancing Urban Renewal: An Automated Approach to Generating Historical Arcade Facades
with Stable Diffusion Models

Although image generation using Al seems very promising in terms of
visual appearance, ideas, and even consistency, some questions and
concerns are present within this approach. These concerns will be
discussed later in this chapter.

F) 3d-Models Generation

Al-driven methods, particularly Generative Adversarial Networks
(GANSs), are revolutionizing 3D model generation by autonomously
producing intricate and realistic structures. Akizuki et al. (2020) applied

109

Artificial Intelligence and Machine Learning in Architecture

Reinforcement Learning (RL) within a 3DGAN framework to generate
furniture 3D models with topological consistency by voxelizing thousands
of furniture 3d models to train the algorithm, showcasing the algorithm's
ability to create complex structures within specified constraints.

- - e
ANV, i ln._‘ A .
SN 1 s
o N K ~ Y
S\ T . € 42

Figure 4-19 - Object generation via 26-actions model - from left to right, input voxel geometries,
voxels, pipes, and smoothened meshes. Akizuko, Y, et. Al., 2020, Generative Modeling with
Design Constraints — Reinforcement Learning for Object Generation

Nichol et al. (2022) utilized a two-step approach for 3D scene generation,
employing text-to-image diffusion models (GLIDE) to create synthetic
views, followed by generating 3D point clouds conditioned on the
generated images. The models were trained on millions of 3D models, with
diverse post-processing steps implemented to ensure data quality. To
standardize the data, each 3D model was rendered from multiple angles as
RGBAD images using Blender, ensuring consistency for subsequent
analysis and processing.

Integrating Al to the Conventional 3D Modeling Pipelines

Liu et al. (2021) utilized style transfer NN algorithms to generate 2D
photos from floor plans and truss structures, aiding in 3D modeling for
architectural design. The algorithms processed floor plans as content
images and truss structures as style images, generating transferred images.

110

Chapter 4

These images were then translated into floor plans for innovative structure
design, with vertical components serving as pillars. This transformation
from 2D-style transferred images to 3D geometries presents new
possibilities for architectural design processes.

Transferred Image Interior Area Geometry

Figure 4-20 - Transferred Image Translation (Liu, C., et. Al., 2021, Pipes of Al — Machine
Learning Assisted 3D Modeling Design)

Al generative algorithms allow other types of generation including codes
and videos. In 2023, Ceylan et al. explored text-guided video editing with
the 'Pix2Video' algorithm, utilizing pre-trained image models to achieve
desired edits while preserving source video content. The method involves
employing a pre-trained structure-guided model for text-guided edits on an
anchor frame and propagating changes to future frames through self-
attention feature injection.

Similarly, Chai et al. introduced 'StableVideo,' enhancing text-driven
diffusion models to generate consistent appearances for edited objects,
employing an inter-frame propagation mechanism within the diffusion
video editing framework. Blattmann et al. applied the Latent Diffusion
Model (LDM) paradigm to high-resolution video generation, fine-tuning
on encoded image sequences and aligning diffusion model upsamplers for
temporal consistency.

Moreover, Karras and colleagues developed DreamPose, a diffusion-based
method for generating animated fashion videos from still images,
achieving state-of-the-art results in fashion video animation by
transforming a pre-trained text-to-image model into a pose-and-image
guided video synthesis model. These advancements highlight the growing
potential of Al-driven techniques in text-to-video and image-to-video
generation for diverse applications.

111

Artificial Intelligence and Machine Learning in Architecture

To conclude, The integration of machine learning into the architectural
design process holds immense potential across all planning phases,
transforming both repeatable and predictable activities. Machine learning
tools can effectively replace certain tasks, particularly those involving
decision-making, by learning from the work performed by architects. This
evolution introduces complex machine learning methods, bringing
artificial intelligence to the forefront of architectural and product design.
This shift has the power to redefine the value of algorithmic design,
moving beyond being a mere computational tool to becoming an equal
collaborator in the design process. This collaborative synergy between
human designers and machine learning systems has the capacity to
revolutionize the architectural design landscape, fostering efficiency,
creativity, and the exploration of novel design paradigms.

Also, and more importantly, such collaboration could be described as
‘human-centered’ where the machine aids in automating the process rather
than interfering in creative and aesthetic aspects of the design which we
argue that they are the essence of an architectural product. These aspects
along with many others require the architect to be the center of the process
seeing the whole picture and taking decisions that respect the complicated
network of all design aspects.

Recently, many Al applications have been introduced to the architectural
design process including encompassing modeling, classification,
rendering, and more. However, getting predictions that aid in form
modeling was not experimented with deeply. Also, the basic knowledge of
a framework to codify a building to retrieve its parameters and to create
efficient data sets remains crucial for the success of such applications.

4.9 Generative AI Drawbacks in Architectural Design

Today, the field of architecture has seen many experiments with generated
designs in the form of images. Recently, some architects have started to
generate design ideas through image generation gen-Al models either by
providing a prompt expressing the project requirements, some certain
ideas, etc. in the form of text, or by providing sketches.

112

Chapter 4

Gen-Al’s impact on the authenticity of designs is a pivotal aspect of this
evolution. The authenticity of generative Al architectural designs is a
nuanced consideration, encompassing both the innovative potential of Al-
generated creations and the preservation of unique human expression in
design. Generative Al excels at exploring diverse design possibilities,
pushing the boundaries of conventional architecture, and fostering
creativity. However, questions arise regarding the authenticity of designs
when algorithms autonomously generate solutions. Critics argue that
reliance on generative Al might lead to a homogenization of designs, with
the risk of overlooking the distinct cultural, historical, and contextual
nuances that human architects often incorporate into their work.

Millet et. Al, 2023, revealed an anthropocentric bias in art appreciation,
suggesting a prevailing human-centric viewpoint in assessing creativity,
particularly in the context of Al-generated art. Their experiments,
encompassing over 1,700 participants, unveiled a consistent bias against
Al-created art, perceived as less creative and awe-inspiring compared to
human-made counterparts. Similarly, Ragot et. Al., 2020's extensive study
involving 565 participants identified a preference bias toward human-
made creations, with art perceived as Al-generated receiving less favorable
evaluations. These findings underscore a persistent negative perception
bias towards Al in the realm of art, reflecting a broader inclination to view
creativity as an exclusively human trait. As Al continues to advance in the
creative domain, these biases pose challenges to fostering an inclusive
perspective that recognizes and appreciates the unique contributions of
both human and machine creativity. Addressing these biases is essential for
cultivating a more open-minded appreciation of Al's potential as a tool for
artistic expression.

Yet when it comes to the originality of ideas in image generation models
like diffusion models, it is important to note that these models are trained
on existing data. The originality of generated samples depends on the
diversity and complexity of the training data. If the training data includes
a wide range of unique and novel examples, the model has the potential to
generate original outputs. However, diffusion models, like other generative
models, do not inherently generate truly novel ideas in the creative sense—

113

Artificial Intelligence and Machine Learning in Architecture

they synthesize new examples based on patterns learned from the training
data.

Moreover, gen-Al models could be eclectic. The term "eclectic" in the
context of image generation could refer to the ability of a model to combine
diverse elements from its training data to create novel and varied images.
If a diffusion model has been trained on a diverse dataset containing
images with different visual styles, objects, and scenes, it may be capable
of generating images that incorporate elements from various sources.

In the case of diffusion models, the process typically involves iteratively
adding noise to an input until it transforms into a sample from the target
distribution. The ability to create eclectic images could arise from the
model's capacity to blend and remix features it has learned from disparate
examples in its training data (Rombach, R, et. Al., 2022).

Thus, proponents of generative Al emphasize its capacity to reinterpret and
combine design elements in novel ways, challenging traditional notions of
authenticity. Al-generated designs can be seen as a reflection of the data
they are trained on, capturing and reinterpreting architectural styles and
features from various sources. This dynamic process can result in
unexpected designs that embody a new form of randomness rooted in
computational creativity.

Navigating the authenticity of generative Al architectural designs requires
a careful balance. Architects and designers must actively engage with Al
tools, guiding the algorithms to align with their vision while also
embracing the serendipity and novelty that Al can introduce. The synthesis
of human insight and machine-generated possibilities can lead to truly
authentic designs that are both innovative and deeply connected to human
sensibilities. As the field continues to evolve, a thoughtful and critical
approach to the integration of generative Al will be essential in preserving
and redefining the authenticity of architectural design.

Among many researchers and architects, Chaillou, S., who utilized Gen-
Al in creating floor plans in 2019 had beliefs which are rooted in the
assertion that a statistical approach to design conception profoundly shapes

114

Chapter 4

the potential of AI in the field of architecture. The departure from
deterministic methodologies toward a more holistic, less-prescriptive
character is seen as a unique opportunity within the architectural domain.
Rather than viewing machines solely as tools for optimizing predefined
variables, Chaillou advocates relying on Al to extract significant qualities
and emulate them throughout the entire design process, marking a
paradigm shift toward a more dynamic and exploratory design experience.

Furthermore, according to Chaillou, the conviction lies in the pivotal role
of designing the right pipeline to ensure the success of Al as a new
architectural toolset. The preference for the "Grayboxing" approach, as
introduced by Witt, A., 2018, is considered strategic and likely to yield
optimal results. Chaillou contrasts this with the "black box" model, where
users input information upfront and receive finished design options at the
end, without influence over intermediate generation steps. The
"Grayboxing" approach, as advocated by Chaillou, involves breaking
down the pipeline into discrete steps, empowering the user to intervene at
various stages as mentioned in chapter 1.

This hands-on control over the machine ensures the user's ultimate
guarantee of the quality of the design process, offering a more
collaborative and iterative interaction between human insight and Al
capabilities. This deliberate approach, as expressed by Chaillou,
underscores a commitment to a thoughtful integration of Al into
architectural practices, emphasizing user agency and creativity within the
technological framework.

The gray box approach seems logical especially with today’s mathematical
applications in architectural generative designs which includes
optimization and simulation techniques for instance. Also, Al applications
in architectural design could involve such an approach. Especially, that it
includes different applications (APIs) that could be learnt and used in the
form of an internal black box operation in the design process without
needing to learn what is behind -as users and not as developers-.

In fact, while strongly agreeing with Chaillou that Al should be dealt with
as a ‘toolset’ for the architect that involve many advantages, I strongly

115

Artificial Intelligence and Machine Learning in Architecture

believe that today’s Gen-Al applications which generates images (used as
designs) -at least till the time of writing this research- are as far as possible
not only from what architectural design profession is about but also from
what an architectural design methodology could be and could propose as a
solution to a problem. I believe that an architectural design product is not
just drawings. It is rather an experience and a process. And this process
most likely -if not always- includes problem solving of a handful of issues
from a handful of other disciplines as well as architectural rules (form,
commodity, and delight). Those other disciplines include structural,
societal, psychological, philosophical, humanitarian, and environmental,
to name a few. All of these issues could never be diminished to whatever a
generated architectural drawing image could encompass because every
project should be designed with a whole new character and new thoughts.

Also, and more importantly regarding text-to-image applications
specifically, ‘can all the aspects of an architectural design in words be
diminished?’. Architects who mostly follow the ‘black box” approach find
it hard to clearly express their ideas and how the form is generated. And
worse, even those who apply the ‘glass box’ approach either by following
function, relying on generative design various techniques, etc., still have
hard time realizing the process and the reasons of the resulting product
which is usually hard to explain to a machine. A gen-Al photo generation
model cannot understand the orientation of the building, or the parametric
approach taken to stabilize the structure, or the best facade pattern or form
manipulation to reduce solar gain. Instead, Gen-Al models generate
responses based on patterns learned during training. And of course, such
manners are taken into consideration from day 1 in the design process and
are ‘applied directly’ more than ‘thought of’. If architects skip such
techniques in the process and start with a generative design (created by Al-
Gen models), it is most likely that the end product will be as far as possible
from these images, and then the architects should ask themselves, ‘what
was the benefit?’ Even with newly introduced models including LoRA and
ControlNet. Still, the ‘control’ they provide the architect with, is more
control of an outline or a boundary of the building or getting closer results

116

Chapter 4

to the words descriptions. Still, this whole process deals with an
architectural product as a 2-dimensional product.

In addition, architectural design is about understanding what a user desires,
and not only the architect’s aesthetic and creative parts. If this part of the
architect’s job is well perceived, they would most probably find themselves
in need of designing something that is unseen before, even if some
details/techniques are reused. In this sense, relying on a dataset of
previously designed projects could contradict this theory.

And in this manner, I would strongly suggest differentiating between the
product of Gen-Al models and the product of a generative design as there
are no contradictions if the previous theory on generative design is applied.
As discussed in chapter 4, generative design is still controlled by the
architect who defines the parameters and the goals for which a machine
searches the solutions to achieve. Even when imagining a generative
design based on a simulation analogy, there are defined goals that spark
the simulation. And even the parameters affected by the simulations are
defined by the architect.

So, after all, answering the question ‘can gen-Al fit in a professional
architectural design process’, of course. But it could be integrated into
some phases of the process rather than starting the process. In the next
section, some applications of gen-Al that could possibly add value to the
process are suggested.

4.10 Generative and Non-Generative AI Usage Possibilities in

Architectural Design

Al technology could be seen and thought of as a great tool for automating
the design process which includes by nature visualization of ideas. Earlier
in this chapter some of these applications were exhibited where a Gen-Al
could generate a plan after defined boundaries (regardless of the idea that
those boundaries were decided by Al in those examples).

Ali, S., 2020, argues that architectural visualization plays a crucial role in
augmenting the comprehension of knowledge by minimizing cognitive

117

Artificial Intelligence and Machine Learning in Architecture

load. The utilization of visualization tools enables individuals to grasp
information more efficiently and to a deeper extent. By representing data
in visual formats such as charts, graphs, or diagrams, complex concepts
are simplified, aiding in quicker assimilation and enhanced retention. This
visual approach leverages the brain's capacity to process and interpret
images rapidly, allowing individuals to extract meaningful insights with
greater ease. Whether conveying intricate datasets or illustrating abstract
ideas, visualization serves as a powerful cognitive aid, facilitating a more
intuitive and expedited understanding of information. Ultimately, the
integration of visualization tools proves instrumental in optimizing the
communication of knowledge across diverse fields.

However, and according to Ali, S., 2020, visualization in architecture has
become a target more than a tool especially in architectural education. In
fact, visualization could be misleading or deceptive. The beauty of a
‘hyper-realistically’ and aesthetically rendered glass box could mislead the
client’s preferences. In this regard, visualization should be carefully dealt
with by architects as a tool rather than as a product.

In terms of visualization, the idea of transforming sketches is seen very
powerful and with more development it could make a great tool for
visualizing plans, sections, other drawings, and perspectives when the
machine has a 100% ability to generate images which apply exactly what
is defined in a sketch. This application is seeing many developments today
especially with the introduction of techniques like inpainting, outpainting,
and Low-Rank Adaptation (LoRA). The more datasets to be fed to the
generative algorithm, the more precise it will be in visualizing the
architect’s sketch instead of generating new ideas.

Also, such technology could aid a lot in a phase of the design process called
the ‘mood board’ in which architects search for inspirational designs and
show it to the client in order to be on the same ground during the design
phase. Such a phase is important before starting the concept design and is
usually related to aspects like fagade elements, aesthetical elements, and
design style. However, this step is not meant to have a significant impact
on the core of the form making/finding process.

118

Chapter 4

Gen-Al image generation in this case, could have an added value based on
the data it is trained on, and it is believed to have the same result as
collecting the inspirational images from the web.

Additionally, Gen-Al applications regarding transforming images into 3D-
models could have a huge impact on automating design tasks. Especially,
if 3d-model gen-Al models developed to generate surfaces and clean
meshes rather than point clouds or voxels. Such an application is not far
from reality. It could develop through integrating the gen-Al model to a
pipeline which exhibits an automated way to segment images and extract
the main points’ coordinates. Such an application could be exhaustive at
first, but if better data sets are collected and engineered, it could not be
regarded as impossible.

Finally, another bright application of Gen-Al is the video Gen-Al which
could create animations and walkthroughs which are considered an
architectural output in some projects. The idea of generating videos
through photos collected from around a 3D-model using diffusion is now
present and could be applied in such tasks.

On the other hand, and as discussed earlier in this chapter, non-gen-Al
models do not generate data as images, text, 3d-models, etc. Instead, they
are capable of predicting and generalizing on unseen data based on the
pattern they learn during their training process. In this regard, non-gen-Al
will not produce an image, but may predict numbers, or classes. These
numbers and classes could be projected to the architectural field as
parameters which could be used by the architects themselves or automated
systems to generate products. This particular description aligns well with
the approach taken to deal with the architectural process as a holistic
system rather than a process of processes (described in chapter 1).

The idea of dealing with a building as a set of parameters which are
interrelated and strongly connected in the design phase, could make good
use of non-gen-Al applications. Accordingly, turning a building’s design
parameters to data sets which could be used to train Al and ML algorithms
could yield many possibilities. Training a model with parameters either
numerical or text to predict design decisions is thought to be an automation

119

Artificial Intelligence and Machine Learning in Architecture

process saving time and effort for architects in the future. Imagine
designing a cluster of buildings (a residential or administrative compound).
Such projects could take months to create variations or prototypes of the
building with different areas, functions, etc. but with the same architectural
style and theme or either days but with more manhours or architects. With
the aid of coding in extracting all the parameters and generating a data set
including many designs with different areas that is used to train ML models
for example, this could automate the 3d modeling tasks of different
prototypes with different characteristics. Also, and looking from the same
perspective, non-gen-Al models could be used to predict spatial relations
and to detect proper spaces’ areas based on learned data. Moreover, the
models could predict and make decisions based on other aspects such as
environmental and legislative aspects. For instance, they could predict a
length parameter that defines the spacing between two staircases based on
firefighting code or the tilt angle of louvers which reduce solar gain, or
minimum required spacing that respects setbacks, etc. However, such
decisions require neat and precise data sets so that predictions are
mirroring real decisions based on real data. Those models are guaranteed
to have learnt data directly from the architect.

In general, non-gen-Al models could be thought of the same way as
generative-design techniques like optimization and simulations in the
sense that the product is unknown, but it is still applying certain rules
controlled by the architect through the data sets they learn from which
could be very specific to the details-of-every-parameter extent and unique
rather than general and repetitive. Thus, the overall process is controlled
by the architect against any random decisions that could be made by gen-
Al models.

Summary
This chapter provides a comprehensive exploration of the multifaceted
definition of Artificial Intelligence (Al) and its transformative impact on

technology. It begins by defining Al as the development of machines and
systems capable of performing tasks traditionally requiring human

120

Chapter 4

intelligence, encompassing everything from rule-based systems to
advanced neural networks.

Also, the chapter delves into the history of Al as well as its types and
applications. The distinction between generative Al (Gen-Al) and non-
generative Al (Non-Gen-Al) is explored, with profound implications in
technical, ethical, and societal dimensions. Moreover, Machine Learning
(ML), a subset of Al, is introduced as the backbone of intelligent systems,
enabling machines to learn from data and improve performance over time.
The symbiotic relationship between Al and ML is emphasized, with ML
providing adaptive capabilities for Al to navigate dynamic environments.
The chapter explores various ML approaches, including supervised
learning with labeled data, unsupervised learning uncovering patterns in
unlabeled data, and reinforcement learning where agents learn through trial
and error. The versatility and applicability of ML methods across domains
are highlighted. The chapter introduces a brief overview of specific ML
algorithms used in the research and the evaluation metrics employed to
assess trained ML models.

Moreover, different up-to-date applications of both Gen-Al and Non-Gen-
Al in architecture and similar fields were presented. Gen Al algorithms
showcase great innovation in the product. Most of the examples introduced
using the machine as a designer, taking decisions, and forming a product.
On the contrary, Gen-Al tools should be seen as assistants, providing
architects with valuable insights and options rather than replacing the
human element in design thinking.

In addition, the evolution of Al creative capabilities in the architectural
field is explored from a skeptical perspective, particularly focusing on
image generation models, which have progressed through various models
and techniques, each introducing more options like inpainting, outpainting,
and image-to-image generation. The impact of both generative and non-
generative Al on the architectural design process is highlighted. Generative
Al known for its divergent thinking and algorithmic creativity, plays a
pivotal role in idea generation and its reliability as a tool used in the
architectural design process is questioned. Collaboration between

121

Artificial Intelligence and Machine Learning in Architecture

architects and generative Al is emphasized as well as the architect’s role in
the process. In general, applying Al in the architectural field fits well with
the grey box approach of design thinking. In a holistic design process
composed of other processes that relate to each other cyclically, with
today’s design tools which benefit mainly from mathematics and physics,
architects could think of some processes with a black box approach. In
such processes, the embedded operations that happen form no concerns as
the architect totally controls and directs them freely. In fact, the architect
can direct and control Gen-Al systems, but it is concluded that the
architectural design process cannot be diminished in a 2D-space with an
image that hardly involves other design aspects. Such a process could lead
to laziness and stripping the architectural design of its meaning. Also, the
authenticity of Al-generated designs was discussed. From the
understanding of how the models work, those models could be described
as eclectic collage makers which present innovation through repeating
elements that are learned from the training data set. Moreover, architectural
visualization's direct influence is discussed as a useful tool using Al
generative models.

Non-generative Al, on the other hand, excels in analytical support, aiding
architects in data analysis, decision making, predicting, and classification
tasks. The integration of Al in architecture, however, poses challenges,
including ethical considerations, the balance between technological
efficiency and human creativity, and the need for architects to adapt to
evolving workflows to develop them rather than being a user. The chapter
concludes by delving into benefits of using non-gen-Al models in the
design process as automation assets to the architect in the decision making
based on authentic and unique data provided by the architects themselves.

To conclude, this chapter reflects the dynamic and evolving nature of Al's
role in architecture, ranging from opaque generative processes to
transparent analytical tools. It is also concluded that many ML algorithms
could aid in the architectural design process as well as architectural
analysis studies and architectural education. In those applications, the Al
process is human-centered, and Al is considered a tool for automatic heavy
tasks using regression, classification, clustering, and RL algorithms.

122

Chapter 4

123

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

Chapter 5: Architectural Form Generation:
Applying Machine Learning Algorithms on
Architectural Parameters Datasets

Preface

In this chapter, a framework for utilizing ML in the form-generation
process is explained. This process is considered form-finding in a sense
that the models predict the parameters defining the form but is also
considered form-making in a sense that it is made and decided by the
machine according to how it learnt from the architect ed. Est., mapping the
architect’s decision-making black box approach. So, this process is better
described in the space between form-making and form-finding being closer
to form-finding literally.

This chapter defines the methods and tools used in the process. The coding
process of the 3D-model to extract parameters is explained as well as how
those parameters are related. After that, a resulting sample of the
parameters data set is presented. And finally, how the full data set was
generated is explained with the scope and limitations of the project.

Additionally, in this chapter exploratory data analysis is performed to two
data sets to gain insights about the data. First, the parameters (features and
targets) are correlated to each other and pre-process the data accordingly.
After that, the data is resampled to either increase the number of samples
or balance the data based on the problem. Then, the data sets are split to
train and test sets before training different regression and classification
models.

5.1 A Framework for Utilizing Machine Learning in Form

Generation

This section presents a comprehensive framework that aims at automating
the design process by predicting architectural design parameters using
machine learning. By harnessing parametric modeling tools to create
dynamic, data-rich design alternatives, and applying machine learning

124

Chapter 5

algorithms to analyze and predict optimal outcomes, this process
transforms the way architectural decisions are made. The integration of
computational techniques into the design process allows for more
informed, data-driven choices, ensuring that design iterations are both
innovative and feasible.

The following framework encompasses the key stages of creating a
parametric building model, generating multiple design alternatives, and
extracting critical parameters to form a dataset. From this data, machine
learning models are trained, validated, and used to predict design
parameters that meet specific goals. This framework not only enhances the
efficiency of the design process but also paves the way for greater
collaboration between architects and computational tools, facilitating a
more integrated and intelligent approach to design.

1. Creating a Fully Parametric Model of the Building:

In the early stages of the design process, the architectural model
must remain flexible to allow for rapid iteration and adaptation to
changing requirements. A parametric model is a dynamic
representation of a building that can adjust its form and function in
response to predefined variables, or parameters. These parameters
typically include critical aspects of the building’s geometry, such
as height, width, depth, floor area, and window-to-wall ratio, along
with structural considerations and fagade treatments. Through
parametric modeling, architects can explore a wide design space
efficiently, ensuring that various design alternatives are responsive
to both aesthetic and practical constraints. The parametric model is
structured to allow for changes in variables, creating numerous
design variations that can be analyzed later.

The development of parametric models involves scripting
techniques and parametric control setups in design software.
Parametric modeling is grounded in algorithmic design, where
relationships between design parameters are explicitly defined
through code. Here, a system of inputs and rules governs the

125

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

creation and modification of geometry, facilitating the automation
of form generation.

2. Designing a Large Number of Well-Studied Alternatives

Once the parametric model is established, it is used to explore a
wide range of design alternatives. These alternatives are driven by
different configurations of the model's parameters, reflecting
variations in architectural expression, performance, and structural
feasibility. The process ensures that each alternative aligns with
certain project-specific criteria, such as the form’s tangible
characteristics including proportions and areas, maximizing natural
light, optimizing energy efficiency, or adhering to zoning
regulations. This step is particularly critical in early-stage design,
where exploring multiple design pathways helps stakeholders
choose optimal solutions.

3. Extracting the Parameters of Each Alternative to Create a Large
Dataset

Each design alternative can be represented by a unique
combination of parameters, such as floor area, building height,
structural efficiency, and environmental performance. Capturing
and recording these parameters is essential for creating a
comprehensive design dataset. This dataset not only helps in
understanding the design space but also allows for data-driven
decision-making, making it easier to select or refine specific design
outcomes based on quantitative analysis.

The parametric design space can be encoded into a structured
dataset, where each alternative is represented as a row and each
parameter as a column. This data is stored in formats such as CSV,
allowing for easy manipulation and analysis in various
computational tools (Python, R, etc.). Each entry in the dataset
reflects both independent variables (design parameters) and
dependent variables (performance metrics), which will be critical
for subsequent machine learning tasks. The structured format also

126

Chapter 5

127

allows for integration with external data sources, such as energy
simulations, cost analysis, and environmental impact assessments.

Data Preprocessing

Studying the Relation Between Parameters

In architectural design, parameters are often interrelated. For
instance, increasing the window-to-wall ratio might improve
daylighting but could negatively affect energy performance due to
heat loss. Understanding these relationships is crucial for informed
design decisions. A thorough exploration of how various
parameters influence each other, and the overall design is
fundamental to ensuring that design alternatives are both functional
and aesthetically pleasing.

This step involves the application of statistical techniques to
understand the dependencies between parameters. Correlation
analysis and visual tools such as scatter plots and heatmaps are
employed to examine these relationships. In more complex
scenarios, dimensionality reduction techniques such as Principal
Component Analysis (PCA) can reveal underlying patterns within
the data, helping to streamline the design space by focusing on the
most influential parameters. These methods allow for a deeper
understanding of how changes in one parameter influence others,
offering insights that can inform both design and optimization
strategies.

Splitting the Dataset According to Parameter Relations

Not all design alternatives will be equally relevant to the project's
goals. By segmenting the dataset based on specific parameter
groupings, designers can focus on the most critical areas of the
design space. This step is vital for filtering out irrelevant or
suboptimal alternatives, allowing the focus to shift to designs that
meet certain thresholds for structural performance, sustainability,
or user comfort.

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

Cluster analysis, such as K-means or Hierarchical Clustering, can
be applied to partition the dataset into subsets based on parameter
similarities. This clustering enables more efficient learning by
training models on smaller, more homogeneous groups of data.
Segmentation based on parameter relations ensures that each subset
is more cohesive, allowing machine learning models to learn
specific behaviors within subspaces of the design space.

Balancing the Data through Resampling Techniques

In architectural datasets, certain types of design alternatives may
be overrepresented, leading to biased results when training
predictive models. Balancing the dataset ensures that all design
typologies and configurations are equally considered, leading to
more generalizable and reliable predictions across the entire design
space.

Resampling techniques such as SMOTE (Synthetic Minority Over-
sampling Technique) and undersampling are used to ensure that the
dataset is balanced. This step is important in tasks where certain
design outcomes might be rare, and thus underrepresented in the
dataset. Balancing the dataset prevents the model from becoming
biased towards more common outcomes, ensuring that minority
designs are given equal consideration.

Cleaning the Dataset

Ensuring that the dataset is free from inconsistencies or errors is
critical for meaningful analysis. Missing or erroneous values in the
dataset may represent incomplete or faulty designs that should not
be considered in the final analysis.

Data cleaning involves handling missing values, removing outliers,
and standardizing the dataset. Missing data can be addressed
through imputation (e.g., mean, median, or k-nearest neighbor
imputation), while outlier detection methods can be employed to
identify and remove extreme values that could distort the results.
Standardization or normalization techniques may also be applied to

128

Chapter 5

129

scale the data appropriately, ensuring that all parameters are on
comparable scales.

Training and Validating Machine Learning Models

Training Machine Learning Algorithms

Machine learning algorithms are trained to identify patterns in the
data and predict new designs. These models learn from past design
alternatives, allowing architects to predict the behavior of new
designs based on historical data. This process helps architects to
quickly evaluate a wide range of alternatives, reducing the need for
manual exploration.

Various machine learning algorithms are applied, depending on the
problem at hand. For regression tasks (e.g., predicting continuous
variables like energy consumption or structural stability),
algorithms such as Linear Regression, Random Forests, and
Gradient Boosting are used. For classification tasks (e.g.,
categorizing building types or design styles), algorithms like
Support Vector Machines (SVM) and Neural Networks are
employed. The models are trained wusing cross-validation
techniques to avoid overfitting and to ensure that they generalize
well to new data.

Choosing a Champion Model Based on Validation Metrics

The selection of a "champion" model is based on how well it
predicts desired design outcomes, balancing accuracy with
interpretability. The chosen model should not only provide accurate
predictions but also align with the designer's intuition and
architectural goals.

Validation metrics such as R-squared, Mean Squared Error (MSE),
Accuracy, and F1-Score are used to evaluate the performance of
the trained models. Cross-validation is used to compare different
models and select the best one (the "champion") based on its

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

performance across multiple datasets. This model will be used to
make predictions in the next phase of the design process.

6. Predicting, Parsing Parameters & Fine-Tuning

Using the Champion Model to Predict the Parameters

Once trained, the model can predict new design parameters based
on user-defined criteria. For example, an architect may specify that
a building should maximize daylight while minimizing energy
consumption, and the model will predict the optimal set of
parameters that satisfy these goals. Additionally, an architect may
specify the area of the building, and the model will predict the
lengths and widths of the floor slabs.

The chosen model is deployed to predict the design parameters for
new building scenarios. Input features may include high-level
goals, such as cost limits or sustainability targets, or tangible goals
like the built-up area of the building, walls offset from slabs, etc.
and the model will output a set of parameter values that reflect the
best design solution based on learned patterns in the data.

Parsing the Predicted Parameters to the 3D Model in Modelling
Software and Finetuning them

The predicted parameters are reintroduced into the parametric
model, allowing for the real-time generation of 3D geometry that
reflects the machine learning model’s suggestions. This process
creates a seamless connection between data-driven predictions and
the physical form of the design, enabling architects to immediately
visualize how the suggested parameters translate into architectural
space.

By updating the 3D model in real-time, architects can rapidly
iterate on the design, assessing both its functional and aesthetic
qualities. The parametric nature of the model allows for
flexibility—if certain parameters need adjustment for practical or
creative reasons, they can be fine-tuned directly in the design

130

Chapter 5

software. This direct feedback loop helps maintain the balance
between algorithmic optimization and architectural intuition,
ensuring that the machine-generated designs remain responsive to
the unique contextual and human factors inherent in architectural
projects.

For example, if a machine learning model predicts optimal
window-to-wall ratios based on energy efficiency goals, these
parameters can be directly applied to the 3D model in the 3D
modelling software. The facade's geometry will automatically
update, allowing the architect to visualize and evaluate the design
from multiple perspectives, considering light distribution, visual
impact, and user comfort, among other factors. This integration
facilitates a more interactive and informed design process where
data enhances, rather than replaces, the designer's expertise.

The suggested framework integrates parametric modeling and machine
learning to optimize architectural design. A fully parametric model
generates multiple design alternatives, which are analyzed by extracting
key parameters into a dataset. After preprocessing the data—studying
parameter relationships, splitting the dataset, balancing, and cleaning—
machine learning models are trained to predict optimal design parameters.
The best-performing model is selected, and its predictions are parsed back
into the 3D parametric model. Finally, the design is fine-tuned, combining
data-driven insights with architectural judgment to achieve the desired
outcomes.

Although the architect’s decisions (way of thinking) could be ill-defined
or ill-structured, this framework should give results which stick to the
pattern found within the architect’s decisions expressed in the choice of
parameters which affect the outcome.

Figure 5-1 explains the suggested framework to utilize ML in the form-
finding process.

131

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

& land Dimensinns

. Satbacks

. Reighbors

Practical Evaksation

g
»
3
3
e === =- g
3
a
a
B

® Building Area

b Starting Foints

4 $ wallstengthe
P walls Depths tarrelation Matrix & -
i '

. i
¢ walls Heights Daa Cleaning ¢ +
%]
W . | o R S ST e G e e R :
& Walls Relstions) | Regrasdon Targsts & .
» Iraining Machine Learning Algorithms . e
-8 RoofcDmendons : 00 TT T T TS ST Sms---on i Classification Targets # +
&8 indows Cimanzicas Dverssmpling . ¢

@..d Windows Locationz

|
i
i
-k Mullons Spacings Model Validation ety
i : :
. h .
i
. '

3
=
o
=
=
)
b]
]
a
>
@
4]
w0
=
4
=
£

& Handrails Heights H Rendom Forest Rig

Regressian Uasefication Xgbocz i
* R 1
Hidge i RadnsNeighborzCizs
i = K-Nesrest Neghbor et | & K-fvessrest Nehber Uss,
p oy Urcar Regr i MLpClaz:
Mean & roe Precision o e i
Mean Souared Ferar ' Recall ormes

Decision Tre Reg

q i it :
o L LE LS L LR e Prediction and Exporting CSV Data

Figure 5-1- Suggested Machine Learning framework for Regression and Classification Tasks in
Architectural Modeling - By the Author

Following, the suggested framework is applied to a contemporary villa
design to validate it.

5.2 Problem Definition, Scope, and Limitations

The problem in this project is described as analyzing whether ML models
could map the architect’s way of thinking and -metaphorically- take
decisions based on patterns that might exist in his black-box described
thoughts or not.

To test this case, a villa is designed parametrically in a contemporary style
for the sake of simplicity. Modeling this villa by coding resulted in full
control over the parameters to generate 600 samples (consciously
designed) and ease of transforming them into a ML-ready data set.

The project is applied to give the user (architect) full control of
requirements including a rectangular land’s length and width, total built-
up area, setbacks, four neighbor types, and number of building blocks.

132

Chapter 5

Those parameters directly decided the form-generation process by
affecting tangible parameters including each slab’s length and width,
recess and dimensions between slabs, windows’ existence and widths,
shading devices numbers and width, and walls relations to each other. Only
tangible parameters were tested for simplicity.

The generated data set was used to train different ML models to test
whether they find the pattern that was consciously presented by the
designer or not. Those models included a variety of regression and
classification models which are compared to tests which would suit this
type of problems. So, the target was not to develop an ML model but to
test them and test the reliability of the generated data set.

To evaluate the results (predictions) of the used ML models, regression
results are evaluated based on R? score, MSE, MAE, and RMSE. And to
evaluate classification results, accuracy, precision, recall, and fl scores
were used as evaluation metrics. Also, a classification report is generated
for each classification model. Multiple regression and classification
metrics scores are used to assess the results.

5.3 Methods and Tools

Modeling the parametric villa is done using C# component on Grasshopper
v. 1.0 for Rhinoceros3d v.7 implementing the RhinoCommon’s API.

The analysis in this study is performed using the Jupyter Notebook v.6, and
Python v.3.10. Scikit-learn library v.1.3.0 for Python was used for ML and
TensorFlow v.2.10.1 and Keras v2.10 were used to train ANNS.

Also, NumPy v.1.23.5 was used to manipulate data as arrays during the
process and Pandas v.2.0.3 was used to manipulate data in a CSV* format
as data structures. Additionally, for data visualization Matplotlib v.3.7.2
and Seaborn v.0.12.2 libraries for Python were used.

1 CSV stands for "Comma-Separated Values." It is a simple and widely used file format
for storing tabular data, such as a spreadsheet or database, in a plain text format.

133

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

PC Specifications: 16 GB RAM, Intel (R) Core (TM) i7-8700K CPU
@3.70GHz, Nvidia GTX 1060 3GB.

The tools used in this study were selected for their efficiency and suitability
in handling complex architectural modeling and machine learning tasks.
C# in Grasshopper with RhinoCommon API allows for precise control of
parametric models, essential for creating 3D models. Jupyter Notebook
and Python offer an interactive environment for analysis, while Scikit-
learn provides robust machine learning algorithms for parameter
evaluation. TensorFlow and Keras are ideal for training artificial neural
networks, crucial in design optimization. NumPy and Pandas streamline
data manipulation, and Matplotlib with Seaborn enhances data
visualization, ensuring clear insights throughout the process.

5.4 Coding an Architectural Design Model

In this section the modeling of the villa by coding using C# is explained
and how the parameters were related to affect each other and to build a
consistent model is discussed. Finally, a resulting sample of the data set is
presented.

5.4.1 Modeling the project

A villa prototype is modelled in C# language using RhinoCommon API
(figure 5-2). To model the villa, walls and slabs were created as boxes with
a starting point (X, y) that varies depending on the design and is directly
affected by the setbacks. Walls are interconnected to each other with ruling
parameters that define where a wall starts and how long is a wall offset
from another one. Windows are modeled by cutting in the walls using the
boolean command and mullions are added as boxes spaced by dividing the
window width to an integral number parameter. The parametric model
allows the user to parametrically change the land width, land length,
neighbors (street/neighbor), setbacks, number of blocks for the villa,
starting point, walls widths, walls lengths, walls heights, slabs lengths,
slabs widths, floors heights, whether there is a window in each wall or not,
width of window in each wall, and window’s center point distance from

134

Chapter 5

the wall’s center point. The number of building blocks is either 2 or 3 to
facilitate modeling villas with larger areas.

Figure 5-2 — Villa prototype coded in C# on Grasshopper for Rhinoceros3d

The slabs widths and lengths are ruled mathematically to not exceed the
setbacks.

roof3x offset ronf3x
. -

roof3y

roof2yh

roofly

ruoflx

> roof2ya l

roof2x

Figure 5-3 — Slabs Annotations

And changing the slabs dimensions affects the area of the villa which is
calculated by the equation:

Area = (roof1x X roofly) + ((roof2x x (roof2yb —roof2ya)) x 2)
+ (((roof3x of fset — roof3x) X roof3y) x 3)

135

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

Area = (roof1lx X roofly) + ((roonx X (roof2yb + |roof2yal)) X 2)
+ (((roof3x of fset + |roof3x|) X roof3y) x 3)

Variables in the equation are shown in figure 5-3.

5.4.2 Parametric relationships

The starting point ‘SP’ is the base of the coded model. This starting point
is affected by the setbacks and is conditioned to have x and y values that

are equal to or greater than the setbacks values. At the same time, it starts

shaping roof 1, which is modeled with intervals starting from the starting

point and heading towards the x and y directions. Roof 2 is parametrically

connected to roof one. Its starting point is roof 1’s point ‘rflb’ and its y

dimension is ‘roof2ya’ + ‘roof2yb’ which are mathematically related to
roof 1’s point ‘rflb’. In the case of having three building blocks, roof 3’s
starting point is roof 2’s point ‘rf2b’. The x dimension of roof 3 is equal to
‘roof3x’ + ‘roof3x offset’. The point between the two lines ‘rf3b’ has the
same x coordinate as point ‘roof2p.’ Block 1 is modeled to have only one
floor, block 2 is modeled to have two floors, while block 3 is modeled to

have three floors. Figure 5-4 shows points annotations.

136

Chapter 5

{3y
Roof 3 (Block 3)

{2y

Roof 1 (Block 1) Roof 2 (Block 2)

sP rfls

Figure 5-4 — Points annotations of the villa

The walls are modeled in relation to the floors and to each other. So, a wall
can be offset from the roof’s edge or falls exactly on its edge. This requires
a relationship between each two perpendicular walls where a wall’s length
could vary depending on the other walls’ exact location.

Also, the windows were parametrically built in each respective wall with
parameters regarding the center of the window relative to the center of the
wall and how windows’ lengths should not exceed the respective wall’s
length. And conditions were added to choose whether there is a window in
a wall or not with true/false values.

Handrails are also modelled with mathematical relations with the roofs
edges so that they can be offset from the roofs or on the roofs’ edges. Their
shapes also change automatically depending on the relation between the
building blocks.

5.4.3 Resulting sample

Using coding, a CSV file is automatically created to receive the parameters
of the villa. And automatically again by coding, the parameters are

137

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

transferred to the file by pressing a button in grasshopper canvas. The
sample shape has two rows and 125 columns, and the set looks as shown
in table 5-1:

Table 5-1 - Sample Data Shape

Num
Land II_‘:Q; Land aSceI:ls)(Setback Bﬂgt boir Neigh | Neigh | Neigh
Area h Width X) s(Y) Area | Bloc borl | bor2 | bor3
ks
408 17 24 3 3 215 | 2 | street | NEION | Neigh
bor bor
SF
; . GF GF GF
. Starti Starti GF GF wall | wan | wa Wall
Neigh ng ng - Wall 1 12 Y-
- - Heig 1Y- | 2Y- 4 X-
bor4 | Point(| Point(ht X- Offse | Offse | Offse End-
X) Y) Offset Offse
t t t t
Neigh | 3 10 | 3 04 |07 | 5 | 18| .. | o
bor
GF SF
GF GF GF GF GF GF Roof GF Lintel
Roof1 | Roofl | Roof2 | Roof Roof Roof | 3 X- Roof Heiah
X Y X |2YA| 2YB | 3X |Offee | 3Y tg
t
5 7 7 -15 8 0 13.9 9 2.2
GF GF SF
GF GF GF GF GF Wall GF Wall Wall
wall 1 Walll | Walll | Wall Wall 2 2 Wall 3 15
: Windo | Windo 2 Windo Win 3 Wind Wind
Windo X .
W w w Win w dow Win ow ow
Width | Offset | dow Width | Offse | dow | Widt Offse
t h t
TRU TRU TRU
TRUE 4 0 E 5.1 E 6.4 E 0

5.5 Generating A Machine-Learning Ready Dataset

In this section, the generated data sets are analyzed and explained in detail.

The 2 created data sets are composed of 600 samples of villas designs.
Each data set has different targets to be predicted. The targets of the 2 data
sets are the parameters used to create the villa’s model using C# coding in
grasshopper3d. Figure 5-5 shows the resulting model of the target
parameters.

138

Chapter 5

Figure 5-5 — Resulting villa model which was built by using parameters in code.

Each 100 samples are designed to have a specific land area, and setbacks
options. Several villas’ areas are designed within a specified range and the
samples are divided into 4 categories where neighbor types are changed
which affected the parameters. Table 5-2 shows samples numbers and
parameters that affected the designs.

Table 5-2 - Numbers of samples and parameters that affect the designs.

Samples Number / Neighbor
- - Types
[b= %]
12} < = -
51 el s | g 21883 |9 |28
[@ 5] m he] 1]
I T g | 5| 8| 2 | 8g|5Se 2242243
E G =] < ut 23| 23| c&g S&4 =
S s = = @ o 2 o2 82 | 208 2209 &
z] < S xe} S a £E5 | 55| s£8d 223 &
z o - IS s 4 ng | hg | c8g T8I
S IS S <z =z LS F s
S | 3 z g 5| 2339 €3
3 = | ? 2
n
10|88 88 | 2| 20 | 23 25 25 25 25 | 23
< N
w | § | 88 | 2| 20 26 25 25 25 25 | 23
8 |1wo | I |8 B|a| 23 28 25 25 25 25 | 23
00 | 8 |83 23| 22 38 25 25 25 25 | 23
00| 2 |8 8| 23| 26 35 25 25 25 25 | 23

139

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

100

1120
>650
w

28 40 25 25 25 25 2-3

Figure 5-6 - Screenshots of random samples of the data set

5.5.1 Data set 1 (form data set):

In the first part of this data set (areas data), the features including land
dimensions, total built-up area, number of blocks, and setbacks are used to
predict the slabs locations as well as their dimensions, and the building’s
starting point (targets). The slabs widths and lengths are ruled
mathematically to not exceed the setbacks.

Changing the slabs dimensions affects the area of the villa which is
calculated by the equation:

Area = (roof1x X roof1ly) + ((roof2x x (roof2yb —roof2ya)) x 2)
+ (((roof3x of fset —roof3x) X roof3y) X 3)

The second part of this data set (rest of parameters data) involves
parameters related to distances between walls, walls’ locations measured
from slabs edges, and number of shading devices added to the first floor.
Those variables are predicted according to the same features from the first
part in addition to neighbor types.

140

Chapter 5

5.5.2 Data set 2 (windows data set):

In the first part of this data set, the features are the same as used in data set
1 while the targets are whether there is a window or not in a wall. The
second part of this data set has the same features as the first part, but the
targets are the widths of the windows in walls.

5.6 Data Correlations

Heat maps are created to thoroughly explore the correlations between the
variables in the regression data sets (figures 5-7 and 5-8) and through a
point-biserial correlation the correlations between the variables in the
classification data set is explored (figure 5-9).

Correlation Heatmap Between Features and Targets

.)
. B L]
||] -
os
o os
GF Wall 1 ¥-Dffcet - .
GF Wal 2 ¥-Offset -
GF wal 3 X-Offset -
[—
G vean s K ot
e ——
GF Wall 10 x-0tset -
GF Wall 10 Y-Offset -
GF Wall 11 X-0ffset - |
F wall 10 v ot
P wall 33 - Offeet
FF Wall 11 Y-Orfset - oo
FFWall 12 v-End-Dfisel
FF Walls Numnber on Glazing -
P Waalls Width en Glazing
0.2
- H
GF oo 1 Area -
GF oot 27 .
"
saing 1 -0t
FF Glaaing 2 x-Ofiset Yy
 cisaing 7 ot [|

Figure 5-7 — Correlation heatmap between features and targets for the data set 1

From this correlation matrix, some variables that were consistent along the
data set could be noticed. These variables should be removed. Also,

141

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

drawing from the matrix, it could be also found that some variables could
cause misguidance to the ML including some variables with negative

values. Also, many features are not directly affecting many targets and vice

versa.

GF Roof 3 X-Offset -0.280.100.250.170. 190, 2RISR EIE)
GF Roof 3 Y 027 0.130.240.1 70,220
Number of Blocks -0.250.100.19-0.150.230

Neghbar 1 -0.04013-0.030.050,050 02 005 0.010.0:
Nesgrbor 2 ~0.030.100.000.082.01 .01 0.070.07 0,089, 338
Nesghbor 3 -

Neighbor 4 -0.100.160.060.11 0,020,020, 050,05 007033031
@ el 1 window iidth 0.34017.0,220.930.360.280.00 0.01
B 0,216 0.000290.300.200090.06
GF wall 3 vindow Vaath SEEI024) 1 10.240.250.180.31 0.280.280.030.09
GF Wall & Vindow Width -0.00 0.260.280.050.17-0.020.210.240.190.100.10

GF Wall 2 Window Wicth -0

GF Wall 5 Window WIGRh ~0.130.04-0.000,04-0,050.01-0.040 040,040 13 0.07

GF Wall 6 Window Width -0.18 0.08 0.2! .010.180.190.230.160.14

270120, IMDHRD

GF Wall B window Viioth -0.170:330:370.320,050,020.170.170.160.200.06
GF wall 10 Window Width ~0.080.060.040.070.01-0.010.04 0.040.049.030.10
GF Wall 11 ¥hindow Yidth 13
GF Wall 12 Window Width -0.170.220.15:0.200.240.
GF Wall 13 Window Width

o wall 7 window width

GF Wiall 14 window Width -

FF iall 10 Windcw Vidth

T el 11 window vidth

FF wiall 13 window Width -

rm.umw»dwwmnnnmznczo 244044045 0

SF Wall 15 Window Width

-5
g
&
=
o
2
e
£
2

ZEEEEZEZEG3

P ijiicicid

5585885008322
P

Figure 5-8- — Correlation heatmap between features and targets for dataset 2 (regression)

Neghbor 3

Correlation Heatmep Between Features and Targets
or moot 1 x JEBY0.1508%0.250150.190.590.27 0,28 0.03-0.0 £

o s, um..mm nﬂqu

0260040.080.300330 0807022

006 SL LI L] 0280.000; “ oamu
0.11:0.340.280.240 050 .27 320 070.170.20
0.020.70.160250.17.0.0385 0.120.050.010220.24

0.020.220.080.180.030.01-0.010.100.020.010.060.15

DX3000000-0.030 100 120,160 110300 030.02-0.06

0330.01 0.060.090 100,07 0.140.150.060.100,02 0.33

0 070,060, 0250 09040025
o 30 010430
0.070.260. 10.26.0. na}}nr

B 0.010.00 moumoxgmu

0.05 0.020.170.260.210.03 R0, 18
Anusq!nun 100.010.040.220180.08 0. 1500

o 140, um:zmq
023029/ 0100.000030270.190 mmc

020 BT 120 010128480290 040,

0.220.250340.230.090.010.020,230.160.100.22
.36 0.030.21 0.290.240.03|

e
&

0230230.330.250.040.010.020280.170.090.10|
19.0.050:

Neighbor 4 - &
ndow Width
indow Width
Indow Width
indow Width -
indow Width -
Indow Width .
indow Width
indow Wicth
indow Width
Indow Width
indow Width _E. o
indow Width -

OF Wall 1 Wi

Walk 2 Wi
GF Wall 7 W
GF Wall B Wi

o
o
o
G
G
Gl
o
o
o

aogo07

0080.20

019023

014010
0.060.00
022003

037019
©0.040.10

indow Width -
indow Width
indow Width

=
2

Wl

mun
n.uua
!ijan

0280 17015018024

0.020.170.240.230.22
0120130100,140.13

.01 080.060.070.10

0130.200.060.210.20

0300220170230.23

0.12002038004029
€0.0100140.030010.05
0120020230.020.22
enomanZ]
0290160240.170,32
-0.040.100.03 0.090.00
031022

Cen o
e EEEEE
$3333%
$:EEOZ:OZ
T2 L

SF Wall 14 Wi
SF Wall 15 Wi

02

-00

The same is noted in this data set with some variables being consistent
along all the samples. Also, high correlation is noticed between some
windows width and the aligning slab length.

Also, when plotting a point-biserial correlation between features and

binary targets in data set 2, some consistent variables that need to be

dropped are found.

142

Chapter 5

Point-Biserial Correlation Between Features and Binary Targets
GF Wall 1 Window -

GF Wall 2 Window - oe
GF Wall 3 Window - 0.15 0.064 [0:24 0.028 | 0.17 -0.031 011 011 0.12 -0.029 0.041 0.099
GF wall 4 window - 0.2 -0.038 -0.11 0.13 -0.023-0.0090.000380.0053 0.012 0.15
GF Wall 5 Window - 0.4
GF wall 6 window --0.029 -0.076 -0.092 0.1 0.055 -0.023 0.082 0.082 0.084 0.12 0.024 0.071
GF wall 7 window LRI 029 [ENFY 027 ©0.12 011 EEENEEENERY 0.099 -0.037 0.12
GF Wall 8 Window - 0.16 0.12 019 -0.22 -0.047-0.036 013 013 0.13 -0.031 0.031 0.11 02
GF wall 10 window - 0.11 0.084 0.056 -0.18 -0.027 0.055 0.021 -0.014 0.019 011 0.11
GF Wall 11 Window - -0.19 -0.17 [%028' 018 -0.09 012 -0.12 -0.13 02 003 -0.018 0.026
GF Wall 12 Window - -0.11 -0.064 -0.22 0.0085 -0.11 -0.03 011 011 011 0.28 -0.092 0.092
GF Wall 13 Window - -0.12 -0.039 0.23 -0.019 -0.12 0.092 0.039 0.04 0.042 0.1 01 - 00
GF Wall 14 Window -
FF Wall 10 Window - 0.21 0.13 0.14 -0.086 -0.09 0.29 0.19 0.18 019 0.089 0.089 017
FF Wall 11 Window - -0.27 0.28 0:271-0.053 0.03 SR8 0.0019 -0.12 0.017 o2
FF Wall 12 Window -
FF Wall 13 Window -
FF Wall 14 Window 4 S+ -0.39 UBE] 0.11 [EECCECIEEE] 0.051-0.0022 0.029
SF Wall 12 Window - -0.4
SF Wall 13 Window -
SF Wall 14 Window -
SF Wall 15 Window - ~0.6

GF Roof 1 X -

GF Roof 1Y
GF Roof 2 X -
GF Roof 2 YA -
GF Roof 2 YB -
GF Roof 3 X -
GF Roof 3 X-Offset -
GF Roof 3Y -
Number of Blocks -
Neighbor 1 -
Neighbor 2 -
Neighbor 3 -
Neighbor 4 -

Figure 5-9 — Point-Biserial correlation between features and binary targets in data set 2
(classification)

5.7 Data Pre-Processing

The two original data sets under investigation consist of 94 columns
containing all the parameters mentioned in section 9.4.

Data set 1 has 45 columns while data set 2 has 57 columns. However, both
data sets share 10 columns which are supposed to serve as features
including the land dimensions, built-up area, neighbor types, and setbacks.

Each data set has 600 samples designed by changing the parameters and
screenshot of the villa design depending on the parameters set is saved in
the same order as the csv data set for later practical validation (figure 3).
Those 600 samples are designed carefully, and the parameters were
changed intentionally depending on the architect’s satisfying results
regarding proportions, neighbors, areas, etc. This may ensure that a
particular pattern exists within the data which the machine could observe.

143

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

5.7.1 Cleaning continuous data

To achieve high efficiency in areas results after prediction, some of the
highly correlated variables needed to be adjusted. Instead of predicting
rooflx, roofly, roof2x, roof2ya, roof2yb, roof3x, roof3x offset, and roof3
y, and to ensure logical training, some of these variables are replaced with
more relevant data that can ensure the areas prediction accuracy and can
mathematically output the replaced data. For example, roofly was replaced
with roofl area, roof 2 ya which happens to have a negative value usually
was replaced with roof2 area, and roof3 y was replaced with roof3 area.
This process was important to make the numeric pattern clearer to the
algorithms. Figure 5-10 shows roofs labels. However, this process was not
done on the windows data set because the lengths and widths of walls
played a key role in defining the windows’ width because walls lengths
were mostly related to slabs dimensions.

roof3x offset roof3x
.

roof3y

roof2yb

roofly

rooflx

roof2ya

roof2x

Figure 5-10 - Roofs labels

In the form data set, some targets are found consistent among the data set
and are dropped to make it easier for the machine to find relationships.
From the features, neighbor 3 was dropped from both data sets for always
having a ‘neighbor’ value set as 0. Also, setbacks in the X dimension and
in the Y dimension were found to be similar to each other in all of the
samples so, setbacks Y was dropped.

144

Chapter 5

5.7.2 Cleaning categorical data

Some of the data in the set are of a string type like neighbor and street. And
some are boolean with ‘True’ and ‘False’ values like whether a window
exists in a wall or not. Text in these cases is converted to numerical values
for ML algorithms compatibility and achieving efficient computation. In
this case, both ‘true’ and ‘street’ values are set to ‘1’ while ‘false’ and
‘neighbor’ values are set to ‘0’. Moreover, some targets are dropped for
having consistent values in all samples.

The results of data cleaning led to the areas and rest of parameters data set
to have 33 columns, and the windows data set to have 42 columns.

5.8 Data splitting and choosing features and targets

Features in ML are the input data that the user gives to predict some values.
The values to be predicted are called labels or target variables. In this
problem, and as mentioned in section 9.4, the features and targets are
chosen as shown in table 5-3:

Table 5-3 - Features and Targets of The Model

Features (Inputs) Targets (Outputs)
Feature No. of Target No. of
Features Targets
Land length 1 Starting point 2
Land width 1 Walls parameters 22
Setbacks 1 Slabs dimensions 8
Built-up area 1 Windows existence 22
Number of blocks 1 Windows widths 22
. Shading Devices Number 1
Neighbors 4 Shading Devices Widths 1

Initially, the features include what an architect should input to the program
to output the numerical parameters that control the architectural aspects
like proportions, dimensions of walls, and windows, etc.

The inputs include the building area, land width, land length, number of
blocks, neighbors, and setbacks. The dataset is split to a form dataset where

145

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

form parameters are predicted such as walls offsets, slabs dimensions,
starting point of the form, etc. and another “windows” dataset for
predicting windows existence as well as windows dimensions.

5.8.1 Form data set splitting

The correlation matrix between features and each column in targets is
plotted. The correlation matrix was plotted as a heatmap using Seaborn
library in Python and some variables were excluded from the data frame
for a cleaner dataset.

Correlation Heatmap Between Features and Targets

Land Length

Land witth

| N -

Setbacks(x] 4
Setbacks(Y) 4
Budt Up Area
Mumber of Blocks -
Neighbor 1 -
Neighbar 2 -
Neighbior
Starting Peirilx}
Starting Point{v}
GF Wl 1 X-Offst
GF Wall 1 ¥-Offset
GF Wall 2 Y-Offset -
GF Wall 3 X-Offset -
GF Wl 4 X-Offset -
GF WAN 5 X-Offset -
GF wall 3 X-Dffset |
o Wall 10 Y-Offset - .
GF Wall 11 X-Offset
OF Wall 11 Y-0ffset -
F Wiall 12 ¥-End-Dffsat
FF Wall 11 X-Offset
FF Walls Number on Glazing -
FF Wialls Width on Glazing -

SF Wall 11 X-Offset

GF Roaf 1%
oF Roof 1 area
GF Roof 27

GF Poat 2YD -

GF Roof 7 Area

oF maof 3%

GF Roof 3 X.Offset |

GF Roof 3 Ares

£ BicoiscijpiiEpEpififeeiize
£ PE BB fiEfELEEEELEEELEE LT
: Eéﬁﬂ*???%%%f?%??ﬁiee%ﬁéH’
H B EEEEFEE RN NN B AN
s ER2EEz2:3EF3iazisy ¢ i
2 *’%35:;*315;53;:;5%;‘ 5
= 3
5 3 :

Figure 5-11 - Heatmap showing correlations between the variables in the dataset (By the Author)

The plot shows that only a few features which could affect the building
area represented in slabs dimensions. Those include land length, land
width, built-up area, and number of blocks.

146

Chapter 5

For this reason, the form dataset is split to areas related dataset to predict
the slabs dimensions thus, the building area, and another dataset to predict
the walls offsets, and other form related parameters.

The features of the first data set are land length, land width, setbacks, built-
up area, and number of blocks.

While the other data set includes all the targets and features of the cleaned
dataset to train the model for predicting the rest of form parameters using
features like land length, land width, setbacks(X), built-up area, number of
blocks, and the types of the neighbors. Figures 5-12 and 5-13 show the
correlations between each dataset’s variables.

Correlation Heatmap Between Areas Features and Areas Targets

10

Larel Length

Land width 18 1 68 o5 ass ars a8

Satbacks(K)

Saetbacks(r)

Buit-Up Area SRR

Humber of Rlocks

Starting Pointix]

Startmg PantlY] <

GF Roof 1 X 0.6 . 0.5% ar 5 5 028 029 a2

GF Ront 1 Area

Gk Root 2 ¥

GF Rool 2Y8 -

oF manf 2 Aren SEELY

aF roof 3%

GF Roof 3 X-Offses

GF Roof 3 Area

Number of Backs
Starting Pointix} -
Starting Point|¥] -

GF Rioof 1 Ares -
GF Roof 2 ¥

GF Roof 28 -
GF Roaf 2 Area
GF Roof 3 N-Offset
@F Mool 3 Area

Figure 5-12 - Heatmap showing correlations between the variables of the form areas data set (By
the Author)

147

Architectural Form Generation: Applying ML Algorithms on Architectural

Parameters Datasets

setbacks(x) -
Setbacks{¥)
Built-Up Area

Number of Blocks.

Correlation Heatmap Between Areas Features and Areas Targets

004 004 001 037 O34 042 036 017

042 048 010 o010 CCTURERY o,

Nesghbor 1 --0.0¢ 0.00 0.18 038 002 o3 BEE

Neighbor 2 - 004 0.01 000 0CO Q.01 Q08 033

Neighber 4

Searting printix) JOR0 nnqu acs 02 o4 019

012 012 043 036 009 012 008

oF WOIUKWI-W%.'#!U.H msmen 010 000 007

036 0X0 011 011 GAL 018 010 020 001

Starting Powt(Y) ~034

GF Wall 1 Y-Offset
OF wall 2 ¥-Offset

GF Wall 3 X Offset

GF Woll 4 X-Offset - 024 032 012 012 028

GF WiAll 3 X-Offset - 024 833 003 003 @31 013

GF Wall 8 X-Offset

GF Wall 10 ¥ Oftset

GF wall 11 x-Offset <038 030 0.2 012 635 037 013 023 027

GF Wall 11 ¥Offset - 0.01 002 0.0¢ 0.04 0.02 011

001 001 D21 021 000 007

017 021 001 901 016 008

007 006 003 003 009 007

033

ooy

0.06

001 005

012

a4y 239 oo

022

GF Wll 12 ¥End-Offset <033 022 002 002 026 029 0.12

¥ wall 11 X-Offset - 0.00

FF Wals Number on Glazing - 0.04 005 002

FF Vialis Wdth on Glazing - 025 030 005

ST wall 11 X Offset - 0.00

Land Length
Lang width

s
S
°
8

Sethacks(x)

002 002 002

0oz

oos

0co

Setbacksiy) -

0.0 006

005 208 004 005 011

027 o1

002 016

Busit-Up Area -

ocks

Number of i

0.07

§ 0.00 901 001 027

LM%Y 010 018 000 021 BREN 012 019 011 001

LN O41 010 018 000 021 BEER 012 019 011 001

001 000 024 m@w vl

008 007

000 003

214 003

016 027

no1 013

0.08 0.08

029 014

0.02 0.02

008 007 003 @34 021 018 003

£33 033 020 009 018 010 003

S 033 004 0127 -0.08 0.20 008 0

T 010 008 007 001 007

LLTAEEEE 039 lnmnn 0.09 016 010

024 0.02 013

012 006 001
s
£ 3 2
EI
$£f2

000 aoo LR

003 005 021

006 000

004 021 031 023

010 021 029

026

020 9120 -013 911

031 a3 041

007 013 018

0.05 9.03 001

0,03 006 011

001 Qo2 0.0t

(AT

003

002

001

o0

0.0z 203 009 0.06

011 219 010

s

Stasting Pon1x) -

0.07 0.05
£ g
E £
e X
£ 3
LA

001

004

GF Wial 1 Y-Offset -

012 006

018

0.08

003 o

014

008

002

0.07

0.00

000

012

0.00

OF WAl 2 YOyt -

007 024 024 07
006 033 033
00) 012 009 V26038 012 0.04 002
003 012

00y 036 031 g‘gﬂm ©0.02/038 0.01

@06

000

002

002

ao1

any

GF Wall 3 X-Oftser

0.01

008

7 023 006 006 000 002

009 D26038 012 V.04 002

013 935 033 037 011 029
013 006 008 033 022 412
016 001 016 023 008 029
837 013 Q10 027 008 414
010 926 O 007 205 003
021 020 831 013 003 006
029 ©0.15 041 018 001 011 001

026

L8039 001 033

ERN 033 0.02 020 004

00
020

004

0.01

0.01 0.06 036 036 LRE

0.02 0.07 9.02 003 003
018 604 004 007 002 008
014 021 012 015 015 003
005 032 0.06 007 0,04 001
£ 1 &% ¥ ¥
£ £ £ 2 £ &
2 2 ¢ ¢ 9§ 3
x % X X % 3
8 » & a 3
P 3 % o3 z 3
2 2 = 3 3 32
$ &5 8 5 5 3

6 000 00 Q14 DO 002

201

009 006 0.07

413 Q18 003 002 001

00?7

a0z

0.01

000 0.04 025 000

002

002

006

39030 002 922 ©.02 005 B30 0.00

002 005 000

002 005 0.00

005 827 0.02

.06 016 016

0.07 0.0¢ 014 012

a0z

.03 0.02 0086

.07 401 613 Lo

ao

003

201

am

ao1

0.02

002

211 00

003 019 0.07

009 010 0.05

006 001 ©0.04

€000 012 .00

007 0.08 0.01

018 014 0.05

004 021 012

.07 DM 507 908 012 000

(0 0.03

aoe

016

o
2

GF Wall 12 ¥-End-Offset

005 036 ©.03

007 01S 007

BRIy 0.03 0.02

018 004

0.01 0.03 003 ©0.01

il 0.02 0.01 038

005 016 002

w0z B

#F wiat 11 xoftser L8

FF Walls Number on Glazing

FF Walls WidLh on Glasng

SF Wall 11 X-Offset

- o8

06

04

02

00

--02

04

Figure 5-13- Heatmap showing correlations between the variables of the form rest-of-parameters

5.8.2 Windows data set splitting

The windows dataset includes 12 features which are the neighbor types,
the number of blocks, and the slabs’ dimensions which logically points to
whether a window exists in a wall or not and the width of the window (in
the designs and dataset, the walls were directly correlated to the slabs

data set (By the Author)

dimensions). The targets are the windows’ width and whether a window

exists in a wall or not. This shows two types of targets, one is boolean and
one is continuous. Those two types require classification and regression
models respectively. So, the targets were split to classification targets and
continuous targets. Figure 5-14 shows the correlation matrix heatmap

148

Chapter 5

between continuous targets and features while figure 5-15 shows Point-
Biserial correlation between binary targets and features.

Comelation Heatmap Between Features and Targets

G Auet3 Y037 333 B4 017 0214
Murmer of Bocks <023 530 213.0.33.
Neighaer 1 <004 811000 005005 4) 055 801 D)

Metzbser 3403030000 Q08 CO1 081 057 303 4

Metghen 4 930836 10 011 602 992 025 203 O

=t

e N T NN NN NN RN EY

ii bii

R LR R R LR R AR IR IRNRNY
' RERERRARRRRRR R E

Figure 5-14 - correlation matrix heatmap between continuous targets and features

Point-Biserial Correlation Between Features and Binary Targets

GF Wall 3 Window - 015 0.064 - 0.028 017 -0.031 011 011 012 -0.029 0.041 0.099 0.6
GF wall 4 Window %0.038 -0.11 013 -0.023 -0.0090.000380.0053 0.012 ‘:0;15 -
GF Wall 6 Window --0.029 -0.076 -0.092 0.1 0.055 -0.023 0.082 0.082 0084 012 0024 0.071 0.4

GF Wall 7 Window “£.12 011 <0.099 0.037 -0.12

GF Wall 8 Window - 016 012 -0.047 -0.036 013 013 013 -0.031 0031 -0.11 02

GF Wall 10 Window - 0.11 0.084 0.056 -0.027 0.055 0.021 -0.014 0.019 0.11 FEES -0.11
= = -0.0
GF Wall 11 Window ©0.09 012 -0.12 0.03 -0.018 0.026
GF Wall 12 window - -0.11 -0.064 0.0085 0.11 -0.03 011 011 011 ©0.092 0.092
-0.2
GF Wall 13 window - 0.12 -0.039 -0.019 -0.12 0.092 0.039 004 0042 N8 01 01
FF Wall 10 Window 013 014 -0.086 -0.09
-0.4
FF Wall 11 Window
FF Wall 14 Window UEER 0.051 0.0022 0.029
-0.6

GF Roof 1 X
GF Roof 1Y
GF Roof 2 X

GF Roof 2 YA

GF Roof 2YB
GFRoof 3X - ;
Neighbor 1 -
Neighbor 2 -
Neighbor 4 -

GF Roof 3 X-Offset
Number of Blocks

Figure 5-15 - Point-Biserial correlation between binary targets and features

149

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

Both the correlation heatmap and point-biserial correlation map give us
precise thoughts of how the dataset was generated. Regarding the binary
targets, clear correlations exist between the neighbors and the slabs’ side
and the window in the wall which lies under the slabs side and facing this
exact neighbor. Also, the correlation matrix heatmap reads well in the same
manner.

5.9 Data Resampling

Resampling in ML refers to the process of creating a new dataset by either
duplicating instances (oversampling) or removing instances
(undersampling) in order to achieve a more balanced class distribution.
The goal is to improve the performance of ML models, particularly in cases
where one class is significantly underrepresented compared to another.

There are only 600 samples of designs that were created by the architect
which could be insufficient for ML to analyze the data. To produce enough
samples for ML training, employ general-purpose resampling functionality
in Sklearn library which performs oversampling in this case.

150 of the 600 samples have neighbor 1 value as ‘0°, and 450 have
neighbor 1 value as ‘1°. Also, 150 samples have neighbor 2 value as ‘0’,
and 450 have neighbor 2 value as ‘1’. So, neighbor 1 and neighbor 2 as
neighbors (‘0° value) are considered minority classes while the two
columns as streets are considered dominant classes. In this case the
resample technique was used to oversample the minor classes to balance
the class distribution. The resulting data set includes 30,600 samples for
the areas’ data set and 30,600 for the windows’ regression data set.

Synthetic Minority Oversampling Technique (SMOTE)

Regarding the windows classification data set, a significant imbalance in
data was noticed, which was a result of the architect’s preferences. Figure

5-16 shows count plots of windows classification targets before applying
SMOTE.

150

Chapter 5

Count Plot of GF Wall 3 Window Count Plot of GF Wall 4 Window Count Plot of GF Wall 6 Window
600 - 600
400
= 400 = = 400
3 3 200 2
© 200 A u © 200
0 T ; 0 T ; 0 T ;
0 1 0 1 0 1
GF Wall 3 Window GF Wall 4 Window GF Wall 6 Window
Count Plot of GF Wall 7 Window Count Plot of GF Wall 8 Window Count Plot of GF Wall 10 Window
600 600
400 A
= & 400 2 400 -
=1 =] 3
2 200 A] 2
v Y 200 C 200
0 T : 0 T : 0 T :
0 1 0 1 0 1
GF Wall 7 Window GF Wall 8 Window GF Wall 10 Window
Count Plot of GF Wall 11 Window Count Plot of GF Wall 12 Window Count Plot of GF Wall 13 Window
400 A 600 - 600
» 2 400 4 & 400 4
g 2001 2 2
v Y 200 Y 200
0 T . 0 T . 0 T .
0 1 0 1 0 1
GF Wall 11 Window GF Wall 12 Window GF Wall 13 Window
Count Plot of FF Wall 10 Window Count Plot of FF Wall 11 Window Count Plot of FF Wall 14 Window
300 300 A 400
o o o
E 200 4 < 200 4 5
S8 8 3 200
100 100
0 T ; 0 T ; 0 T ;
0 1 0 1 0 1
FF wall 10 window FF Wall 11 window FF wall 14 window

Figure 5-16 - Count plots of targets of the windows data set before applying SMOTE

The same resampling technique used with the areas’ data set was not able
to balance the data. SMOTE was applied to this data set. It is a technique
that generates synthetic samples for minority classes to tackle imbalanced
data sets. SMOTE primarily operates within the feature space, creating
new instances by interpolating between closely positioned positive
instances.

Figure 5-17 shows count plots of windows classification targets after
applying SMOTE.

151

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

Count Plot of GF Wall 3 Window Count Plot of GF Wall 4 Window Count Plot of GF Wall 6 Window
400 600
w400 o w400 -
c c c
3 3 200 2
© 200 © 200
0 : v 0 v : 0 : v
0.0 1.0 0.0 1.0 0.0 1.0
GF wall 3 window GF wall 4 window GF Wall 6 Window
Count Plot of GF Wall 7 Window Count Plot of GF Wall 8 Window Count Plot of GF Wall 10 Window
400
o o 4004 o 400 -
5 5 5
8§ 2007 8 200 8 200
0 T T 0 T T 0 T T
0.0 1.0 0.0 1.0 0.0 1.0
GF wall 7 Window GF wall 8 window GF wall 10 window
Count Plot of GF Wall 11 Window Count Plot of GF Wall 12 Window Count Plot of GF Wall 13 Window
400
o o 400 4 = 400 1
c c c
3 2001 3 2
o G 200 A O 2004
0 T T 0 T T 0 T T
0.0 1.0 0.0 1.0 0.0 1.0
GF Wall 11 Window GF Wall 12 Window GF Wall 13 Window
Count Plot of FF Wall 10 Window Count Plot of FF Wall 11 Window Count Plot of FF Wall 14 Window
300 A 300 400 4
" o o
£ 2001 £ 200 - E
S 3 g 200
100 100
0 . T 0 T . 0 . T
0.0 1.0 0.0 1.0 0.0 1.0
FF Wall 10 Window FF Wall 11 Window FF Wall 14 Window

Figure 5-17 - Count plots of targets of the windows data set after applying SMOTE

5.10 Train-Test Splitting

To perform a ML task, data should be split to at least a training set and a
test set. The test size in this case is set to be 20% of the whole dataset while
the remaining 80% are assigned for the training set. The data is shuffled
before splitting to get a test set with randomized instances representing the
entire data set. K-fold cross validation was applied.

5.11 Training Models

After having preprocessed and cleaned data, ML techniques were applied
to predict architectural design parameters of the villa model. The problem
involves both regression and multi-class classification.

There are three regression tasks, one for predicting the areas and slabs
dimensions, one for predicting the architectural parameters including walls
offsets, and one for predicting the windows’ widths and one classification

152

Chapter 5

task which predicts the existence of windows in different walls. Table 5-4
shows different problem types in this study.

Table 5-4 — Machine learning problem types in this study

Problem Type

2 Regression Classification

'; Slabs dimensions and starting

k=) point

k= Architectural parameters Existence of a window in each
3 wall

o Windows’ width

Different regression and classification models were applied directly using
scikit-Learn, TensorFlow and Keras modules for Python. All these models
were discussed earlier in section 4.3.: Random Forest, XGBoost, Ridge,
K-Nearest Neighbor, Linear Regression, Polynomial Regression, Decision
Tree, and Multi-Layer Feedforward Neural Network (MLP) in
TensorFlow. All the ML regressors were used with their default parameters
while the MLP regressors hyperparameters’ were tuned to get the best
possible scores.

For the MLP, the best trained ANN consisted of 3 layers: an input layer of
64 perceptrons and a ‘Relu’ activation level, a hidden layer with 64
perceptrons and a ‘Relu’ activation level. And an output layer with 15
perceptrons and a ‘linear’ activation level. The loss was calculated based
on the mean squared error and the used optimizer was ‘Adam’. The batch
size used in training was 32 and the number of epochs was 100.

A set of classification algorithms are used to predict windows existence in
walls including Random Forest, k-NN, SVC, Decision Tree, AdaBoost,
and XGBoost. All the ML classifiers were used with their default
parameters.

Table 5-5 shows trained models used in this project.

153

Architectural Form Generation: Applying ML Algorithms on Architectural
Parameters Datasets

Table 5-5- Different models trained for regression and classification tasks

Trained Models

Regression Classification
Random Forest Random Forest
XGBoost XGBoost
Ridge AdaBoost
k-NN K-NN
Linear Regression Support Vector Classification (SVC)

Decision Tree
Polynomial Regression
MLP-Scikit-Learn
MLP TensorFlow

Decision Tree

Summary

In this chapter an application as a framework is introduced to utilize ML
in the form-finding/making process, the problem was explained, being
exploring a way to test ML algorithms on architectural design parameters
as data sets to see how well ML models could generalize and find patterns
that are consciously made by the author. Then the materials and methods
used to perform this study were explained starting from choosing software,
programming languages, and programming modules to analyze the data
and build the models. It is also discussed in detail how the 3d-model was
built using coding by C# language and how all the parameters were related
together to make a fully parametric contemporary villa where every
parameter could change other parameters with full control over them to
automate the generation of a data set which contains only numerical and
text values as variables. This data was split into two data sets. One to
explore the parameters related to the form-generation and the other to
control the parameters deciding windows’ creation.

Additionally, the chapter delved into analyzing the data set by drawing
correlations between variables. Such correlations are essential to
understand how variables correlate to each other. The result of this phase
led to splitting the large data set into two data sets, each having variables
that directly affect each other, making it easier for the machine to learn

154

Chapter 5

form and conclude patterns. Further splitting is done to each data set
according to the same concept where some variables were crucial in
determining the area of the building while others affected parameters
related to walls placements and formation. Also, in the second data set,
some parameters fit into a classification task while others required a
regression task. So, the data set ends up split into four sub-data sets. The
sub data sets were cleaned from variables which were consistent along the
whole data set and some variables were mapped to numerical values.
Furthermore, the analysis of data balance was crucial in the study. Some
techniques including SMOTE for classification and Oversampling for
regression data sets were used to balance the data. After that, the four data
sets were split into train and test data sets with an 80-20% ratio
respectively. Finally, different regression and classification models were
trained on the four data sets to gain insights on which models were more
suited to this specific problem.

In the next chapter, the results of the training phase are explained and
analyzed.

155

Machine Learning Analysis and Results _

nter 6: Machine Learning Analysis and Results

Preface

In this chapter the results of the different ML models are presented,
analyzed, and compared. Additionally, the model learning of both the form
data set and the windows data set based is discussed and evaluated on the
evaluation metrics discussed earlier. Also, how predictions are done after
training the models and choosing the best model are discussed. After that,
a fine-tuning phase is proposed to give the architect control over the ML
outcome to modify the built 3d-model easily to become a natural part of
the design process. Finally, final conclusions are drawn from the results of
the project.

6.1 Feature importance

According to the findings, the building area - as suggested - was the most
important feature in the final areas’ dataset (as shown in Fig. 6-1).

156

I Chapter 6

Feature Importance Scores

0.7 1

0.6 1

0.5 A

0.4

0.3 A

Importance Score

0.2 A

0.1 4

0.0 T 7

Features

Figure 6-1 - Feature Importance Score for a Random Forest Regressor

This feature was directly affecting the areas of the floor slabs which is
calculated based on the lengths and widths of the slabs. While the land
length, land width, and setbacks were affecting only two targets which are
‘Starting Point X’ and ‘Starting Point Y’ representing the x and y
coordinates of the starting point.

6.2 Evaluation Metrics

There are some metrics that show how an ML algorithm performs while
training and with unseen data as well. These metrics vary according to the
problem type, either a regression model or a classification model.

157

Machine Learning Analysis and Results

6.2.1 Evaluating regression performance

A regression model's performance is evaluated using metrics such as R?
score, mean squared error (MSE), root mean squared error (RMSE), and
mean absolute error (MAE).

R? score measures the proportion of variation in the dependent variable (Y)
that is explained by the independent variable (X). R? score is calculated by
finding the sum of residuals squared and the total sum of squares. The sum
squared regression is the sum of the residuals squared, and the total sum of
squares is the sum of the distance the data is away from the mean all
squared. This is a critical measure for assessing model fit, with values
ranging between 0 and 1. An R? score > 0.9 is considered excellent, > 0.8
is good, and > 0.6 can be acceptable in some scenarios, although there
might be noticeable predictive errors. An R? score < 0.5 indicates poor
explanation of data variation and potential limitations in prediction. MSE
evaluates how well the regression model fits the data and its square root
provides an estimate of the standard deviation (o) of the random error term.
Although RMSE is not an unbiased estimator of o, it remains a dependable
tool for this purpose. These metrics primarily measure the magnitude of
regression errors but do not provide insights into the explained portion of
the variance. MAE 1is the average absolute error between actual and
predicted values. (Equations are shown in appendix B).

6.2.2 Evaluating classification performance

Accuracy, precision, recall, and F1 scores are evaluation metrics for
classification tasks. Also, a classification report is typically generated.
These scores can assess the performance of a classification model.

Accuracy represents the ratio of accurate predictions to total guesses.
Precision relates to a classifier's capability to correctly classify a negative
instance as negative. Sensitivity/recall, often called the true positive rate,
gauges the model's proficiency in identifying all positive occurrences in
relation to the combined count of true positives and false negatives. F1
score 1s the harmonic means of precision and recall. The harmonic mean is
a mathematical average derived by dividing the total number of

158

Chapter 6

observations or elements in a series by the reciprocal of each individual
number within that series.

The harmonic mean of accuracy is the F1 score. The number of actual
instances of the class in the provided dataset is referred to as recall and
support. (Equations are shown in appendix B).

6.3 Model learning analysis

ML analysis was conducted on the two data sets.

6.3.1 Form data set analysis

To estimate the slabs dimensions and the rest of parameters, 8 ML models
were conducted which are: random forest, XGBoost, Ridge, k-NN, linear
regression, polynomial regression, decision tree, and MLP with
TensorFlow. A total of 30,600 samples were used (24,480 samples for
training and 6,120 samples for testing) for each model.

According to the findings, ensemble learning models had the best results
among other algorithms. The results were very accurate especially when
done on the areas sub-data set and the predicted slabs dimensions
parameters succeeded to give very close values of total-built up area as
required in the input. Figure 6-2 and table 6-1 show a comparison between
the regression metrics between the 9 trained models.

159

Machine Learning Analysis and Results _

1 I m I I I
QT T e T T Y

i s oyt ey 5 ore

s A A SMAS . MPIbab Y Nest

Figure 6-2 - Comparison of the regression metrics between the 9 trained models for the areas sub-
data set.

Table 6-1- Comparison of the regression metrics between the 9 trained models for the areas sub-
data set

Model R2 Score MAE MSE RMSE
Random Forest 0.97 0.57 7.15 2.67
XGBoost 0.97 0.61 7.11 2.67
Ridge 0.69 4.96 93.16 9.65
k-NN 0.96 0.68 9.17 3.03
Linear Regression 0.69 4.96 93.16 9.65
Polynomial
Regressi o 0.84 3.29 53.50 7.31
Decision Tree 0.97 0.57 7.21 2.68
MLP-Scikit-
Learn 0.86 2.65 36.02 6.00
MLP TensorFlow 0.99 3.11 45.67 0.52

160

I Chapter 6

In addition, the graph in figure 6-3 shows the training loss and validation
loss during training the Feed-forward MLP. The graph shows convergence
to almost 0 in both training and validation during epochs.

— loss
val_loss
800
600
w
(72}
O
—l 400 -
200
——
0
0 20 40 60 80 100

Epoch

Figure 6-3- Training loss and validation loss during training the Feed-forward MLP on the areas
regression sub-data set

Also, figure 6-4 shows a scatter plot with the best-fit regression line. This
graph shows neither signs of overfitting nor underfitting.

Averaged Scatter Plot with Regression Line

fverage Predicted Values
&

Aurrage True Values

Figure 6-4 - Averaged scatter plot on test data set with the best-fit line Created by Random Forest
Regressor (areas sub-data set)

161

Machine Learning Analysis and Results _

Even with the rest of parameters sub-data set, ensemble models yielded
much better results than other algorithms like ridge, linear regression, and
polynomial regression. However, k-NN algorithm result was close to
ensemble learning algorithms. Figure 6-5 and table 6-2 show a comparison
of the regression metrics between the 9 trained models for the rest of
parameters sub-data set.

e P S s (9] S

Figure 6-5 - Comparison of the regression metrics between the 9 trained models for the rest of
parameters sub-data set.

Table 6-2- Comparison of the regression metrics between the 9 trained models for the areas sub-
data set

Model R2 Score | MAE MSE RMSE
Random Forest 0.79 0.10 0.27 0.52
XGBoost 0.79 0.10 0.28 0.53
Ridge 0.19 0.35 0.82 0.90
k-NN 0.78 0.10 0.31 0.55

162

I Chapter 6

Linear Regression 0.19 0.35 0.82 0.90
Polynomial
Regression 0.49 0.24 0.63 0.79
Decision Tree 0.79 0.10 0.28 0.53
MLP-Scikit-
Learn 0.52 0.20 0.42 0.65
MLP TensorFlow 0.62 0.22 0.52 0.07

The graph in figure 6-6 shows the training loss and validation loss during
training the Feed-forward MLP. The graph shows convergence to almost
0.20 in training while convergence in validation loss was higher reaching
almost 0.53.

0.751 — loss
val_loss
0.70 1

0.65 A

0.60 A

Loss

0.55 4

0.50 4

0.45 A

80 100

éopoch60

Figure 6-6- Training loss and validation loss during training the Feed-forward MLP on the rest of
parameters regression sub-data set

Overall, the random forest algorithm performed exceptionally and had the
best metrics results.

Figure 6-7 shows the best-fit line, visualizing the relationship between the
average true values and average predicted values from the random forest
regressor for all targets in the rest of parameters sub-data set which also

163

Machine Learning Analysis and Results _

show neither overfitting nor underfitting although some outliers appear but
generally the line looks well-generalizing the relation.

Averaged Scatter Plot with Regression Line

15

1.0

Average Predicted Values

0.0 4

-0.5 0.0 0.5 1o 15
Average True Values

Figure 6-7 - Averaged Scatter Plot with Best-Fit Line Created by Random Forest Regressor the
rest of parameters sub-data set
The results of the first data set are highly promising in terms of evaluation
metrics.

6.3.2 Windows data set analysis

The windows data set featured two problems which are a classification
problem to detect whether a window exists in a wall or not and a regression
problem to predict the windows’ widths.

Various ML algorithms were trained on both sub-data sets. In regression,
7 algorithms were trained which are: random forest, XGBoost, ridge, k-
NN, linear regression, decision tree, and MLP. All the ensemble learning
algorithms (random forest, XGBoost, and decision tree) performed

164

I Chapter 6

exceptionally well and their scores were very close. Even k-NN performed
well and very close to the mentioned algorithms. Only linear regression
and ridge models underperformed with a low R? score of 0.49 for each.
Figure 6-8 and table 6-3 show comparison of scores between the 7
algorithms used with the windows width sub-data set.

i P bbb

s
Sas ey . e . o e . . I . I . .
o = i braatmap E=rerm pereee CTTr . = & Sris mapme Tt e

Figure 6-8- Comparison of scores between the 7 algorithms used with the windows width sub-data
set

Table 6-3- Comparison of the regression metrics between the 7 trained models for the windows
width sub-data set

Model R2 Score MAE MSE RMSE
Random Forest 0.98 0.03 0.08 0.28
XGBoost 0.99 0.03 0.08 0.28
Ridge 0.49 0.66 1.46 1.21
k-NN 0.99 0.03 0.10 0.31
Linear Regression 0.49 0.66 1.50 1.21
Decision Tree 0.99 0.03 0.08 0.29
MLP TensorFlow 0.99 0.12 0.06 0.25

165

Machine Learning Analysis and Results _

Moreover, the feed forward NN also performed very well with a loss value
that started with 0.92 and dropped to as low as 0.06. However, its MAE
score was higher than k-NN and ensemble learning algorithms.

— loss

2.3 val_loss

2.0 1

1.5 1

Loss

1.0 4

0.5 1

0.0 1

T

40
Epoch

0 20 60 80 100

Figure 6-9- Training loss and validation loss during training the Feed-forward MLP on the
windows width regression data set

Overall XGBoost achieved the best results. Figure 6-10 shows the best-fit
line, visualizing the relationship between the average true values and
average predicted values from the XGBoost regressor for regression
targets in the windows widths sub-data set.

166

I Chapter 6

Averaged Scatter Plot with Regression Line

6.0+ []

5.5 * v e

wn
o

Average Predicted Values
IS o
< w
L]
o*

L
* t

. °

‘.’\

L]
35 ;3%.

3.0 1 }I

30 a5 4.0 4.5 5.0 55 6.0
Average True Values

Figure 6-10 - Averaged Scatter Plot with Best-Fit Line Created by XGBoost Regressor with the
windows widths sub-data set

Regarding predictions of windows existence in walls, several classifiers
were trained including random forest, support vector classifier (SVC), k-
NN, XGBoost, AdaBoost, and decision tree. The problem features a multi-
class classification problem. To apply the algorithms, for each algorithm,
12 classifiers were trained so that each classifier is responsible for learning
and predicting one class from the 12 targets. And to evaluate the model,
average accuracies, recalls, precisions, and f1 scores are calculated for the
12 classifiers that each model has. All the 6 algorithms performed well
with the data set and achieved high scores in all the metrics. Only SVC had
slightly lower scores.

Figure 6-11 and table 6-4 show a comparison of the metrics achieved by
the 6 algorithms.

167

Machine Learning Analysis and Results _

Comparison of Mean Scores across Classifiers With Oversampling

1.0

0.8 4

e
o

Mean Scores

o
IS

0.2 1

0.0-
accuracy

0.960.97

098 095y q;0qy

B Random Forest
mm SVC

mm KNN

mmm XGBoost

mmm AdaBoost
BN Decision Tree

’
precision recall fl
Metrics

Figure 6-11 - Comparison of the metrics achieved by the 6 classification algorithms trained with

the windows existence sub-data set.

Table 6-4- Comparison of the classification metrics between the 6 trained models for the windows

existence sub-data set

Model Accuracy | Precision | Recall | F1 Score
Random Forest 0.98 0.98 0.98 0.98
svC 0.91 0.94 0.88 0.91
K-NN 0.95 0.96 0.93 0.95
XGBoost 0.98 0.98 0.98 0.98
AdaBoost 0.96 0.97 0.95 0.96
Decision Tree 0.97 0.97 0.96 0.97

A confusion matrix is a tabular representation that illustrates the various
outcomes arising from predictions and actual results in a classification
problem. It provides a structured presentation of the classifier's predictions
and the true values, aiding in the visualization of their interactions. The
matrix displays a comprehensive overview of predicted and observed

values within the classification process. Confusion matrices are visualized
for all the classifiers in all classification models as shown in figure 6-12.

168

I Chapter 6

Predicted Labels redited Labek

Figure 6-12 - Confusion matrices for all the classifiers in all classification models

The matrices show how all the models performed well and had very low
classification errors compared to the right decisions. It also shows that
SVC had the greatest number of false positive values and false negative
values.

Figures 6-13 to 6-15 show the confusion matrices of the 12 classifiers of
the random forest model which achieved the best overall results, XGBoost,
and decision tree models respectively.

169

Machine Learning Analysis and Results _

Class &F Wall 3 Window Class GF Wall 4 Windaw Class GF Wall & Window Class GF Wall 7 Window

Class GF Wall B Window Cl.w GF Wall 10 Wlnﬂuw Elm. GF Wall 11 erltk,\r.l
] [u
1] 1 1
o 1 [1
Class GF Wall 13 Window Class FF Wall lnwmdnv« Class FF wall 11 wmdow Class FF Wall 14 Window
n J [g a 3
1 1 1
3 1 o 1 u 1

Figure 6-13 - the confusion matrices of the 12 classifiers of the random forest model

The matrix shows how the classifier with the largest number of errors
(Class FF Wall 10 Window) had falsely predicted only 10 times out of 134
predictions.

Class GF Wall 3 Window Clirss GF Wall 4 Window Class GF Wall & Wirsdow Class GF Wall 7 Window
o
1 E
1 o 1
Class GF Wall 8 Windaw Class GF Wall 10 Window Class GF Wall 11 Window Class GF Wall 12 Window

[

o 1 1 [] 1 o 1
Clazs GF Wall 13 Window Class FFwall 10 window Class FF Wall 11 Windaw Class FF Wall 14 Windaw
| 5
1
a 1 [1 [1 a

Figure 6-14- the confusion matrices of the 12 classifiers of the XGBoost model

170

I Chapter 6

Class GF Wall 3 Window Class GF Wall 4 Window Class GF Wall & Window Class GF Wall 7 Window

N 2 E

o 1
Class GF wall 12 Window

o 1
Class GF Wall 10 Window

o 1
Class GF Wall 11 Windaw

o 1
Class GF wall 3 Window

o 1 3
Class FF Wall 11 Window

a 1
Class GF Wall 13 Window Class FF Wall 14 Window

1

Figure 6-15 - the confusion matrices of the 12 classifiers of the decision tree model

Again, from the present results, it is significant that both the regressor and
classifier algorithms performance were remarkable in both windows sub-
data sets in terms of the evaluation metrics. Thus, many algorithms could
generalize on unseen data.

6.4 Predictions

To sum up, the study was conducted on two architectural design data sets
that are prepared to be numerical through coding. ML algorithms were
trained on both data sets. Some regression models were trained on the first
data set to predict the values of the slabs dimensions and other parameters
related to walls dimensions and spacings. While other regression and
classification algorithms were trained on the second data set to predict
windows width and windows existence, respectively. However, to predict
windows existence and windows widths, the same inputs passed for the 1st
data set’s predictions are not used because all the algorithms are required
to complete a one single design prediction process. So, the passed inputs
are the predictions of the slabs’ dimensions obtained from training the first
set of algorithms which are trained on the first data set as inputs to predict

171

Machine Learning Analysis and Results

the windows existence and windows widths with the second set of
algorithms. In this sense, one seamless connected framework is achieved
utilizing ML in architectural form finding based on the architects’ data and
preferences which are used to train ML models.

6.5 Model Fine-Tuning

To make sure that the final design of the villa is satisfying, a fine-tuning
phase is modeled to modify the design obtained by parsing ML output
values. In this phase, the architect has all the control needed to
increase/decrease any parameter to reach the required final form.
Parameters are controlled with low values sliders to achieve a precise
satisfying design. This resulting design, as well as any future designs could
be easily added to the dataset and the ML cycle can be triggered again
which should be enhanced when more designs are fed to it.

6.6 Discussion

The main aim of the present study was to evaluate the suggested ML
framework where an architectural model is transformed into data sets
containing all the possible parameters in a form of a numeric CSV files
ready to train ML algorithms. Two data sets are applied: one related to
slabs dimensions and walls dimensions and spacings and one related to
windows existence and windows dimensions. In ML, data sets play a
crucial role in the success of algorithms in generalizing for unseen data.
So, an important part of this research was to pre-process the data and check
if patterns can be found. In this regard, sub-data sets were created from the
original data sets changing the targets and features for each one depending
on the features importance to targets. Moreover, some targets related to
slabs dimensions had to be changed so that the built-up area of the training
data maps correctly with the slabs’ dimensions and by trial, this proved to
be important for the algorithm to create a logical best-fit line to predict the
dimensions correctly. Also, some targets and features were consistent
along all the samples, so they were dropped.

Training the models with cleaned data after the previous step was
successful and the evaluation metrics were acceptable. However, another

172

I Chapter 6

step was taken to optimize the algorithms performance which was
oversampling. The data sets originally had 600 samples. The form data set
was oversampled to have 30,600 samples by increasing the samples with
minor classes, while SMOTE was used to oversample the windows
classification sub-data set to balance the data. And this enhanced the
algorithms’ performance significantly.

After data engineering and oversampling, a set of ML algorithms were
trained on the datasets including -for regression- ensemble learning
methods like random forest, XGBoost, and decision tree, and other
algorithms like linear regression, polynomial regression, ridge, k-NN, and
Multi-layer perceptron feed forward NN. For classification, algorithms
included random forest, XGBoost, decision tree, SVC, k-NN, and MLP.

Ensemble learning methods were very successful in the whole study. All
of these algorithms succeeded in terms of achieving the best evaluation
metrics among other algorithms.

As shown in table 6-5, overall, random forest regressor performance was
very successful regarding evaluation metrics when trained with both of
form’s sub-data sets.

Table 6-5 — Random Forest Metrics Scores for Roofs Data Set

Mean
Best R?) Mean
Sub-data set Score R MSE RMSE MAE
Score
Areas 0.97 0.97 6.15 2.48 0.54
Rest of 079 078 0.26 0,51 0.1
parameters

XGBoost, showed the best results when compared to other algorithms with
the windows width sub-data set. Table 6-6 compares the results of the most
successful algorithms in this scenario. The table shows how 5 out 7
algorithms performed very similarly to each other.

173

Machine Learning Analysis and Results _

Table 6-6 - Metrics comparison between different algorithms trained on the windows widths sub-
data set

Mean
: Best R? ’ Mean
Algorithm Score R MSE RMSE MAE
Score
XGBoost 0.99 0.96 0.07 0.26 0.03
Random 098 = 0.96 0.07 0.27 0.03
Forest
k-NN 0.99 0.97 0.08 0.28 0.03
Decision Tree 0.99 0.97 0.07 0.27 0.03
MLP - 0.99 0.06 0.24 0.12

Even the classification task to predict whether a window exists or not, has
seen a huge success regarding evaluation metrics. To do this task with the
multi-class classification problem, 12 classifiers were created for each
algorithm. Each classifier was trained to predict one output only. In this
manner, MLP showed great results unlike when trained on continuous data.
Still, ensemble learning methods showed better overall performance,
especially the random forest algorithm for which a confusion matrix was
visualized, and the number of false predictions was very low. Also, the k-
NN algorithm performed exceptionally in this task.

The success of ensemble learning methods was expected as ensemble
learning tends to combine the predictions of multiple base models, often
leading to better overall predictive performance compared to individual
models. This can result in higher accuracy, lower error rates, and improved
generalization to new, unseen data. Also, by aggregating the predictions of
multiple models, ensemble methods can help mitigate overfitting, which
occurs when a model is too complex and performs well on the training data
but poorly on the test data. Ensemble methods tend to make the final
predictions more robust and less prone to overfitting. In addition,
ensembles capture different aspects of intricate relationships through
diverse base models, allowing for a more comprehensive understanding of
the data.

To predict values to be parsed to the code on grasshopper3d to build the
predicted model, predictions were taken first from the roofs and rest of

174

Chapter 6

parameters data. The predicted slabs dimensions were then used as inputs
to predict windows existence and windows’ dimensions. And the resulting
model was very satisfying as it was built with the same architectural style
that the models were trained with. The results were very similar to the
visualized samples renders.

Subsequently, a fine-tuning stage was introduced within the framework to
guarantee the development of a thoroughly refined product. During this
phase, the architect gains complete control over all the parameters, albeit
within a more constrained range of values, facilitating effortless model
adjustments.

Summary

The present study is done to search for a proper framework for utilizing
ML power in architectural design. To achieve this goal, various steps were
taken to transform an architectural model into an ML ready dataset. The
deep study of proper parametric relationships between the model’s
components was crucial to translate the components into the smallest
possible unit of data representing coordinates, dimensions, and boolean
options.

Using coding was very important to create such a complex network of
interconnected parameters and to automate the tasks of exporting the
parameters to a dataset in the form of a CSV file that is ready to be used in
a ML pipeline. In a normal design and architectural modeling workflow,
even using parametric tools and software, creating many
designs/prototypes of the same design style takes a lot of time in modeling
and modifying each prototype. This process could need even more
architects depending on the number or required prototypes. But as the
study proves, not only did coding facilitate how an architect can read
geometry as a container of information, but also the creation of a great
number of samples with the same design style leading to a large dataset in
much less time than a usual design workflow can take to model different
prototypes with different areas and parameters.

175

Machine Learning Analysis and Results

After that, the dataset was validated by extracting simpler dataset to predict
the roofs dimensions to ensure that an ML regression model can predict
parameters value that could lead to a building with a requested area.
Exploratory data analysis was done to extract the variables that are most
correlating to the roofs’ dimensions. And data pre-processing was needed
to ensure that the model can predict well by replacing some roofs
dimensions with roofs areas with simple mathematical equations. This step
was crucial for the success of the study because negative values of some
roofs led to very low metrics scores when a regressor was trained. Also,
data was oversampled to ensure better learning for the algorithm where the
number of samples was increased by 30,000. After trials, this step proved
to be very important for the success of the model which could not
generalize well on 600 samples, a small sample space. The dataset was
split into train/test sets with ratios of 80% and 20% respectively and a
simple random forest regressor was trained on the dataset with its default
parameters.

The study exhibited a great success with the random forest regressor for
which the scores metrics R? score, MSE, RMSE, and MAE were 0.97,
6.15, 2.48, and 0.54, respectively. A practical validation was followed by
reversing the mathematical calculations to get the villa’s area which
happened to be the same as the required area or very close to it. The
predicted parameters were then parsed into the code of the villa model with
only a button click in grasshopper canvas to check how the model looks
like. What this study proved is that the machine could learn and map the
patterns that an architect follows when designing a building. It is like the
architect taught the machine how he designs. A process that is hard to
explain to another architect in words. This approach could lead to a great
effect in the architectural design process especially that the result is as
close as possible to what the architect could think inside his brain.

Finally, a fine-tuning phase was added to the framework to ensure a
satisficing product for the architect. In this phase, the architect gets full
control of all the parameters but with a smaller range of numbers to modify
the model easily.

176

I Chapter 6

The results can be described in terms of time and effort distributed between
Al and human interventions across two stages of a design process shown
in figures 6-16 to 6-18. In Stage 1, the pie charts illustrate the time
allocation between Al (30%) and human input (70%) in the design process,
with human intervention being dominant. On the right, a parallel
comparison for coding shows a similar distribution, where design
comprises 30%, and coding consumes 70% of the effort.

Al Design
30% 30%

- Human ~ Coding

70% 70%
Human = Al Coding = Design
Figure 6-16 Stage 1: Time and Effort Estimation for Al/Human (left) and human design/coding
(right)

Stage 2 shifts significantly towards Al involvement, with Al contributing
95% and human involvement reduced to 5%, indicating an advanced level
of automation.

Human

5% ‘
v
95%

Al = Human

Figure 6-17- Stage 2: Time and Effort Estimation for Al/Human Intervention

The overall assessment at the bottom, showing Al taking 30% and human
70%, summarizes the cumulative effort across both stages. This
demonstrates the evolving role of Al in design and coding, highlighting the
efficiency gained from Al while retaining essential human input in the
creative stages.

177

Machine Learning Analysis and Results _

Al
30%

vHuman

70%

Human = Al

Figure 6-18- Overall: Design Intervention Estimation

Regarding time, the estimated time for stage 1, which includes modelling
the villa using coding, creating 600 consciously designed samples, and
training ML models took around 15 days while stage 2 takes a maximum
of 5 minutes to generate a new design.

178

I Conclusion and Future Research

Research Conclusion

The present study provides evidence about the efficiency of utilizing ML
algorithms with architectural design numeric data sets and coding being an
important skill for architects. The study proves a novel direction on how
to apply ML in the form generation process.

Artificial Intelligence has seen a lot of improvements and applications
recently in many fields and architecture is no exception. However, being a
field which exhibits a lot of creativity and logic makes it hard to apply Al
algorithms as with other fields. Architecture is considered a complicated
practice which requires knowledge in many disciplines including
psychology, physics, mathematics, art, and more. The product of
architecture is considered to be complicated as well because of the many
considerations that accompany it. An architect thinks in a cyclic way
through a complex design process to produce a building design. This
makes the learning of architectural and creative thinking as well as
problem solving an essential necessity to architects. Add to that, how at
some point an architect takes decisions based on a black box thinking
approach. In this case, can the machine and today’s Al algorithms map how
the architect thinks?

According to the analytic study of architectural design elements and
motifs, it is clearly observed that those elements and motifs are repeatedly
used by architects according to the design era. A pattern between them
could be identified. For instance, in contemporary architecture of villas,
the use of L, C, U shapes in facades by modifying slabs and walls to create
frames is observed as a repetitive motif. Additionally, the use of rectilinear
shading elements is repeatedly used by architects. If one could observe
such patterns, the machines can also do so, today.

Design methods including parametric design, generative design,
algorithmic design, etc. benefited from what the computers could do,
adding an algorithmic characteristic to the design process making it clearer
and more logical to the architect. Even some decisions regarding structural,
environmental, and energy aspects could be taken using optimization. All

179

Conclusion and Future Research _

of these methods would not have seen light without the advent of visual
programming languages where an architect codes the building using
parameters and operations on them. Moreover, coding is considered to
have a significant effect on the design process giving the architect more
power, freedom, and spruceness as well as helping them break free from
any bias that is present in today’s modelling software and educational
phase.

Al applications in architecture have seen many trials since the late 19"
century. However, they became more popular when image generation
through Gen-Al models was introduced. In essence, Al algorithms could
do much better than creating images which is believed to be machine-
centric today rather than human-centric because of the image generation
process and the data the algorithm learns with. Al algorithms could help in
automating many tasks including predicting numbers, classifying numbers
and images, clustering, etc. Such algorithms are ensured to make the
design process more human-centric where the architect feeds the algorithm
with dataset related only to his problem while the dataset being designed
by the architect themselves based on their experience or past projects.
These benefits of using non-gen Al against the image generation tasks
which cannot map a real complicated design process dealing with the
building as information drawn from a lot of issues and disciplines as well
as authenticity issues, show non-gen Al’s superiority.

To utilize machine learning in the 3d model generation (form finding),
transforming architects’ ideas and designs into numbers become essential
and could be achieved by dealing with the buildings’ parameters as small
entities of data. This could show a huge advancement in applying ML in
the architectural design field to automate tasks that consume a lot of time
like creating many prototypes with different parameters but with the same
design style. Coding could open many possibilities by altering the
architect’s mind from thinking about geometry as geometry to thinking
about it as a container of information. The information could create an
infinite number of possibilities regarding how buildings’ components
correlate with each other parametrically. This approach could utilize
automating the creation of a dataset of architectural design parameters to

180

I Conclusion and Future Research

be used to train ML models which could predict and automate the design
phase of new prototypes of the same design style with different parameters
and properties.

To overcome the data set creation challenge and generate hundreds of
studied designs in a short time while obtaining valuable insights from the
data using ML techniques, an architectural 3d model was generated
parametrically so, its parameters should be strongly related and could be
transformed into data sets containing all the possible parameters in a form
of a numeric CSV file ready to train ML algorithms. For this task, the
model was algorithmically designed and coded in C# using RhinoCommon
geometry functions in a sense where every parameter was related to a target
such as the total built-up area, land dimensions, neighbor types, and
setbacks. Two datasets were generated. A form dataset is designed with
parameters related to the building design including walls lengths, slabs
lengths and widths, heights, number of building blocks, louvers’ numbers
and distances between them, as well as walls distance from slabs. The other
data set is designed to have windows data including window’s existence in
each wall and their widths.

In this study, six hundred samples of designs with 122 parameters were
created. The inputs (features) were the length and width of the land,
neighbors, built-up area, setbacks, and a starting point. On the other hand,
the outputs (targets) were all the numeric and textual parameters of the
walls and windows (112 parameter).

Training ML algorithms with the two data sets exhibited some challenges,
including weak relations between some parameters and data imbalance due
to design limitations. To address these issues, the data sets had to be
preprocessed and engineered to ensure that the relationships between
different parameters are clearer to the machine. Some string parameters
were transformed into numeric values, and some parameters were
mathematically processed.

To tackle creating a larger data set while balancing it, another step was
taken to optimize the algorithms’ performance which was oversampling.
The data sets originally had six hundred samples. The form data set was

181

Conclusion and Future Research _

oversampled to have thirty thousand and six hundred samples by
increasing the samples with minor classes, while SMOTE was used to
oversample the windows classification sub-data set to balance the data.
This enhanced the algorithms’ performance significantly especially when
ensemble learning algorithms were applied. After data engineering and
oversampling,

After preprocessing the data and splitting the data sets to training and test
data sets using K-cross validation, a set of ML algorithms were trained on
the datasets including -for regression- ensemble learning methods like
random forest, XGBoost, and decision tree, and other algorithms like linear
regression, polynomial regression, ridge, k-NN, and MLP. On the other
hand, for classification, algorithms included random forest, XGBoost,
decision tree, SVC, and k-NN. To solve the multi-class classification
problem, twelve classifiers for each algorithm were created. Each classifier
was trained to predict one output only, which was whether a window exists
or not. The models were evaluated using regression metrics like R2 score,
MSE, RMSE, and MAE, and classification metrics like accuracy,
precision, recall, and F1.

Overall, in regression tasks, random forest regressor performance was
successful regarding evaluation metrics when trained with both of form’s
sub-data sets. Additionally, XGBoost showed the best results when
compared to other algorithms with the windows width sub-data set.
Additionally, the classification task was successful in terms of evaluation
metrics. In this manner, ensemble learning methods showed better overall
performance, especially the random forest algorithm for which a confusion
matrix was visualized, and the number of false predictions was low. Also,
the k-NN algorithm performed exceptionally in this task. The success of
ensemble learning methods was expected because these models tend to
combine the predictions of multiple base models, often leading to better
overall predictive performance compared to individual models. In
addition, ensembles capture different aspects of intricate relationships
through diverse base models, allowing for a more comprehensive
understanding of the data. Also, by aggregating the predictions of multiple
models, ensemble methods could help mitigate overfitting, which occurs

182

I Conclusion and Future Research

when a model was too complex and performs well on the training data but
poorly on the test data. This resulted in higher accuracy, lower error rates,
and improved generalization for new, unseen data.

To predict values which were parsed to the code on grasshopper3d to build
the predicted model, predictions were taken first from the roofs and rest of
parameters data. The predicted slabs dimensions were then used as inputs
to predict windows existence and windows’ dimensions. As practical
validation, the predictions were validated numerically by making sure the
design achieves the required area and respects legal constraints. Also, it
was an easy task to tell if the predicted numbers lead to a satisfactory
output because the training dataset was generated based on the authors’
designs. The resulting model was satisfying as it was built with the same
architectural style that the models were trained with and the required areas
were predicted precisely. And the results were similar to the visualized
samples renders. Subsequently, a fine-tuning stage was introduced within
the framework to guarantee the development of a thoroughly refined
product. During this phase, the architect gains complete control over all
the parameters, albeit within a more constrained range of values,
facilitating effortless model adjustments. Generally, the algorithms were
successful because the designed data set already ensured clear
relationships between targets and features. And this proves that
architectural design is based on traceable rules applied to the design
algorithms by the designer. In this case, the machine could automate the
3D model design process by learning these rules and predicting based on
them.

Finally, the suggested framework is tested against tangible aspects of
architectural design which do not depend on certain design patterns but
adapt to the architect’s decisions presented in the final parameters of the
data set. Additionally, only straightforward form aspects related to
proportions were tested for simplicity. Adding more aspects to the design
such as environmental aspects could make the patterns harder to find by
the ML algorithms. However, if patterns exist between the features and
targets -building requirements and building parameters- the framework
should lead to ‘accurate’ results and in this case accurate denotes the

183

Conclusion and Future Research _

architect’s way of thinking showing in the parameters they choose and
create.

Future Directions

As advancements in artificial intelligence and ML are already affecting all
the fields daily, architectural design field is no exception. Explorations
with how to automate architectural design tasks and applying ML to the
design process are becoming inevitable, especially that the architectural
field is considered one of the latest fields to benefit from Al

Future research could include how to improve the data sets created by
coding because data is the most important aspect when applying ML in any
field. How to increase the number of samples is a crucial requirement.
Increasing the number of samples with varying parameters space could
lead to better trained ML models. For instance, adding more samples with
much varying land lengths and widths, built-up areas, etc., with smaller
differences range could enhance training the models.

Also, creating different sets regarding architectural design style with more
parameters and more options to train a model to predict the parameters of
the building according to its style, wide range of heights, number of blocks,
and typologies could be efficient to generalize the prospect applications
leading to better performance on ground.

Future investigations could also consider creating models on other design
platforms away from Rhinoceros3d and Grasshopper3d. Investigations on
creating a whole new type of software that automates the coding process
of the data sets, especially with new Al coding Copilots introduced lately
as well as Large Language Models which deal with coding like GPT and
Llama is essential. The new software could then use ML algorithms to train
on the data sets created and return the architectural form instantly. Such
applications could lead to a much lighter and easier to use interface that
makes the 3D modelling process smoother and more straightforward.

Additionally, exploring more advanced and intricate design parameters
could lead to a design framework that is much closer to the real world.

184

I Conclusion and Future Research

Such parameters could include various design aspects like environmental,
cost, as well as other intangible aspects such as psychological and
philosophical aspects of architecture. For instance, adding features
(building requirements) to the design samples including daylighting
metrics such as sDA and ASE or solar radiation analysis results being
independent parameters that affect different building parameters (targets)
could lead to better results regarding an all-in-one architectural design
form prediction approach. In this case, the architect could add intended
sDA and ASE values to the input parameters to decide the target parameters
of the building.

Other applications including materials choice could be investigated within
the same framework to give more information regarding the resulting 3D
model which could then be used within a BIM workflow seamlessly.
Additionally, other building parameters could be explored including
building orientation, rooms and services locations, interior design
parameters, etc.

Also, other types of problems could be explored. For example, instead of
training ML models to predict form parameters they could be trained to
predict floor plans designs, urban design compositions, etc. Such
applications could use the exact same framework, and more than one
application could be integrated to work on different problems at the same
time moving forward to a multi-tasking Al model. However, each problem
will require more investigations regarding the best working ML models
and ensemble learning models do not guarantee the result. In this case,
deep learning models may capture more intricate patterns and suit better
such complicated workflows.

Finally, enhancing the framework to be designed and used by multi-users
needs investigations. If different users could generate design samples
according to a certain goal, the framework could significantly enhance the
design process. For example, a user could be responsible for choosing
parameters regarding form proportions, another for specifying materials
and cost, another for optimization tasks and environmental responsiveness,
etc.

185

References | NG

References

Books, Papers, and Articles:

1- Aalaei, M., Saadi, M., Rahbar, M., and Ekhlassi, A., 2023,
Architectural Layout Generation Using a Graph-Constrained
Conditional Generative Adversarial Network (GAN), Automation
in Construction 155 (2023) 105053

2- Aamir, N., 2017, The Ideological Basis of Design Motifs in the
Architecture of Subcontinent: The Converging Stories of Bells and
Tassels, Pakistan Social Sciences Review

3- Abowardah, E., and Osama, M., 2016, Design Process and
Strategic Thinking in Architecture, Proceedings of 2016
International Conference on Architecture & Civil Engineering
(ICASCE 2016), London.

4- Aczel, D., 1989, Complete Business Statistics. Irwin, p. 1056.
ISBN 0-256-05710-8.

5- Agkathidis, A., 2015, Generative Design: Form-Finding
Techniques in Architecture, Laurence King Publishing Ltd, UK.,
pp. 14-17.

6- Aggarwal, C., 2015. Data mining: The textbook. Springer.

7- Ahlquist, S., and Menges, A., 2011. Introduction: Computational
Design Thinking. In: Menges, A., Ahlquist, S. (Eds.), AD Reader:
Computational Design Thinking. John Wiley & Sons Ltd, United
Kingdom, pp. 10e29.

8- Akizuki, Y., Bernhard, M., Kakooee, R., Kladeftira, M., and
Dillenburger, B., 2020, Generative Modelling with Design

186

B Roferences

187

Constraints — Reinforcement Learning for Object Generation —

CAADRIA Volume 1 - Pages / Article No. 445 — 454

9- Alj, S., 2020, The Role of Visualization Software in Architectural

Education Liluwiy/ a slell 5 5idll 5 5 jlazl] ae Article 3, Volume 5, Issue
24, November 2020, Page 26-43

10- Alpaydin, E., 2014, Introduction to Machine Learning, The MIT

Press, Cambridge, Massachusetts, London, England.

11- Alymani, A., Jabi, W., and Corcoran, P., 2020, Machine Learning

Methods for Clustering Architectural Precedents Classifying the
relationship between building and ground, eCAADe 38.

12- Amamata, Z., Mohammed, B., and Yusuf, B., 2014, Are Smart

Buildings Same as Green Certified Buildings? A Comparative
Analysis, Int. J. Sci. Res. Publ. 4 2250— 3153 www.ijsrp.org.

13- Archer, L.B., 1969, The Structure of the Design Process. In G.

Broadbent & A.Ward (Eds.) Design Methods of Architecture. New
York: Witteborn.

14- As, 1., Pal, S., and Basu, P., 2018, Artificial Intelligence in

Architecture: Generating Conceptual Design via Deep Learning,
International Journal of Architectural Computing, Vol. 16(4), pp.
306-327.

15-As., 1., Pal, S., and Basu, P., 2023, Artificial Intelligence in

Architecture: Generating Conceptual Design Via Deep Learning,
International Journal of Architectural Computing 2018, Vol. 16(4)
306-327.

16- Asimow, M. 1962, Introduction to Design, Prentice-Hall.
17- Atlas, L., Park, D., El-Sharkawi, M., Marks, R., and Damborg, M.,

2002, Electric Load Forecasting Using an Artificial Neural

http://www.ijsrp.org/

References | NG

Network, [EEE Trans. Power Syst. 6 442-449,
doi:10.1109/59.76685.

18- Bacon, E., 1974, Design of Cities, Penguin Publishing Group.

19- Banham, R., 1996, A Critic Writes: Selected Essays by Reyner.
Banham. Berkeley: University of California Press, ¢1996.

20- Banko, M., & Brill, E. (2001). Scaling to Very Large Corpora for
Natural Language Disambiguation. Proceedings of the 39th Annual
Meeting on Association for Computational Linguistics (pp. 26-33).

21-Bao, Y and Xiang, C., 2023 - Exploration of Conceptual Design
Generation based on the Deep Learning Model-Discussing the
Application of Al Generator to the Preliminary Architectural
Design Process, xArch symposium-Creativity in the age of digital
reproduction At: Xi'an Jiaotong-Liverpool University, Suzhou,
China

22-Basarir, L., and Erol, K., 2021, Briefing Al: From Architectural

Design Brief Texts to Architectural Design Sketches ASCAAD
2021

23-Belém, C, Santos, L and Leitdao, A 2019 *On the Impact of Machine
Learning Architecture without Architects?’, CAAD Futures 2019,
Daejon, South Korea

24- Bellman, R. (1987). An Introduction to Artificial intelligence: Can
computers think? Thomson Course Technology.
25-Bengesi, S., El-Sayed, H., Sarker, M., Houkpati, Y., [rungu, J., and

Oladunni, T., 2023, Advancements in Generative Al A
Comprehensive Review of GANs, GPT, Autoencoders, Diffusion
Model, and Transformers, arXiv:2311.10242 [cs.LG]

26- Bergstra, J., & Bengio, Y., 2012, Random Search for Hyper-
Parameter Optimization, Journal of Machine Learning Research,

281-305. http://dx.doi.org/10.5555/2188385.2188395

188

http://dx.doi.org/10.5555/2188385.2188395

B Roferences

189

27-Bloch, T., and Sacks, R., 2018, Comparing Machine Learning and
Rule-Based Inferencing for Semantic Enrichment of BIM Models,
Automation in Construction 256-272

28-Bovill, C.: Fractal Geometry in Architecture and Design.
Birkhauser, Boston, 1996.

29-Boukarta, S., 2021, Predicting energy demand of residential
buildings: A Linear Regression-Based Approach for A Small
Sample Size. SSP — Journal of Civil Engineering, Vol 16, Issue 2/

30- Breiman, L., 1984, Classification and Regression Trees, 1% Edition,
Routledge, New York.

31-Breiman, L. ,1996. Bagging Predictors. Machine Learning, 24(2),
123-140.

32-Breiman, L. ,1998. Arcing Classifiers. The Annals of Statistics,
26(3), 801-849.

33-Breiman, L., 2001a. Statistical Modeling: The Two Cultures.
Statistical Science, 16, 199-215.

34- Breiman, L., 2001b. Random Forests. Machine Learning, 45, 5-32.

35-Bishop, C. M. 2006, Pattern Recognition and Machine Learning.
Springer.

36- Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim, S.,
Fidler, S., and Kreis, K., 2023, Align your Latents: High-
Resolution Video Synthesis with Latent Diffusion Models,
arXiv:2304.08818v1 [cs.CV]

37-Broadbent, G., 1969, Design Methods in Architecture, New York,
G. Wittenborn

38- Broadbent, G., 1973. Design In Architecture: Architecture and the
Human Sciences. UK: John Wiley and Sons.

References | NG

39-Broadbent, G., (postscript), (1988). Design in Architecture:
Architecture and the Human Sciences. London: David Fulton
Publishers.

40- Burry, J. & Burry M., 2010, The New Mathematics of Architecture,
Thames & Hudson Ltd, UK.

41- Burry, M. (2016). Prototyping for architects. Thames & Hudson.
42-Bukhari, F. A, 2011. A Hierarchical Evolutionary Algorithmic

Design (HEAD) System for Generating and Evolving Building
Design Models. PhD Thesis. Queensland University of
Technology.

43- Caetano, I., Santos, L., Leitao, A., 2019, Computational Design in
Architecture: Defining Parametric, Generative, and Algorithmic
Design

44- Caldas, L., 2008. Generation of Energy-Efficient Architecture
Solutions Applying GENE ARCH: An Evolution-Based
Generative Design System. Adv. Eng. Inf. 22, 59¢70.

45-Caliskan, E., 2023, Interview with Chat GPT to Define
Architectural Design Studio Work: Possibilities, Conflicts and
Limits, Journal of Design Studiov:5

46- Capon, David Smith, (1999a). Architectural Theory, Volume One:
The Vitruvian Fallacy, A History of the Categories in Architecture
and Philosophy. West Sussex: John Waley & Sons.

47-Capon, D., 1999b, Architectural Theory, Volume Two: Le
Corbusier's Legacy, Principles of Twentieth-century Architectural
Theory Arranged by Category. West Sussex: John Waley & Sons.

48- Ceylan, D., et. Al, 2023, Pix2Video: Video Editing using Image
Diffusion, arXiv:2303.12688v1 [cs.CV] 22 Mar 2023

190

B Roferences

191

49- Cerquitelli, T., Malnati, G., and Apiletti, D., (2019). Exploiting

Scalable Machine-Learning Distributed Frameworks to Forecast

Power Consumption of Buildings. Energies 12 (15) pp. 29-33.

50-Chae, Y., Horesh, R., Hwang, Y., and Lee, Y., 2016, Artificial

Neural Network Model For Forecasting Sub-Hourly Electricity
Usage In Commercial Buildings, Energy Build 111 184—194,
doi:10.1016/j.enbuild.2015.11.045.

51- Chai, W., Guo, X., Wang., G., and Lu, Y., 2023, StableVideo: Text-

Driven Consistency-aware Diffusion = Video Editing,

arXiv:2308.09592v1 [cs.CV] 18 Aug 2023

52-Chaillous, S., 2019, Al & Architecture — An Experimental

Perspective — Harvard University

53- Chandrasegaran, E., Kisselburgh, L., & Ramani, T. (2012).

Enhancing visual thinking in a toy design course using freehand
sketching. August Proceedings of the International Design
Engineering Technical Conferences & Computers and Information

in Engineering Conference IDETC/CIE.

54- Charniak, E., & McDermott, D. V. (1985). Introduction to Artificial

Intelligence. Addison-Wesley.

55- Charytoniuk, W., and Chen, M., 1998, Nonparametric Regression

Based Short-Term Load Forecasting, IEEE Trans. Power Syst. 13
725-730, do0i:10.1109/59.708572.

56- Chou, J., and Bui, D., 2014, Modeling Heating And Cooling Loads

By Artificial Intelligence For Energy-Efficient Building Design,
Energy Build 82 437-446, doi:10.1016/j.enbuild.2014.07.036.

57-Chawla, N., Bowyer, K., Hall, L., and Kegelmeyer, W., 2002,

SMOTE: Synthetic Minority Over-sampling Technique, Artificial
Intelligence Research (JAIR)

References | NG

58-Ching, F.D.K. (1996) Architecture; Form, Space & Order. Van
Nostrand Reinhold, New York.

59- Clement, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,
Nord, R., & Stafford, J. (2011). Documenting software
architectures: Views and beyond (2nd ed.). Addison-Wesley.

60- Conway, H., and Roenisch, R., 1994, Understanding Architecture:
An Introduction to Architecture and Architectural History, Francis
& Taylor e-Library, 2005.

61- Cross, N., 2006, Designerly ways of Knowing. London: Springer-
Verlag.

62- Cudzik, J., and Radziszewski, K., 2018, Artificial Intelligence
Aided Architectural Design, Al FOR DESIGN AND BUILT
ENVIRONMENT - Volume 1 - eCAADe 36 | 77-84

63- Culter, L., and Culter, S., 1982. Recycling Cities for People: The
Urban Design Process. 2nd ed. Boston, Mass.: CBNI Publishing.

64- Dedinec, A., Filiposka, S., Kocarev, L., 2016, Deep Belief Network
Based Electricity Load Forecasting: An Analysis Of Macedonian
Case, Energy 115 1688—1700, doi:10.1016/j.energy.2016.07.090.

65-Deng, H., Fannon, D., and Eckelman, M., 2018, Predictive
Modeling For US Commercial Building Energy Use: A
Comparison Of Existing Statistical And Machine Learning
Algorithms Using CBECS Microdata, Energy Build 163 3443,
doi:10.1016/j.enbuild.2017.12.031.

66-Desai, N., & Patel, V., 2021, Linear Decision Tree Regressor:
Decision Tree Regressor Combined with Linear Regressor.

67-Dong, B., Cao, C., and Lee, S., 2005, Applying Support Vector
Machines To Predict Building Energy Consumption In Tropical

192

B Roferences

193

Region, Energy Build 37 545-553,
doi:10.1016/j.enbuild.2004.09.009.

68-Dorst, K., 2003, Exploring the Structure of Design Problems,

International Conference on Engineering Design Iced 03

Stockholm.

69-Duarte, J. P. (2001). Customizing mass housing: A discursive

grammar for Siza's Malagueira houses. MIT Press.

70- Duerk, Donna P., (1993). Architectural Programming: Information

Management for Design. New York: Van Nostrand Reinhold.

71-Edwards. R., New, J., and Parker, L., 2012, Predicting Future

Hourly Residential Electrical Consumption: A Machine Learning
Case Study, Energy Build 49 591-603,
doi:10.1016/j.enbuild.2012.03.010.

72-Eggert, R.J., 2004, Engineering Design, Prentice Hall, Upper

Saddle River, New Jersey.

73- Elghandour, A., Saleh, A., Aboeineen, O., and Elmokadem, A.,

2014, Using Parametric Design to Optimize Building’s Facade
Skin to Improve Indoor Daylighting Performance. pp. 353-361

74-El Iraqi, A., and El Daly, H., 1997, Architectural Forming Between

Form Making and Form Finding Towards Form Follows

Parameters, Journal of Al-Azhar University Engineering Sector

75-Erzen, N., 2015, Form and Meaning in Architectural Theory,

Serbian Architectural Journal 7 (2), pp.75-87

76-Fan, C., Xiao, F., and Zhao, Y., 2017, A Short-Term Building

Cooling Load Prediction Method Using Deep Learning
Algorithms, Appl. Energy. 195 222-233,
doi:10.1016/j.apenergy.2017.03.064.

References | NG

77-Ferriss, H., 1929, The Metropolis of Tomorrow, David McKay
Publications, USA.

78-Fischer, T., Herr, C.M., 2001. Teaching generative design. In:
Proceedings of the 4th International Conference on Generative Art.
Milan, Italy.

79- Frazer, John, Frazer, Julia, Xiyu, L., Mingxi, T., Janssen, P., 2002.
Generative and evolutionary techniques for building envelope
design. In: Proceedings of the 5th International Conference on
Generative Art. Milan, Italy, pp. lel6.

80- Georges, M., (1954). L'architecture musulmane d'Occident. Paris:
Arts et métiers graphiques. pp. 163—164.

81- Gero, J. S., & Kannengiesser, U. (2014). The function-behaviour-
structure ontology of design. In A. Chakrabarti & L. T. M. Blessing
(Eds.), An Anthology of Theories and Models of Design (pp. 263—
283). Springer.

82- Ghani, H., Virdee, B., & Salekzamankhani, S., 2023, A Deep
Learning Approach for Network Intrusion Detection Using a Small
Features Vector, Journal of Cybersecurity and Privacy, pp. 451-
463.

83- Gilhooly, K., J., 1996, Thinking: Directed, Undirected, and
Creative, Elsevier Science.

84- Gonzalez, P., and Zamarreno, J., 2005, Prediction Of Hourly
Energy Consumption In Buildings Based On A Feedback Artificial
Neural Network, Energy Build 37 595-601,
doi:10.1016/j.enbuild.2004.09.006.

194

B Roferences

195

85- Grant, P., (1975). "Aims and Potentials of Design Methodology".

In: Basil Honikman ed. Responding to Social Change. Stroudsburg,
Pa.: Hutchinson and Ross, 1975, pp. 96-108.

86- Grant, P., (1982). Design by Objectives: Multiple Objective Design

Analysis and Evaluation in Architectural, Environmental and

Product Design. San Luis Obispo, Ca.: Design Methods Group.

87- Green, R., (1962). The Architect's Guide to Running a Job.

London: Architectural Press.

88- Gugelot, H., (1963). "Industrial Design in Practice". Zeitschrift der

Hochschule fur Gestaltung.

89- Gungama, M., (2017). Generative Algorithms in Alternative

Design Exploration, SHS Web of Conferences 41, 05003.

90- Haury, A., Gestraud, P., & Vert, J., 2011, The Influence of Feature

Selection Methods on Accuracy, Stability and Interpretability of
Molecular Signatures. PLoS ONE, 6(12), e28210.
http://dx.doi.org/10.1371/journal.pone.0028210.

91- Haugeland, J. (1985). Artificial intelligence: The very idea. MIT

Press.

92-Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of

Statistical Learning: Data Mining, Inference, And Prediction.
Springer.

93-Hays, J., & Efros, A. A. (2007). Scene Completion Using Millions

Of Photographs. ACM Transactions on Graphics (TOG), 26(3), 4.

94-He, Y., Liu, X., Zhang, H., Zheng, W., Zhao, F., Schnabel, M., and

Mei, Y., 2021, Hybrid Framework for Rapid Evaluation of Wind
Environment Around Buildings Through Parametric Design, CFD

Simulation, Image Processing and Machine Learning, Sustainable

Cities and Society 73 103092

http://dx.doi.org/10.1371/journal.pone.0028210

References | NG

95-Hechenbichler., K. & Schliep, K., 2004, Weighted K-Nearest-
Neighbor Techniques and Ordinal Classification. Institute Fiir
Statistik, Sonderforschungsbereich 386, Paper 399, p. 1-16

96- Hecht-Nielsen, R., 1990. Neurocomputing. Addison-Wesley,
Reading, MA.

97-Herr, C., Lopez, R., & Serrentino, R. (2002). Generative
Architectural Design and Complexity Theory.

98-Heo, Y., and Zavala, V., 2012, Gaussian Process Modeling For
Measurement And Verification of Building Energy Savings,
Energy Build 53 7-18, doi:10.1016/j.enbuild.2012.06.024.

99-Hill, V., and Rowlands, P., 2008, Nature’s Code, AIP Conf. Proc.
1051, 117-126 (2008)

100- Hillier, B., Musgrove, J. and O’Sullivan, P. (1972).
Knowledge and design. In Environmental Design: Research and
Practice EDRA 3. University of California.

101- Hong, G., Choi, G., Eum, J., Lee, H., and Kim, D., 2022,
The Hourly Energy Consumption Prediction by KNN for Buildings
in Community Buildings. Buildings 12(10) 1636.

102- Hu, E., Shen, Y., Wallis, P., Allen-Zhu, Z., L1, Y., Wang, S.,
Wang, L., and Chen, W., 2021, LoRA: Low-Rank Adaptation of
Large Language Models arXiv:2106.09685 [cs.CL]
https://doi.org/10.48550/arXiv.2106.09685

103- Jabi, W., 2013, Parametric Design for Architecture,

Lauerence King Publishing Ltd, London.
104- Janssen, P., Stouffs, R., 2015. Types of parametric

modelling. In: Proceedings of the 20th International Conference of

196

https://doi.org/10.48550/arXiv.2106.09685

B Roferences

Association for Computer-Aided Architectural Design Research in

Asia CAADRIA 2015, pp. 157e166.

105- Jones, J., Christopher, 1980, Design Methods, Wiley.

106- Kalay, Y.E., 1989. Modelling Objects and Environments
(Principles of Computer Aided Design). Wiley-Academy, New
York.

107- Karadag, 1., Guzelci, O., and Alacam, S., 2022, EDU-AIL: A

Twofold Machine Learning Model to Support Classroom Layout
Generation) Construction Innovation Vol. 23 No. 4, 2023 pp. 898-
914 Emerald Publishing Limited

108- Karras, J., Holynski, A., Wang, T., and Kemelmacher-
Shilzerman, 1., 2023, DreamPose: Fashion Image-to-Video
Synthesis via Stable Diffusion - arXiv:2304.06025v1 [cs.CV] 12
Apr 2023

109- Kesavaray G. & Sukumaran S., 2013, A Study on
Classification Techniques in Data Mining. In Computing,
Communications and Networking Technologies (ICCCNT), 2013
Fourth International Conference on, pp. 1-7.

110- Khabazi, Z., 2012, Generative Algorithms (Using
Grasshopper), Digital Publication.

111- Knight, T.W, 2000, Shape Grammars in Education and
Practice: History and Prospects. Online paper, Department of
Architecture, MIT

112- Kolarevic, B., 2003, Architecture in the Digital Age -
Design and Manufacturing, Spon Press, UK.

113- Kooa, B., La, S., Cho, N., and Yu, Y., 2019, Using Support
Vector Machines to Classify Building Elements for Checking the

197

References | NG

Semantic Integrity of Building Information Models, Automation in
Construction 98 183—-194

114- Kozlowski, T., 2013, The Beginnings of Contemporary
Expressionism, Technical Transactions, Vol. 110.

115- Krause, J., 2003. Reflections: the creative process of
generative design in architecture. In: Proceedings of the 6th
International Conference on Generative Art.

116- Krawczyk, Robert J., 2002, Architectural Interpretation of
Cellular Automata. Illinois Institute of Technology, College of
Architecture, USA, Generative Art

117- Kristiansen, T., Jamil, F., Hameed, 1., and Hamdy, M., 2022,
Predicting Annual Illuminance and Operative Temperature in
Residential Buildings Using Artificial Neural Networks, Building
and Environment 217 109031

118- Kuang, Z., Zhang, J., Huang, Y., and Li, Y., 2023,
Advancing Urban Renewal: An Automated Approach to
Generating Historical Arcade Facades with Stable Diffusion
Models - https://doi.org/10.48550/arXiv.2311.11590

119- Kurzweil, R. (1990). The Age of Intelligent Machines. MIT
Press.
120- Lakzaeian, F., 2020, Point Cloud Segmentation and

Classification of Structural Elements in Multiplanar Masonry
Building Facades, Automation in Construction 118 103232

121- Latour, B., 1987, Science in Action — How to Follow
Scientists and Engineers through Society — Harvard University
Press -Massachusetts.

122- Lawson, B., 1980, Creative Thinking, In Book: The Study
of Real Skills Vol. 2, MTP Press..

198

https://doi.org/10.48550/arXiv.2311.11590

B Roferences

199

123- Lawson, B., 2005, How Designers Think — 4% Edition,
Routledge, London, p.129

124- Lawson, B., 1990, How Designers Think — 2" Edition,
Routledge, London

125- Lawson, B., 1993, The Art of the Process, London: RIBA,
pp. 6-10.

126- Lang, Jon, (1987). Creating Architectural Theory: The Role

of the Behavioral Sciences in Environmental Design. New York:
VanNostrand Reinhold Company.

127- Latour, B. (1987) Science in Action: How to Follow
Scientists and Engineers through Society. Harvard University
Press, Cambridge.

128- Levin, P., H., 1966, Decision Making in Urban Design,
Building Research Station Note EN51/66. Herts, UK: Building
Research Station, Gartson.

129- Liu, C., Shen, J., Ren, Y., and Zheng, H., 2021, Pipes of Al
— Machine Learning Assisted 3D Modeling Design CDRF 2020,
Proceedings of the 2020 DigitalFUTURES, pp. 17-26

130- Liu, Y., Fang, C., Yang, Z., Wang, X., Zhou, Z., Deng, Q.,
and Liang, L., 2022, Exploration on Machine Learning Layout
Generation of Chinese Private Garden in Southern Yangtze, (Eds.):
CDREF 2021, Proceedings of the 2021 DigitalFUTURES, pp. 35—
44,

131- Mahmoodi, A., 2001, The design process in architecture: a
pedagogic approach using interactive thinking. PhD thesis,
University of Leeds.

References | NG

132- Malaeb, J., and Ma, W., 2019, Artificial Intelligence in
Architecture - General Understanding and Prospective Studies,
Shanghai Jiao Tong University.

133- Maldonado, M., 2014, Digital Diagrams as Spatial Design
Tools, Session 2 - Advanced Research and Digital Tools

134- Mandow, L., Perez-de-la-Cruz, J., Rodriguez-Gavilan, A.,
and Ruiz-Montiel, M., 2020, Architectural Planning with Shape
Grammars and Reinforcement Learning: Habitability and Energy
Efficiency, Engineering Applications of Artificial Intelligence 96
103909

135- Martinez, N., 2017, Suggestive Drawing Among Human
and Artificial Intelligences, Harvard Graduate School of Design,
Cambridge, MA.

136- Mavromatidis, L., Bykalyuk, A., and Lequay, H., 2013,
Development of Polynomial Regression Models for Composite
Dynamic Envelopes’ Thermal Performance Forecasting. Applied
Energy Vol. 104, pp. 379-391

137- McCormack, J., Dorin, A., and Innocent, T., 2004.
Generative design: a paradigm for design research. In: Proceedings
of Futureground. Design Research Society, Melbourne.

138- McGilchrist, 1. (2009). The master and his emissary: The
divided brain and the making of the Western world. Yale University
Press.

139- Mildenhall, B., Srinivasan, P., Tancik, M., Barron, J.,
Ramamoorthi, R., and Ng. R., 2020, NeRF: Representing Scenes
as Neural Radiance Fields for View Synthesis

https://doi.ore/10.48550/arXi1v.2003.08934

200

https://doi.org/10.48550/arXiv.2003.08934

B Roferences

201

140- Millan, E., Belmonte, M., Boned, F., Gavilanes, J., Perez-
de-la-Cruz, J., and Diaz-Lopez, C., 2022, Using Machine Learning
Techniques for Architectural Design Tracking: An Experimental
Study of The Design of a Shelter, Journal of Building Engineering
51104223

141- Miller, C., and Nagy, Z., 2018, A Review of Unsupervised
Statistical Learning and Visual Analytics Techniques Applied to

Performance Analysis of Nonresidential Buildings, Renew.

Sustain. Energy Rev. 81 1365-1377,
doi:10.1016/j.rser.2017.05.124.
142- Millet, K., Buehler, F., Du, G., and Kokkoris, M., 2023.

Defending Humankind: Anthropocentric Bias in the Appreciation
of Al Art. Computers in Human Behavior 143 (2023), 9 pages.
https://doi.org/10.1016/j.chb. 2023.107707

143- Mitchell, W.J., 1977, Computer-Aided Architectural
Design, Van Nostrand Reinhold, New York.

144- Mitchell, W. J., 2005. Placing words: Symbols, space, and
the city. MIT Press.

145- Mocanu, E., Nguyen, P., Gibescu, M., and Kling, W., 2016,

Deep Learning for Estimating Building Energy Consumption,
Sustain. Energy, Grids Networks 6 91-99,
doi:10.1016/j.segan.2016.02.005.

146- Mohammed., M., Khan, M., and Bashier, E., 2017,
Machine Learning Algorithms and Applications., Taylor & Francis
Group, LLC., Florida, USA/

147- Moretti, L., 1971, Ricera Mathematica in Architettura e
Urbanistica. Moebius IV (1), 30-53

https://doi.org/10.1016/j.chb.%202023.107707

References | NG

148- Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., and Chen, M.,
2022, Point-E: A System for Generating 3D Point Clouds from
Complex Prompts https://doi.org/10.48550/arXiv.2212.0875

149- Nicholas, P., and Zwiezyscki, M., 2018, Machine Learning
for Architectural Design: Practices and Infrastructure, International

Journal of Architectural Computing

150- Nilsson, N. J. (1998). Artificial Intelligence: A New
Synthesis. Morgan Kaufmann.
151- Ostertagova, E., 2012, Modelling Using Polynomial

Regression, SciVerse ScienceDirect, Procedia Engineering 48, p.
500-506

152- Ostertagova, E., 2011, Applied Statistic (in Slovak). Elfa
Kosice, Slovakia, p. 161, ISBN 978-80-8086-171-1.

153- Oxman, R., 2006, Theory and design in the First Digital
Age. Des. Stud. 27, 229-265.
154- Oxman, R., 2017. Thinking difference: Theories and
models of parametric design thinking. Design Studies, 52, 4-39
155- Peng, X., Chen, R., Yu, K., Ye, F., and Xue, W., 2017, An
Improved Weighted k-Nearest Neighbor Algorithm for Indoor
Localization. Wireless Personal Communications, v. 96, n. 2, p.
2239-2251, 2017.

156- Peters, T., 2013, Computation works: The building of
algorithmic thought. Architectural Design, 83(2), 8-15

157- Ploennings, J., and Berger, M., 2023, Al in Architecture
Ploennigs and Berger Al in Civil Engineering (2023) 2:8
https://doi.org/10.1007/s43503-023-00018-y

202

https://doi.org/10.1007/s43503-023-00018-y

B Roferences

158- Poole, D., Mackworth, A., & Goebel, R. (1998).
Computational Intelligence: A Logical Approach. Oxford
University Press.

159- Popper, K., (1963). Conjectures and Refutations: The
Growth of Scientific Knowledge. London: Routledge and Kegan
Paul.

160- Qin, W,, Chen, L., Zhang, B., Chen, W., and Luo, H., 2023,

NeoDescriber: An Image-To-Text Model for Automatic Style
Description of Neoclassical Architecture, Expert Systems with

Applications 231 (2023) 120706

161- Quinlan, J., 1993, C4.5: Programs for Machine Learning,
Morgan Kaufmann Publishers, Massachusetts, USA.
162- Ragot, M., Martin, N., and Cojean, S., 2020. AI-Generated

vs. Human Artworks. A Perception Bias Towards Artificial
Intelligence? In Extended Abstracts of the 2020 CHI Conference
on Human Factors in Computing Systems (CHIEA °20).
Association for Computing Machinery, New York, NY, USA, 1-
10. https://doi.org/10.1145/3334480.3382892

163- Rahman, A., 2018, Applications of Machine Learning,
Deep Learning and Reduced-Order Models, Mechanincal
Engineering department, The University of Utah.

164- Rahman, A. and Smith, A., 2018, Predicting Heating
Demand and Sizing a Stratified Thermal Storage Tank Using Deep
Learning Algorithms, Appl. Energy. 228, 108-121,
doi:10.1016/j.apenergy 2018.06.064.

165- Rahman, A. and Smith, A., 2017, Predicting Fuel

Consumption For Commercial Buildings With Machine Learning

203

References | NG

Algorithms, Energy Build 152 341-358,
doi:10.1016/j.enbuild.2017.07.017.
166- Rahman, A., Srikumar, V., Smith, A., 2018, Predicting

Electricity Consumption For Commercial And Residential
Buildings Using Deep Recurrent Neural Networks, Appl. Energy
212 372-385, doi:10.1016/j.apenergy.2017.12.051

167- Reffat, R., 2008, Investigating Patterns of Contemporary
Architecture Using Data Mining Techniques, Digital Applications
in Construction, eCAADe 26, pp. 601-608.

168- Rich, E., & Knight, K. (1991). Artificial Intelligence (2nd
ed.). McGraw-Hill.
169- Rittel, H. W. J., 1972, On the Planning Crisis: Systems

Analysis of the first And Second Generation. Bed-riftsokonomen,
8: 390-398; Translated in Protzen and Harris (2010), pp. 151-165.

170- Robert, J. K., 2002, Architectural Interpretation of Cellular
Automata. Generative Art.

171- Robinson, C., et., Al, 2017, Machine Learning Approaches
For Estimating Commercial Building Energy Consumption, Appl.
Energy 208 889-904, doi:10.1016/j.apenergy.2017.09.060.

172- Rombach, R., Blattmann, A., Lorenz, D., Esser, P., &
Ommer, B., 2022. High-resolution image synthesis with latent
diffusion models. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 10684—10695.

173- Rowe, P., 1987, Design Thinking, The Massachusetts
Institute of Technology.

174- Roy, W.,, Sari, M., Berawi, M., Zagloel, T.,

Madyaningarum, N., Miraj, P., Pranoto, A., and Susantono, B.,

204

B Roferences

2023, Machine Learning-Based Energy Use Prediction for The
Smart Building Energy Management System

175- Royal College of Art (1979). Design in general education.
London, UK: Department of Design Research, Royal College of
Art.

176- Russell, S., & Norvig, P. (2010). Artificial Intelligence: A

Modern Approach (3rd ed.). Prentice Hall.
177-Rzevski, G., Woolman, D., and Trafford, D.B., (1980). Validation

of Design Methodology, Design Studies, Vol. 1, Issue 6, pp. 325-
328
178-Salvadori, Mario G., (1974). "Is Automated Design Possible?" In:
R. Spillers ed. Basic Questions of Design Theory. New York:
American Elsevier. pp. 95-102.
179-Samuel, A., 1959, Some Studies in Machine Learning Using the
Game Of Checkers. IBM Journal of Research and Development,
3(3),210-229.
180-Schalkoff, R.J., 1997. Artificial Neural Networks. McGraw-Hill,
New York.
181-Schon, D., (1984). The Reflective Practitioner. New York: Basic
Books.
182-Schumacher, P., 2008, Parametricism as Style: Parametric
Manifesto. In: The Darkside Club, 11™ Architecture Biennale,
Venice, 11 Septembler.

183-Sternberg, R. J. (1997). Thinking styles. New York: Cambridge
University Press.

184- Simon, Herbert A., (1957). Models of Man. New York: John
Wiley.

185- Simon, Herbert A., (1960). The New Science of Management
Decisions. N.Y.: Harper.

205

References | NG

186- Simon, Herbert, (1969). The Sciences of the Artificial.
Cambridge, Mass.: MIT Press.
187-Khean, N., Fabbri, A., & Haesler, MH 2018 ’Learning Machine

Learning as an Architect, How To? Presenting And Evaluating a
Grasshopper Based Platform to Teach Architecture Students
Machine Learning’, Computing A Better Tomorrow - 36th eCAADE,
Lodz, Poland, pp. 95-102

188-Sebestyen, A., 2020, Machine Learning Methods in Energy
Simulations for Architects and Designers - The Implementation of
Supervised Machine Learning in The Context of The Computational
Design Process, Architecture and Fabrication in the cognitive age,
eCAADe 2020.

189-Segal, M., 2003, Machine Learning Benchmarks and Random
Forest Regression, Center for Bioinformatics & Molecular
Biostatistics, University of California, San Francisco

190-Sekhar, S., Roy, R., and Balas, V., 2018, Estimating Heating Load
In Buildings Using Multivariate Adaptive Regression Splines,
Extreme Learning Machine, A Hybrid Model of MARS and ELM,
Renew. Sustain. Energy Rev. 82 42564268,
doi:10.1016/j.rser.2017.05.249.

19]1-Shakiban C. and Berstedt J.E., 1998, Generalized Koch
Snowflakes. In Bridges: Mathematical Connections in Art, Music,
and Science

192-Shalunts, et. Al., 2011, Architectural Style Classification of
Building Facade Windows, Advances in Visual Computing - 7th
International Symposium, ISVC 2011, Las Vegas, NV, USA,
September 26-28, 2011. Proceedings, Part II

206

B Roferences

193-Singh, M., Haxhimusa, Y., and Sablatnig, R., 2022, Early-Stage
Design Support Combining Machine Learning and Building
Information Modelling, Automation in Construction — 136
194-Singh, V., and Gu, N., (2012). Towards an Integrated Generative
Design Framework, Design Studies, Vol. 33, Issue 2, pp. 185-207.
195- Soleimani, A., 2019, Computational Design Thinking and
Thinking Design Computing, University of Oregon | College of
Design School of Architecture & Environment
196- Sidey-Gibbons, J., & Sidey-Gibbons, C., 2019, Machine
Learning in Medicine: A Practical Introduction. BMC Medical
Research Methodology, 19, http://dx.doi.org/10.1186/s12874-019-
0681-4.
197- Soofi, A., 2017, Classification Techniques in Machine Learning:
Applications and Issues, Journal of Basic & Applied Sciences, Vol.
13, pp. 459-465
198- Soleimani, A., 2019, Computational Design Thinking and
Thinking Design Computing, Reynolds Symposium: Education by
Design. Portland, Oregon, October 18-19, 2019.
199- Stiny, G., 1985, Computing with Form and Meaning in
Architecture. Journal of Architectural Education, 39(1): 7-19
200- Stiny, G., and Gips, J., Shape Grammars and the Generative
Specification of Painting and Sculpture, C V Freiman (ed.)
Information Processing 71 (Amsterdam: North-Holland, 1972)
1460-1465.
201- Studer, Raymond, (1970). "The Dynamics of Behaviour-
Contingent Physical Systems". In: Harold Proshansky et al. Ed.

207

References | NG

Environmental Psychology: Man and his Physical Setting. New
York: Holt, Reinehart and Winston.

202- Sun, C., Zhou, Y., and Han, Y., 2022, Automatic Generation of
Architecture Facade for Historical Urban Renovation Using
Generative Adversarial Network, Building and Environment 212
(2022) 108781

203- Sun, M., Zhang, F., Duarte, F., and Ratti, C., 2022, Understanding
Architecture Age and Style Through Deep Learning, Cities 128
103787

204- Szeliski, R. (2010). Computer vision: Algorithms and
applications. Springer.

205- Tamke, M., Nicholas, P., and Zwierzycki, M., 2018, Machine
Learning for Architectural Design: Practices and Infrastructure,
International Journal of Architectural Computing 16(2): pp. 123-
143

206- Takizawa, A., and Furuta, A., 2017, 3D Spatial Analysis Method
with First-Person Viewpoint by Deep Convolutional Neural
Network with Omnidirectional RGB and Depth Images,
Proceedings of the 35th eCAADe Conference At: Sapienza
University of Rome, Italy Volume: 2

207- Tansas, A., and Xifara, A., Accurate Quantitative Estimation of
Energy Performance of Residential Buildings Using Statistical
Machine Learning Tools, Energy Build 49 (2012) 560-567
https://doi.org/10.1016/j.enbuild.2012.03.003

208- Tedeschi, A., 2014, AAD Algorithms-Aided Design: Parametric
Strategies Using Grasshopper, Le Penseur, Italy.

208

B Roferences

209

209- Terzidis, K., 2003. Expressive Form: A Conceptual Approach to
Computational Design. Spon Press, New York.

210- Terzidis, K., 2004. Algorithmic design: a paradigm shift in
Architecture?. In: Proceedings of the 22nd eCAADe Conference,
pp. 201e207.

211- Terzidis, K., 2006, Algorithmic Architecture, first ed. Elsevier
Ltd.

212- Tovey, M., 1984, Designing with Both Halves of the Brain,
Design Studies 5, pp. 219-228

213- Topuz, B., & Alp, N. (2023). Machine Learning in Architecture.
Automation in Construction, Vol 154.

214- Turing, A. M. (1950). Computing Machinery And Intelligence.
Mind, 59(236), 433-460.

215- Uyanik, G., & Guler, N., 2013, A Study on Multiple Linear
Regression Analysis., Procedia - Social and Behavioral Sciences
106, pp. 234-240.

216- Uzair, M., Chun, D., Zeeshan, Han, H., Jeon, G., and Chen, K.,
2019, A Review of The Applications of Artificial Intelligence and
Big Data to Buildings for Energy-Efficiency and A Comfortable
Indoor Living Environment. Energy & Buildings — Science Direct

217- Uzun, C., and Colakoglu, M., 2019, Architectural Drawing
Recognition A Case Study for Training the Learning Algorithm
with Architectural Plan and Section Drawing Images, Conference:
37 Education and Research in Computer Aided Architectural
Design in Europe and XXIII Iberoamerican Society of Digital
Graphics, Joint Conference (N. 1).

References | NG

218- Wallas, G. (1926). The art of thought. New York, NY: Harcourt,
Brace and Company.
219- Wang, Bo., Zhang, S., Zhang, J., and Cai, Z., 2022, Architectural
Style Classification Based on CNN And Channel-Spatial
Attention, Signal, Image, and Video Processing Springer Nature
2022
220- Witt, A., 2018, Grayboxing. Log, 43, 69-77.
https://www.jstor.org/stable/26588482
221- Wu, L., Zhang, C., Xue, T., Freeman, B., and Tenenbaum, J.,
2016, Learning a Probabilistic Latent Space of Object Shapes via
3D Generative-Adversarial Modeling, NeurIPS
222-Xu, Z., Tao, D., Zhang, Y., Wu, J., and Tsoi, A., 2014, -
Architectural Style Classification Using Multinomial Latent
Logistic Regression, (Eds.): ECCV 2014, Part I, LNCS 8689, pp.
600-615, 2014. Springer International Publishing Switzerland
2014

223-Yang, J., Rivard, H., and Zmeureanu, R., 2005, On-Line Building
Energy Prediction Using Adaptive Artificial Neural Networks,
Energy Build 37 (2005) 1250-1259,
doi:10.1016/j.enbuild.2005.02.005.

224-Yazici, S., 2020, A Machine Learning Model Driven by Geometry,

Material, and Structural Performance Data in Architectural Design
Process, Making Through Code — Built by Data and The
Architectural lllustration Vol.1, eCAADe 38, pp. 411-418.
225-Yarowsky, D. (1995). Unsupervised Word Sense Disambiguation
Rivaling Supervised Methods. Proceedings of the 33rd Annual

210

B Roferences

Meeting on Association for Computational Linguistics (pp. 189-
196).
226-Yun, L., Luck, R., Mago, P., and Cho, H., 2012, Building Hourly
Thermal Load Prediction Using An Indexed ARX Model, Energy
Build 54 (2012) 225-233, doi:10.1016/j.enbuild.2012.08.007.
227-Yieldiz, B., Bilbao, J., and Sproul, A., 2017, A Review and
Analysis of Regression and Machine Learning Models On

Commercial Building Electricity Load Forecasting, Renew.

Sustain. Energy Rev. 73 1104-1122,
doi:10.1016/j.rser.2017.02.023
228- Yilmaz, S., 1999, Evolution of the Architectural Form

Based on The Geometrical Concepts, PhD Thesis (Izmir: Institute
of Technology).

229- Yilmaz, G., and Koparan, T., 2016, The Effect of Designed
Geometry Teaching Lesson to the Candidate Teachers' Van Hiele
Geometric Thinking Level, Journal of Education and Training
Studies.

230- Yu, Z., Fung, B. C., Haghighat, F., Yoshino, H., &
Morofsky, E. (2010). A Decision Tree Method for Building Energy
Demand Modeling. Energy and Buildings, 42(10), 1637-1646.

231- Yucong, W., & Bo, W. (2020). EA-XGBoost: A Novel
Evolutionary Algorithm Based XGBOOST Model for Predicting
Energy Consumption in Buildings. Energy Reports, 6,2189-2197.

232-Zarei, Y., 2012, The Challenges of Parametric Design in

Architecture Today: Mapping the Design Practice. Master Thesis.
University of Manchester.

233-.Zboinska, M.A., 2015, Hybrid CAD/E Platform Supporting
Exploratory Architectural Design. CAD Computer Aided Design
59, 64-84.

211

References | NG

234-Zhang, P., & Wei-guo, X., 2018. Quasicrystal Structure Inspired
Spatial Tessellation in Generative Design.

235-Zheng, H., and Yuan, P., 2021, A Generative Architectural and
Urban Design Method Through Artificial, Building and
Environment 205 (2021) 108178

236-Zheng, H., (2018), Architectural Drawings Recognition and
Generation through Machine Learning, ACADIA 2018.

Websites:

I- Bevans, R., 2020, “Simple Linear Regression: An Easy
Introduction & Examples”,
https://www.scribbr.com/statistics/simple-linear-regression/, Last
Access: 18-8-2023.

2- Biswal, A. (2023). 7 Types of Artificial Intelligence That You
Should Know in 2023. Simplilearn.

https://www.simplilearn.com/tutorials/artificial-intelligence-

tutorial/types-of-artificial-intelligence, Last Access: 24-9-2024.
3- Caldwell, B., Dake, D., Sadly, M., and Ulch, L., 2000, Integrated
HOTS Thinking Model, Department of Art and Design, lowa State

University.

4- Great learning Team, 2022, What is Ridge Regression,
https://www.mygreatlearning.com/blog/what-is-ridge-regression/,
Last Access: 16-8-2023.

5- Hohenadel, K., (2020). What Is Contemporary Architecture?

https://www.thespruce.com/what-is-contemporary-architecture-

4769079, Last visit: 21/4/2021.

212

https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/types-of-artificial-intelligence
https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/types-of-artificial-intelligence
https://www.mygreatlearning.com/blog/what-is-ridge-regression/

B Roferences

213

~
1

10-

11-

Kriesel, D., 2005, A brief introduction to Neural networks, Univ.
Bonn Semin. Proc.
http://www.dkriesel.com/ media/science/neuronalenetze-en-
zeta2-2col-dkrieselcom.pdf.

Malik, S, Harode, R., and Kunwar, A., 2020, XGBoost: A Deep
Dive into Boosting, https://medium.com/sfu-cspmp/xgboost-a-
deep-dive-into-boosting-f06c9c41349 Last Accessed: 16-8-2023.
McGee, V., 2023, What Is Coding and What Is It Used For?
https://www.computerscience.org/resources/what-is-coding-used-
for/, Last Accessed: 24-August, 2023

Rayman, P., 2017, What Is Transformation Matrix and How to Use
It, https://forum.patagames.com/posts/t501-What-Is-
Transformation-Matrix-and-How-to-Use-It, Last Accessed: 24-
August, 2023

Sawantt, S., 2021, Grasshopper 3D: A Modeling Software
Redefining The Design Process, https://parametric-
architecture.com/grasshopper-3d-a-modeling-software-redefining-
the-design-process/, last access: 14/10/2024.

Solomonoff, G., 2023, The Meeting of the Minds That Launched
Al, https://spectrum.ieee.org/dartmouth-ai-workshop, last access:

14/10/2024.

Appendix A [N

Appendices

Appendix A (Glossary)

Accuracy: A metric in classification that measures the ratio of correctly

predicted instances to the total instances.

AdaBoost (Adaptive Boosting): An ensemble learning method that
combines weak learners into a strong learner. It assigns weights to
instances in the dataset, allowing subsequent weak learners to focus on the
misclassified instances from the previous ones.

Algorithm: A finite sequence of instructions followed by a computer
system.

Algorithmic Design: Design process that relies on algorithms, step-by-
step procedures, or formulas, to generate and manipulate design elements.

API (Application Programming Interface): A set of rules and tools that
allows different software applications to communicate with each other.
APIs define the methods and data formats for requests and responses.

Artificial intelligence (AI): The simulation of human intelligence in
machines that are programmed to think and learn, enabling them to
perform tasks that typically require human intelligence.

Artificial general intelligence (AGI): The representation of generalized
human cognitive abilities in software so that, faced with an unfamiliar task,
the AGI system could find a solution.

Artificial narrow intelligence (ANI): A type of Al that is focused on
performing a specific task or set of tasks.

Artificial super intelligence (ASI): A speculative type of Al that surpasses
human intelligence in all respects.

Artificial Neural Network (ANN): Computational models inspired by the
structure and function of biological neural networks, used in machine
learning to recognize patterns and make decisions.

214

B Glossary

Area Under the Curve (AUC): The area under the Receiver Operating
Characteristic (ROC) curve. AUC is a single value summary of the ROC
curve, where a higher AUC generally indicates better model performance.

Automation: Handling a process with machines or software so that less
human input is needed.

Bagging An ensemble learning technique that leverages bootstrapping to
improve the performance and robustness of machine learning models. In
bagging, multiple models (often of the same type, such as decision trees)
are trained on different bootstrap samples of the dataset. The final
prediction is obtained by aggregating the predictions of individual models,
typically through averaging (for regression) or voting (for classification).
Bagging helps reduce overfitting and enhances the model's generalization
capability.

Bard: A chatbot developed by Google, released in March 2023.

Best-Fit Line: In statistics, the line that best represents the relationship
between two variables, typically determined through methods like linear
regression.

Bias: The assumptions that an Al makes to simplify its tasks.

Big data: Very large datasets that normal data-processing software can’t
handle.

Bing Chat: An Al chatbot feature integrated into Bing, released in
February 2023.

Boosting: An ensemble learning technique where multiple weak models
are combined sequentially to create a strong model, with each model
giving more weight to misclassified instances.

Bootstrapping: a resampling technique in which multiple subsets, called
bootstrap samples, are generated by randomly sampling with replacement
from the original dataset. It is commonly used in statistics and machine
learning to assess the variability of a statistic, estimate confidence
intervals, or improve the robustness of model training.

215

Appendix A [N

Categorical Data: Data which consists of variables that can take on a
limited set of discrete values or categories.

Chatbot: A software application that mimics human conversation, usually
through text.

ChatGPT: An Al chatbot released by OpenAl in November 2022

Classification: A type of supervised machine learning task where the goal
is to categorize input data into predefined classes or categories.

Classification Report: A summary of the performance of a classification
model. It typically includes metrics such as precision, recall, F1 score, and
accuracy, providing a comprehensive evaluation of how well the model is
classifying instances into different classes.

Coding: The process of writing instructions for a computer to execute,
typically using a programming language.

Computational Design: The use of computational tools and techniques,
often involving algorithms, to assist in the creation and manipulation of
design elements.

Computer Vision: A field of artificial intelligence that focuses on enabling
machines to interpret and understand visual information from the world,
often involving image and video analysis.

Continuous Data: Data which represents variables that can take an infinite
number of values within a given range.

CNN (Convolutional Neural Network): A type of neural network
architecture designed for processing structured grid data, particularly
images. It uses convolutional layers to automatically learn hierarchical
features from the input data.

Correlation Matrix: A table showing correlation coefficients between
variables. Each cell in the table represents the correlation between two
variables, with values ranging from -1 to 1. It is often used in statistics and
data analysis to understand relationships between different variables.

216

B Glossary

Cost Function: A function that measures the difference between predicted
values and actual values, guiding the learning process in machine learning
algorithms.

Cross-Validation: A technique used to assess the performance of a
machine learning model by dividing the dataset into multiple subsets. The
model is trained on some of these subsets and tested on the remaining
subset. This process is repeated multiple times, and performance metrics
are averaged, providing a more robust evaluation of the model's
generalization capability.

Data Resampling: Techniques such as oversampling or undersampling
used to address imbalances in class distribution within a dataset.

Data set in ML and AI: A collection of data used for training, testing, and
validating machine learning and artificial intelligence models. It typically
includes input features and corresponding output labels for supervised
learning or only input features for unsupervised learning.

Decision Trees: A fundamental machine learning algorithm that
recursively splits the data based on features to make decisions. Each
internal node represents a decision based on a feature, and each leaf node
represents an output or class label.

Deep learning: A subfield of machine learning that involves the use of
artificial neural networks, particularly deep neural networks with multiple
layers (deep architectures). These networks are capable of automatically
learning hierarchical representations of data, leading to powerful models
for tasks such as image recognition, natural language processing, and
more.

Diffusion: The process by which something (e.g., information, substances)
spreads or moves from one place to another within a medium. In the
context of machine learning and Al diffusion models are a class of
generative models that use a diffusion process to model the generation of
images. In these models, a latent image is iteratively transformed through
a series of steps, introducing noise at each step. The process gradually

217

Appendix A [N

refines the image, and the noise is controlled in a way that enables the
generation of high-quality and diverse images.

Discriminator: A neural network that evaluates input data and tries to
distinguish between real and generated data. The goal of the discriminator
is to correctly classify whether the input data comes from the real dataset
or was produced by the generator.

Dimensionality Reduction: The process of reducing the number of
features (variables) in a dataset. It aims to retain the most important
information while minimizing the loss of data, often improving
computational efficiency, and mitigating the curse of dimensionality.

Ensemble Learning: A machine learning technique where multiple models
are combined to improve overall performance and accuracy. Common
methods include bagging (e.g., Random Forest) and boosting (e.g.,
AdaBoost).

Exploratory Data Analysis (EDA): The process of visually and
statistically analyzing datasets to uncover patterns, trends, and anomalies
before applying machine learning algorithms.

F1 Score: A metric in classification that combines precision and recall into
a single value, balancing false positives and false negatives.

Feature importance: The measure of the impact of each feature (input
variable) on the model's predictions.

Features: The input variables or attributes used by machine learning
algorithms to make predictions.

Form Finding: In design and engineering, it refers to the process of
determining the optimal form or shape of a structure based on specified
constraints and criteria.

Form Making: In the context of design, it generally refers to the process
of creating physical or digital forms, shapes, or structures.

218

B Glossary

GAN (Generative Adversarial Network): A type of artificial intelligence
model consisting of two neural networks, a generator, and a discriminator,
trained adversarially to generate realistic data.

Generative AI: Al systems that generate output according to a learning
mechanism.

Generative Design: An approach in design and engineering where
algorithms are used to explore a range of possible design solutions based
on specified criteria, enabling the creation of innovative and optimized
designs.

Generative pre-trained transformer (GPT): A type of LLM used in
ChatGPT and other Al applications.

Generator: A neural network responsible for generating synthetic data. It
takes random noise as input and transforms it into data that ideally is
indistinguishable from real data.

Gradient Descent: An optimization algorithm used to minimize the cost
function in machine learning by adjusting model parameters iteratively in
the direction of steepest descent.

K-Fold Cross-Validation: A specific type of cross-validation where the
dataset is divided into 'k' subsets or folds. The model is trained 'k' times,
each time using a different fold as the test set and the remaining folds as
the training set. The performance metrics are then averaged over the 'k'
iterations, providing a more reliable estimate of the model's performance
compared to a single train-test split. Common values for 'k' are 5 or 10 in
practice.

k-NN (k-Nearest Neighbors): A type of algorithm used for classification
and regression tasks, where an object is classified by the majority vote of
its k nearest neighbors.

Large language model (LLM): A neural net trained on large amounts of
text to imitate human language.

219

Appendix A [N

Machine learning (ML): The study of how Al acquires knowledge from
training data.

Mean Absolute Error (MAE): A measure of the average absolute
difference between predicted and actual values in a regression problem.

Mean Squared Error (MSE): A metric in regression analysis that
measures the average squared difference between predicted and actual
values.

MidJourney: An Al image generator released in July 2022.

Natural language processing (NLP): The study of interaction between
computers and human language.

NeRF (Neural Radiance Fields): a novel approach to 3D scene
representation and rendering using neural networks. It models a scene as a
continuous 3D function that maps 3D spatial coordinates to scene color
and density. NeRF has been applied to generate highly detailed and
realistic renderings of scenes, making it particularly useful for computer
graphics and virtual reality applications.

Non-Generative AI: Al models or systems that don't generate new content
or data but instead focus on analyzing, classifying, or making predictions
on existing data.

Normalization: The scaling of features to a standard range, often between
0 and 1. It ensures that different features with varying scales contribute
equally to the model, preventing dominance by features with larger
magnitudes.

OpenAlI: A leading Al company that developed ChatGPT and DALL-E.

One-Hot Encoding: is a technique to represent categorical variables as
binary vectors. Each category is mapped to a unique binary value, creating
a sparse matrix where only one element is "hot" (1) while others are "cold"

(0).

220

B Glossary

Overfitting: A modeling error that occurs when a machine learning
algorithm captures noise or random fluctuations in the training data,
leading to poor performance on new, unseen data.

Parameter: A variable in an Al system that it uses to make predictions.

Parametric Design: A design approach that uses parameters and rules to
create variations within a system, allowing for flexible and dynamic
designs based on changing parameters.

Precision: A metric in classification that measures the proportion of
predicted positive instances that are actually positive.

Principal Component Analysis (PCA): a dimensionality reduction
technique used to transform high-dimensional data into a lower-
dimensional representation while retaining as much of the original
variance as possible. It identifies the principal components, which are
linear combinations of the original features, and ranks them by their ability
to explain variance.

Programming: The process of giving instructions to a computer (using
computer code).

Prompt: The input from the user to which the Al system responds.

R? Score (Coefficient of Determination): A metric that represents the
proportion of the variance in the dependent variable that is predictable
from the independent variables.

Random Forest: An ensemble learning method that constructs a multitude
of decision trees during training and outputs the mode of the classes for
classification tasks or the average prediction for regression tasks.

Recall (Sensitivity or True Positive Rate): A metric in classification that
measures the proportion of actual positive instances correctly predicted by
the model.

Regularization: A technique used in machine learning to prevent
overfitting by adding a penalty term to the model's cost function. It

221

Appendix A [N

discourages overly complex models by penalizing large coefficients,
promoting a balance between model complexity and accuracy.

Reinforcement Learning: A type of machine learning where an agent
learns to make decisions by interacting with an environment. The agent
receives feedback in the form of rewards or penalties based on the actions
it takes.

Regression: A statistical technique used to model and analyze the
relationship between a dependent variable and one or more independent
variables. Or a type of supervised learning where the goal is to predict a
continuous outcome variable based on one or more input features.

RhinoCommon: A NET-based framework for developing software that
integrates with Rhino, a 3D modeling software. It allows developers to
create custom applications, plugins, and scripts to automate design and
modeling tasks within Rhino.

Ridge: Refers to Ridge Regression, a linear regression technique that adds
a penalty term based on the squared values of the coefficients, helping to
prevent overfitting.

RNN (Recurrent Neural Network): A type of neural network architecture
that is well-suited for processing sequential data. It has connections that
allow information to be passed from one step of the sequence to the next,
enabling it to capture temporal dependencies in data.

ROC Curve (Receiver Operating Characteristic): A graphical
representation of the trade-off between the true positive rate and false
positive rate at various thresholds usually used with classification
problems.

Root Mean Squared Error (RMSE): The square root of the mean squared
error, providing a measure of the average magnitude of errors in
predictions.

Scikit-Learn: An open-source machine learning library for Python. It
provides a variety of tools for data analysis and machine learning,

222

B Glossary

including algorithms for classification, regression, clustering, and model
evaluation.

Scripting: Writing scripts, which are sets of instructions written in a
scripting language, for automating tasks or processes.

SDK (Software Development Kit): A set of software development tools
that allows developers to create applications for a certain software
package, hardware platform, computer system, or operating system.

SMOTE (Synthetic Minority Over-sampling Technique): A technique
used in machine learning to address class imbalance by generating
synthetic samples for the minority class.

Stable Diffusion: A process where the spreading or movement of a
substance or information is steady and does not result in rapid or extreme
changes. Stability in diffusion implies a more controlled and gradual
progression.

Supervised Learning: A type of machine learning where the model is
trained on a labeled dataset, meaning it is provided with input-output pairs
to learn the mapping between input data and corresponding output.

Support Vector Machine (SVM): A supervised machine learning
algorithm used for classification and regression tasks. SVM finds the
hyperplane that best separates data into different classes in a high-
dimensional space. It aims to maximize the margin between classes and
can handle linear and non-linear relationships through the use of different
kernel functions.

Targets: The output variable that machine learning algorithms aim to
predict.

Test Data Set. A subset of data used to evaluate the performance of a
trained machine learning model on new, unseen instances.

Training Data Set: The subset of data used to train a machine learning
model.

Turing test: A test of a machine’s ability to display human intelligence.

223

Appendix A [N

Underfitting: A modeling error that occurs when a machine learning
algorithm is too simple to capture the underlying patterns in the training
data, resulting in poor performance on both the training and new data.

Unsupervised Learning: A type of machine learning where the model is
trained on unlabeled data, and the system tries to learn the patterns and
relationships within the data without explicit guidance on the output.

Validation Data Set: A separate subset of data used to tune and optimize
model hyperparameters during training.

XGBoost (Extreme Gradient Boosting): An efficient and scalable
implementation of gradient boosting. It is designed for speed and
performance and is widely used for both classification and regression
tasks.

224

I Mathematical Background: Formulas and Equations

Appendix B (Formulas and Equations)

1- Regression
Linear regression:

Any linear regression equation (without error) takes the following
form:

Y=bX+a

Where:
Y: Predicted values of Y

b: Slope = Rate of predicted T/! for Y scores for each unit increase
in X.

a: Y-intercept = level of Y when X =0

Univariate linear regression:

Univariate linear regression focuses on determining the
relationship between one independent (explanatory wvariable)
variable and one dependent variable.

In a linear regression equation, the hypothesis, parameters, cost
function, and goals are determined as follows:

Hypothesis: hg(x) = 6y + 0,x

Parameters: 6, 0

Cost Function: J(8,,0;) = ﬁ}]ﬁl(hg (x@) - y("))2
Goal: minimize J(8,, 6;)

In order to minimize the cost, a gradient descent method is used
which has the following equation:

Repeat until convergence: 6 := 6, — « % J(6,,61)
J
Where « is the learning rate of the algorithm which can control the

jump size of the weight update in each iteration.

225

Appendix B [NN

The gradient descent graph in both 2D and 3D spaces could be
presented as follows:

Cost
A
\ \ Learning step
:
I
1
: Minimum
|
1
1 1 >
Random w w
initial value

LOCAL
MINIMA

Gradient Descent in 2D Space (Left) and in 3D Space (Right)

(https://www.analyticsvidhva.com/blog/2020/10/what-does-gradient-descent-actually-mean/,

https://www.hackerearth.com/blog/developers/3-types-gradient-descent-algorithms-small-large-
data-sets/)

General Gradient Descent Equations:
1
0o := 6p— «a 1;2;?;1(}19(351') -y
011= 01— @ — > ((ho(x) = Y %)
i=1

226

https://www.analyticsvidhya.com/blog/2020/10/what-does-gradient-descent-actually-mean/

I Mathematical Background: Formulas and Equations

Linear regression with Multi Variables (Multivariate)

Multivariate regression is a technique that estimates a single
regression model with more than one outcome variable.

n = number of features
x = input (features) of i training example

x{¥ = value of features j in i training example (j: row number, i:
column number)

Hypothesis: hg(x) = 8y + 0,x1 + O,x; + -+ Opxy, ...
Multivariate

. . x
For convenience of notation, Teﬂire xo = 1.
X1

hg(x) = [90 91 92 Hn] - xZ = BT'x— 90 + 91x1 +

0
0,%, +--+ 0 1 [P0]
2 Tx1| L, | |6, |
Note that X = [x2|e R*™*! and 6 = |6, |e R**' and 0T =
[0y 6, O, .. Hn][——"(}—% 1) x 1 matrix.. .|
X lo,]

Parameters: 6,0, ... 6,

Cost Function: J (8, 01) = — X7 (hg(x@) — y(‘))
Goal: mmlmlze](eo, 01_02_ n)

In this scenario, the gradient descent equation will be:
Repeat until conve%ence‘ {

By = 6o — a —Z(hg(x(‘)) — @) K

0,:=6;, - «a —X(hg(x(l)) y(l)) x
0,:=0,—«a —E(hg(x(l)) - y(l)) x

}

And the general gradient descent equation will be:

227

Appendix B [NN

Repeat until convergence: {

1 ; ; j .
6= 6;— «a ;Zﬁl(hg(x(l)) - y®) .x]-(l) forj:=0...n}
XGBoost

XGBoost is one of the most popular and efficient implementations
of the Gradient Boosted Trees algorithm, a supervised learning
method that is based on function approximation by optimizing
specific loss functions as well as applying several regularization
techniques.

The objective function (loss function and regularization) at
iteration t that needs to be minimized is the following:

The gradient boosting ensemble technique operates through a
series of straightforward steps to enhance the predictive power of
a model:

Initialization: A base model (Fo) is established to make initial
predictions for the target variable y. The differences between the
actual values and (Fo) predictions represent the residuals.

Model Fit to Residuals: A new model (h1) is then fitted specifically
to the residuals obtained from the initial model. This second model

is designed to capture the patterns or information that the first
model failed to predict accurately.

Boosting and Model Combination: The boosted model (Fp) is
formed by combining the initial model (Fo) with the new model (hi)
This amalgamation results in an improved model (F1) with a lower

mean squared error compared to (Fo). The process can be iteratively
repeated for (m) iterations, with each new model capturing and
refining the residuals from the previous ensemble, ultimately
reducing prediction errors to the extent possible. This iterative
approach enhances the overall performance of the ensemble by
addressing deficiencies in the predictions made by earlier models.

228

I Mathematical Background: Formulas and Equations

229

Fn(x) < = Fpo1(x) + hyp(x)

FO(x) should be a function which minimizes the loss function or
MSE (mean squared error), in this case:

F, 7gx) = argmin, Z L()’i; Y)
_ =1
argmmyz L(y;zy) = argmin, 2(% - y)?

. LA=1 i=1 .
Taking the first differential of the above equation with respect to v,
it is seen that the function minimizes at the mean i=1nyin. So, the
boosting model could be initiated with:

Fy(x) = Yic1Yi

Fo(x) gives the predictions from the first stage of the model. Now,
the residual error for each instance is (yi— Fo(x)).

The residuals from Fo(x) could be used to create hi(x). hi(x) will
be a regression tree which will try and reduce the residuals from
the previous step. The output of hi(x) won’t be a prediction of y;
instead, it will help in predicting the successive function Fi(x)
which will bring down the residuals.

The additive model hi(x) computes the mean of the residuals (y —
Fo) at each leaf of the tree. The boosted function F1(x) is obtained
by summing Fo(x) and hi(x). This way hl(x) learns from the
residuals of Fo(x) and suppresses it in Fi(x).

This can be repeated for 2 more iterations to compute ha(x) and
h3(x). Each of these additive learners, hy(x), will make use of the
residuals from the preceding function, Fm-1(X).

Classification

The specific equations used in classification in machine learning
can vary depending on the algorithm being employed.

Logistic Regression:

Appendix B [NN

The logistic regression equation models the probability that the
dependent variable (x) is 1 as a function of the independent
variables (X1, X2, ..., Xn) and their corresponding coefficients (b1,
by, ..., bn).

Logistic regression uses a logistic function called a sigmoid
function to map predictions and their probabilities. The sigmoid
function refers to an S-shaped curve that converts any real value to
a range between 0 and 1.

The sigmoid function () ensures that the output is between

1 —Z
Oand 1. te

fO) = T e

Where:

f(x) is the output of the function.

L is the curve's maximum value.

e is bae of natural logarithms

K is logistic growth rate or steepness of the curve.
Xo 1s the x value of the sigmoid midpoint.

and x is a real number.

The functions could be written as:

1
P = 1+ e—(a+bX)
where P is the probability of a 1 (the proportion of 1s, the mean of
Y), e is the base of the natural logarithm (about 2.718) and a and b
are the parameters of the model. The value of a yields P when X is
zero, and b adjusts how quickly the probability changes with
changing X a single unit (There can be standardized and
unstandardized b weights in logistic regression, just as in ordinary
linear regression). Because the relation between X and P is

230

I Mathematical Background: Formulas and Equations

231

nonlinear, b does not have a straightforward interpretation in this
model as it does in ordinary linear regression.

Decision Trees

Decision trees employ a tree-like flowchart structure to illustrate
predictions derived from a sequence of feature-based divisions.
The process initiates at a root node, where the dataset is split based
on specific features. Subsequently, this branching continues until
reaching terminal nodes known as leaves, where final decisions or
predictions are made based on the characteristics of the data within
those leaves.

In the context of decision trees, the concept of impurity is crucial
in determining how to split the data effectively. The goal is to create
splits that lead to homogeneous subsets, where all instances share
the same class label, making the split "pure." A "pure" split means
that after the split, the resulting subsets ideally contain instances
belonging to only one class, making it easier to make accurate
predictions for that subset. In binary classification, this would mean
that a split results in subsets where one contains instances labeled
"yes" and the other contains instances labeled "no." The decision
tree algorithm aims to iteratively create such pure splits to
effectively classify instances based on the selected features. The
measure of impurity (or purity) helps guide this decision. Common
impurity measures include Gini impurity and entropy.
Mathematically Gini index can be writtegl as:

Gini Index = 1 — Z(pi)Z
=1 [(P)? + (P))?]

Where P+ is the probability of a positive class and P_ is the
probability of a negative class.

For the right split, the Gini Index will be 0.5.

Weighted Gini index is calculated afterwards. That is the total Gini
index of this split. Similarly, this algorithm will try to find the Gini

Appendix B [NN

index of all the splits possible and will choose that feature for the
root node which will give the lowest Gini index. The lowest Gini
index means low impurity.

Entropy has a mathematical formula using logarithmic function as
follows:

E(S) = —plogp) — poylogp-)

However, many boosting algorithms use the Gini index as their
parameter because logarithmic calculations present in the entropy
equation take more time than the Gini index.

The key distinction between decision trees and random forests lies
in their approach to modeling and predicting outcomes. Random
Forest, classified as a bagging method, deviates from the singular
nature of decision trees by constructing an ensemble of decision
trees. This ensemble is created by training each tree on a distinct
subset of the original dataset, a process known as bootstrapping.
This unique feature significantly contributes to mitigating
overfitting, a common challenge associated with individual
decision trees that tend to capture noise in the training data. By
aggregating the predictions of multiple trees, Random Forest
produces a more robust and generalized model. Furthermore, its
versatility is evident in its applicability to both classification and
regression problems. In classification tasks, the ensemble
combines the class predictions of individual trees, while in
regression tasks, it averages the predictions for continuous
outcomes. The utilization of Random Forest thus stands as an
effective strategy for enhancing predictive accuracy, overcoming
overfitting concerns, and accommodating diverse machine learning
scenarios.

Evaluation

Evaluation metrics for regression include R-squared, MSE, MAE,
and RMSE. Those metrics can be calculated as follows:

232

I Mathematical Background: Formulas and Equations

233

R-squared measures the proportion of the variance in the dependent
variable that is predictable from the independent variables. RSS is
the sum of squared residuals (model prediction errors), and TSS is

the total sum of squares.
RSS

R’=1—- —
MSE calculates the average squared difference between actual (Y;)
and predicted (¥;) values. It penalizes larger errors more heavily
due to the squaring operation.

1
n—(k+1)

MSE = = (Y —)2

RMSE is the square root of MSE, providing a measure in the same
unit as the target variable. It offers an interpretable scale for the
average prediction error.

n
1 A
= |—— Y- 9y
RMSE n—(k+1)Z(l)

=1
MAE calculates the average absolute difference between actual Yy)

and predicted (Y;) values. It provides a more interpretable metric
that is less sensitive to outliers cor1111pared to MSE.

1 .
MAE = - Z|Yi - 7
n &
1= . .
In these formulas, n represents the number of observations in the
dataset, Y; is the actual value, and ¥; is the predicted value.

Evaluation metrics for classification include Accuracy, Precision,
Recall, and F1. Those metrics can be calculated as follows:

Accuracy measures the proportion of correctly classified instances
out of the total instances. It provides an overall assessment of the
model's correctness.

Number of correct predictions

Accuracy =
Y Total number of predictions

Precision quantifies the accuracy of positive predictions. It is the
ratio of correctly predicted positive observations to the total
predicted positives.

Appendix B [NN

True positives

Precision = — —
True positives + False positives

Recall assesses the model's ability to capture all relevant instances.
It is the ratio of correctly predicted positive observations to the total
actual positives.

True positive rate (Recal%.)rue positives

" True positives + False negatives
The F1 Score is the harmonic means of precision and recall. It
provides a balanced measure that considers both false positives and
false negatives.
Precision X Recall

F1 — =2 X
measure Precision + Recall

In these formulas, "True Positives" are instances correctly
identified as positive, "False Positives" are instances incorrectly
identified as positive, and "False Negatives" are instances
incorrectly identified as negative.

Normalization

Normalization is a process used in machine learning to scale
numerical features to a standard range, typically between 0 and 1.
One common normalization formula is:
x — min (X)
Xnormalized = max(X) — min (X)

Here:

Xnormalized 15 the normalized value of the feature.

x is the original value of the feature.

min(X) is the minimum value of the feature in the dataset.
max(X) is the maximum value of the feature in the dataset.

This formula ensures that the feature values are linearly
transformed to a range between 0 and 1, with 0 representing the
minimum value and 1 representing the maximum value.
Normalization helps prevent features with larger scales from

234

I Mathematical Background: Formulas and Equations

235

dominating the learning process, especially in algorithms sensitive
to the scale of input features, such as gradient-based optimization
algorithms.

Regularization

Regularization is a technique used in machine learning to prevent
overfitting by adding a penalty term to the model's cost function.
For linear regression, one common form of regularization is L2
regularization (also known as Ridge regularization). The formula
for the cost function with L2 regularization is:

J(6) = MSE + A Zn 6?
Here: i
J(6) is the regularized cost function.
MSE is the Mean Squared Error (without regularization).

A is the regularization parameter, controlling the strength of the
regularization.

0; are the model parameters.

The regularization term A Y™, 87 penalizes large values of the
parameters 6;. The parameter A determines the trade-off between
fitting the data well and keeping the model parameters small.
Higher values of A result in stronger regularization.

In the context of regularization, L1 regularization (Lasso
regularization) is another common approach, and it adds the
absolute values of the parameters to the cost function. The general
form of the cost function with L1 regularization is:

J(6) = MSE + A Z:m

Appendix B [NN

Regularization helps to prevent the model from becoming too

complex and overfitting the training data, improving its ability to

generalize to new, unseen data.

K-Cross Validation:

The k-fold cross-validation process involves dividing the dataset

into k subsets or folds. The general steps for k-fold cross-validation

are as follows:

1.

Dividing the Dataset: Splitting the dataset into k approximately
equal-sized folds.

Iteration (k Times):

a) Train-Test Split: In each iteration, one of the k folds is used
as the test set, and the remaining k-1 folds are used as the
training set.

b) Model Training: Train the model on the training set.

Performance Metric Calculation: Evaluate the model's
performance on the test set for each iteration.

Average Performance: Calculate the average performance
metric over all k iterations.

Now, the mathematical formulas for k-fold cross-validation:

1.

2.

Test Set Index in each Iteration:

e Test set index in iteration i = i mod k

e Where i is the iteration index (0 to k-1)
Performance Metric Calculation in each Iteration:

e Let Metric; be the performance metric in iteration i.

e The average performance metric (Avg Metric) is
calculated as:
1 k-1
AvGumetric = 7 Metric;
k Zai=o

236

I Mathematical Background: Formulas and Equations

237

This generalizes the k-fold cross-validation process
mathematically. It's important to note that various performance
metrics (such as accuracy, precision, recall, etc.) can be used in
place of "Metric" depending on the specific evaluation criteria for
the machine learning task.

Appendix C | IEEEEEE

Appendix C (Default Parameters and
Hyperparameters Used for ML Models)

This appendix specifies the parameters and hyperparameters of different
ML models used in this research for regression and classification tasks. As
mentioned in chapter 9, Scikit-Learn Python Module is used for regression
and classification. This module comes with different models which are
easily called using simple lines of code. The models come with default
parameters and hyperparameters which were not modified.?

Regression Models:

Random Forest Regressor:

o Parameter ____ DefaultVvalue
o n_estimators .10 j
i criterion i i
' {“squared_error”, “absolute_error”, ! squared_error i
o “friedman_mse”, “poisson”} e i
] max _depth o None j
I min_samples split L 2 j
_min_samples leaf I 1 j
. min_weight fraction leaf I 0 j
. max_leaf nodes I None j
_______min_impurity decrease oo j
] bootstrap o Twe j
. _oobscore o False j
] njobs I None j
I random state I None j
I verbose ! o j
o warmstart o Twe j
. ccpapha oo j
b Mmax_samples A None i
Linear Regression

2 https://scikit-learn.org/stable/modules/classes.html

238

I Dcault Parameters and Hyperparameters Used in ML Models

== = e e e e e e e e e e e

; Parameter T Default
e Lo Value
b it intercept i True
e Copy X i True
. Positive Lo False
Ridge

. Pparameter ! Default
e i Vvalue
e alpha FI 2
L fit intercept L True
o epy X D Te
o max_iter i None
] ol T led
solver {‘auto’, ‘svd’, ‘cholesky’, ‘Isqr’, ‘sparse_cg’, auto
. ‘sag’, ‘saga’, ‘Ibfgs’}, default="auto’ .
. positve | False
. randomstae | Nomne
k-NN
. Parameter [Default Value
. nneighbors L5
| weights{‘uniform’, ‘distance’} L. unifor
. __algorithm{*auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’y & auto
. leaf size. .30
e oo L2 ‘
o metric | minkowski’
o metric params . None
o njobs 1 Nome
Decision Tree
.. Parameter ' DefaultValue
i criterion{“squared_error”, “friedman_mse”, !

! « v e s v i squared_error
| absolute_error”, “poisson™} e
b splitter{“best”, “random™} I best

Appendix C | IEEEEEE

o maxdepth T None !
L_____________________mi_n___§§m_9!@_s=§_9!it ______________________ r __________ 2 4
L ______________________ min_samples_leaf r __________ 1 4
L _________________ min_weight_fraction_leaf k _________ 00 . 4
|________max_features {“auto”, “sqrt”, “log2”} . ______None
: random_state : None :
e e oo fpmmmm e e 4
L _______________________ max_leaf_nodes L________'_l_Q[‘_Q _______ 4
L __________________ min_impurity_decrease r _________ 00 . 4
e cepalpha I 00 |
XGBRegressor

5 e 1
L __________________________ Parameter L--PEf@H!'E.Y@.'.E'?.--j
L ________________________ Booster Type L________Qgt_r_‘?? ________ 1
L _______________________ LearningTask L-[?.Qi?ﬂ‘!?f_@‘_j}?[@r__j
L________________________H=Q§Ii[[‘_@f[9_f§ _________________________ +1OO _________ +
! learning_rate : 0.3 !
ik fommmmmmmmmiSe oo 1
! max_depth : 6 !
pommmm oo e P W 1
L _____________________ min_child_weight + ___________ 1 +
kGamma ____________________________ + ___________ U 1
L__________________________S__U_QS_@@P_[Q __________________________ + __________ 10 +
! colsample bytree : 1.0 !
fpmm e e e e e oo fommmmmmmm it 1
e lambda I 1 i
e alpha] U ;
Classification Models:

Random Forest

P Parameter ! Default |
i i Value i
[s s e ———
e estimators + _______ 100 . |
I criterion{*gini”, “entropy”, “log _loss”} I 1L
L ____________________________ max_depth + ______ None |
L _______________________ min_samples_split +2 _________ |
L_______________________mi_0=§§m9!@§___!@;a_t _______________________ + _________ 1 |
L __________________ min_weight_fraction_leaf +00 ________ |
: max_features : sqrt :
e oo e |
L________________________mazs___lgaf___nqg_e_s_ ________________________ + ______ None |
L____________________m__i_r_‘___i_UJJQ_U__r_iI}’_?Q?_Q[?_@??_ ___________________ +00 ________ |
. bootstrap i True i

I Dcault Parameters and Hyperparameters Used in ML Models

=== e e e e e

! oob_score ' False

mmmmmm e oo e
] njobs i.....None
! random_state : None
e oo e
R verbose L0
: warm_start ! False
e oo I
e Class_weight i.....None
iiiiCCpalpha .00
e max _samples i None
k-NN

R Parameter | Default Value |
T S I [
R n_neighbors - :
R weights :{‘uniform’, ‘distance’} i ‘uniform’
. _algorithm{*auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’y : auto
: leaf size ! 30

[pmmmmmmmm e ool R e [
: p | 2

pommm e e S R Pyyr e
b metric i Minkowski __
R metric params H— None :
] njobs [None ;
Decision Tree

B s
| Parameter i Default
e i Vvalue
T criterion{“gini”, “entropy”, “log_loss”; Lo.gini
! splitter | best
e oo e
. max depth i...None
R min_samples split L2
Cooo._Min_samples leaf HE— 1
R min_weight fraction leaf .00
! max_features : None

e e oo e
b max_leaf nodes i.....None
_______Mmin_impurity decrease .00
e random state i.....None
e class weight i.....None
tiiiiee...Ccpalpha Lo...00
AdaBoost
... Parameter [DefaultValue |

241

Appendix C | IEEEEEE

o estimator [_None |
e estimators I 50 . i
e learning rate b L0 i
________algorithm : {*SAMME’, ‘SAMME.R’} i SAMMER
e random_state i None
e base_estimator i None
syc

. Parameter | Default Value
e penalty {1, 12’y R N i
| loss{‘hinge’, ‘squared_hinge’} i _squared_hinge__:
e dual P True
. (| R P led
e C L 10 j
|________multi_class{*ovr’, ‘crammer_singer’} I ovr i
e fit intercept R True i
e intercept scaling R 10 i
! class_weight : None !
frmm e e e R e oo fommmmmmme oo 1
e verbose . R 0 . i
> Fandom state ... None i
e Mmax iter R 1000 i

242

_ LLM Experiment

Conversation with ChatGPT v3.5 to brainstorm the form making of an
exhibition for Mercedes-Benz.

Q1: Architect: Imagine that you are my architectural design partner to

discuss and form a concept of a new design project.

ChatGPT: Certainly! I'm excited to collaborate with you on your
architectural design project. To get started, could you provide some initial
details about the project? What type of building or space are we designing,
and are there any specific requirements or preferences you have in mind?
Additionally, do you have any particular themes, styles, or inspirations
you'd like to explore in the design?

Q2: Architect. We are designing a car exhibition for Mercedes-Benz. The
project will have a wide entrance, exhibition spaces with many forms of

show like physical, VR, holograms, video shows, etc., as well as some
functional spaces like restrooms, cafeteria, and administration spaces.

I am thinking of a contemporary design style that should symbolize and
express the core concepts of the firm (Mercedes-Benz). And right now, we
need to brainstorm the form-making process.

ChatGPT: Great! Designing a car exhibition for Mercedes-Benz sounds
like a fantastic project. Let's dive into the form-making process and explore
some concepts for the overall design. Since we want to capture the essence
of Mercedes-Benz and convey their brand identity, here are a few initial
ideas to consider:

e Fluid Lines and Elegance: Incorporate fluid lines and elegant
curves in the architecture to reflect the sleek and dynamic design
of Mercedes-Benz cars. Consider using materials with reflective
surfaces to evoke the polished finish often found in luxury cars.

e Showecase of Innovation: Integrate cutting-edge technology into the
design to reflect the innovation associated with Mercedes-Benz.
Use LED displays, interactive touchscreens, and advanced lighting
systems to create an immersive and futuristic experience.

243

Appendix D | ENEEE

e Spatial Hierarchy: Design the exhibition spaces with a clear
hierarchy, emphasizing key car models and innovations. Create
focal points within the exhibition area to draw attention to flagship
vehicles or groundbreaking technologies.

¢ Branding Elements: Integrate Mercedes-Benz branding elements
into the architecture, such as the iconic logo, in a subtle and
sophisticated manner. Explore the use of branded colors and
textures that align with the company's visual identity.

e Multi-sensory Experience: Incorporate a variety of sensory
experiences, including virtual reality (VR), holograms, and
dynamic video displays to engage visitors on multiple levels.

e Consider the use of ambient sounds that evoke the sensation of
being on the road or in a high-tech automotive environment.

e Green Design: Infuse sustainable design principles into the project,
aligning with the growing emphasis on eco-friendly practices.
Consider incorporating greenery and natural elements to create a
harmonious and inviting atmosphere.

e Spatial Flexibility: Design flexible exhibition spaces that can adapt
to different types of showcases, ensuring versatility for various
events and car presentations.

Let's discuss these concepts further and refine them based on your
preferences. Are there any specific aspects you'd like to emphasize or any
particular features you envision for the exhibition space?

Q3: Architect: Yes, we need to dive deeper in the form-making aspects.
How should the building look like, and I am thinking to have an analogy

from nature that expresses Mercedes-Benz codes and concepts

ChatGPT: Certainly, delving deeper into the form-making aspects and
drawing inspiration from nature can result in a unique and meaningful
design. Let's explore the analogy from nature to express Mercedes-Benz
codes and concepts. Here are a few nature-inspired ideas:

244

_ LLM Experiment

245

Flowing Lines and Organic Forms: Take inspiration from the
streamlined shapes found in nature, such as the curves of a river or
the organic forms of plant leaves. Consider incorporating these
flowing lines into the architecture, creating a sense of movement
and elegance that mirrors the design philosophy of Mercedes-Benz.

Biomorphic Architecture: Explore biomorphic architecture, which
mimics the forms and structures found in living organisms. Use
organic shapes and patterns reminiscent of natural elements,
providing a visual connection to the brand's emphasis on
innovation and evolution.

Tree-Inspired Canopy: Design a canopy structure inspired by the
branching and interwoven patterns of trees. This canopy can serve
as a unifying element over the entrance and exhibition spaces,
providing shade and a sense of cohesion while symbolizing growth
and strength.

Reflective Surfaces Inspired by Water: Draw inspiration from the
reflective qualities of water surfaces, like a calm lake or a flowing
stream. Use reflective materials on certain surfaces to create a
dynamic play of light, enhancing the sense of luxury and
sophistication.

Geometric Patterns Inspired by Crystals: Consider incorporating
geometric patterns inspired by the precision and clarity of crystals.
These patterns can be integrated into the design of structural
elements or even as artistic installations, emphasizing the precision
and craftsmanship associated with Mercedes-Benz.

Landscaped Courtyards: Create landscaped courtyards with
carefully selected vegetation, emphasizing a connection to nature.
These green spaces can serve as areas for relaxation and reflection,
providing a contrast to the high-tech exhibition spaces.

Dynamic Facade Inspired by Wind Patterns: Look to wind patterns
as inspiration for a dynamic and responsive facade. Design
elements that move or adjust based on environmental conditions,

Appendix D | ENEEE

symbolizing adaptability, and responsiveness—qualities associated
with Mercedes-Benz.

As we explore these nature-inspired concepts, please feel free to provide
feedback or let me know if there's a particular direction you find intriguing.
We can further refine the ideas to ensure they align seamlessly with the
vision for the Mercedes-Benz exhibition space.

04: Architect: instead of expressing the precision and craftsmanship using

Crystal patterns, let's suggest another pattern that expresses Mercedes-

Benz sustainability.

Absolutely, let's explore a pattern inspired by sustainability for expressing
precision and craftsmanship. One compelling option could be the use of
"Geometric Patterns Inspired by Sustainable Materials."

Consider incorporating patterns reminiscent of sustainable materials like
bamboo, recycled wood, or even recycled metals. These materials can be
translated into geometric patterns that symbolize environmental
responsibility and the commitment to sustainability. The repetition of these
patterns can create a visually striking and cohesive design element
throughout the exhibition space.

This not only aligns with the sustainability aspect but also emphasizes
precision in the use of materials and craftsmanship in creating a
harmonious design. Additionally, using sustainable materials in the
construction of the exhibition space reinforces Mercedes-Benz's
commitment to environmental consciousness.

How does this idea resonate with you, and is there a specific sustainable
material or concept you'd like to emphasize within the geometric patterns?

035: Architect. How could the geometry inspired by bamboo look like?

ChatGPT: Designing geometry inspired by bamboo can add a natural and
sustainable aesthetic to the exhibition space. Here are some design
elements and principles that could be incorporated:

246

_ LLM Experiment

Vertical Rhythm: Mimic the vertical rhythm found in bamboo stalks. Use
vertical lines or columns to create a sense of height and rhythm throughout
the space.

These vertical elements can be part of the structural design, interior
partitions, or even incorporated into artistic installations.

Segmentation and Joints: Emulate the segmented structure of bamboo
stalks with distinct joints. These joints can be represented through the use
of varying materials, textures, or color changes.

Consider using contrasting materials to highlight these joints, showcasing
the precision and craftsmanship in the design.

Natural Curves and Tapers: Integrate gentle curves and tapers reminiscent
of bamboo stalks. This can be applied to the layout of pathways, the
curvature of walls, or even in the design of furniture and fixtures. These
natural curves add a sense of fluidity and organic beauty to the space.

Latticework Patterns: Incorporate latticework patterns inspired by bamboo
weaving techniques. These patterns can be applied to screens, partitions,
or as decorative elements within the exhibition spaces. The latticework not
only adds a visual appeal but also allows for the play of light and shadow,
creating a dynamic and engaging atmosphere.

Natural Color Palette: Draw inspiration from the natural colors of bamboo,
such as earthy greens and browns. Use a palette that reflects the warmth
and sustainability associated with natural materials. Incorporate these
colors into furnishings, finishes, and decorative elements throughout the
space.

Modularity and Flexibility: Take inspiration from bamboo's modularity
and flexibility in design. Create modular elements that can be rearranged
or repurposed, promoting adaptability and sustainability in the use of
space.

By integrating these elements, the exhibition space can evoke the essence
of bamboo while emphasizing precision and sustainability. This design
approach not only aligns with Mercedes-Benz's commitment to

247

Appendix D | ENEEE

environmental responsibility but also creates a visually captivating and
cohesive experience for visitors. How does this concept resonate with your
vision for the project?

Q6: Architect. how can we adopt such concept to le Corbusier’s regulating

lines?

ChatGPT: Combining the concept of bamboo-inspired geometry with Le
Corbusier's regulating lines involves incorporating the principles of both
into the design. Le Corbusier's regulating lines, based on his Modulor
system, emphasize human proportions and geometric harmony. Here's how
you can integrate these two concepts:

Vertical Modules Inspired by Bamboo: Use Le Corbusier's modular system
to establish vertical regulating lines based on human proportions. Align the
vertical rhythm of the regulating lines with the vertical segments of the
bamboo-inspired design. This creates a sense of harmony and proportion
within the space.

Human-Scale Integration: Leverage the Modulor system to determine the
scale of various elements within the exhibition space, such as display areas,
partitions, and seating.

Apply the bamboo-inspired geometry within these modules, ensuring that
the natural elements align with the human-scale proportions defined by Le
Corbusier.

Segmented Joints within Regulating Lines: Integrate the segmented joints
inspired by bamboo within the regulating lines. This creates a visually
cohesive and harmonious relationship between the precision of Le
Corbusier's geometric principles and the organic, sustainable elements
inspired by bamboo.

Curvilinear Forms Aligned with the Modulor: Apply Le Corbusier's
principles of modularity to introduce curvilinear forms within the
exhibition space. Incorporate the natural curves and tapers inspired by
bamboo, ensuring that these organic elements align with the modular scale
defined by Le Corbusier.

248

_ LLM Experiment

Latticework Patterns within Proportional Modules: Utilize Le Corbusier's
proportional modules to guide the placement and design of latticework
patterns inspired by bamboo. Ensure that the latticework patterns align
with the regulating lines and modular grid, reinforcing a sense of order and
proportionality.

Natural Color Palette and Modulor Harmony:

Integrate the natural color palette inspired by bamboo within the Modulor
system. Harmonize the earthy greens and browns with the proportional
modules, creating a balanced and visually appealing color scheme.

By integrating the bamboo-inspired geometry within the framework of Le
Corbusier's regulating lines, you create a design that marries organic,
sustainable elements with precise, human-centered proportions. This
approach not only aligns with the principles of both concepts but also
results in a sophisticated and harmonious exhibition space for Mercedes-
Benz. How does this synthesis of ideas resonate with your vision for the
project?

249

G Y S gl 3 oo lila¥) oS3 Carlh 5 YA (e oy jlancal) 3_Sal e asus 5

all (ragd il (el 2o
s (e ds — 2019 5 jlanll 3 aslall yiinale
e (e daala — 2015 A lenal) dunigdh g) SIS

ra) yd) Caal
JJAA:\A RV C WY J.u.nl,.\ J‘
3 jlaxll il ydat M
3 jlaadl oy ylas AL

>

AdBlial) g aSad) Aind

Al cagd Gal el 2 1A
ASAN Cads g5 DA (e A jlanall 3SaN Ala apa 55 1ALl)l gl
8l) Jgasll b elibaaY
3 jleal) 3 A8udl) o) 53 1da Al

iad) Adblia g

e Gla a2
Cpe. Aaala gl IS 3 jlaall iy s A

B

J\’AA.’\.AJ.AMJMLJ J‘

AN e 3 ye iy, 3
A e Aaalally dnigll 205 5 jlaall 30

i ‘E,J\.\.“ Canll ejh _J_i
L Cne el Buaigh A 5 jlenl) iy ylas i
i (iﬁ B) S

sLadad) clad yall

[l)k Al @l

Aaalall (alae 438) 50 ASY (ulae 438 5)Y Mia

.

Gl Gadla

calide 8 Aplend) cliphaill (e apaal)) V) aleil) 8 Gy 1l ol skl el adl
AV alas IS LSS) 8 Ll () sialdl s) s slamall () smtigall T2y 385 VLol
g5 4881 4 Jlara ilai jd i A ddlal) claplail) L Lo Wle el aa s aglas 3 3]
O s—igal) ety Al 5 Lgale Cijlaial) o)l 5 aneaill zmal s Cpaa alasi oY)
& el A waia e s g Caall 138 (8 a0 gaaill s dgal sals (s jlexall
Jie AN Aassl 53 Lgagh (San il 153 () A jlomall o sheal) den il 4031 53 Lolee
A il b S e o il lsall oy | a seaill 5 dagmall 18531 5 4 el GlE Y
Ao gana eloiiy clld g FC daell Aad alaat by Rhinoceros3d gl alasiuly
At Ul A aled 2 3lad cay a3 5 o(lyriall) Cdlalrall yuad Gask oo B S Gy
COMalrall (o dx) 5 Ao same o 3Lii) a3 (52 (5 il Hlll 3 gail) Jadly i) Ao sens
oailad 5 oy sladll sl 5 il Y1 gl) 5 cdail sall alagl @l 8 Loy iyl il
Lol A alaat Ul 4Ll 23 paill 285 oy)Y aland 5 o liadl Aaluua g c2i) il
bl Sl o 538l il (g sl JLl) 23 gaill Jew #C s RhinoCommon API
Dl Gl Bl 8 Qg V) alas i 5 Slae daladi WY 3 wie CSV Gile i
Z3said) (e L sl 5 il 5 bl (e Cile sane i) o Adbiaall AV alas e)) 53
Aaleiall COlebrally aill 5as) 55 ¢ alalially Aalaiall COlebeally uiill by e sana 2
Cam 5l AT Olan JS 8 28l 2 ga g0 saiill s 55 (LAY Zhsall Cilalaay
el aaeny gaill cat il g plasi¥ i) sd UL Gle gana bl M) gl
e sane aren pe Axanall aledll 3k aladit Wl sags il 3ias 4 el e g N8
0.9950.7950.97 Al J—=i R2 4a j0) slaai¥) alge milii il a g a8 il
daga o2 %98 I Jaai 825 28 il (ym je il e sana s UAY) E el 5 (slaliall
oda Jal o | HLiAY) clily de geaa e @M\@A;ul_u;eﬁﬁj L8 il 2 ga gt Al
Y Al L A (e 388D &y jlene <53 a5 3 Lings Allad e ¢ 5l i)

A jlerall dadail) el ddae 8 Al Aparl 13 2a3 N

(sl a¥) A (s jlerall caraaill HSE (35l (3 s all jAalifal) cilaldl)
daviaall GlKLE) cCatialll ¢ ylaasy) “;zl\ Yala_'ﬂ\ cd_A_S.&ﬂ\ ‘_A\ d}..ajl\ c&dﬂ}\l\ (:.\.q...a.\j\
Al ¢ el

L1

SV 8 3ale (s jlarall) smadigall Lgaadiing) 4 jlanal) apenaill callad o) s
‘_ée:\mﬂ\ e}@AA .ﬂ}:\kil:\;.l}.uy‘ LB}M‘&.‘MSQ‘&:‘)L k_\:ﬂl_u;y‘ 534 M} LA}AC
b Qsmn Cmbenall Cprigall (e LI G cqalally s oaa g (g jlanall arigal) Jie

i

N - s

Lalall agila jia 5 agind Ao ¢ shiany G laxall Cpigall JS 5 cage 55 (00 (pu 8 15355
igall e s 5 Sie Ledl e Le 48k Laal) iy A A lenal) A nigll 8
Lesd Lt 4y g0 Al a5 Aubad Tl (5S5 Y senail] Alee (8 «elld a4 (5 jlanal)
osigall dolad BB e @l il ol skl (e ABla (8 Jaall A lexall 5 Sl
Alae 7 -8 amall (e Jead 4y) sall dileall 228 5 5 skl JS dmy g dla je JS (5 landll

avanail

an e ashall s Ol ¥lae (e dpaall e Al Al) sela i o5 AT Al (e
oo Gy o il b a3 dladl A jlesad) A uaigh) @l 8 Lo ce) g
3acLsal) 5alS Ay s idall el) e padi i ¢ sl Cl gl g e s) 505k
e Taias ST i al Ll S 5all e Al Aalad) s SE a5 e g jlanall (unigall
g Al) JCEl ld bl el A g e A aiaail) il g saaad) o) sal)
8 38 Chiaa (Kl g cagudil e ynaaill G lanal) (pwtigal) Bacle 8 Jadd L 5l 53S0
Alae adly ddia g S a5l apanaill s ol il apaadll Jlaa) & Ladie (5 jlexall Jlall
i g Lo a8 Al)) el (lasanail) 2l sl e L oo Y1 A g3
by paa o g3 G 33880 038 a5 lemall 5 B 1 (g jlenal) ppanaill Jlae
25l iy AV 2535) Ad g ymay Adlide Ol puaiay 208) 2w Cpme el A
Loty o ol (e YY) Ly 5 Ol 2 631 g)1 581 (g Ao sama 5 <l paciall
Gt Gash e dldg o ylaidga s e il Juadl sl e (g lerall (eaigal) 3ac Lol
L2 l) g JSLE) Ja

ara—ai Ol O saing Al Gnaasaall (o a8l e HESH gl b sl 13 2g S N
Silaraaill (o CaVY) (e duiga s 3 JST) 6K) ey Taua A5 jae Jilay A 5l by
Liad (15 ol yad (52 (5 lanall unigal) 50 o il Lo ual Ay paal) e
Leie CaYY) (e o) e Ao game daail LAY) A aia Al e 48 a3 i)

oo Laadl aed il g - Al clEDladl 5 e sl el puially AV 035 &5 6l 13l (oY)
ISl a5 Y1 et o oS 3 s sa DA (g - S 3 (5 jland) 44 5k
i) 555 i) 13 el e 5 5Me 5 SO A 55 e Yo s Ayt Al ke
il Tl) o jlemall (g abeii o A (S Cumy V) aledll 5 el oY) o\SA
J—anll Ll L s 5o (g3 a3l Jia Sl e 5508 065 o) LeiSay 431) 3
8200 S s
Oe 2l ae abaal) (e apaall 3 Talas elih V1 olSAN 3ia ¢ alal) cud gl b
S ekl L) i 0 A8 el 0 LS Lgaladd WY) sl Aalad Aalial il 50y

Calise 8 ile (S5 Lahadind 5 L) asaall Jsaa s Sy 1Ll ST a el
L"\tol.\i—n} AI L“\toJ)Lw cA k._\‘)lér\“ (JA MM‘ C'_u‘);i G%JLAMM by “\\'\é“ ‘; L“\l&::}a"}“

.

Opmdigall 330 (a3 A2l) i) 138) seda (il 5 OV cBpe il WML
3 Sl o g Ala ja Gisaclwall jsall a8 ila aladt Ul |l cpAll G jlesall
asl) il LS @l) Lag cdabadldl aia gy oy) gaail) el e Sliad iy jlendll
z3li Ay gl elih AV elSA 23t addi i cclld aay g ilaill y gpadll o) gl
2385 L) 4800 g3 sl il NERF g3l 5l cvoxels i epoint clouds Jic
Gl e 2y 3al) soad @lld e 3 0le 5y kil A48 4 jlera zilai Al 55 Y 3Ll
o 5 einaill 5 ool gally il 5 cdapladdll Ve 3 HISEI Bl gl e clipladl) e

araaill 8 ML s AT aladind 4l 50 JIA (e 8Ll ALY e U Canall 138 Cangy
padtsall (5 jlasmall (o sluDl dianie dul 5o callaty 13 5 Sl) O g sl (5 slanal)
205 L A0V1 2085 (pamty e s 35085 Ol e) 4lS ja g aDlalae dea i Jaf (0
Coags celld Y A8l s syl el mitall 5 (5 lanall utigall (o yund aseloa
Caaniay 43l e ad) Sl Sae il Y 15 Gkl 138 6 Saa il pladid laa)) G
8 AV aled (e Adlide clipdad a0d (53 5 5 jlerall apenaill & LY 13) L
oo Glaste o Jsanll ML zilai o apaall Siiag Saaill of LS dadaill Llee

s S clipdaill 3 s) il

fa) Aial) 2

G aalay 4l V) (5 lenall el dulee TS50 5 T nan (52 Lagam (sl 5ill e alll)
Lpapanaill Jiladl g Jsladl YT a8 Aglaad) 028 &) SLAS) Ja je 3 Lia uad 5 JSLEA)
2l Lgle dlae¥l S Y ol e el dllin dan aay . o shaill Lein (e JLBaY) (S Jll
s ecle Al G clEdlall ol A1 Ay o jlanall J G coliad) 0l 8 Jia 3 fise baae Jalse e

A lenall ALSY (3 685 s 5 Al 5 Allaadl (5 lanall Dl s

Jihaall bl i i 5 o] i g (g KU (Sl (o lanall e S O (55 2l 136
okl s oy) cdlalaal) ¢ S LS 43l el 28l aYl La yshai 5 Lgiul o &5 3l sal)
Ll) Al sl & ST el g el g s Al HIEY))) WS (ol sl apanall

Lo (383 1 5 o) il 585 bt Leaadiy aat ol il sleall (g HESHAIY) Ui el
35l ISEY) (5 saia 8 Al 5 (o jlerall Apaad 5 e Le () ALY & 5 il 4l
bl sae Qi el) jall 3as) 8 Lede Alaie V) e g lerall Sty s il (paad gpliiud s

L e SHaae e Yy Juadl Apapanal Ay S 3 5 5] sl

Z3ill e 3 3al) aranai in el Cilels (e SN 380 i) el 8 (5 pxiall i1)
o383 a3 38 (56 8 sl WY1 O e U e gl (e S (s s el 4 5Y)
. Jally

N - s

0o (Slaranatll) 1) s Vg5) Apad il 3l (oamy aa g5 Bl LAl 8 AT (e Baliiud
Jia @l pa g, puzalall) 8 ad 5 Blas e () g lanal) Lpadding 5 bl g cilaladall
Y sl i) Al Adda g s g o)y Ay dalaiall Wil (e aell ae ikl o3a

Lolerae i Lo el (Ja Ak

el g Caiatll it (any (y yad o carenalll Al o algall (iany Dl (i s gl
ol gl s o)) WSy W elld mas Iy) La g ey jlamall b sial il 5 o) sl il ol iill
avanail) Jia 5530 al ye (35 i Lgaladiind Sy DY) alad alas JOA (e 4y jlare z3las LY

M‘ﬁ#}&f‘kﬂ\

el a8 das (pediie o gl o iy AV alei s el o) elSA Jlae o o a1 e
38 paudll G jlamal) (gl il e L kil sale) () Aalay Glaall 13 (8 aaalaal) (1
S sk U (3 a3 algal) Jnelii 3 ALY

Gl dua .3

OSars gasanal) SEl Al po b Leasii (Say dilae yiiad (5 lenall LS 48l
e M a5 peadi Clelee) e lamall (sl il jiag A g jia ciplenll 028 dan i
Calaall 038 s jd Lo 13) 5 Alendl 038 (g lasall Gudigall (3] 8 Cuaay Ll 4y
OGS AR 5 Ao o 55 il a5 o AU (S AW) s IS il 5 B Al 0
alei O A (e ey N AVl .)l s Al 8 g aaall 5l e JISS
Ll g sasdb Al a STy dds ST iy axd o (e g (5 _lerall Gudigal) LA G
Oe uia ge A sa o oda bl Y (Sary N g 5 Bl 8 sl AUl Al
AV - Ayl e el 4y jlenall aaaladl)

Gaatl A N Calaa¥) 4

(Sl Aalaiall 431y g A Alray b pualeall 5 landl) ke avw il Canill 138 Caagy

AV ety e lilaia) (SA) Cals 5 ae ddlide Cilapesal 2 5l gl 6ill aranaill aladiul
@ 5 alailly Al Lpagaaill YY) Iy Lo aamaal) laday il) el e aleiil
ATl 4 iy 38 Ll Al Apapanial THISEH Al gy Laa (g lanall Apaad & 48 A1V 23

el 3yl 2y L)
Gl Lo il ilaal) .5

il Ao al) Calaat) IR Cpe Canall 138 (e At 5l Calaal) (st S

A Ll 5 L0 (g jlanal) apanaill dlee Cay 25 @

.

sl I3 i Ly s amal Sl 6 et) e) ey i e
Lﬁﬁl"“‘)s‘ é}m]\} 6u4.\.!‘2“ LB}M\ c.l}my‘

bl o jlerall sl Jdad @
bzl 5 jlandl Cslud jualic 5l e apu i @

araatll bl 8 Lgaladinl Sy lalae) (5 larall Gslul) Cila jin dan 5 @
Adaal) gad 5l

Gk e Aol g 23l B8 Jal (e G il) (s G any Gadai @
e Al

3ol W) iS55 Lagl o8 agdl A1V alaiy elila oVl oISA) il Qs @
Saghe

il ~a Q‘J <l ala xA.;C ‘;‘JL“H:A—W‘ =Sg'i <l J'\E"\ (,\\ A | o
bzl 5 ol LAl 5 & 5 dall/ g lanall (uigall il cabl/cl jla/c b/ aihay

duaal) 3dai L6

(S s elilaa¥) clSA 2 3ai de sana (po Tapand A1 alad 2 3lad clialind sad 4 ge Condl 12
L aleti Al UL il gane () ol l Gl pead o Caias of Laws of AV alas 3l
Lzl plie o oly 4 el e bl o arentl) adaind (815 Bagas Gliby 18 Y (68 Sl
lSAl 3l (o pn gl Al 3l (5 g (D s oyl gl Y adll)

s an e clinbatll g amlad) o ClEERY] Jilad g agdl elilaiaY)

Jilas ol M T Sie Lasenad " o liie) (S kil (e g il 138 Aais o Ly ey) AdLaYl
Lo ki () S N A8 e e sles e Jsaandl (5)5 3 g2l 51l araaill ol Jae 488
Al AY) alas Lokl

c‘;_ﬂh} ‘):14).\1\ dy\;wé)w\ (:.\A_.a.\l\:tam °L"‘r"3:’u\-‘gr‘4}:3 Yy (»Jﬂéc d.uﬂ}
gt il Saa sl Ay pa 8581 pd s S e ALLG Al 3 6l a) sad Ll 4nge Candl (8
A aladi s Sae il OO e Lgindal o 5 5y ales Db el 3 o il 3gly a1 A5
rhinoceros 3d @—l—,——Grasshopper 3d G——rbi & C# in—w,]

RhinoCommon API.alasiul

N - s

600 — O lalrs af o s 5iad by Ao sana Ao Jgandl o 5V 5 shaall o3 (e dagill
2555 Al bl dalise Jlaaly Aliall culd YAl (any) 1ol 3 yalaall Sall 14l 23 5
Gelld g cgm ¥ dlad s e o) g)b S L 1D Al 5 e sia 10005 200 O
O G el s elill dlae Jaguiil " ealaa " bl <13 G 5K Sl <Al 285 gy L)
AV Al aUad Cy i g Sldl) S llas e Al (e 8 L G A8e Alag) s i) &)
b (L) Dl 18 ga o 5y Al e aadt ol y el Jaad e giall S (IS 13 laal

RAREA

o IS e lih (V) A anll IS G 5 AV alad e)) 53 (e Adlide Sl) 53 < Al S
G s Ol yial) (lany Caiatl ol @l il) addy il) coviad i) laai¥ g Cipiail) alea
sl Caaa

o) e 7

i g A 3adl Calaa ¥ 5 de alal) Cangll 3aial Canl) 138 8 43llike Cilingie) a3y
AU Clagiall o3

araaill & AN ey el oW1 oS lalaai ol Jias
& el

3

Lilae o ylas

LSl o L Sl (SO el ol el G|
| Dal Al e polall Al yo b J2 (g jlenal gl - kel |

Cal) Ja -1
Al sl 5 430 el a3 58 (A dagian ol JSa Lasi
AV L i) e g baral) asaail) las 1 J oY) ¢ 5ad)

Sl 5 (g jlanall ppaaill dleny Ay aalial Slas Gl (e Y e el iy
A HAT 8 € IS A1 e sie D o) i sad G (5 jbencdl

cala il G gaicall af 3 guY) G griall (o jlarad | waaill SEil 1S5 Y) L

il HSEl & sefay IS Gl Ja asebay pSEl Ciy et i Y QL)
S 5 anaailly Alaiall ol a5 aremail) £ 5l (e Al LS (g lanal)
asanadll Jlaal Lo Ol cilagindll (o je alyy gabe N5 Gl s 25l (§ saiall Jia
pra—atll dleal J5Y) QL ey s lamall L anl A8S (i ge 5 (5 jlanal)
Ln sl i€l 5 = 5 a5 sl Alaall agl) il 5 Lal ALYl L sl (mn 5 (5 jlanal

RSPV RRYE PN

5 ylaed] 6 &) Ol 680 aniw i SU L)

255 o) 5l LA Saai s Al ad g (5 lanall (psSEl) Cay pad oy L) 18 b
Cme b el s s B) O g G2 (58 IS 15 S)
5_palzall B jleadl 35 Siall pualiall g Jalaill] Gany Jala

S e lil oY) IS AT Y 50clES | v snl) el 8 ua s A L)
LSl J o)

oy el LS Al A0Sy lal) el pSEl Cay a2y A L)
A5 el 3y L 48)8l 5 mgdll 138 gLl e o Al Clallaadll (axy

N - s

A28l 5 il sheaS A jlanal) il Sl & & 8 el S0y 5SSl J g sl
(5 enall a3 5 Labaall 5 cilaa 31 51

8 Ay odall Al g s e RSy el el L) T s ol
£ s Ao o) bl e Romload) 5 sl 2yl eyl I e -
i) Rl a5 il B ol iy 01 A 0 (ks
Aaleal)

asa—all) dules aa Sl YY) clSl) g Y alaig juayil) el - SU) ¢ 5ad)
(B8 sl b olkaY) s\SH) aladind JS) (o lexal

3 landl & a1 AE0E dadail) & Sueill ladi) (e e AU e 3l S
Lglalasin) 5 dalisall AY) ales dakail elihiaVl o 1SAl &1 6 5 anlia & 5l Ayl
7 b LS o slanall JoS il (5 5S35 (5 slamal) apa—aaill Jlaa 3 Alaiaall 5 Al
Aadaiy JSill J g gl Aglae 3 ATV Al i aladi WY lee IS G ¢ 5all

A lerall iy <3

5 laxd) Jlas (5 UV alesy e libasY) (S sl L)

ALaYy alal) 13a 3L &)5 AV alai g e lihaia¥) olSA) iy o &y caal)l Ll &
Cars Y alad Ly ety A bl G 3ok s a—adil) SIS ¢ Y
e alail o1l il (3 5l Gans 7 s Gl g Jlaall 3¢ Gadai€ el 53
LA dadal claladi il e aaall (e ah L) 1aa L LS dliad) ATV
L g Lgin 43l 5 8 jlanl) (8 Al il e 5 dpad i) e lilaial)

Llee 8 Ayl gil) elilhaVl oS3 dadail el 508 8 1SS Lol ol 5l) = 5k
Claladt V) oy il J by Al Al e (e o slaal (o jleral) apanaill
(R) e 5 A i) elihua¥) olSA dakil (e cpe sl AT da i)

i Lanall & jial Ll

ot LS) 138 A Lg Aeadtwual) (3 5kl 5 o) sall 5 4 paill (3lai 5 AIS i) ayan oy
Jslas oAt 4S5 4 el caad isall slaa¥) (O 3 el a3 A4S & 55
z o) JSagd) > o SIS Akl ATV alas dakail 8 Lgaladd WY daiDle iy
bl Al a5 bt Q5 bl Jglan yaiand s a1 S 73 salll e 5y fay o3
alad L aa il aladd WU Al (5 ey W Jagad s Lebaadl Ly cilidlall alay
padind iy g Aadail) (g ya (A a2aiu il ULl 4y AaS 58 iy o3 A1)

Adtiaall dadail) ¢ el 48k (e JE LAY

.

iliil] g Y aled sy 2 o) QL)
Lgany e Lgiti jlia 5 Aaliaall dadail) alas il Jolat s (i ye ay 5a¥) L) b
Ledlaal iy) dabidall o laleally)mu‘«_mn AR) A i 5 Ay Q5)
6 Jarall J (e ale Joanill Sy a1 (D 3 gai e Jsmall e jill 23 gl

o) Adsliay QU et g Al g day s A8y Hlay

Sla gil) 9 geilidl)
oAy e gl Al jally Alaiall EUl) (e Q5 ol sV 5 el 3l s e sl
L..EJLAMM ?5““—“‘3“ EIPYS ‘f i ?L‘:'J ‘5:_&:_;43.7\ LS4l e\qii_u\J IR | c\)i)!\
Cam aall g Y S 8 Leas i Lelae o il A aill Vs a

S O L) Ry Anil) ohat LSl Al iy JISEY a1

