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Abstract 

 

The rapid advancements in machine learning (ML) have led to numerous 

practical applications across various fields. Architects and researchers 

have also begun exploring the potential of ML to enhance their work. 

However, existing applications often fail to provide precise and readily 

usable architectural models within the standard design software used by 

architects. To address this challenge, we present a novel approach that 

leverages coding geometry in an algorithmic process to translate 

architectural parameters into machine-understandable data types, such as 

doubles, integers, and strings. The suggested pipeline starts from modeling 

a parametric villa on Rhinoceros3d with C# code, creating a large dataset 

by changing the parameters, and then training ML models with the dataset. 

The parametric model generated encompasses a wide range of interrelated 

parameters, including wall dimensions, floor heights, recesses dimensions, 

window characteristics, building area, setbacks, and land dimensions. The 

entire model is implemented using RhinoCommon API and C# 

programming language. The resulting parametric model facilitates 

automatic storage of data in a CSV file formatted to be used directly in 

ML. We tested different ML algorithms in this research on four datasets 

created from the model. A dataset to predict parameters related to the areas, 

one to predict parameters related to other form parameters, one to predict 

windows’ existence in each wall, and another to predict windows’ widths. 

The datasets require both regression and classification algorithms to 

predict all the parameters. Impressive results are yielded with ensemble 

learning methods with all datasets. Regression tasks could reach an R2 

score as high as 0.97, 0.79, and 0.99 for areas, other parameters, and 

windows’ widths datasets and 98% accuracy in the windows’ existence 

classification task. All results are computed on the test dataset. These 

findings highlight the efficacy of this approach in generating accurate 

architectural predictions through ML techniques. 
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I. Overview 

Architectural design methods commonly employed by architects are often 

regarded as vague and difficult to formalize. Among these is the "black 

box" design approach, where the generation of design concepts occurs 

solely in the architect's mind without external articulation. This approach 

aligns with the desire of many architects to express individuality, resulting 

in the development of a personal architectural language or style. However, 

this individual expression can lead to a degree of repetitiveness, as 

architects often reproduce similar forms that reflect their personal design 

philosophies (Schön, 1984). Furthermore, the design process itself is 

inherently non-linear. It follows a cyclic, iterative pattern in which an 

initial concept undergoes continuous development and refinement through 

the architect's critical analysis at each stage of the design process. This 

iterative nature complicates the explanation and formal documentation of 

how the design process functions in practice (Lawson, 2006). 

The advent of the digital era has had a profound impact on various fields, 

including architecture. Initially, architectural design was conceptualized 

through manual sketches on paper. Today, however, architects rely on a 

wide range of digital tools and software to translate increasingly complex 

ideas, which have been made possible by the development of new 

materials and fabrication techniques. These advancements have facilitated 

the construction of free-form buildings, once difficult to realize through 

traditional methods (Kolarevic, 2003). The digital revolution did not stop 

at merely aiding architects in expressing their ideas; it brought about a 

significant paradigm shift with the introduction of generative design. In 

generative design, software generates numerous design alternatives based 

on input variables, constraints, and algorithms. This allows the architect to 

explore a vast array of potential solutions, as opposed to manually 

developing only a few alternatives (Mitchell, 2005). 

This shift has prompted critical debate within the architectural community. 

Some argue that manually generating a small number of well-considered 

design alternatives is more efficient and professional than sifting through 

thousands of machine-generated options, many of which may lack 
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coherence or thorough analysis (Oxman, 2017). Moreover, the sheer 

volume of alternatives produced through generative design can overwhelm 

architects during the decision-making phase, delaying the selection of the 

optimal design solution (Duarte, 2001). 

However, what if machines were able to produce fewer, but more refined, 

alternatives? By incorporating architect-specific variables, constraints, and 

algorithms—reflecting the architect’s design logic—it might be possible to 

generate fewer, but well-studied, design solutions. Additionally, applying 

artificial intelligence (AI) and machine learning (ML) technologies could 

enable the machine to "learn" from the architect’s preferences, decisions, 

and design style, allowing it to generate outcomes that align more closely 

with the architect’s intentions (Gero & Kannengiesser, 2014). 

AI has seen rapid advancements across many industries, with an increasing 

number of tools becoming publicly accessible. In the field of architecture, 

generative AI applications are being explored for a range of tasks, from 

conceptual design and visualization to automatic generation of plans 

(Burry, 2016). However, generative AI technologies like point-clouds, 

voxels, or NeRF models, while effective for visual outputs, often fail to 

produce architectural models that are clean and developable. There are 

ongoing experiments with non-generative AI applications for tasks such as 

material prediction, classification, and urban planning (Peters, 2013). 

This research explores the potential of AI and ML in architectural design, 

specifically in form-finding and form-making processes. A critical aspect 

of this investigation is the translation of architectural style and vocabulary 

into quantifiable variables and constraints that can be processed by AI to 

generate designs that not only meet technical requirements but also align 

with the architect’s creative vision. Moreover, the integration of coding and 

algorithms in this framework is analyzed, as it provides a more structured 

approach to utilizing ML in the design process. Several ML models are 

tested and evaluated to determine their suitability for these applications, 

contributing insights into the development of AI-assisted design 

frameworks. 
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II. Problem Definition 

Generative design, as beneficial as it might seem, has some shortcomings, 

especially in the decision-making phase. In this process, thousands of 

variations are produced so that the architect could choose a suitable design 

to develop. However, many of these variations might not be reliable nor 

logical depending on many aspects like building codes, architectural style, 

human behavior, spaces relations, or even architects’ aesthetic sense and 

artistic preferences regarding form making. In this manner, architects 

might consume a lot of time trying to sort out the best generated ideas for 

further studies and design development. In addition, the more the architect 

provides the program with constraints and variables, the more ideas the 

program will generate leading to more time consumption in the decision-

making phase. 

On the other hand, the machine needs a lot of information to sort out the 

best alternatives and ignore the ones which do not imply the architect’s 

character which shapes his own black box of ideas, id Est, optimizes the 

results and so that has a role in the decision-making process leading to a 

smaller number of variations with a better design quality rather than a 

larger quantity. 

The time spent designing a building takes a lot of manhours. Even 

designing more prototypes of the building will still take a lot of time 

although the style may be already determined.  

To utilize AI in time saving, some generative AI models which generates 

photos (designs?) of plans and perspectives is present and is being used 

extensively by architects nowadays. However, such applications come 

with many issues regarding authenticity, creativity, and even functionality 

of the result which we argue should not be even considered an architectural 

product. 

Finally, to automate some tasks in the design phase, some classification 

and regression applications have been experimented to predict or classify 

materials, architectural parameters, etc. However, we could not trace any 

trials to create architectural form models through ML which could be 
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directly used in other phases such as schematic design and design 

development. 

Although AI and ML field is considered highly developed today, many 

concepts in this field need to be revisited by architects to harness the power 

within the machine in automating time-consuming tasks. 

III. Research Aim 

This research aims at utilizing ML in decision-making so that the machine 

could learn from previous decisions and lower down the probabilities of 

the resulting architectural forms by taking on the architect’s character 

resulting in models and alternatives close to what the architect could design 

with a normal black box design approach. In this sense, the idea of getting 

the machine to decide values of architectural parameters which forms a 

building model through a framework which utilizes ML is the main aim. 

The aim of this research could be achieved through the following 

objectives: 

• Defining the architectural design process, and architectural design 

thinking. 

• Defining metaphors in architectural thinking including black box, 

glass box, and gray box. 

• Investigating and mapping the vocabulary and elements of 

contemporary architecture style. 

• Applying certain relations between the parameters to form 

generative models through coding. 

• Investigating AI and ML applications to understand their 

capabilities and decide how to benefit from them. 

• Defining a framework for decision-making using ML. 

• Driving a methodology framework for utilizing ML to generate 

designs that are relevant to the architect’s/project’s patterns and 

previous choices and preferences took by the architect in this 

regard. 
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IV. Research Hypothesis 

An architect’s way of thinking is considered a process that could be 

traceable in the conception thinking phase (grey box). This process 

coupled with the vocabulary of an architectural style could be translated 

into parameters that shall combine to produce the result of what occurs in 

the mind of the architect in this very process. If these parameters are well 

studied and well introduced to the machine through ‘coding’, the machine 

could provide relevant and precise generative designs that could speed up 

decision-making. In addition, the machine could learn from the architect’s 

choices and thus give more precise and more relevant designs either in the 

next phase or even the next project. This ML mechanism could take 

architecture to a new era of human-machine interactive architectural 

conceptualization. 

V. Literature Review 

This review briefly shows the previous work and research done 

considering architectural design methods, contemporary architecture, 

generative design, algorithmic design, and applying AI in architecture. The 

review includes investigations about different design methods including 

the black box and the glass box, explanation of architectural design 

literature, explorations in contemporary architecture motifs and finding its 

patterns, generative design, and algorithmic design as design methods with 

its pros and cons, and different applications and terminology of AI and ML 

in architecture field. 

- Previous literature regarding architectural design methods: 

Since the Greeks, propositional knowledge which asks 

epistemological questions about the evidence of asserted claims 

and truth, or falsity has been the focus of western philosophical 

studies. Design problems which are hard to define according to 

Lawson (1980) relate to various epistemological questions and 

while designers search for answers in the design process, they 

contribute to the interpretation of a design problem. In this process, 

designers could modify the rules when processing the information 
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leading to a paradigmatic revolution where either a new entity 

arises, or an entire system falls (Rittel, 1972). 

Architectural design has seen many attempts to be defined. It is 

defined in terms of certain fields of knowledge as Rowe’s thoughts 

of it as being located in an ambivalent position between technical 

science and forms of fine art (Rowe, 1987). Vitruvius defined 

design as providing three main factors which are firmness, 

commodity, and delight. However, the accepted theory of 

successful designs evaluation is more likely based on Vitruvius’ 

three factors, and this is seen in contemporary linguistic studies 

using terms which are used by Vitruvius like semantic, pragmatic, 

and syntactic.  

Architectural design as defined above has five important 

components that designers should consider throughout design 

process phases. These components are aesthetics, culture, 

environment, structure and materials, and economics and social 

influence. Also, it has methods which include six approaches: 

“black box”, “glass box”, problem structure, control, observation, 

and evolution (Broadbent, 1969). Studying these methods is 

important to recapture the activities involved with design decision-

making so that architects could follow defined procedures from 

formulating a program to achieving an effective and efficient final 

solution. 

In the “black box” approach, mystery and creativity are the two 

main characteristics of the design process. The process usually 

occurs in the designer’s mind therefore it is hard to analyze the 

design. However, techniques like brainstorming and applying 

synetics could help to visualize the process itself. 

On the other hand, the “glass box” approach, design is analyzed 

based on the logical process and decision sequence of the design. 

The process in this case is a sequential events entity including 

identification, analysis, synthesis, and evaluation. According to 

Broadbent, (1969), this approach could be applied through some 



 

xxi 

 

Introduction  

methods including operational research, critical path, systems 

analysis, set theory, logical model, “feed-forward”, and design 

territory map. Also, in this approach, two distinct design structures 

are observed which are a sequential process such as the sequential 

structure of the design process with its twelve major chronological 

phases  included in the handbook from the Royal Institute of British 

Architects (RIBA) and an iterative/cyclic process where a feedback 

loop before the completion of the project is attached to different 

phases as in Levin’s eleven stages in the decision sequence. This 

approach has seen criticism because it focuses on art development 

rather than concerning for actual buildings’ practical aspects. 

The problem structure method is composed of many variations 

including morphological analysis, inter-connected decision areas, 

decomposition analysis and relational theory. According to 

Aismow (1962), the design process is divided into seven phases: 

feasibility study, preliminary, detailed design, planning for 

production, consumption, and retirement. In the preliminary 

design, a best design is identified from a number of alternatives. 

However, an evolution of design methods appeared after Popper’s 

systems approach to problem solving as well as his philosophy of 

science applying the deductive method of testing. Therefore, 

architectural design methods could be described as an iterative 

process based on trial-and-error which relies on experience, 

knowledge, and intuition. And so, According to Rzevski, 1980, 

design process has four features: investigative, creative, rational, 

and decision-making process. This problem-solving framework 

involves four steps which are problem understanding, tentative 

solution generation, iterative testing and refining of details, and 

finally, design solution outputting. This solution suggests new 

design problems in the future. 
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- Previous literature regarding generative design and algorithmic 

design: 

Dorst, K., 2003, explains how design problems in architecture are 

open-ended, ill-structured, and unique and how solving such 

problems requires problem-specific and experimental 

methodology. In this manner, architects are not allowed to solely 

rely on predefined methodologies nor approved solutions to similar 

problems. Architectural problems are complex and have a wide 

range of subconscious factors on various levels that range from 

building codes to aesthetic aspects. The complexity of such 

problems requires the reasoning, guessing, and intuitive decision-

making of an architect. 

In recent years, generative design has evolved when form-finding 

techniques were introduced through computational tools. This 

approach revolutionized architectural design and production where 

new design paths were offered to architects favoring 

computationally generated complexities over predictable 

relationships between form and presentation. Thus, the emphasis 

was shifted from “form making” to “form finding” (Kolarevic, 

2003). 

According to Agkathidis, A., 2015, generative design could be 

described as a method by which the form is generated based on 

rules or algorithms which are often derived from computational 

tools as processing and scripting platforms. Being influenced by 

Jacques Derrida’s deconstruction theory, Peter Eisenman applied 

design techniques such as fractals, scaling, overlay, and 

superposition in relation to rules of order and thus designed several 

projects on this basis. This could be thought of as the first 

contemporary generative design attempt before the advent of 

digital architecture and various software which offered new 

possibilities. 

Agakathidis, A., 2015, briefs generative design techniques as:  
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1- continuous surface (soft mesh, double-curved shells, and 

hyperboloids) 

2- Modularity and accumulation (interlocking units and irregular 

units) 

3- Deformation and subtraction (twisted block and porous space) 

4- Algorithmic patterns (tessellated planes and Voronoi surface) 

5- Triangulation (3D Penrose pattern and faceted loft). 

Generative design is usually criticized for disconnecting the output 

from its context and users. This could lead to decreasing spatial 

quality and integration of the building within the urban 

environment. In addition, it is criticized for disconnecting the 

architect from drafting techniques and physical modelling which 

once formed the essential foundations of architectural education, 

risking the loss of material effects and properties. 

Generative algorithms are defined as parametric ways that could 

handle geometry in design problems (Khabazi, 2012). Using this 

type of algorithms, designers could utilize a lot of possibilities 

regarding geometric computing and also manage large amounts of 

data and calculations easier than conventional geometry methods. 

This approach is not only limited to predetermined experiments but 

rather serves the exploration of unlimited potentials. (Gunagama, 

2017). 

Maldonado, 2014, describes an algorithm as a cooking recipe with 

a step-by-step guide. According to this description, an algorithm in 

architecture requires limitations in design which are analogous to 

the variables and parameters in a cooking recipe. Therefore, 

variables and parameters are necessary for an algorithm system. In 

this context, variables are entities which change in the system while 

the parameters are entities that are used to unify or connect various 

variables of an equation (Gunagama, 2017). Gunagama concludes 

that despite of the various alternatives that could be developed 

through generative design, the breadth of the definition of optimal 
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design as well as the lack of ‘the ability to translate verbal ideas to 

mathematical’ could lead to limitation in the resulting alternatives. 

Also, according to Singh, V., 2012, adopting generative design 

(GD) systems in architecture is meant to support human designers 

through computational capabilities as well as automate parts of the 

design process. The commonly used generative design techniques 

according to him are shape grammars, L-systems, cellular 

automata, genetic algorithms, and swarm intelligence. Also, most 

of the existing generative design systems are derived from one of 

these techniques. 

In addition, Krause, J., 2003, experienced the generative design 

process in architecture, and described it as a teaching process where 

the architect is a teacher, and the computer is the student. Krause 

claimed that a person cannot really understand something until he 

teaches it to a computer. He described the process steps as follows: 

1- Start with a goal. 

2- Describe consistencies. 

3- Formalize code parts. 

4- Set range potential. 

5- Evaluate output. 

6- Add complexity. 

7- Increase tectonic potential. 

8- Iterate. 

- Previous literature regarding contemporary architecture: 

In 1929 Hugh Ferriss published his book The Metropolis of 

Tomorrow. He presented designs of various functions imagining 

the city of the future. In one of his drawings, Night in the Science 

Zone, he presented a skyscraper without any details rising from 

amidst the houses surrounding it. He included a poem to this 

drawing: “Buildings like crystals. Walls of transparent glass. 
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Ordinary glass hollow bricks covering the steel grid. Without 

Gothic art: without acanthus leaves: without memories of the plant 

world. The mineral kingdom. Glittering stalagmites. Forms as cold 

as ice. Mathematics. Night in the Science Zone.” These words 

formed later the manifesto of the future generations of 

expressionist architects. 

According to Kozlowski, 2013, the advent of contemporary 

expressionism in architecture has seen light through Zaha Hadid’s 

design of the Peak Hong Kong Club in 1983. All of the trends like 

cubism, futurism, formism, etc. are considered the languages of 

‘expressionism’. 

Hohenadel, K., 2020, answers the question “what is contemporary 

architecture?” as the current style of architecture where building 

built according to current trends in a time would be considered 

contemporary architecture. The author claims that the 

characteristics and elements of contemporary architecture include 

curved lines, rounded forms, unconventional volumes, asymmetry, 

free-form shapes, open floor plans, large windows, green roofs, 

living walls, integration into the surrounding landscape, integrated 

smart technologies, and integrated customizable LED lighting. In 

addition, flat roofs, geometric simplicity, open spaces, 

environmental considerations, and volumes compositions could be 

considered motifs of the contemporary architecture. 

Reffat, R., 2008, investigated patterns of contemporary architecture 

in Saudi Arabia using data mining (DM) techniques. Reffat 

suggests that every place gains its character by certain patterns of 

events which are not necessarily human events. The elements of 

the building (walls, windows, rooms, doors, etc.) repeat a lot, but 

they vary every time they occur. Hence, the fact that the elements 

themselves vary says that they are not the repeating events. The 

events in this case could be the patterns of relationships between 

the elements. Each of these patterns is a three-part rule expressing 

the relation between context, problem, and solution. The author 
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claimed that traditional methods of data analysis including 

spreadsheets and ad-hoc queries were capable of only creating 

informative reports from data and could not analyse the contents of 

these reports and thus not adequate. So, he used data mining which 

is a process which discovers patterns and relationships in data 

which may could be used to make valid predictions through a 

variety of data analysis tools. Data mining functions were 

performed including summarization, association, classification, 

prediction, and clustering. The studied building characteristics 

regarding form and facades were the organization of the building 

(centralized, linear, radial, cluster, or grid), building orientation, 

building height, main entry façade direction, fenestration pattern, 

shading devices, glazing, building envelope, external finishes, and 

façade style. A lot of characteristics were not studied including the 

dimensions of glazing, repetitive motifs, and form generation 

variables. The data mining process includes data pre-processing 

where noisy and incomplete data are removed, data transformation 

where data is stored in various tables, and data warehousing, which 

is the process of visioning, planning, building, using, managing, 

maintaining, and enhancing data bases. Data could be stored in 

WEKA’s data warehouse which is composed of ML algorithms for 

solving real-world data mining problems. Reffat used WEKA and 

IBM intelligent miners for mining the data. 

- Previous literature regarding AI and ML: 

On the other hand, the advent of AI in the world has affected a lot 

of fields including architecture. Applying AI in the architectural 

discipline has been investigated in many research and experiments 

recently. 

Chaillou, S., 2019, studied the application of AI to floor plans 

generation and analysis. The goal took the usual sequence of AI 

applications in the architectural field which has 3 steps: generation, 

classification, and presentation where users can browse through the 

generated design alternatives. However, their study dealt with the 
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design process as a sequential process with successive design steps 

which contradicts with the cyclical nature of the design process 

where a designer thinks, analyses, develops, and analyses again 

until a satisfying and problem-solving solution appears. The 

researcher used two of AI’s main fields of investigation in their 

study: analytics and generative adversarial neural networks (GAN). 

The GANs -as any machine-learning model- could learn 

statistically significant phenomena among data presented to them. 

However, their structure is made of two key models which are the 

Generator and the Discriminator. GANs could generate a loop 

between the two models to refine their relevant images generation 

ability. The Discriminator works to recognize images from a set of 

data. On the other hand, the Generator works in creating images 

which resemble images from the same dataset. In this study, the 

machine took 250 iterations to be able to build some sort of 

intuition for itself after being trained for a day and a half. Before 

those iterations, the initial attempts were imprecise. In order to 

qualify the results, 6 aspects of the floor plan design were used as 

metrics including footprint and orientation. Each metric is 

translated to numbers, colours, or matrices to establish a proper 

communication with the computer about its characteristics and 

shape. From this study, the qualifying or classification phase is a 

crucial phase in AI applications because the finer the metrics are 

provided, the better and higher will the quality of the generated 

options be. 

Also, Zheng, H., 2018, and Martinez, N., 2017, investigated GANs 

as design assistants where they studied the idea of creating a loop 

between the designer and the machine to refine the design process. 

According to Malaeb, J., and Ma, W., 2019, the developed 

understanding of how human brain works led to changes in the 

concept of AI where a machine focuses on mapping human 

behavior rather than only carrying out complex calculations and 

working as a memory. AI mostly works with deep learning and 

natural language processing technologies. By processing large 
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amounts of data and classifying it based on patterns recognition, 

machines could be trained to accomplish specific tasks. The 

authors mention that various attempts to introduce AI to the 

architectural field exist. However, most of the trials are partially 

applying AI because they require human intervention and 

monitoring to do a major part of the work. Again, the authors 

confirm a main concern with AI where data inaccuracies always 

reflect on the results. That is why limitations of AI in creative fields 

are obvious where a machine learns from data. In addition, the 

authors tackled deep learning and explained that it involves feeding 

the machine with a lot of data that could help making decisions 

about other data. The data is fed through neural networks which 

could extract numerical values of the data which pass through them 

and then classify the data according to the answers received. 

Also, Bishop, 2006, defines ML as a subset of AI. It is “the 

scientific study of algorithms and statistical models that computer 

systems use to perform a specific task without using explicit 

instructions, relying on patterns and inference instead.” A 

mathematical model based on sample data known as “training data” 

is built by ML algorithms. This model helps to make predictions or 

decisions without being explicitly programmed to perform the task. 

Last but not least, As, I., et. al., 2018, tackled the idea of applying 

deep neural network (DNN) to extract design into essential 

building blocks based on functional performance criteria and then 

recombining them into new designs. The idea is based on a 

historical event from the 16th century in Spain where the Italian 

architect Giacomo Barozzi da Vignola was hired by the king Philip 

II to initiate a competition to design a monastery in Madrid. 22 

architects submitted their entries, but Vignola composed a new 

design from the 22 submitted designs by collaging bits and pieces 

instead of choosing a winning project. However, the king was 

impressed although the idea does not seem to be ethical in today’s 

profession’s morals. The authors investigated two ML methods for 

design generation which are DNNs for convolution and 
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representation learning and GANs. In the first method, a graph 

convolutional neural network is used to discover essential building 

blocks which respond to certain functional criteria. After that, the 

building blocks are merged into new designs with the use of graph-

theory methods and data about the proximity of nodes in latent 

vector embeddings. However, DNNs are not set up to generate new 

designs, instead, they are very effective at classification and 

discovery. The second method (GANs) is considered a new version 

of DNNs which the authors used to merge building blocks into new 

compositions. At the end, the researchers confirmed the initial 

validation of graph-processing DNNs in generating novel 

conceptual designs although some limitations and constraints were 

faced including the complexity of architecture field (design scope) 

where they only focused on the function and not the aesthetical and 

structural aspects, design data work where some design samples 

could not be labelled nor converted to graphs on Revit API’s BIM 

format, and the evaluation of generated designs where the authors 

did not deal with quantitative evaluation of the new compositions. 

As, I., et. al., 2018, also suggest non-manifold topology as an 

alternative method to graph presentation which could allow the 

representation of walls, corridors, and enclosed spaces by 

topological objects like faces, shells, and cells. 

VI. Research Methods and Tools 

The research goes through different successive methodologies to achieve 

its aim and objectives. These methodologies are: 

Methodology Application 

Critical 

Analysis 

Defining thinking and problem-solving 

Defining architectural thinking 

Investigating complexities in architectural design 

Analyzing the design process and form generation 

Mapping contemporary architecture patterns and motifs 

Investigating generative design and algorithmic design 
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Investigating AI and ML definitions, types, and 

applications 

Case Studies Analyzing AI and ML applications in architecture 

Experiments 

Turning the elements of a building into parameters 

through algorithms building. 

Writing a generative design program through coding 

Generating a parameters data set that could be used to 

train ML models 

Identifying the problems and deciding the proper ML 

models and tasks 

Applying ML so that the machine could learn from the 

architect by mapping the data set and predict/classify the 

parameters of the building under study 

Applying coding to fine-tune the resulting 3d-model so 

that the architect can interfere in both teaching the 

machine and modifying the result easily. 

 

VII. Research Scope & Limitations 

This research is directed towards investigating ML supervised learning 

models specifically from AI models. ML models could predict, classify, or 

cluster data based on the data sets they learn from. So, models do not 

‘generate’ new data but generalize to unseen data based on mathematical 

concepts from linear algebra, numeric methods, and optimization. 

Supervised learning is chosen so that the machine can predict numbers and 

classes which map to architectural parameters defined by the architect as 

the framework targets a human-centered design approach. Other 

applications like clustering could not help with the intended product. 

However, a wider spectrum of AI models is investigated to understand and 

analyze the differences between generative and discriminative AI in terms 

of concepts and applications. 

In addition, as this type of application’s result could be considered 

‘generative design’, analysis of how generative design systems work is 

necessary to gain insights about how ML applications could be different. 
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To work with ML, it is recommended that architectural design modeling 

be done through coding, so, the research is also directed towards a 

thorough study on how to harness the power and freedom of coding in form 

generation. The suggested framework allows the architect to create design 

options as samples used for training. The architect’s designs (data set) 

totally depend on their choice. In this case the architect should judge those 

designs themselves because whatever the data set looks like, if a pattern 

exists between the building requirements and target building parameters, 

the framework should work as intended, and the accuracy of ML models 

should be high. To test the framework, a contemporary building is designed 

and modelled through coding in C# in Grasshopper3d for Rhinoceros3d 7 

using RhinoCommon API which were chosen for the fast interface and 

processing of algorithms. Other software could have resulted in the same 

result. 

For simplicity in the framework’s validation stage in this research, the 

result from this first step is a data set containing tangible form proportions-

related parameters values of 600 prototypes of the contemporary villa 

consciously designed by the author (an architect) based on some cases 

related to the total built-up area which ranges between 200 and 1000 m2, 

the neighbor types, setbacks, land dimensions, and other scenarios. The 

villa was chosen to have a ‘contemporary’ style for ease of geometry in 

building and coding as the main concept is to find a relationship between 

almost a hundred of parameters of the villa, and to train the ML system and 

test if it could find a pattern between them. For the sake of simplicity, the 

location of the villa (country) was not included in the equation. 

Different ML and ANN algorithms were tested for both classification and 

regression tasks which were assigned to either predict values of the 

parameters or to classify some parameters and achieve the aim of the 

research. 
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 Chapter 1 

Chapter 1: Architectural Design Thinking and 

Process 

Preface 

Architectural design is a very complicated process which exhibits a very 

large number of parameters and possibilities. In his book “How Designers 

Think”, Bryan Lawson argues that the essence of design necessitates 

different ways of thinking. As the author describes, thinking could be either 

in closed systems or adventurous. But with all the parameters that affect 

architects’ decisions and ways of thinking, how is it possible to map every 

idea that sparks in the designers’ brain or even the design process? Those 

parameters can be quantitative as the legal constraints, technical aspects, 

financial aspects, and clients’ desired number of rooms in a building. And 

they can be qualitative including architectural theories, psychological 

factors, architects’ philosophical approaches, and aesthetical aspects which 

usually depend on the designer’s favored architectural style, language, and 

motifs. 

Architectural innovation has always drawn inspiration from the concealed 

depths of black boxes as well as the transparent clarity of glass boxes. And 

the design thinking process in architecture, often considered a vague 

merger of intuition, expertise, and inspiration, has been metaphorically 

likened to a black box – a mysterious entity in which decisions are made 

and ideas take shape, shielded from external scrutiny. Yet, counter to this 

notion is the transparent principles of the glass box, where design decisions 

are laid bare for all to witness, fostering collaboration, critique, and shared 

understanding.  

This chapter explores what architectural design thinking is through an 

investigation of different design thinking styles and design types as well as 

how to define good architecture. Different complexities in design thinking 

are explained leading to the important questioning of whether architectural 

design thinking should be encapsulated in a black box or a glass box after 

explaining the two metaphors. This chapter is an invitation to critically 

reflect on the metaphors that define the understanding of the architectural 
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design process. It challenges preconceived notions, encourages thoughtful 

examination, and paves the way for a deeper comprehension of the 

multifaceted nature of design thinking in architecture. 

Design is a strategic approach to problem-solving, leveraging creative 

abilities that integrate elements from both the arts and sciences to address 

diverse challenges. While designers employ various problem-solving 

methods, they typically adhere to an established pattern or sequence of 

steps that have proven effective in realizing designs from the initial 

concept to their completion. Whether performed consciously or 

subconsciously, the design process is a fundamental aspect integral to 

nearly every project. 

In the realm of architecture, the design process and methodology play a 

crucial role in crafting innovative solutions. Numerous studies have delved 

into design methodologies, engaging in critical analysis, evaluation, 

comparison, and the proposition of alternative approaches for creative 

problem-solving. These studies serve a dual purpose: assisting designers 

in understanding their distinctive styles and presenting novel options for 

achieving solutions. 

The stimulus for such research lies in recognizing that each architect 

operates within their unique conceptual frameworks. These frameworks 

not only aid in setting boundaries and defining objectives but also enhance 

communication within extensive networks of collaborators. In summary, 

the passage underscores the structured yet creative essence of the design 

process and emphasizes ongoing efforts to refine it through 

methodological exploration. 

In this chapter, the term architectural design process is explained, and 

different methodologies are discussed. Also, the effects of other disciplines 

on the process are discussed as well as the effects of today’s technology on 

different architectural design processes. 

1.1 Thinking and problem-solving 

Understanding the design process requires insight into human cognition 

and thinking, as highlighted by Lawson (1990) and Caldwell, et. Al. 
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(2000). Psychologists believe creativity is linked to brain function and 

neural processes, with individuals varying in their cognitive wiring. Since 

ancient times, the debate over the origins of knowledge—whether it is 

acquired through experience (empiricism) or inherent (nativism)—has 

intrigued thinkers like Plato and Aristotle. Rowe (1987) identifies two 

themes in problem-solving: one grounded in mental processes governed by 

lawlike relationships and the other in behavioral, non-mentalistic terms. 

The evolution of design thought in architecture has been shaped by five 

key psychological perspectives: Associationism, The Wurzburg School, 

The Gestalt Movement, Behaviorism, and Cognitivism. 

Associationism viewed creative problem-solving as mechanistic and 

atomistic, while The Wurzburg School, led by Kulpe, emphasized task-

oriented act theories, influencing principles like Sullivan's "form follows 

function." The Gestalt movement introduced holistic principles, 

emphasizing whole units in perception and problem-solving, impacting 

architectural design through comprehensive images. Behaviorism focused 

on observable behavior and stimulus-response models, influencing 

practical approaches like climate-responsive design. Cognitivism, 

integrating Gestalt psychology, views the mind as an information 

processor, relevant in the modern context due to the complexity and 

volume of information in contemporary design projects (Mahmoodi, 

2001). 

Thinking styles are diverse and categorized into problem-directed, 

undirected, and creative thinking (Gilhooly, 1996). Directed thinking 

involves solving well-defined problems using state-action or problem 

reduction methods. Undirected thinking, such as daydreaming, often 

occurs in the pre-concept phase, potentially leading to innovative design 

ideas. Creative thinking, characterized by Wallas (1926) in four phases—

Preparation, Incubation, Illumination, and Verification—generates novel 

and valuable products. Styles of thinking, defined as preferred ways of 

thinking (Mahmoodi, 2001), vary among individuals, with societal 

perceptions of capability influenced by the fit between thinking styles and 

tasks. Exploring these styles enhances the understanding of how 

architectural designers approach problem-solving. 
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Table 1-1 summarizes thinking styles using Sternberg's (1997) metaphor 

of governments, which have diverse functions (legislative, executive, 

judicial), forms (monarchic, hierarchic, oligarchic, anarchic), levels 

(global, local), orientations (external, internal), and leanings (liberal, 

conservative). Similarly, styles should consider these various aspects of 

individual functioning. 

Table 1-1 Summary of Styles of Thinking (Sternberg, 1997, p. 27) 

Functions Forms Levels Scope Leanings 

Legislative 

Executive 

Judicial 

Monarchic 

Hierarchic 

Oligarchic 

Anarchic 

Global 

Local 

Internal 

External 

Liberal 

Conservative 

 

Mental self-government has three functions—Legislative (creating rules), 

Executive (following rules), and Judicial (evaluating rules)—and 

manifests in styles akin to government forms: monarchic (focused), 

hierarchic (priority-setting), oligarchic (balancing goals), and anarchic 

(creative). These styles vary by level, with global thinkers addressing 

abstract issues and local thinkers focusing on details; by scope, with 

internal thinkers being introverted and task-oriented, and external thinkers 

being extroverted and people-oriented; and by leaning, with liberals 

seeking change and conservatives preferring structure. 

Since classical times, it has long been recognized that the human brain 

possesses two distinct modes of thinking and understanding (Table 1-2). 

Table 1-2 Two Types of Thinking described by intellectuals (URL-2, CaldwelJ, et al., 2000) 

 Left Brain Right Brain 

Maslow Rational Intuitive 

Bruner Rational Metaphoric 

Koestler Associative Thinking Bisociative Thinking 

De Bono Vertical Horizontal or Lateral 

Bronowski Deductive Imaginative 
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Shopenhauer Objective Subjective 

Freud Secondary Process Primary Process 

Jung Causal Acausal 

Langer Discursive Symbolism Presentational Symbolism 

Neisser Sequential Processing Multiple Processing 

Kubie Conscious Processing Preconscious Processing 

 

The human brain consists of two cerebral hemispheres (Figure 1-1), with 

the left hemisphere typically dominant. The left hemisphere is slightly 

larger, and the two are connected by the Corpus Callosum. Roger Sperry's 

split-brain experiments in the 1950s revealed distinct functions for the left 

and right hemispheres, each controlling the opposite side of the body. 

 

Figure 1-1 Cerebral Cortex (Human Brain) - https://my.clevelandclinic.org/health/articles/23073-

cerebral-cortex (Last Access: 14/11/2023) 

Different brain regions process information differently, with visual word 

perception and word meaning involving distinct areas. Human actions and 

thoughts are controlled by one dominant hemisphere. Initially, hemispheric 

differences were thought to be based on behavior modality, with the left 

hemisphere specialized for language and reasoning, and the right for music 
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and vision. This evolved into a distinction between a "rational" left 

hemisphere and an "intuitive" right hemisphere. More recently, discussions 

emphasize a "left-analytic" and "right-holistic" mode of information 

processing, suggesting each hemisphere has a distinct cognitive style. The 

left is associated with sequential, analytic thinking, common in Western 

societies, while the right is linked to holistic, intuitive thinking, more 

prevalent in Eastern cultures and religions (McGilchrist, I., 2009).  

The present discussions on hemisphere characteristics should not imply 

that thinking activities are exclusively determined by either the left or right 

hemisphere. The design process benefits from the interaction between the 

two hemispheres, leading to well-rounded thoughts and actions. 

According to Tovey (1984), designing and problem-solving engage both 

hemispheres by matching analytically processed problem models with 

holistically processed solution patterns. Evidence indicates that both 

hemispheres contribute in parallel during higher-level mental activities, 

exchanging information. Both types of thinking are crucial in addressing 

design problems, but the dominant hemisphere may vary based on the 

adopted strategy. 

Understanding how the human brain thinks remains a crucial subject that 

helps us to understand how any thinking or problem-solving process 

occurs in the human’s mind. From a further perspective, understanding 

how architects think and solve problems will be a very important 

discussion in the coming years because of the spread of AI applications in 

architectural design recently which will have higher chances to be 

developed once frameworks of how architects think are developed, AI can 

learn from these frameworks and act accordingly. 

1.2 Architectural design thinking 

Architectural design involves solving diverse problems, including site 

issues, social effects, space planning, construction technologies, 

environmental aspects, legal constraints, and cost. This process requires 

thinking skills like analysis, synthesis, and evaluation, encompassing both 

well-defined and ill-defined aspects. Not all problem-solving thoughts are 
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documented; some remain in the architect's mind until a complete solution 

emerges. Definitions of architecture vary, often blending art and science. 

Influential figures like John Ruskin, Le Corbusier, Louis Kahn, and Norval 

White emphasize both the physical and mental aspects of architecture. 

Ruskin and William Morris view architecture as Building + Art. Conway 

and Roenisch (1994) note its Greek origin meaning 'builder,' yet 

architecture is broader, affecting social, cultural, and economic aspects. 

Capon (1999) categorizes architecture using Aristotle's six categories: 

Substance (construction), Relation (context), Quantity (form), Quality 

(meaning), Acting, and being Acted upon. This multi-disciplinary identity 

shapes lives and societies, requiring characteristics like uniqueness and 

positive psychological impacts. Capon organizes the six elements of good 

architecture into two main categories as in table 1-3. 

Table 1-3 - Capon's categorization of the six elements of good architecture (Capon, 1999a, P. 181) 

Primary Categories 

Greek categories Architectural elements 

Quantity 

Activity 

Quality 

Form., Pattern, Structure, Geometry, etc. 

Function, Needs, Effects, Exchange, etc. 

Meaning, Association, Resemblance, 

Style, etc. 

Secondary Categories 

Substance 

Relation 

Will 

Construction, Materials, Design, etc. 

Context, Community, Nature, Feeling, etc. 

Spirit, Power, Politics, Attitudes, etc. 

 

Capon (1999a) examines Aristotle's categories of good in architecture by 

aligning them with ancient Greek virtues and professional practice values. 

He identifies two main categories: Primary and Secondary. The primary 

category aligns Greek virtues such as Justice, Temperance, and Wisdom 

with professional values like Impartiality, Efficiency, and Integrity. The 

secondary category connects virtues like Duty, Love, and Courage with 

values such as Responsibility, Respect, and Motivation. 
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Capon builds on these models by incorporating Aristotle's principles of 

good performance into six architectural principles, categorized into 

primary and secondary elements. Primary principles include: 

1. Impartiality of Form: Objectivity in form. 

2. Efficiency of Function: Efficiency and economy in function. 

3. Integrity of Meaning: Propriety and integrity in meaning. 

Secondary principles are: 

4. Obligations of Construction: Responsibility in design and 

construction. 

5. Regard for Context: Sympathy for context and community. 

6. Motivation of Spirit: Motivation and conviction in will and spirit. 

In the second volume of his book, Capon examines definitions of 

architecture provided by several 20th-century architects across different 

years and texts. He endeavors to categorize their perspectives under the 

three Vitruvian categories, as outlined in Capon (1999a). Mahmoodi, 2001 

compiled the definitions as in table 1-4: 

Table 1-4 Definition of 20· century architects of architecture. These terms are compared with the 

original Vitruvian categories (Introduced by Capon, 1999b, pp. 349-353, compiled by Mahmoodi, 

2001, p. 55) 

Vitruvius, 
+ 2OOO years 

ago 

Firmittas 

(Firmness) 

Utilitas 

(Commodity) 

Venstustas 

(Delight) 

Geoffrey 

Scott, 1914  

Construction Convenience Aesthetics 

Auguste 

Perret, 1923  

Material Use Beauty 

Le Corbusier, 

1923  

Construction Utilitarian needs Custom/tradition 

Le Corbusier, 

1923  

Construction Needs Mathematics/harmony 

Le Corbusier, 

1923  

Constructing  Living Conceiving 

Le Corbusier, 
1923  

Economy  Sociology Aesthetics 
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Walter 

Gropius, 1924 

Technology  Economy Form 

Walter 

Gropius, 1924 

Construction  Economy Design 

Walter 

Gropius, 1924 

Technical  Economic Aesthetic 

Walter 

Gropius, 1924 

Technical  Social Aesthetic 

Walter 

Gropius, 1924 

Structure  Function Intellect 

Ludwig Mies 

van der Rohe, 

1928  

Technical Economic Cultural 

Ludwig Mies 

van der Rohe, 

1928  

Material  Functional Spiritual 

Ludwig Mies 

van der Rohe 

Technical  Economic Architectural 

ASNOVA, 

1931 

Technical 

plausibility 

Economic 

feasibility 

Plastic expression 

Nikolaus 

Pevsner, 1943  

Construction Function Style 

Reyner Ban 

bam, 1960  

Structural Social Academic 

L. Benevolo, 

1960  

Technical Social Cultural 

Christian 

Norberg-

Schulz, 

(1963)  

Technical Functional Aesthetic 

Christian 

Norberg-

Schulz 

Physical  Social Cultural 

Christian 

Norberg-

Schulz 

Techniques  Building task Form/semantics 

Robert 

Venturi, 1966  

Structure Programme Expression 

N. L. Park, 

1968  

Construction Function Aesthetics 

N. L. Park, 

1968  

Physical  Behavioural Conceptual 

George Baird, 
1969  

Technique Function Form 
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Charles Jenks, 

1969 

Technics  Function Form 

L Ligo, 1974 Technics  Function Form 

David Canter, 

1977  

Physical 

attributes 

Actions Conceptions 

R. Krier, 1982  Construction Function Form 

M. Foster, 

1983  

Structure Design Style 

 

The prevailing definitions concerning the three Vitruvian categories are as 

follows: Firmness aligns most closely with aspects like construction and 

technique; Commodity relates primarily to economic and social 

considerations; and Delight pertains to the formal and aesthetic aspects of 

architecture. The only concern in Capon’s studies was referencing to 

Vitruvius’: Firmitas (firmness), Utilitas (commodity), and Vensutas 

(delight) because the three elements are seen as complementary to each 

other rather than separable. If delight is separated from commodity, it could 

imply that delight serves no fundamental purpose. In addition, firmness 

and commodity are considered main contributors to delight. And in this 

sense, architectural design thinking is involved with problems that are 

related to those three cores. Although, the three cores are redescribed from 

time to time, they remain the main cores to assess an architectural design 

either as good one or not from a general perspective. 

Lawson (1990) argues that architectural design defies strict boundaries, 

involving subjective value judgments and a blend of problem discovery 

and resolution. Mahmoodi (2001) suggests that despite its intuitive nature, 

design approaches can be categorized by types. Broadbent's (1988) 

comprehensive categorization includes Pragmatic, Typologic, Analogic, 

and Syntactic Design. Pragmatic Design employs trial-and-error processes 

based on physical factors, while Typologic (iconic) Design utilizes pre-

established solutions. Analogic Design draws inspiration from various 

sources to foster new insights, while Syntactic Design (canonic) operates 

within rule-based systems, often geometric. Mahmoodi notes that 

architects often combine multiple design types within a project to address 

unique challenges effectively. 
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1.3 The black box vs the glass box vs the grey box metaphors 

Creative activities within the design process unfold organically, reflecting 

its iterative and dynamic nature (Lawson, 1993; Lang, 1987; Broadbent, 

1969). Designers engage in continuous exploration, synthesizing diverse 

information, making intuitive leaps, and forging unexpected connections 

to generate innovative solutions. Bruno Latour's metaphorical concept of 

the black box, introduced in 1987, symbolizes encapsulated knowledge 

known to specialists but often perceived as unknowable (Latour, 1987). 

Black boxes serve as ready-made solutions, offering practical outcomes 

without necessitating exhaustive internal understanding (Witt, 2018). 

Norbert Wiener's dichotomy of black and glass boxes underscores the 

trade-off between usability and comprehensive understanding in design 

operations. The "black box" approach, as elucidated by Lawson (1993) and 

echoed by Lang (1987) and Broadbent (1969), conceptualizes design as an 

abstract and internalized mental activity. This perspective highlights 

design's multifaceted and subjective nature, encouraging the use of 

techniques like brainstorming and synectics to illuminate the creative 

process (Lawson, 1993). Within this framework, the design process is seen 

as a complex interplay between analytical and holistic thinking, involving 

the integration of problem models with visual-spatial and symbolically 

coded solution patterns (Tovey, 1984).The "black box" approach to design 

refers to viewing the creative and mysterious aspects of the design process 

as an abstract and internalized mental activity within the designer. In this 

perspective, design is seen as a complex and subjective process that defies 

easy analysis. While traditional analytical methods may struggle to dissect 

the intricacies of design thinking, techniques like brainstorming and the 

application of synectics are considered helpful in providing a glimpse into 

the visualization and ideation aspects of the design process. 

Throughout history, designers have fluctuated between black boxing and 

glass boxing in their relationship with mathematics, representing informed 

action (glassboxing) and pragmatic approaches (blackboxing) (Witt, 

2018). The "glass box" (glass box) design method, emphasized by 

Broadbent (1969) and Archer (1969), analyzes the design process 
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systematically, considering identifiable events such as identification, 

analysis, synthesis, and evaluation. This approach utilizes various methods 

like systems analysis and set theory, providing a logical framework for 

problem-solving. Figure 1-2 shows the design process as proposed by 

Archer, 1969. 

 

Figure 1-2 Design process (Archer, 1969, p.94 and p.100) 

The "glass box" design approach was criticized by Sullivan and Hillier 

(1972) for prioritizing artistic development over building quality. In 

response, the evolution of design methods integrates concepts from 

Popper's philosophy of science, emphasizing conjecture and refutation to 

bridge the gap between science and art in the design process. 

In 2018, Witt., A., wrote in Log Journal vol 43 introducing a new term 

called ‘greyboxing’. Witt introduced the concept of "greyboxing," 

highlighting its significance in contemporary software development, 

particularly in the integration of mathematical techniques into digital 

design. Grey boxing involves orchestrating combinations of black and 

glass boxes to create novel functions, offering a unique perspective on how 

mathematical ideas infiltrate architecture. This approach, reminiscent of 

architecture's historical assimilation of mathematical techniques, 

facilitates the creation of new operational networks by opportunistically 

appropriating instrumental knowledge without requiring exhaustive 

technical understanding. 
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In the current digital landscape, the use of neural networks exemplifies the 

gray boxing approach, where the network extracts formal rules from a 

diverse collection of images to generate novel architectural forms. The 

process involves navigating through layers of black boxes, emphasizing 

the importance of curated training sets as a common currency for distilling 

formal rules. Witt positions these techniques within the broader context of 

black boxing, gray boxing, and glass boxing approaches in design history, 

underscoring their enduring relevance and adaptability across disciplines. 

In general, Witt’s description paints grayboxing as a resilient and effective 

strategy, allowing for creative adaptation and integration of mathematical 

concepts, computer science, AI., and many other fields into the design 

process. 

1.4 Design methodologies 

Mahmoodi (2001) distinguishes between 'design methods' and 'design 

methodology', where the former refers to techniques and procedures, while 

the latter encompasses the broader strategy and process of applying these 

methods within the realms of analysis, synthesis, and evaluation. 

Architecture history traces back the concept of architectural designing to 

Vitruvius, with later contributions from Alberti (1485), Descartes (1637), 

Laugier (1753), and Le Corbusier (1923), each emphasizing aspects of 

problem-solving, decomposition, and composition in the design process. 

Contemporary architects and critics view the design process as a blend of 

reason and intuition, described as "learning-by-doing" (Grant, 1975, 1982; 

Schon, 1984). Today, the focus is on incorporating user behavior and 

enhancing the built environment for sustainability, with Mahmoodi 

identifying two major models of design methodologies: 'the systematic 

model' and 'the environmental model'. 

The systematic model 

Throughout history, societal shifts have significantly influenced the design 

process. In the Middle Ages, architecture revolved around religious 

buildings, while today, civic and business structures dominate urban 

landscapes. Post-World Wars, Modernism emerged, emphasizing 

simplicity and speed. Mahmoodi (2001) introduced the "stage-phase 
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approach" in design methodology, influenced by Green (1962), Cutler and 

Cutler (1982), and others. Broadbent (1973) highlighted engineering's 

impact on design theory, while Asimow (1962) outlined problem-solving 

phases. Gugelot (1963) introduced a six-stage method for design 

education. The AIA's model (Duerk, 1993) includes Pre-Design, 

Schematic Design, and other steps. Salvadori (1974) divided architectural 

praxis into Programming, Schematic, and other phases. Duerk (1993) 

emphasized interactive processes between Analysis, Synthesis, and 

Evaluation. Figure 1-3 shows the proposed design process by Duerk 

(1993). 

 

Figure 1-3 The Design Process: Analysis, Synthesis, and Evaluation (Duerk 1993, p. 18) 

 

As seen from the figure, Duerk’s model suggests cyclical relation between 

activities with no order of priorities. In addition, the model separates the 

activities each set in its own category where this does not meet what 

happens in practice where many activities are inseparable. 

Advancements in technology with the introduction of Building 

Information Modeling (BIM) has reshaped the design process in the AEC 
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industry. BIM integrates inputs from all disciplines involved in a project, 

facilitating synthesis, analysis, and evaluation in a unified framework. 

Optimization techniques are applied to various design aspects, such as 

views, structure, daylighting, and ventilation. This integrated approach 

emphasizes the importance of rational decision-making in the design 

process. 

In the 1960s, early environmental design models leaned towards discrete, 

sequential decision processes influenced by "rational" decision-making 

models (Simon, 1957, 1960, 1969). Newell, Shaw, and Simon's 1957 paper 

introduced the information processing theory, emphasizing cognitive 

processes (Rowe, 1987). Lang (1987) highlights Studer's (1970) model, 

focusing on defining function, designing form, building, and evaluating. 

Computer-aided design approaches, like ICADS, emerged, emphasizing 

collaborative decision-support systems. Mahmoodi (2001) criticizes 

overreliance on computer systems in design, advocating for human 

involvement in decision-making. 

The environmental model 

According to Mahmoodi (2001), the 'environmental model' in design 

methodology incorporates environmental considerations and human 

sciences. Lang (1987) advocates for an argumentative design process, 

delineating phases like Intelligence, Design, Choice, Implementation, and 

Post-implementation Evaluation. This mirrors professional praxis, which 

includes Programming, Design, Evaluation and Decision, Construction, 

and Post-occupancy Evaluation (Lang, 1987). Intelligence activities in 

design involve problem identification and understanding, goal 

formulation, and environmental evaluation (Lang, 1987). Mahmoodi 

(2021) supports the environmental approach, stressing the context-

dependent nature of problem perceptions and definitions. However, 

criticisms include the perceived linearity of the model, even in its 

interactive form (Mahmoodi, 2001). Another model by Professor 

Broadbent (1988) incorporates Popper's (1963) "conjecture" and 

"refutations." The model explores different design types (conjectures), 

including Pragmatic, Typologic, Analogic, and Syntactic Design. It also 
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examines the fit of spaces to activities, environmental filtering, cultural 

symbolism, and environmental impact (refutations) (figure 1-4). 

 

Figure 1-4 The environmental model of the design process (Broadbent, 1988, p. 467) 

Professor Broadbent (1988, p.459) clarifies that his model of the design 

process deviates from so-called "linear" models. Instead, he describes it as 

a "map" of the "design territory." Later in the same text, he emphasizes that 

the design process is not confined to a linear sequence and can commence 

at any point within his model. 

Broadbent's latest proposal reflects the contemporary architectural design 

process, involving iterative analysis and evaluation after each design 

iteration. Stakeholders assess various aspects like environmental, social, 

aesthetic, functional, cultural, and economic factors until the building's 

performance is reviewed and decisions are made. 

1.5 Architectural design process 

Design process methodology, established as a distinct discipline in the 

1960s, has evolved beyond traditional approaches like 'drawings and 



 

17 

 

 Chapter 1 

patterns.' Although these conventional methods persist, the field has 

embraced more diverse and advanced techniques. 

As design methodology gained recognition as an independent field, 

scholars like J. Christopher Jones, in his 1980 book "Design Methods: 

Seeds of Human Future," highlighted the intricacies of the design process. 

Jones identified three key operations: gathering information, testing design 

decisions, and evaluating their appropriateness. He also categorized the 

design process into unconscious and conscious intellectual activities, 

tapping into both intuitive and rational thinking.  

Architectural design profoundly influences project outcomes, shaping 

functionality, aesthetics, user experience, and sustainability. Decisions 

made during design impact budget, regulations, and adaptability. 

Collaborative approaches are crucial for success. 

Design, as discussed by Chandrasegaran, Kisselburgh, & Ramani (2012), 

is an iterative process aiming to achieve functionality through form 

proposal and analysis. However, in the contemporary context, design 

expands beyond functionality, integrating intellect and technicalities 

(Royal College of Art, 1979; Cross, 2006). Architects are challenged to 

infuse creativity into projects, enhancing user experiences while meeting 

functional needs (Levin, 1966). 

Contemporary design thinking diverges from traditional linear 

methodologies (Abowardah, 2016). Rather than following a strict 

sequence of analysis, synthesis, and evaluation, modern approaches allow 

for flexible engagement of different thinking modes throughout the 

process. This adaptability acknowledges the complexity of design 

activities. Abowardah (2016) explored practical design methodologies by 

analyzing insights from renowned architects like Frank Gehry, Zaha 

Hadid, Toyo Ito, and Peter Zumthor. Gehry's process, for example, 

involves sketching continuously, drawing inspiration from sculptors and 

painters. Despite appearing sequential, his method incorporates trial and 

error, resembling Broadbent's cyclic approach between analysis and 

evaluation. Figure1-5 shows Frank Gehry’s sketch of Guggenheim Bilbao 

against the constructed version. 
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Figure 1-5 - Frank Gehry's Guggenheim Bilbao - https://architizer.com/blog/practice/tools/how-

architecture-is-born-frank-gehry/ 

Zaha Hadid Architects utilize digital techniques, known as 'form finding', 

relying on mathematical studies and optimization for structure, 

daylighting, and ventilation. Their process remains within the analysis-

evaluation cycle, prioritizing digital methods before synthesis. 

Additionally, Toyo Ito's approach is similar, focusing on integrating with 

nature through digital tools like Voronoi, aiming to break away from 

homogeneity in cityscapes. Moreover, Peter Zumthor follows a 

comparable process but emphasizes space and materials in the analysis 

phase, relying on physical models for concept evaluation. 

Abowardah (2016) outlines the design process into three phases: analyzing 

knowledge, developing tools, and invention, aligning with Broadbent's 

suggested approach influenced by Popper's thoughts. Architectural firms 

globally invest in research and development to automate processes and 

enhance efficiency. 

1.6 New technologies effects on the design process 

New technologies have revolutionized the design process, particularly in 

the analysis and evaluation stages. Instead of relying solely on sketching 
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or modeling, advanced design techniques driven by developments in 

materials and construction allow for more innovative solutions. Architects 

now trust computers to find optimal forms based on various considerations 

like environmental impact, spatial relations, and structural analysis. 

However, architects still direct these approaches based on project goals, 

ensuring that the final design meets objectives and can be feasibly 

constructed. Figure 1-6 shows how decisions could be made and buildings 

forms could be optimized based on solar radiation simulations. 

 

Figure 1-6- Solar Radiation Optimization with Grasshopper / Galapagos / DIVA by Yazdani 

Studio, https://yazdanistudioresearch.wordpress.com/2015/02/09/building-optimization-tools-the-

grasshopper-definition-and-breakdown/ 

After this result, the product is refuted and evaluated against other design 

problems and aspects until a final decision is made. 

Moreover, the approach to deal with the building as information which are 

sometimes complicated led to changes in the implementation phase where 

the required product of the process is no longer 2D drawings, but a building 

information model containing every single element to be constructed and 

showing the relations and quantities of the elements.  

In addition, the development in digital fabrication specialization led to a 

groundbreaking leap in the preparation of the construction drawings which 
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made building complex geometries very easy and well organized in site. 

Figure 1-7 shows the use of Grasshopper for Rhinoceros3D in digital 

fabrication, numbering the surfaces, and extracting all of the information 

needed for site fabrication. Different plugins are developed to automate the 

extraction of such information. 

 

Figure 1-7- Digital Fabrication Technique to Extract Information about Elements Using 

Generation, Grasshopper, and Rhinoceros3d – by Antonio Turiello, 

https://www.grasshopper3d.com/group/generation 

Other techniques such as procedural modeling, simulations, kinetic 

architecture, and more, also led to many changes in the design process. 

These techniques will be discussed in chapter 2. 

To conclude, recent technologies did not affect the design process 

suggested by Broadbent, 1988, per say, but it affected the phases in a very 

strong and efficient way that made the cyclic process between analysis and 

evaluation much smoother and made the intervention of different design 

types and modes applicable at any stage of the cyclic process. 

1.7 Complexities in architectural design 

Since Vitruvius, architectural evaluation has revolved around firmness, 

commodity, and delight. Attempts to quantify delight, such as through the 

golden ratio or modular grids, have persisted throughout history. Today, 

environmental parameters can be quantified using tools and building 

codes, enabling assessments of factors like daylighting and power 

consumption. 



 

21 

 

 Chapter 1 

However, assessing functionality faces challenges due to the uniqueness of 

each design. Support tools are often used late in the process, hindering 

early identification of imperfections. Post-occupancy evaluations focus on 

design confirmation rather than comprehensive quality quantification 

(Mahmoodi, 2001). 

To improve design quality assessment, there's a need for research into tools 

that accommodate design uniqueness and can be applied in the early 

phases. Bridging the gap between support tools and design requirements is 

crucial. Without such advancements, aesthetic assessment will remain 

subjective, relying solely on designers' perspectives of beauty and 

proportions. 

It is crucial to understand the difference between problem solving and 

designing. In problem-solving, designers typically seek logical solutions 

to specific issues, whereas in designing, they create a comprehensive 

solution that addresses multiple design problems. Designing involves more 

effort, as designers need to integrate both creative and logical solutions. 

Despite the complexity of design, the notion of breaking down design 

problems into constituent parts for easier solutions is challenging, as 

Professor Lawson notes (1993), emphasizing the need to consider the 

entire problem or a multitude of issues simultaneously. Architects can face 

many challenges in design categorized by the author as: complexities 

within thinking, complexities in problems definition, complexities within 

the design process, complexities in decision making, and complexities 

resulting from rapid development in technology. 

Complexities in Problems Definition 

Architectural design involves solving complex problems, from client 

requirements to environmental impacts. These intertwined issues create a 

network of decisions for architects. Defining problems accurately is 

challenging due to many non-quantifiable aspects of architecture, leading 

to uncertainties. Lateral thinking is essential, as solutions may emerge 

unexpectedly, but delving deeper can reveal further complexities, 

perpetuating a cycle of problem-solving. 
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Complexities within Thinking 

Design thinking involves multifaceted problem-solving influenced by 

cognitive styles like divergent vs. convergent and impulsive vs. reflective 

thinking. Architects balance these styles to tackle design challenges 

effectively, leveraging different modes of thinking within the same task to 

innovate. 

Complexities within the Process 

The design process encompasses analysis, synthesis, and evaluation, 

involving data collection, idea generation, and solution selection. It's 

recognized as a series of internalized operations, with designers 

transforming inputs into outputs, raising questions about the intuitive 

process governing human thinking in design. 

Complexities in Decision-Making 

Architectural design requires intricate decision-making due to varied and 

interconnected problems. Conflicting decisions can arise, leading to 

complex trade-offs. Some problems require creative problem-solving, 

while others rely on design principles and standards, though these may 

have shortcomings. 

Complexities Resulting from Rapid Technological Development 

Technological advancements, like BIM and AI, have revolutionized 

architectural design, offering new opportunities and challenges. BIM 

facilitates information integration, enhancing efficiency, while AI enables 

tasks like visualization and parameter prediction. These developments 

prompt questions about architects' roles and idea authenticity in the face of 

evolving technology.  

To conclude, architectural design is a very complex process because of the 

many complexities encompassed in this activity associated with many 

aspects like aesthetics, information, technology, constraints, and many 

others that hinder the problem-solving process. Those complexities need 

to be understood well to map how an architect solves the problems 

resulting from them. 
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Summary 

This chapter delves into architectural design thinking, exploring its 

complexities and evolution. It begins by examining the human brain's 

cognitive processes, drawing from psychological studies on problem-

solving from Associationism to Cognitivism, highlighting the relevance of 

Cognitivism in architectural thinking due to its emphasis on information 

processing. Definitions of architecture and design types by Vitruvius and 

Broadbent are discussed, revealing the challenge of forming a concrete 

definition. 

The exploration extends to understanding the architect's thought process 

through black box and glass box metaphors, emphasizing the complexity 

and non-linear nature of architectural design. Various complexities within 

thinking, problem definition, design process, decision making, and 

technology are examined, showcasing the multifaceted nature of 

architectural design. 

The chapter transitions to the Architectural Design Process, introducing J. 

Christopher Jones' operations and tracing the evolution of design 

methodologies since the 1960s. Mahmoodi's classification into systematic 

and environmental models is discussed, along with specific models like 

Broadbent's stage-phase model and Archer's design process flow chart. 

Insights from renowned architects like Frank Gehry, Zaha Hadid, Toyo Ito, 

and Peter Zumthor are incorporated, showcasing diverse design 

approaches. Abowardah's investigation of practical models for design 

methodology, analyzing famous architects' processes, is explored. 

The impact of new technologies on the design process is examined, 

highlighting advancements like solar radiation optimization tools and 

Building Information Models (BIM), which have streamlined decision-

making and construction processes. The chapter concludes with a 

discussion on evaluating architectural design outcomes, emphasizing the 

need for early assessment to avoid problems. Parameters affecting form-

making, known as delight, are discussed, acknowledging the challenge of 

assessing aesthetics due to changing principles throughout history. 
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In summary, the chapter provides a comprehensive overview of 

architectural design thinking, from cognitive processes to practical 

methodologies and the influence of technology, emphasizing the dynamic 

and creative essence of design in architecture. 

Yet, the question remains, can the process occurring in the architect’s mind 

within a black box approach be mapped? Or can the architect themselves 

map the process of thinking? Does the process remain the same for the 

architect when a black box approach is taken regardless of the project? 

Answering these questions could have a great impact on the architectural 

design process. Especially if the answer is true, then supposedly a machine 

can learn this process and act as a designer. 
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Chapter 2: Mapping the Elements of Forms in 

Architecture 

Preface 

Architectural form extends beyond the arrangement of physical space and 

activities. According to Yilmaz (1999), it serves as a meaningful 

instrument, signifying a connection with elements, their syntax, associated 

meanings, and their impact on individuals. The reduction of form to the 

mere selection and organization of elements is cautioned against; it should 

not be seen solely as a tool for conveying meaning. 

The foundational elements - point, line, plane, basic shapes, and solids - 

historically influenced various conceptual geometries, continuing to play 

a crucial role in contemporary architecture. These elements significantly 

shape space and architectural form, contributing aesthetic, symbolic, and 

conceptual depth to architectural design. Architects widely employ these 

elements, particularly in the organization of architectural space. 

When the use of elements is symbolic and serves as surface decoration, the 

elements are usually referred to as motifs (Aamir, 2017). 

In this chapter, architectural form is defined beside mentioning different 

characteristics of form as well as its elements from points to solids. After 

that, the difference between form making and form finding is highlighted 

as a base for the upcoming question in next chapters whether AI could 

serve in the form making or form finding. The chapter ends by discussing 

how to map different contemporary architectural form elements and 

motifs. This part will later be serving in translating those elements to 

computational parameters that will be ‘learned’ by AI algorithms. 

2.1 Characteristics of architectural forms 

Erzen (2015) posits that in ancient times, the Greek 'idea' equated to the 

Latin 'form,' suggesting that form originates from an underlying idea or 

purpose, making them inseparable. Bacon (1974) defines architectural 

form as the intersection of mass and space, comprising elements like 
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texture, light modulation, and color, which collectively imbue space with 

a distinct quality. Ching (1996) discusses the versatility of the term "form," 

encompassing external appearance, conditions of presentation, and formal 

structure in art and design. In "Form, Space, and Order," Ching presents 

form as both internal structure and external outline, emphasizing unity. 

Forms have relational properties governing composition and arrangement, 

including position, orientation, and visual inertia. 

In architecture, forms are categorized as regular or irregular. Regular 

forms, as per Ching (1996), typically exhibit stability and symmetry 

around one or more axes. Even after dimensional changes or the 

addition/subtraction of elements, their inherent regularity often remains. 

Irregular forms, on the other hand, are asymmetrical and dynamic, 

accommodating both solid masses and spatial voids. The spatial 

organization of architectural elements, influenced by these forms, defines 

compositions' visual dynamics and overall design (Ching, 1996). 

Architectural form theories have evolved since ancient times, notably 

influenced by Plato's multifaceted concept of form. The Renaissance 

marked a shift towards viewing the Idea as originating in the artist's mind 

rather than a unified essence. In the seventeenth century, Boullee 

emphasized the epistemological meaning of form, prioritizing geometric 

designs for instant perception. By the twentieth century, the Gestalt 

psychology of form introduced by figures like Le Corbusier highlighted 

the unity of perception and conception. However, there was a departure 

from mental realms of form in favor of methodological approaches, with 

figures like Alexander proposing mathematically based design 

methodologies. Eisenman advocated for eliminating preconceived forms, 

favoring generative grammar in the design process. The advent of 

computers further transformed form, making it an expression of 

universality and methodological rather than purely aesthetic or 

epistemological (Plato, Renaissance, Boullee, Le Corbusier, Alexander, 

Eisenman). 

Geometry and form 
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From Vitruvius' geometric ideals to modern approaches like Corbusian 

regulating lines and Miesian modular grids, architectural design has relied 

on mathematics (Burry, 2010). In ancient times, even the angle of 

inclination of the Great Pyramid was determined through geometric 

constructions (Yilmaz, 2016). During the Middle Ages and the 

Renaissance, mathematical principles were considered divine and formed 

the basis for designing beautiful buildings. Greek, Roman, and 

Renaissance architects grounded their aesthetic rules in geometric ratios, 

with geometry serving as the primary mathematical tool until the 

seventeenth century. As buildings grew in complexity in the late nineteenth 

century, a science of structural design emerged, employing sophisticated 

geometric operations. Throughout history, the prevailing notion has been 

that architectural form must adhere to mathematical principles, 

establishing order through regularities, proportional systems, and synthetic 

methods for generating forms. Architecture has aimed to emulate the 

geometric order of nature, offering schemes for analyzing finished forms. 

Yilmaz (2016) highlights how ancient Greek and Egyptian architects used 

geometry and proportion to seek divine rules for form generation. They 

established foundational units and precise geometrical systems, deriving 

proportions from geometric figures to create clear and rational designs 

with symmetry. Geometry represented divine truths in ancient Egypt, 

influencing timeless design principles in Western theory. Pythagoras 

influenced the distinction between matter and form, while Plato's theories 

on ideal forms, based on Pythagorean ratios and Platonic solids, shaped 

architectural design principles. (Figure 2-1). 
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Figure 2-1 - Platonic Solids, Hill, V., and Rowlands, P., 2008, Nature’s Code 

Architects later adapted Platonic Solids into practical building blocks like 

the sphere, cylinder, cone, pyramid, and cube, reflecting a pragmatic 

approach to architectural form. 

Medieval architects used basic geometric shapes like circles, equilateral 

triangles, and squares to create intricate forms in both section and plan, 

embodying divine characteristics (Yielmaz, 2016). The Gothic cathedrals 

employed two design schemes, Ad Quadratum and Ad Triangulum, for 

proportioning building plans and facades, determining element sizes, and 

creating repetitive ornamentation. (figure 2-2).  

 

Figure 2-2 - geometrical analyses of mason's marks on differentdrawings of Gothic cathedrals, 

Franz von Rhiza, Studien über Steinmertz Zeichen,1917, pp. 44-45 
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These geometrical principles were foundational in medieval building 

design long before they were systematically codified during the 

Renaissance. 

During the Renaissance, architects like Alberti and Bramante applied 

idealized geometric concepts influenced by Greek mathematical systems, 

as outlined by Yilmaz, 2016. They viewed architecture as mathematics 

translated into spatial units, applying Pythagorean ratios to create 

proportional harmony in buildings. This period saw experimentation with 

ideal forms and proportions, exemplified by Leonardo's Vitruvian Man, 

reflecting a belief in buildings belonging to a higher order governed by 

universal truths. 

 

Figure 2-3 - Diagrams of St. Peter Church by Bramante, Yilmaz, 2016, Evolution of the 

Architectural Form Based on the Geometrical Concepts 

In Baroque architecture, Guarini utilized dynamic geometrical operations 

to create complex spatial designs, departing from Renaissance clarity 

(Yilmaz, 2016). During the Enlightenment, architects like Boullee and 

Ledoux employed ideal geometry symbolically, while Durand advocated 

for simplicity and economy (Yilmaz, 2016). In the twentieth century, 

architects such as Le Corbusier and Mies Van der Rohe embraced 

Euclidean geometry, emphasizing rationality and integrity in design 

(Yilmaz, 2016). A minority, including Frank Lloyd Wright, blended 

geometric concepts with experimental psychology to design space 

logically, integrating geometry, volumes, and functions harmoniously 

based on geometric principles. 



 

30 

 

 Mapping the Elements of Forms in Architecture 

In general, architectural forms and spaces are composed of four 

fundamental element types: points, lines, planes, and volumes. In the 

context of architecture, these elements are typically three-dimensional 

volumes defined by vertices (points), edges (lines), and surfaces (planes). 

Each element type holds intrinsic characteristics within an architectural 

context. Lines convey direction, emphasizing significant end points and 

defining boundaries. The intersection of lines introduces a third point, 

providing additional content for making relative judgments of distance and 

angle. In architecture, a three-dimensional design can be envisioned 

mentally before it materializes physically. 

The perception of three-dimensional forms can vary based on factors such 

as viewing angles, distances, lighting conditions, color, and texture. 

However, certain elements can be considered independent of these variable 

situations including shape, texture, light, color, size, and scale (Yilmaz, 

2016). Forms could be significantly manipulated by changing these 

elements. However, shapes and sizes remain the most relating aspects to 

how a form is perceived. 

Additionally, Yilmaz (2016) emphasizes that design strategies, such as 

unity, balance, contrast, harmony, rhythm, and proportion, play a crucial 

role in shaping the overall concept of a "whole" throughout the design 

process, whether in two-dimensional or three-dimensional contexts. Today, 

parametric design empowers architects to craft visually appealing façade 

patterns, seamlessly integrating complex surfaces with digital fabrication 

techniques. These patterns, enhanced by strategies like repetition, rhythm, 

harmony, and unity, often serve as the focal point, requiring minimal 

manipulation of the form itself. 

2.2 Form generation in architectural design: form making vs. form 

finding 

The reciprocal relationship between mathematics and information 

technology (IT) has led to the development of new mathematical tools, 

particularly in the field of architecture. This evolution goes beyond 

creating variations of functional solutions, drafting, modeling, and 
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presenting—it extends to the actual generation of forms. This approach is 

known as the form-generation process. Initially rooted in using rules and 

algorithms for architectural forming in a one-way process, the form-

generation process has evolved to incorporate a comprehensive set of 

parametric equations. These equations can be recorded and revisited at any 

stage of the design, allowing for dynamic changes to parameters and 

subsequently altering the entire design solution swiftly (El Iraqi and El 

Daly, 2017). 

The generation of architectural forms involves a range of techniques and 

methodologies, often categorized into form-making and form-finding 

processes. While the form-making process emphasizes the subjective, 

intuitive, and creative aspects of design, the form-finding process relies on 

mathematical rules, algorithms, or constraints to guide the generation of 

architectural forms. The choice between these approaches often depends 

on the goals of the design, the preferences of the architect, and the intended 

expression or functionality of the final structure. Many architects may 

incorporate elements of both processes, striking a balance between creative 

freedom and systematic control in their design methodologies. In 

contemporary architectural practices, forms are increasingly designed to 

align with specific parameters and functions.  

Form making: 

According to El Iraqi and El Daly, 2017, form making is a creative process 

driven by intuition and imagination, often preceding analysis and design 

constraints. This direct embodiment of ideas into forms can be facilitated 

through conventional or computational mediums, sometimes resembling 

sculpture with a focus on form over function. 

In the realm of architectural creativity, diverse theories have profoundly 

shaped form making. Anchored in principles like intuition, 

unpredictability, metaphorization, and departure from strict logic, these 

theories offer architects unique perspectives. Intuition guides architects 

beyond analytical rigidity, while unpredictability injects spontaneity. 

Metaphorization relies on symbolic associations, fostering imaginative 

structures. Rejecting strict logic encourages exploration of 
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unconventional, non-linear approaches, leading to organic and innovative 

forms. Established theories like Wallas's stages of incubation, and concepts 

such as Genploration and synectics, further enrich the creative toolkit. 

Embracing these theories allows architects to synthesize intuition, 

metaphor, and unpredictability, transcending conventional boundaries in 

architectural form creation. Some of these theories are mentioned in table 

2-1. 

Table 2-1- Analogue Form Making Theories (El Iraqi and El Daly, 2017) 

Theory Concept 
Role in Form 

Making 

Intuition 

Intuition refers to the 

ability to foresee 

without necessarily 

understanding the 

process. 

Architects rely on 

intuitive processes to 

generate ideas 

directly without a 

rigid analytical 

approach. 

Unpredictability 

Unpredictability 

emphasizes the 

unexpected nature of 

creative processes. 

Form making 

benefits from 

elements that are not 

pre-determined, 

introducing 

spontaneity and 

uniqueness. 

Metaphorization 

Metaphorization 

involves using 

metaphors and 

associations in the 

creative process. 

Metaphors serve as 

powerful tools for 

generating novel and 

imaginative forms, 

connecting diverse 

concepts. 

No Logic 

This perspective 

challenges the notion of 

strict logical processes 

in creativity. 

Architects explore 

unconventional and 

non-linear 

approaches, allowing 

for more organic and 

innovative forms. 

Theories of 

Incubation (Wallas) 

Wallas proposed a 

theory of creativity 

involving stages like 

The incubation stage 

allows ideas to 

develop 
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preparation, incubation, 

illumination, and 

verification. 

subconsciously, 

contributing to the 

creative process. 

Genploration 

(Finke, Ward and 

Smith) 

Genploration focuses 

on the exploration of 

generic structures and 

elements in creativity. 

Architects explore 

generic elements that 

can be adapted and 

transformed into 

unique forms. 

Redundant 

Generation (Lem) 

Redundant generation 

involves creating 

variations of a concept 

until a novel solution 

emerges. 

Architects 

experiment with 

multiple iterations, 

allowing for 

unexpected and 

innovative forms. 

Synectics (Gordon) 

Synectics emphasizes 

making connections 

between seemingly 

unrelated concepts. 

Architects draw 

inspiration from 

diverse sources, 

fostering creative 

connections and 

generating novel 

forms. 

 

The integration of these theories provides architects with a rich toolkit for 

form making. By embracing intuition, unpredictability, metaphorization, 

and alternative logic, architects can push the boundaries of creativity and 

produce innovative architectural forms. 

In recent decades, digital systems have revolutionized architectural design, 

impacting geometric representation and design synthesis. Methodologies 

like fuzzy modeling and random functions, highlighted by El Iraqi and El 

Daly, 2017, offer innovative approaches. Fuzzy modeling introduces 

imprecise images akin to architectural sketching, while random functions 

challenge architects to transform computer-generated shapes, rooted in 

chaos theory. Integration of 3D digitizing allows seamless navigation 

between real and digital environments, as seen in Gehry's work, blending 

tangible and virtual realms in architectural design. (figure 2-4). 
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Figure 2-4 Working model of the 1989 Vitra Design Museum in Germany by Gehry, Frank O. 

Gehry, courtesy Frank Gehry Papers at the Getty Research Institute 

Form finding 

Form finding in architecture involves discovering and shaping 

architectural forms exclusively derived from function, employing rules, 

constraints, and algorithms within a "generator." This process, outlined by 

El Iraqi and El Daly, 2017, encompasses both analogue and digital 

methods. Analogue form finding, exemplified by architects like Jean-

Nicolas-Louis Durand, utilizes mathematical rules or transformational 

principles to generate architectural forms (figure 2-5).  

 

Figure 2-5 Systemization and Composition by Jean-Nicolas-Louis Durand - 

https://www.sensesatlas.com/jean-nicolas-louis-durand/ 
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Similarly, Louis Sullivan employed analogue methods to describe 

processes for reproducing floral ornamentation based on geometrical 

constructs (figure 2-6).  

 

Figure 2-6 - Louis Sullivan, Plate 2, detail, from A System of Architectural Ornament According 

with the Philosophy of Man's Power (New York: AIA Press, 1924; reprint 1934). 

Le Corbusier's Five Points of Architecture exemplifies an analogue 

generative system predating widespread computational use in architecture. 

Similarly, Peter Eisenman employed analogue transformational rules in 

design synthesis, creating a system allowing infinite expressions with 

finite means. Eisenman's approach is evident in his designs of a series of 

houses as seen in figure 2-7. 

 

Figure 2-7 - House IV - Transformations Series by Peter Eisenman - 

https://eisenmanarchitects.com/House-IV-1971 
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Digital form-finding in architecture involves the use of computational tools 

to generate various forms, ranging from orthogonal conventional shapes 

using basic shape algebra and formal logic to complex three-dimensional 

curves and folding surfaces using trigonometric parameterized functions. 

Computational algorithmic modeling is a process that applies rules and 

algorithms within a computational medium, but it lacks the potential for 

changing a rule with direct manipulation applied to the end result. When 

the process includes a feedback loop allowing for the modification of rules, 

it is considered a form generation process, whether it's generative or 

parametric. Digital form-finding types of process including computational 

modeling, algorithmic modeling, generative modeling, and parametric 

modeling will be discussed in chapter 3. 

2.3 Mapping and analyzing the elements and motifs of 

contemporary forms 

In computer science, an architectural style is a set of design rules or 

conventions that dictate how the elements and relations of a software 

system should be organized. It represents a family of systems with a shared 

set of design goals and constraints. Architectural styles define a specific 

way in which components (such as modules, classes, or objects) and 

connectors (communication channels, protocols) are arranged to achieve 

certain architectural qualities like performance, modifiability, or 

reusability. An architectural pattern, on the other hand, provides a higher-

level abstraction compared to architectural styles. It describes a 

fundamental structural organization schema for software systems, 

specifying the overall structure of the system and the patterns for the 

relationships between its components. Architectural patterns go beyond 

specifying individual elements and connections; they define a set of 

predefined subsystems, their responsibilities, and also include rules and 

guidelines for organizing interactions between these subsystems. In 

summary, architectural styles focus on the manner in which components 

and connectors are used, while architectural patterns provide a broader, 

higher-level template for organizing the overall structure of a software 

system, including predefined subsystems and their relationships. Both 
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concepts are crucial in guiding the design and development of complex 

software systems, helping architects make informed decisions based on 

established best practices and design principles (Clement, P., et. al. 2011).  

The same definitions can be directly applied to architectural design of 

buildings. When the difference between the terms ‘architectural pattern’ 

and ‘architectural style’ is discussed, both terms result in an architectural 

approach. However, architectural patterns tend to relate to certain 

problems in a certain context. For instance, an architectural style tends to 

relate how architectural elements and components are composed focusing 

on the approach. On the other hand, architectural patterns relate how the 

resulting architectural approach may solve problems in different contexts 

including environmental, social, psychological, and economic aspects.  

Architectural design motifs are recurring, often symbolic, themes that are 

used in the design of buildings and structures. These motifs can be derived 

from various sources, including cultural, historical, religious, or natural 

influences. They are employed to create a sense of unity, rhythm, and 

visual interest in the architecture. Motifs relate to the architectural style 

more than patterns. They mostly tend to symbolize and give meanings or 

just symbolize how an architect expresses his beliefs of good architecture 

regarding proportions, aesthetics, and other design strategies. 

Examples of Motifs in Architectural Design include the following: 

Architectural Orders: 

Classical architecture introduced the concept of orders, including Doric, 

Ionic, and Corinthian, each with distinct styles for columns and 

entablatures. Orders define the arrangement of architectural elements, 

contributing to the overall style and cohesion of a building or tradition. 

Figure 2-8 shows how the use of different classical orders as motifs differs 

according to columns and entablature types and proportions as well 

decoration elements. 
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Figure 2-8 – Architectural Orders from Greek, Roman, and Tuscan Eras, 

https://blog.stephens.edu/arh101glossary/?glossary=order 

Gothic Tracery 

Gothic tracery (figure 2-9), prominent in cathedrals, comprises intricate 

patterns of intersecting ribs in windows. It enhances aesthetics and 

establishes a cohesive motif for Gothic architecture through rhythmic 

recurrence across architectural elements. 

 

Figure 2-9 – Geometrical bar tracery, Ely Cathedral, Lady Chapel, west window (left), Rayonnant 

bar tracery above the south rose window in Notre-Dame de Paris (Right) 

(https://en.wikipedia.org/wiki/Tracery) 

Moorish Arch Motif 

The horseshoe arch (figure 2-10) in Islamic architecture, originally from 

early Christian art during the Roman Empire, is a defining motif 

https://blog.stephens.edu/arh101glossary/?glossary=order
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characterized by its rounded shape widening at the base. Adorned with 

intricate patterns and calligraphy, it recurs in doorways, windows, and 

arcades, contributing to the unique visual language of Islamic architectural 

styles (Marcias, G., 1954). 

 

Figure 2-10- Caliphal-style arches of the Taifa palace (11th century) in the Alcazaba of Málaga, 

Spain, https://en.wikipedia.org/wiki/Horseshoe_arch#cite_note-:02-7 

Greek Key Pattern 

The Greek Key pattern, a continuous linear motif in classical design, 

consists of repeated geometric shapes forming a meandering line. Often 

used as a decorative border or frieze, its repetitive presence adds rhythm 

and unity to architectural elements, defining motifs in classical and 

neoclassical structures. Figure 2-11 (a) shows Greek key on a stove in the 

in the D.A. Sturdza House, in Bucharest. 

Art Deco Zigzag Motif 

Art Deco architecture features the distinctive zigzag motif (figure 2-11 

(b)), marked by sharp, angular lines. Seen in friezes, cornices, and facade 

layouts, this pattern represents a departure from traditional ornamentation. 

Its repetition across elements embodies the dynamic and modern aesthetic 

of the Art Deco movement in the early to mid-20th century.. 
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Figure 2-11 –(a) Greek key on a stove in the in the D.A. Sturdza House, in Bucharest, 

https://en.wikipedia.org/wiki/File:Greek_key_on_a_stove_in_the_in_the_D.A._Sturdza_House,_in

_Bucharest.jpg, (b)  Zigzag Motif on Smith and Chambers building, Napier, New Zealand. 

https://edition.cnn.com/style/article/napier-art-deco-architecture/index.html 

Modernist Grid Motif 

Modernist architecture adopts the grid motif, featuring regular and 

geometric arrangements of elements like windows and columns. Architects 

such as Ludwig Mies van Der Rohe, Le Corbusier, and Peter Eisenman 

apply this motif, inspired by Piet Mondrian's lines. Gerrit Rietveld, 

influenced by Mondrian, incorporated similar elements into Mrs. Truus 

Schröder-Schräder's house in Utrecht, Netherlands (figure 2-12). The 

pervasive repetition of the grid motif reinforces modernist principles of 

clarity and rationality, becoming a hallmark of the architectural style. 

 

Figure 2-12- Rietveld Schröder House, 

https://en.wikipedia.org/wiki/Rietveld_Schr%C3%B6der_House 

Following Le Corbusier and Mies Van Der Rohe, architects like Alvaro 

Siza, Kenzo Tange, Gordon Bunshaft, Richard Meyer, and Tadao Ando 

embraced the grid motif. Today, this motif is ubiquitous in contemporary 

https://en.wikipedia.org/wiki/File:Greek_key_on_a_stove_in_the_in_the_D.A._Sturdza_House,_in_Bucharest.jpg
https://en.wikipedia.org/wiki/File:Greek_key_on_a_stove_in_the_in_the_D.A._Sturdza_House,_in_Bucharest.jpg
https://en.wikipedia.org/wiki/Rietveld_Schr%C3%B6der_House
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villas and private residential buildings worldwide. Factors such as high 

construction costs and fast-paced social lives have contributed to its 

widespread adoption. As a result, designs are becoming increasingly 

similar, with architects employing a common language, as seen in the 

analysis of common motifs in Table 2-2. 

Table 2-2 Analysis of Common Contemporary Motifs 

No

. 
Project Photo Description 

1 

 

- C shaped slab with 

thickness around 40 cm on 

the first floor 

- C shaped terrace elevation 

on ground floor 

- The terrace is recessed from 

the ground floor edge. 

- Glazing facades inside the 

slab edges 
https://www.flickr.com/photos/aareps/901

9441462/in/album-72157636835800726/ 

2 

 

- C shaped slab with 

thickness around 40 cm on 

the first floor 

- L shaped terrace elevation 

on ground floor 

- Terrace is on the ground 

floor edge 

- Glazing facades inside the 

slab edges 

 

Private villa in Vilnius, Lithuania 

by ngarchitects 

 
https://ngarchitects.eu/vila-energy/ 
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3 

 

- C shaped slab with 

thickness around 30 cm on 

the first floor 

- L shaped terrace elevation 

on ground floor 

- The terrace is recessed from 

the ground floor edge. 

- Glazing facades and 

stonework inside the slab 

edges 

 
https://catalog-plans.ru/catalog/62-65 

4 

 

- C shaped slab with 

thickness around 30 cm on 

the first floor 

- L shaped terrace elevation 

on ground floor 

- The terrace is on the ground 

floor edge. 

- Glazing facades inside the 

slab edges 

 

EH House, Pilar, Argentina by 

Estudio GMARQ. 
https://www.archdaily.com/906904/eh-

house-estudio-

gmarq?ad_medium=gallery 

5 

 

- C shaped slab with 

thickness around 70 cm on 

the first floor 

- L shaped terrace elevation 

on ground floor 

- The terrace is recessed from 

the ground floor edge. 

- Glazing facades and 

woodwork inside the slab 

edges 

Twelve by Jaime Salvá, Santa 

Ponça, Mallorca, Spain. 
https://homeadore.com/2020/07/27/twelve

-by-jaime-
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salva/?utm_source=feedburner&utm_me

dium=feed&utm_campaign=Feed:+home

adore+(HomeAdore) 

 

Other motifs appear strongly in contemporary villas and residential 

buildings, including the use of repeated solid blocks with light or opening 

gaps (figure 2-13), the use of stripped louvers more as an architectural 

pattern (figure 2-14), and the use of skewed recessed blocks which usually 

frame openings (figure 2-15). Even some of these motifs are composed 

together to form a different look. 

 

Figure 2-13- Using solid strong walls in contemporary designs (villa by Rymar Studio (left), 21 

Villa by Saad Al Omayrah (right)), https://rymarstudio.com/residentialarchitecture, 

https://www.behance.net/gallery/148907457/21-Villa-By-Depth-of-Field 

 

Figure 2-14- Using louvers as architectural pattern in contemporary designs (Condomínio Terras 

de Toscana, by Lima Arquitetos (left), CB hoise, Indonesia, by Studio Avana (right) - 

http://www.limaarquitetos.com/projetos/residencia-br/, 

https://www.behance.net/gallery/98916083/CB-House 

https://rymarstudio.com/residentialarchitecture
http://www.limaarquitetos.com/projetos/residencia-br/
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Figure 2-15- Using skewed and recessed elements to highlight openings (Villa in UAE by Nisreen 

Kayyali (left), Viewpoint House, Quezon City, Philippines by Jim Caumeron Design (right)) - 

https://www.instagram.com/nisreenkayyali/, https://www.archdaily.com/951932/viewpoint-house-

jim-caumeron-design?ad_medium=gallery 

These motifs contribute to the visual language of architecture and are often 

used to communicate cultural, historical, or artistic references. Architects 

use motifs to create a sense of unity and coherence in the design, tying 

together various elements of a building into a harmonious whole. 

Summary 

In this chapter, the definition of architectural form is explored tracing its 

origin to the Latin term equivalent to idea. Over time, architects expanded 

this definition to encompass the intersection of mass and space, 

highlighting the multifaceted nature of forms beyond mere aesthetics. 

From ancient times to the present, theories on form have evolved, 

reflecting shifts from epistemological to methodological perspectives due 

to societal and economic developments. Geometry has played a crucial 

role, with historical roots linking it to divine principles, now utilized for 

rationalizing designs amidst technological advancements. 

Conceptual elements such as points, lines, surfaces, and solids were 

analyzed, with points deemed particularly influential in form development 

due to their ability to establish relationships and parametrically define 

elements. Visual elements and design strategies like form, size, proportion, 

repetition, rhythm, harmony, and unity were discussed for their impact on 

form perception and design aesthetics, especially with advancements in 

digital fabrication techniques facilitating patterned facades and forms. 

https://www.instagram.com/nisreenkayyali/
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Form making, characterized by subjective and intuitive aspects, was 

juxtaposed with form finding, which relies on mathematical rules for 

problem-solving. Architectural patterns, driven by problem-solving 

approaches within specific contexts, were contrasted with architectural 

styles focused on compositional elements' formation. Notable motifs, 

including architectural orders of the Greeks, Gothic tracery, Moorish 

arches, Greek key patterns, Art Deco zigzags, and modernist grids, were 

analyzed for their significance and influence on architectural styles. 

Contemporary architectural motifs and styles, observed in villas and 

residential buildings, exhibited recurring patterns such as exposed slabs, 

recessed glazing facades, L-shaped terraces, repeated solid blocks with 

openings, stripped louvers, and skewed recessed blocks. These motifs 

reflect cultural, religious, and aesthetic considerations, shaping 

architectural compositions. 

In the subsequent part, these motifs will be incorporated into designed 

models to educate AI on architectural aesthetics and styles. 
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Chapter 3:   Coding in computational design: A base 

for utilizing AI in architectural form finding 

Preface 

Computational design in architecture utilizes computational tools and 

processes, including algorithms, scripting, and programming, to inform, 

generate, and optimize solutions. This approach often intersects with 

parametric design but encompasses a broader range of techniques. 

Parameters such as wall length, window size, and spatial relationships 

influence spatial experience, aesthetics, environmental interaction, and 

resource consumption. Architects' evolving expertise shapes their unique 

design approaches. 

Parametric design translates architectural models into parameters and 

defines their relationships. Changing one parameter can alter others due to 

their interconnections. Architects use data types like numbers, booleans, or 

strings to create parametric models, which can include regulations like 

setbacks and heights. This algorithmic thinking allows for easy 

adjustments and maintains design consistency (Jabi, W., 2013). Software 

like Grasshopper for Rhinoceros3d and Dynamo for Revit arrange models 

as interconnected algorithms. 

In September 2007, Rutten, D. developed the "Explicit History" plugin for 

Rhinoceros3d, which created a visible history of operations. This evolved 

into Grasshopper3d, enabling visual coding and forming the basis of 

parametric design with real-time modifications. Similar visual 

programming languages followed, including Dynamo for Revit, 

Marionette for Vectorworks, Param-O for Archicad, VizPro for Sketchup, 

and SIII for Blender, enhancing modeling capabilities (Sawantt, S., 2021). 

Coding, defined as instructing a machine to perform tasks, underpins 

architectural software by transforming geometry through mathematical 

operations. Mastery of a software's coding language allows architects to 

use the software more effectively, reducing user interface biases. Coding 

provides tools like iterations, conditional statements, and extensive 

libraries for tasks such as data visualization and array manipulation, 
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expanding design possibilities. Coding enables architects to perceive 

geometry as containers of information, enriching their design 

understanding. 

This chapter discusses computational design as a design thinking 

approach, exploring its roots and presenting a taxonomy of methodologies. 

It reviews the generative form-finding approach, analyzes architectural 

forms as information and examines algorithm formation based on form 

elements, advocating for coding over visual programming languages. 

Additionally, the chapter provides an overview of coding practices, 

software functionality, and the importance of coding for its power and 

freedom, avoiding biases in visual programming and conventional 

modeling. 

3.1 Computational design thinking 

Computational design in architecture integrates advanced computational 

capabilities to automate, parallelize, and enhance various aspects of the 

design process. It enables architects to efficiently manage information, 

incorporate changes seamlessly, and explore diverse design possibilities 

through automation and algorithms, aligning with contemporary 

architectural demands. 

Oxford Dictionary defines computation as "the action of mathematical 

calculation" and "the use of computers, especially as a subject of research 

or study." The Cambridge Advanced Learner's Dictionary & Thesaurus 

adds that it is "the act or process of calculating an answer or amount by 

using a machine." In architecture, Oxman (2006) describes computational 

design (CD) as design processes that fully utilize computers for their 

computational abilities rather than as electronic drawing boards. Terzidis 

(2006) defines CD as the entire process leading to a final result through 

digital tools. Thus, CD can be expressed as a design process leveraging 

computational capabilities through various activities (Caetano, I., et al., 

2019) including automating design procedures through deduction, 

induction or abstract, parallelizing design tasks by breaking down the 

design process into smaller, more manageable components that can be 
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processed simultaneously (figure 3-1), incorporating and propagating 

changes and assisting in form-finding processes. 

 

Figure 3-1- Sequential vs. Concurrent vs. Parallel Design Processes 

(https://www.linkedin.com/pulse/concurrency-vs-parallelism-2-sides-same-coin-khaja-shaik-/) 

According to Menges, A., and Ahlquist, S. (2011), computational design 

(CD) is crucial because it shifts the perception, purpose, and production of 

form by utilizing information processing and interactions between 

elements, emphasizing systems thinking over by-element thinking. 

Systems thinking views every aspect of a form as part of a hierarchical 

structure of components. Menges and Ahlquist argue that computation is 

not necessarily related to computer use and should not be confused with 

computerization, which involves automation and digitization. They assert 

that computational methods can codify, analyze, systematize, and 

synthesize mental processes without digital tools. 

Aristotle's definition of 'holism' underpins the understanding of systems as 

wholes greater than the sum of their parts. Descartes emphasized 

understanding processes through simple causalities, while Christopher 

Alexander highlighted that a system's overall behavior results from the 

interaction among its parts. Understanding these interactions is critical 

(figure 3-2). 
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Figure 3-2- Interaction between Components Forms the Whole Design Idea 

Glenn Wilcox argues that design computing views geometric forms as 

containers of information, not just shapes. Thus, a simple box is perceived 

not merely as a geometric object but as an entity with characteristics like 

height, length, and width. (figure 3-3 (left). In computational design 

thinking, a box is viewed as a container of information defining its 

characteristics and relationships with other architectural elements (figure 

3-3 (right)). This box consists of points that determine distances between 

each other and other elements. Each surface of the box has attributes like 

color and texture, along with a center point. The box's center point and 

each point's coordinates (X, Y, Z) provide valuable data for spatial 

positioning. Extracting this information facilitates transformations and 

establishes relationships with other objects and their components.  

          

Figure 3-3- (left) A box as geometry vs. a box with geometric existence characteristics, (right) A 

box is considered a container of many information rather than a simple geometry. 

Thinking about architectural elements through the lens of computational 

thinking, adds many layers of control and freedom to the way the elements 

are interacting to form spaces and architectural forms through the fast-

developing tools in computers. Additionally, extracting those relations as 
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parameters can serve as a basis for utilizing different ML in the form 

finding process. 

3.2 The roots of computational design 

The influence of geometry, proportion, and numerical principles in 

architecture dates back to ancient times (Burry, M., 2010). Vitruvius is 

credited with establishing the Vitruvian Triad—Firmitas (Durability), 

Utilitas (Utility), and Venustas (Beauty)—as the fundamental principles of 

architecture. Vitruvius emphasized the importance of geometric ideals, 

particularly Order and Arrangement (Ordinatio). He highlighted that the 

thoughtful organization of architectural elements creates a cohesive and 

visually pleasing composition, contributing to the overall harmony and 

effectiveness of the design. 

The concept of the golden ratio, often denoted by the Greek letter phi (φ), 

has been known and utilized since ancient times, and it is not attributed to 

a single individual. The golden ratio is an irrational number, approximately 

equal to 1.618033988749895, and it appears in various mathematical and 

natural contexts. It is often expressed as the ratio of two quantities, where 

the whole is to the larger part as the larger part is to the smaller part. 

The term "golden ratio" itself is relatively modern, coined in the 19th 

century. Mathematicians and artists throughout history, however, have 

been aware of and fascinated by this ratio. Ancient Greek mathematicians, 

including Euclid, explored the mathematical properties of the golden ratio, 

and it has been observed in the architecture of ancient civilizations, such 

as the Parthenon in Athens. The Italian mathematician Leonardo 

Fibonacci, in his "Liber Abaci" (1202), introduced the Fibonacci sequence, 

which is closely related to the golden ratio. However, it's important to note 

that while Fibonacci popularized the sequence, the golden ratio itself was 

known and used before his time. 

Le Corbusier introduced the concept of "regulating lines" in his design 

principles. As observed in figure 3-4, these lines served as a framework for 

organizing and proportioning buildings. They were based on mathematical 

principles and were intended to provide a rational and harmonious basis 
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for architectural composition. According to Le Corbusier, regulating lines, 

be they circular, square, or linear, manifest as helpful and regular points 

that intricately bring diverse elements together. The placement of angles in 

a precise manner is underscored as a mechanism for uniting varied 

qualities of architectural elements, fostering a sense of order and cohesion. 

 

Figure 3-4 – Villa Design by Le Corbusier 

(https://melissabilgecelik.wordpress.com/2018/10/31/regulating-lines-le-corbusier/) 

Additionally, Ludwig Mies van der Rohe frequently employed modular 

grids as a foundational design principle to manifest his commitment to 

simplicity and order. The modular grids (figure 3-5) provided a framework 

for organizing elements and spatial configurations, enabling rational and 

flexible compositions. Mies's grids balanced order with adaptability, 

accommodating various functions precisely. The Barcelona Pavilion and 

the Farnsworth House exemplify the enduring impact of his modular grid 

system on modern architectural design. 

 

Figure 3-5- Graphite and red pencil on verso of Hotel Nacional stationary by Mies Van der Rohe 

(https://www.moma.org/collection/works/87415) 

https://www.moma.org/collection/works/87415
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Today, the intensive use of CD is seen in the work of many architects who 

apply generative design techniques and optimization especially in the form 

finding process. Numbers and computation became a very important 

aspect in designs as will be discussed in section 3-4. 

3.3 A taxonomy of computational design terms 

The emergence of computation-based approaches in design has seen 

widespread adoption among architects and design professionals in recent 

decades. However, diverse terminologies such as computational, 

parametric, generative, algorithmic, performance-based, and evolutionary 

design have led to ambiguity and hindered communication within the field. 

This variability reflects the dynamic nature of computational design, 

rooted in a rich history dating back to the 1960s, influenced by pioneers 

like Ivan Sutherland (Caetano, A., et. Al, 2019). 

Sutherland's concepts of design variation and parametric instances 

catalyzed the shift toward computational design. In the 1970s, efforts to 

formalize CD emerged, leading to its recognition as a distinct field within 

architecture in the 1980s. By the 1990s, computational design had 

solidified its presence, with dedicated conferences and journals. However, 

in the last two decades, it has evolved beyond automating drafting tasks to 

encompass diverse computation-based methods. 

Contemporary computational design integrates techniques like building 

simulation, evolutionary optimization, and novel fabrication methods, 

driving innovative design approaches. As computational design continues 

to evolve, it remains at the forefront of architectural exploration, shaping 

the conceptualization and realization of built environments. In this section 

different CD related terms are reviewed, defining how each approach is 

involved in CD including CAD, parametric design, generative design, 

algorithmic design, and other related terms. 

Computer-Aided Design (CAD) emerged in the late 1950s and early 

1960s, with Ivan Sutherland's "Sketchpad" in the 1960s introducing 

interactive graphic design systems. The 1970s saw the development of 

commercial CAD systems like DAC-1 and CALMA for electronic design 
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and manufacturing. The 1980s brought 3D CAD and the rise of desktop 

workstations, with Autodesk's AutoCAD becoming widely used in 1982. 

CAD became mainstream in the 1990s, with standardization efforts 

making it accessible across industries. It aids in creating, modifying, 

analyzing, and optimizing designs, improving workflow efficiency, 

quality, and documentation, and contributing to manufacturing design 

databases. 

The history of digital design (DD) traces back to the 1950s and 1960s when 

early digital computers were primarily used for scientific and military 

purposes. Ivan Sutherland's "Sketchpad" in the early 1960s laid the 

foundation for digital design, marking the inception of digital tools in the 

design process. In the 1970s, computer graphics emerged, enabling 

designers to manipulate and visualize images on digital displays. 

Autodesk's AutoCAD in 1982 played a pivotal role in the widespread 

adoption of digital design tools. After that, the 1990s witnessed the 

democratization of digital design with the rise of personal computers and 

software like Adobe Photoshop, Illustrator, Rhino, and 3ds Max. 

In the 21st century, the integration of digital design into various disciplines 

accelerated, exemplified by the rise of parametric design and algorithmic 

modeling. Today, digital design encompasses various fields from graphic 

and web design to product design, animation, and virtual reality. 

Advancements in technologies like augmented reality, AI, and generative 

design continue to shape the landscape of digital design, empowering 

designers to bring their visions to life in unimaginable ways. 

Caetano, A, et. Al., 2019 argue that parametric design (PD) in architecture 

utilizes parameters and algorithms to create adaptable architectural forms, 

offering a wide range of design possibilities. Moretti (1971) describes PD 

as investigating relationships between design dimensions, while Kalay 

(1989) focuses on dynamic geometric representations. Szalapaj (2001) 

emphasizes geometric constraints, and Kolarevic (2003) views PD as 

declaring design parameters rather than specific shapes, allowing for 

multiple solutions. Eggert (2004) stresses PD's optimization capacity, 

while Schumacher (2008) sees it as a contemporary architectural style. 
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Woodbury (2010) highlights PD's associative nature, and Elghandour 

(2014) views it as code-based design. Zboinska (2015) categorizes PD 

under Algorithmic Design, emphasizing algorithmic processes. Zarei 

(2012) subdivides PD into conceptual modeling and 

construction/manufacturing categories. 

Parameters enable designers to establish relationships and constraints 

governing the design, allowing exploration within a coherent system. 

Janssen and Stoufs (2015) categorize PD into object, associative, data-

flow, and procedural modeling, providing comprehensive tools for 

designers across the design process. 

Soleimani (2019) advocates for integrating parametrics into architecture 

programs through three interconnected approaches. Firstly, the system-

based approach emphasizes studying architecture as complex subsystems 

rather than individual objects, engaging with spatial, material, social, and 

structural elements for harmonious coexistence. Secondly, the algorithmic, 

rule-based approach promotes computational thinking, using algorithms to 

create active relationships between design intent and outcome, yielding 

alternative design possibilities. Lastly, the interdisciplinary approach 

encourages architects to draw from diverse disciplines like philosophy, 

biology, mathematics, and computer science to address evolving 

challenges creatively. These approaches serve as essential pillars for the 

transformative integration of parametric design in architectural education. 

Generative design (GD) employs computational systems to autonomously 

explore and generate potential solutions, akin to nature's evolutionary 

mechanisms. It surpasses the autonomy of Parametric Design (PD) by 

utilizing more autonomous algorithmic descriptions (Caetano, A, et. Al., 

2019). GD systems, as defined by Mitchell (1977), generate solutions to 

design challenges without continuous direct input from the designer. 

Fischer and Herr (2001) characterize GD as a methodology where 

designers interface with generative systems, exploring and evolving 

solutions through computational means. Frazer (2002) compares GD to 

evolutionary processes in nature, highlighting its dynamic and iterative 

nature. Krause (2003) notes GD's autonomy in creating architectural 
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structures or spaces, while McCormack (2004) describes it as generating 

complex designs from simple specifications. Bukhari (2011) positions GD 

as a subtype of Algorithmic Design (AD), utilizing algorithms to produce 

diverse solutions. These perspectives underscore GD's dynamic, 

algorithmically driven nature and its capacity to autonomously evolve and 

fulfill design criteria. 

Algorithmic design (AD), according to Caetano, A, et. Al., 2019, leverages 

algorithms to generate models, establishing a clear correlation between the 

algorithm and the resulting design. This transparency enables users to trace 

and understand how different elements of the model are generated. AD 

provides generative capabilities through algorithms and enhances 

transparency and understanding throughout the design process. An 

algorithm, as defined by the Cambridge Dictionary, is a set of 

mathematical instructions or rules to solve a problem. Terzidis (2003, 

2004) describes AD as generating space and form through rule-based logic 

inherent in architectural programs and language. Bukhari and Caldas 

(2011, 2008) note that AD includes both generative design and 

evolutionary design methods, employing fitness functions to guide the 

search process. Oxman (2017) emphasizes the procedural nature of AD, 

involving the explicit coding of instructions to generate digital forms. 

Zboinska (2015) views AD as a paradigm built upon Parametric Design 

(PD) tools, utilizing simple rules and relationships to produce complex 

geometries. Together, these perspectives define AD as a versatile paradigm 

encompassing various computational design methods. 

Caetano, A, et. Al., 2019, suggested a conceptual overlap and inconsistent 

use of terms related to CD, with a specific focus on PD, GD, and AD. They 

illustrated this conceptual overlap using a Venn diagram (figure 3-6), 

indicating that AD is a subset of GD and shares a non-empty intersection 

with PD. 
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Figure 3-6 - Conceptual representation of the terms’ extension regarding the CD paradigm, by 
Caetano, A., et. Al., 2019, Computational design in architecture: Defining parametric, generative, and 

algorithmic design. 

Caetano, A, et. Al., 2019, argue that there are multiple cases of overlaps: 

1- AD (Both GD and PD): Designing an algorithm that generates a 

facade based on a set of parameters like the dimensions, size, and 

distribution of different elements. 

2- GD, PD, but not AD: Designing through optimization, however, the 

relations between the parameters and the optimization mechanism 

is difficult. 

3- GD but neither PD nor AD: Using cellular automata in design 

where the rules are not parametric, and the outcome is nearly 

impossible to directly infer from the rules of the automaton. 

4- PD but neither AD nor GD: Designing an element such as a wall 

allowing users to change the parameters without requiring explicit 

use of algorithms. 

5- GD, AD, but not PD occurs in digital fabrication when a computer 

numerical control machine operates, executes a program that is 

often automatically generated and entirely non-parametric. 

Last but not least, and according to Caetano, A., et. Al., 2019, 

"performance-based design" is the third most used term after PD and GD, 

but less prevalent than Parametric Design (PD) and Generative Design 

(GD). There is limited overlap with the term "performative design," which 

is not as commonly used. They presented a bar diagram illustrating the 
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frequency of appearance of each CD-related term in the literature from 

1978 to 2018. 

 

Figure 3-7- Number of times each CD term appeared in the literature between 1978 and 2018 by 

Caetano, et. Al, 2019 

Overall, performance-based design integrates performance criteria 

throughout the design process, prioritizing specific outcomes over 

traditional standards. It's prevalent in architecture and engineering, 

focusing on achieving desired performance goals. Evolutionary design, 

adaptive design, performative design, and kinetic design are variations 

within this approach. 

GD utilizes algorithms to generate designs autonomously, emphasizing 

computational processes to produce diverse solutions. AD, a subset of GD, 

emphasizes traceability between algorithms and outcomes. PD relies on 

parameters to describe designs, allowing flexibility and adaptability within 

a defined framework. Understanding these terms is essential for employing 

specific techniques and approaches in the design process. 

3.4 Generative form finding 

Generative form-finding is a design process rooted in rules or algorithms, 

often facilitated by software like Rhinoceros, Grasshopper, Dynamo, and 
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scripting platforms. Eisenman's influence in the 80s and early 90s, inspired 

by Derrida's deconstruction theory, introduced techniques like overlay, 

fractals, and scaling, paving the way for contemporary generative design 

attempts. Greg Lynn further advanced the field with techniques such as 

NURBS and splines, leading to the emergence of 'blob architecture.' 

With the advancement of computational and scripting tools, digital 

fabrication became more accessible, enabling explorations in paneling, 

optimization, simulations, and algorithmic design. Generative design 

leverages computers to explore solutions, sometimes through algorithms, 

and employs evolutionary optimizers to reach design goals. This approach 

shifts the focus from the final form to the underlying logic of design, 

externalizing the designer's intelligence into generative systems. Various 

tools like shape grammars, parametric variations, and evolutionary 

algorithms enable designers to encode rules and algorithms, guiding form 

generation. Additionally, newer tools explore randomness and chaos in 

form generation, broadening the spectrum of generative design 

possibilities. (El Iraqi, A., and El Daly, H., 2017). 

According to El Iraqi, A., and El Daly, H., 2017, generative design systems 

can be broadly classified into two categories: linguistic generative systems 

where the emphasis is on encoding design rules and logic (syntax) in a 

language-like structure that govern and shape the design (semantics) and 

biological generative systems which draw inspiration from natural 

processes, particularly those related to evolution. Genetic Algorithms and 

Cellular Automata are examples of biological generative tools. 

Linguistic generative systems includes shape grammars, developed by 

Stiny and Gips in 1972, which formalize rules for generating shapes or 

forms, particularly useful in architecture and urban planning, L-systems, 

which was introduced by Lindenmayer, model growth processes, 

especially for self-replicating structures like plants, and fractals, being 

complex shapes with self-similarity, generated through recursive 

algorithms and have applications in diverse fields for creating intricate and 

visually appealing forms. 
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Figure 3-8- Shape Grammars (MIT - Computational Design I: Theory And Applications - Fall 

2005 Lecture 7) 

       

Figure 3-9- Left: L-Systems (Chiu, P., 02015, The Structure of L-System), Right: Examples of 

geometrically self-similar fractals. (A) The Mandelbrot set. The " curve " (B) and the " snowflake 

" (C), described by Niels Fabian Helge von Koch (1870–1924), and the " Sierpinski triangle " 

(D), described by the mathematician Waclaw Sierp – Di Leva, A., et. Al, 2013, Fractals in the 

Neurosciences, Part I: General Principles and Basic Neurosciences 

Biological generative systems include genetic algorithms which mimic 

natural selection to find optimal solutions by creating populations, 

evaluating fitness, and using genetic operators like crossover and mutation. 

Solutions are represented as individuals (phenotypes) with encoded 

parameters (genotypes), genes, alleles, and chromosomes. GAs evolve 

over generations toward optimal solutions. They also include Cellular 

automata (CA) which are discrete computational models where cell states 

evolve based on rules determined by neighboring cells (Robert J., K., 

2002). CA is used in generative design to create complex patterns and 

simulate dynamic systems. 
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Figure 3-10- Components of Generic Cellular Automaton - Leao, S., et. Al., 2004, Simulating 

Urban Growth in a Developing Nation’s Region Using a Cellular Automata-Based Model 

In essence, the generative form finding represents a pivotal moment in 

design evolution, where technology becomes a co-creator, pushing the 

boundaries of what is conceivable and achievable in architecture and 

engineering. Algorithms and parametric models drive the creation of 

complex, self-adaptive structures. This union facilitates not only the 

exploration of diverse design possibilities but also the optimization of 

forms based on performance criteria. 

3.5 Architectural forms as information 

The use of computer-aided tools in architectural design, as highlighted by 

Jabi (2013), has facilitated the creation of more complex designs, 

especially with the emergence of scripting tools that offer architects greater 

control over design elements. Architectural forms serve as repositories of 

valuable information in computational design, encompassing geometric, 

material, environmental, cultural, and experiential data. This information 

influences design decisions and can be utilized to optimize designs for 

sustainability, functionality, and user experience. Each parameter of a 

building influences its spatial aspects and user interaction, underscoring 

the importance of understanding these factors. Furthermore, translating 

architectural information into datasets for ML algorithms enables pattern 

recognition and prediction, driving innovation and efficiency in design 

processes. Overall, treating architectural forms as information enhances 

design thinking and enables a deeper understanding of the relationship 
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between physical space and digital design. And the best way to deal with 

large quantities of information is through algorithms. 

The advent of parametric design software such as Grasshopper for Rhino 

and Dynamo for Revit shifted the way architectural modeling tasks are 

done from a conventional method of drawing to creation-by-algorithms. 

Algorithms require input data/parameters and steps/operations/conditions 

on those parameters to reach a final output. For instance, a simple example 

of an algorithm for solid wall creation requires inputs such as points, a 

rectangle, or a surface. In the case of a rectangle, an operation of converting 

it to a surface, and then extruding it and in case of a surface, only extrusion 

process is required. Now, if an architect needs to adjust the wall 

parametrically, they can change the rectangle dimensions or the extrusion 

height. Transformations are operations applied on the shape that could 

change its position, angle, scale, etc. and each is considered an 

operation/rule applied within the algorithm to reach the final output. 

Copying the wall, connecting walls and slabs, opening walls, transforming 

items to respect setbacks, and more are examples of rules applied to the 

same algorithm to reach a building rather than a wall. Afterwards, adjusting 

any parameter within the same framework of the algorithm maintaining its 

structure will be easy. However, the number of parameters can be critical 

because regardless of how many parameters an architect adds to the 

algorithm, relations between those parameters should be kept clear in order 

to maintain the algorithm’s readability and function. And so, the way an 

architect can algorithmically decompose a building and find the proper 

relationships between its components can be very complex. Especially, 

with a large number of components each related to another. But what is 

guaranteed is that each design will be a product of a well-structured and 

connected algorithm that maps exactly how the architect thinks and what 

decisions have been made. And there comes the importance of parametric 

design approach where an architect could use hundreds of parameters that 

together shape the form while being interrelated directly so that changing 

a parameter could affect other parameters.  
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3.6 Coding as a Practice 

"Coding" typically refers to the act of writing code, which is a set of 

instructions written in a programming language. This can involve 

translating a specific algorithm or set of tasks into a language that a 

computer can understand and execute. Coding is often considered a more 

casual term, and it can be used to describe both the broader process of 

writing code and the specific act of writing individual lines or blocks of 

code. In the Oxford Languages Dictionary, the term ‘code’ is defined as a 

‘system of words, letters, figures, or symbols used to represent others, 

especially for the purposes of secrecy’ and ‘program instructions.’ Also, 

the term ‘coding’ is defined as ‘the process of assigning a code to 

something for classification or identification’ and ‘the process or activity 

of writing computer programs’ (Oxford Languages Dictionary). 

From these definitions, coding is not a process that is exclusively related 

to computers. Human mental processes could be done through coding. In 

fact, coding becomes a general activity that involves ciphering data, 

analyzing, and synthesizing it to solve problems. In qualitative research, 

coding is essential for organizing and analyzing data, assigning labels to 

segments of qualitative data to identify patterns and insights.  

While coding and programming are often used interchangeably, 

programming encompasses the entire software development process, 

including coding, problem-solving, testing, and maintenance. It requires a 

comprehensive understanding of the software development life cycle. In 

practice, coding involves writing instructions for software to perform 

specific tasks, often hidden behind a graphical user interface (GUI). When 

a user interacts with a GUI, such as clicking a button, it triggers a series of 

processes between the front end (GUI) and back end (software logic), 

ultimately executing the desired action. This process could be broken down 

simply into the following steps: user interaction in the GUI triggers event 

handling in the front end, where the software captures and processes the 

user's action. This information is communicated to the back end, which 

determines the appropriate response based on the user input. The software's 

logic executes the action, translating high-level code into machine code for 
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the computer's CPU to process. If necessary, the software may undergo 

compilation before execution. The updated GUI provides feedback to the 

user, indicating that the action has been completed. This seamless process 

ensures intuitive and responsive user experiences in software applications. 

The GUI triggers actions in the software's logic, leading to the generation 

and execution of machine code by the computer's hardware. The process 

varies by programming language: C/C++ directly translates code to native 

code, Java to bytecode, C# to an intermediate language, which is then Just-

In-Time (JIT) compiled to native code, and Python to bytecode executed 

by its interpreter. This variation affects how code is executed and 

optimized. 

Machine code, written in binary or hexadecimal notation, is specific to a 

computer's architecture and operating system. Developers typically use 

higher-level programming languages and rely on compilers or interpreters 

to generate machine code. The actual instructions executed depend on 

factors like the programming language, operating system's API, and 

hardware architecture. Lower-level languages like C/C++ may use system-

specific functions to interact with the OS, while higher-level languages like 

Java/Python delegate interaction to the runtime environment or interpreter. 

Understanding coding principles empowers users to leverage machines 

fully, fostering creativity in task execution and potentially innovating new 

functions. 

3.7 How Modeling Software Work 

Programs, or software, are sets of instructions enabling computers to 

perform tasks, essential for computing's functionality. Programmers and 

software developers design, create, and maintain software, shaping 

applications that empower computers. Modeling software like Rhinoceros, 

3ds Max, Revit, and Maya interact with computer hardware to create and 

manipulate 3D models. Developed using high-level languages such as C++ 

or C#, they employ frameworks for GUI, event handling, and rendering. 

GUI facilitates user interaction, with inputs processed through event 

handling. Core functionalities, like surface modeling, employ complex 

algorithms implemented using high-level languages. 3D rendering engines 
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interface with the GPU for realistic visuals. File operations use libraries 

for compatibility with standard formats, integrating with OS APIs for tasks 

like file management. Custom scripting and plugins, often in Python, 

extend functionality. Memory management and multi-threading 

considerations optimize performance, making them indispensable tools in 

design, animation, architecture, and engineering. 

Modeling and rendering geometry 

Geometry modeling algorithms in 3D software, like Bezier surfaces and 

NURBS, use mathematical representations to define and manipulate 

geometry. Implemented in languages such as C++, C#, or Python, these 

algorithms compute points on the geometry based on mathematical 

formulations, often employing techniques like De Casteljau's algorithm for 

Bezier surfaces. Rendering processes, facilitated by OpenGL or DirectX, 

utilize GPU acceleration for real-time visualization, incorporating shading 

and lighting algorithms for realism. The GUI allows user interaction for 

operations like selection, translation, and scaling, with event handling 

mechanisms triggering updates. Optimization techniques enhance 

performance with complex geometry. The rendering pipeline, used by 

libraries like OpenGL, converts 3D data into visual images, with shaders 

enabling custom visual effects for enhanced realism. Translation to 

machine code involves compiling high-level language code into CPU-

executable instructions, typically written in languages like C++. 

The rendering pipeline encompasses a series of mathematical operations 

and algorithms translated into machine code instructions for efficient 

execution on a computer's hardware. This includes transforming vertices, 

applying view transformations, projecting coordinates, and clipping to 

ensure visibility, followed by rasterization to determine pixel coverage. 

Vertex and fragment shaders, compiled from high-level shading languages 

like GLSL or HLSL, handle shading operations in parallel on the GPU. 

Texture mapping involves calculating texture coordinates and sampling, 

while depth testing compares pixel depths for drawing order. Alpha 

blending logic is applied for transparency, and frame buffer operations 

manage pixel storage and display updates. Optimization techniques are 
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employed during compilation to generate efficient machine code, 

leveraging parallelism, particularly in GPU programming, for 

simultaneous execution of shader operations on multiple vertices or 

fragments. 

The compilation process translates high-level code into an intermediate 

representation like bytecode or assembly code. During linking and loading, 

this representation is further translated into machine code specific to the 

CPU or GPU architecture, resulting in an executable program runnable on 

the hardware. 

Software documentation 

Software documentation is a comprehensive set of written materials that 

serves to describe, explain, and guide various aspects of a software system. 

The information in software documentation is often divided into task 

categories, including evaluating, planning, setting up or installing, 

customizing, administering, using, and maintaining. Different types of 

documentation play crucial roles throughout software development life 

cycle and there are mainly two types which are internal and external 

software documentation. Internal software documentation serves as a 

valuable resource within a company including administrative 

documentation which includes administrative guidelines, roadmaps, and 

product requirements and developers’ documentation which offers clear 

instructions to developers on how to build the software. On the other hand, 

external documentation includes user documentation which provides 

guidance on product usage to the end-users, developer documentation 

which focuses on system-related details including how to invoke the API, 

and just-in-time documentation used where immediate support is needed 

for customer-facing queries, minimizing the need for users to refer to 

additional documents or FAQs. 

 

APIs and SDKs 

API (Application Programming Interface) and SDK (Software 

Development Kit) are essential tools in software development, each 
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serving distinct purposes. An API defines rules for software component 

interaction, enabling developers to access functionality without exposing 

internal details. On the other hand, an SDK is a comprehensive package 

containing tools, libraries, and resources for building applications on 

specific platforms or frameworks. While APIs specify interaction rules, 

SDKs provide a complete development environment, including APIs, 

documentation, sample code, tutorials, and other tools. 

3.8 Visual Programming Language 

Visual programming languages (VPLs) use graphical elements like icons 

and symbols to represent programming logic, aiming to simplify coding 

and make it accessible to non-programmers. The concept of VPLs has 

evolved over decades, originating from the early development of graphical 

user interfaces. In architecture, visual programming emerged alongside 

computational design and parametricism, allowing architects to explore 

algorithms and dynamic parameters in design processes. Grasshopper, 

integrated with Rhino 3D modeling software, played a significant role in 

popularizing visual programming by offering a user-friendly interface for 

creating parametric designs. This approach facilitated interdisciplinary 

collaboration and streamlined architectural practices. Figure 3-11 shows 

an algorithm that creates a box using domains in the X, Y, and Z directions, 

and then moves it to the Z direction. 

 

Figure 3-11- Domain Box Creation as An Algorithm 
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In the background of such an algorithm, each component runs a certain line 

of code that executes the function. The XY Plane component runs a ‘Plane’ 

struct property ‘Worldly’, the domain box component runs a ‘Box’ Class 

constructor, the construct domain component runs an ‘Interval’ Struct, the 

unit Z component runs a ‘Vector3d’ struct ‘ZAxis’ property, and the move 

component runs a ‘Translation’ method from the ‘Transform’ struct in 

RhinoCommon. The required parameters such as domain values and unit 

Z, vector value, etc., are considered input variables in the code. 

Conventional modeling techniques in architecture often involve manually 

drawing shapes and structures, which can be non-algorithmic and non-

parametric. This process may lead to inefficiencies when editing geometry 

and may require recreating geometry from scratch for complex tasks. 

Visual Programming Languages (VPLs) offer a graphical representation of 

programming concepts, allowing users to intuitively understand and 

manipulate program logic. 

While VPLs enhance accessibility to programming, they may face 

challenges in expressing complex algorithms and handling large-scale 

tasks compared to text-based languages. They could lead to 

misrepresentation of a project algorithm due to the huge number of 

components on the screen that are connected to each other with wires 

resulting in a very tedious and unarranged virtual working space as shown 

in figure 3-12. 

 

Figure 3-12 - Grasshopper3d Definition Arrangement 
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In summary, VPLs provide a graphical approach to coding, offering 

intuitive interfaces and visual representations of code structures. While 

they enhance accessibility, challenges exist, such as managing complexity 

in larger projects.  

3.9 Bias in Modeling Processes and Leveraging Power, Freedom, 

and Spruceness of Coding 

Bias in modeling processes arises from both software design and 

educational factors. Conventional modeling approaches limit creativity by 

dictating how geometry is built, often restricting users to predefined 

methods within the software's GUI. This bias impedes the ability to treat 

geometry as dynamic information, hindering the full utilization of 

mathematical operations in design. For example, in such software, 

architects may lack flexibility in constructing shapes or evaluating 

surfaces, leading to limitations in modifying and building upon geometry. 

Curve manipulation is particularly challenging, with divisions often 

resulting in kinks and disruptions to smoothness. Overall, conventional 

approaches constrain architects to predefined methods and limit their 

ability to fully leverage mathematical operations in the design process. 

Parametric modeling addresses limitations in conventional approaches by 

enabling mathematical manipulation of geometry. However, educational 

bias persists as architects often learn software through predefined methods, 

hindering creative thinking. Users may favor easier modeling approaches, 

leading to a narrow perspective on software capabilities. Additionally, 

tutorials often focus on tools rather than mathematical principles, further 

limiting understanding. Overall, bias in modeling software restricts both 

thinking and modeling processes for architects. 

Architectural design through coding empowers architects to innovate by 

fostering computational thinking, facilitating the creation of complex 

forms, optimized spatial layouts, and innovative design solutions. 

The power of coding lies in automating repetitive tasks, speeding up 

design iteration, and exploring various possibilities. Functions like 
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iterations and conditionals are fundamental, offering control over code 

flow and flexibility. Iterations, via loops, enhance efficiency by repeating 

tasks and processing data sets, crucial for automation and batch processing. 

Conditionals enable decision-making, executing code blocks based on 

conditions, vital for error handling and user interaction. Together, they 

form the foundation for dynamic and efficient coding, handling diverse 

scenarios and data precisely. Additionally, coding facilitates interactions 

with the operating system, simplifying tasks like exporting model data as 

photos or spreadsheets for use in other disciplines, reducing reliance on 

multiple software tools. 

The freedom offered by coding in architectural design liberates architects 

from traditional constraints, enabling them to express design intent 

algorithmically through parametric models. This dynamic approach fosters 

flexibility, facilitating efficient design modifications in response to 

evolving project needs or client feedback. Working with the modeling 

software's API empowers architects to freely explore its functions and 

modeling methods, aligning with project requirements and enhancing the 

design process. 

Rhinoceros3d SDK 

RhinoCommon, McNeel & Associates' cross-platform .NET plugin SDK 

for Rhinoceros3d, offers extensive capabilities for extending and 

integrating functionalities within Rhino. Primarily designed for .NET 

languages like C#, it provides a versatile API with a robust geometry 

library at its core. Beyond basic scripting, RhinoCommon enables task 

automation and the development of custom plugins, enhancing Rhino's 

native features with bespoke tools. Its cross-platform compatibility ensures 

seamless operation across various operating systems, and supported by an 

active community, developers can tailor solutions to diverse design and 

engineering needs effectively. Figure 3-13 shows the RhinoCommon API 

website exhibiting all of the namespaces and their different classes and 

structs. 
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Figure 3-13 – RhinoCommon API - https://developer.rhino3d.com/api/rhinocommon/ 

To construct a box through coding using the API, the 'Box' struct offers six 

different constructors tailored for various scenarios. These constructors 

include methods for creating a box from a bounding box, copying another 

box, constructing it with a base plane and bounding box, using a base plane 

and a generic piece of geometry, requiring a base plane and a list of points 

(at least 2), and finally, one that needs a base plane and three intervals in 

each Cartesian coordinate (figure 3-14). 

 

Figure 3-14- Box Struct in RhinoCommon API - 

https://developer.rhino3d.com/api/rhinocommon/rhino.geometry.box 

Also, under the ‘Box’ struct, a list of properties (usually mathematical) 

related to the box are exhibited in order to gain all the possible information 
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from it like its area, volume, orientation plane, center, X, Y, and Z intervals. 

Moreover, a set of methods are present for box geometries which facilitate 

getting more information about boxes like their corners, if it contains a 

certain point or another box, the closest point to a box, converting the box 

to a Boundary Representation (Brep) object, and transforming the box. 

The spruceness of coding in architecture refers to the cleanliness and 

efficiency achieved through well-organized and concise code. It 

emphasizes modular scripting, enhancing collaboration and sharing of 

design methodologies within the architectural community. This approach 

improves code readability, scalability of design solutions, and logical 

thinking skills for architects. In software like Grasshopper and Dynamo, a 

single coding component can create, modify, and transform every building 

component, resulting in a tidy virtual workspace. Figure 3-15 shows how 

tidy a virtual working environment can get with coding. 
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Figure 3-15 - Parametric Villa C# Script Created using C# Component in Grasshopper- By the 

Author 
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In general, integrating coding into architectural design modeling 

empowers architects with the computational tools needed to transcend 

traditional design boundaries. It provides the power to create intricate and 

responsive designs, the freedom to explore diverse possibilities, and the 

spruceness of well-crafted, efficient code. This symbiotic relationship 

between coding and architectural design opens new horizons for creativity, 

efficiency, and collaboration within the field of architecture. 

Summary 

In conclusion, this chapter provides a comprehensive exploration of 

computational design as a transformative design thinking approach. It 

delves into the historical roots of computational design and presents a 

nuanced taxonomy that encapsulates the diverse approaches that have 

emerged under its expansive umbrella. The focal point of the chapter 

revolves around the in-depth examination of the generative form-finding 

approach, shedding light on its principles and applications in architecture. 

The collaborative engagement between designers and computational tools 

enables the externalization of design intelligence, fostering a dynamic and 

iterative design process. As designers increasingly leverage generative 

algorithms, shape grammars, and other computational techniques, the 

creative landscape expands, providing a rich platform for exploration, 

experimentation, and the realization of novel design solutions.  

By analyzing architectural forms as a source of information for 

computational design, architectural forms become not only design 

outcomes but also repositories of data that inform and shape the 

computational design process. A crucial aspect discussed in the chapter is 

the translation of this information into algorithms. The formation of 

algorithms, rooted in the extracted information from architectural forms, 

serves as a pivotal step in the computational design approach. In the next 

part integrating coding, ML, and AI in the architectural design process is 

discussed. 

This chapter delves into the evolution of parametric design and visual 

programming in architecture, tracing its roots back to the 'Explicit History' 

plugin for Rhinoceros3d software released in September 2007. The 
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concept of 'visual coding' emerged, forming the basis for parametric 

design, where architects gain full control over parameters and real-time 

modifications.  Coding, defined as the direct means to instruct machines, 

is explored as an integral part of architectural design and modeling. 

Architectural software communicates with machines through coding and 

mathematics, using transformations like altering coordinate systems to 

visualize geometry. Mastery of coding languages empowers architects to 

understand software mechanics deeply, reducing biases inherent in user 

interfaces. The chapter emphasizes the power of coding, incorporating 

built-in functions such as iterations and conditional statements for precise 

design control. Additionally, the integration of libraries in programming 

languages enhances the capabilities of architectural modeling, from data 

visualization to working with matrices and arrays. 

In essence, coding is presented as a transformative practice in architecture, 

enabling architects to read geometry as containers of information rather 

than mere shapes. The chapter concludes by highlighting the importance 

of coding as a modeling approach, emphasizing its power and freedom to 

overcome biases in visual programming languages and conventional 

modeling methods. 
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Chapter 4 Artificial Intelligence and Machine 

Learning in Architecture 

Preface 

Today, AI and ML stand as pillars of transformative forces, reshaping the 

understanding of what machines can achieve. This chapter begins with the 

fundamental definition of AI.  The definition of AI is multifaceted, 

encapsulating the development of machines and systems endowed with the 

capacity to perform tasks that traditionally require human intelligence. 

From rule-based systems to advanced neural networks, the breadth of AI's 

definition encompasses a spectrum of capabilities that continues to expand 

with technological advancements. Machine Learning, a subset of AI, forms 

the backbone of intelligent systems. It is the engine that enables machines 

to learn from data and improve their performance over time. The interplay 

between AI and ML is symbiotic, with ML providing the adaptive 

capabilities that empower AI to navigate dynamic environments. 

Khean et al. (2018) highlighted architecture as one of the slowest industries 

to integrate AI and ML due to factors like traditional practices prioritizing 

craftsmanship and artistic expression, limited data availability, and the 

complexity of design. They underscored the importance of architect-AI 

interaction for favorable outcomes. This aligns with the "human-centered 

AI" approach, emphasizing collaboration between AI systems and human 

experts to enhance architects' capabilities and creativity, rather than 

replacing them. 

 

In this chapter, the history of AI from the early philosophical musings to 

pivotal moments that have shaped the field is reviewed. In addition, 

generative AI (Gen-AI) and non-generative AI (Non-Gen-AI) are 

explored. The fundamental differences between systems designed for 

specific domains and those aiming to replicate human-like cognitive 

abilities across a spectrum of tasks is discussed. These distinctions have 

profound implications, not only in technical realms but also in ethical and 

societal dimensions. Moreover, some of the Gen-AI and non-Gen AI 
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applications in architecture are reviewed and how these applications can 

be involved in the design process is discussed. Additionally, building on 

what was discussed earlier in chapter 1 regarding design thinking and 

architectural design process, the authenticity of Gen-AI products is 

questioned with a focus on generated images. Gen-AI is analyzed as a 

concept regarding how it could affect the design process, proposing a 

theory on how Gen-AI could fit in the process rather than dramatically 

changing it in a way contradicting with the essence of architectural design. 

After that, architectural visualization field and whether it directly affects 

the design process or not is discussed. Finally, how non-gen- AI could be 

integrated into the design process is explained. 

4.1 AI Definition and History 

AI refers to the simulation of human intelligence in machines that are 

programmed to think and learn like humans. It involves the development 

of computer systems capable of performing tasks that typically require 

human intelligence. These tasks include learning from experience (ML), 

understanding natural language, recognizing patterns, solving problems, 

and adapting to new situations. 

AI can be approached through four perspectives, as outlined by Russell 

and Norvig (2010): thinking humanly, acting humanly, thinking rationally, 

and acting rationally. Thinking humanly, proposed by Haugeland (1985) 

and Bellman (1987), envisions AI as machines with minds, capable of 

human-like thought processes. Acting humanly, as described by Kurzweil 

(1990) and Rich and Knight (1991), focuses on creating machines that 

perform tasks requiring human intelligence. Thinking rationally, 

articulated by Charniak and McDermott (1985) and Winston (1992), 

explores AI as the study of mental faculties through computational models. 

Acting rationally, defined by Poole et al. (1998) and Nilsson (1998), views 

AI as the design of intelligent agents capable of exhibiting intelligent 

behavior. These perspectives converge on AI's core components: learning, 

reasoning, problem-solving, and creativity, drawing from diverse 

disciplines such as psychology, mathematics, linguistics, neuroscience, 

philosophy, and computer engineering. 
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Alan Turing's seminal 1950 article, "Computing Machinery and 

Intelligence," laid the foundation for AI, introducing the Turing Test and 

pioneering concepts like machine learning and reinforcement learning. 

Preceding this, Turing began discussing AI in 1947 lectures at the London 

Mathematical Society. In 1956, the Dartmouth workshop convened 

prominent figures like John McCarthy, Allen Newell, and Herbert Simon, 

marking the formal inception of AI as a field. McCarthy's creation of Lisp 

in 1958 revolutionized AI programming. The period between 1952 and 

1969 witnessed key AI applications like the General Problem Solver (GPS) 

by Newell and Simon, and Arthur Samuel's checker AI player. The late 

1960s and early 1970s saw a shift toward knowledge-based systems, 

exemplified by projects like DENDRAL and MYCIN, while the late 1970s 

marked the commercialization of AI. The mid-1980s experienced both 

progress, with neural networks challenging symbolic approaches, and 

setbacks, known as the "AI Winter." Subsequent years emphasized 

empirical experiments and real-world applications, with the late 1990s and 

early 2000s witnessing a shift to data-centric approaches. In the 21st 

century, AI advancements have focused on intelligent agents, integration 

with the Internet, and the pursuit of human-level AI, with ethical 

considerations driving research and development (Solomonoff, G., 2023). 

In the evolution of computer science over the past six decades, there has 

been a notable shift from algorithm-centric approaches to a focus on the 

significance of data in AI development. This shift, highlighted by 

Yarowsky's 1995 work on word-sense disambiguation and Banko and 

Brill's 2001 study, emphasizes that the quality and quantity of available 

data may outweigh the importance of algorithm choice. Yarowsky's 

approach demonstrated achieving high accuracy without labeled examples 

by leveraging vast unannotated text corpora, while Banko and Brill's study 

showed that increased data volume can surpass algorithmic variations in 

performance. Further evidence from Hays and Efros (2007) illustrates how 

algorithmic performance improves with a larger collection of images, 

reinforcing the impact of data scale on AI outcomes. This data-driven 

paradigm suggests a potential solution to the "knowledge bottleneck" in 

AI, where comprehensive system knowledge is acquired through learning 
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rather than manual knowledge engineering, given sufficient data for 

training algorithms. These developments signal a resurgence in AI 

applications, potentially marking the end of the "AI Winter" era and 

ushering in a new era of innovation across diverse industries, as 

acknowledged by Kurzweil's recognition of AI's pervasive integration into 

various sectors. 

4.2 Types and Applications of AI 

This section presents various types of AI based on its capabilities and 

functionality as well as different applications of AI. 

AI Types 

Biswal, A., 2023 categorizes AI into several types based on its capabilities, 

including Artificial Narrow Intelligence (ANI), Artificial General 

Intelligence (AGI), Artificial Superintelligence (ASI), and Singularity. 

ANI, also known as weak AI, is specialized in performing specific tasks 

and encompasses the first and second waves of AI, involving expert 

systems, artificial neural networks, and data mining, among others. ANI 

systems excel in tasks like image recognition, speech recognition, natural 

language processing, recommendation engines, machine translation, and 

self-driving cars, but are limited to these tasks and lack generalization 

abilities. AGI, on the other hand, aims to mimic human-level intelligence 

across a broad range of tasks, possessing adaptability, learning capabilities, 

complex reasoning, and potentially self-awareness. ASI is a speculative 

type of AI that surpasses human intelligence in all aspects, potentially 

capable of recursive self-improvement. The Singularity refers to AI 

achieving autonomy and intelligence to break free from human control, 

leading to an intelligence explosion. The development of AGI is seen as a 

prerequisite for the Singularity, although there is uncertainty surrounding 

its occurrence and timeline. 

AI types based on functionality include various categories, each 

delineating specific attributes and capabilities. Reactive Machines, 

exemplified by IBM's Deep Blue, operate solely on current input data 

without drawing from past experiences, limiting their adaptability beyond 
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predefined tasks. Limited Memory AI strikes a balance by incorporating 

short-term memory, crucial for tasks like autonomous driving systems, 

exemplified by Mitsubishi Electric's advancements in this field. Theory of 

Mind AI endeavors to endow machines with the ability to understand and 

attribute mental states to themselves and others, showcased by creations 

like Kismet and Sophia. Lastly, Self-Awareness in AI pertains to 

recognizing one's own mental states, from basic understanding to nuanced 

awareness, with implications for enhancing human-machine interactions 

and system performance. While fully self-aware AI remains theoretical, 

ongoing research explores its ethical implications and technical feasibility, 

aiming to advance AI towards higher levels of self-awareness (Boucher, 

2020). 

AI Applications 

Applications of AI include expert systems, ML, NLP, computer vision, 

speech, planning, and robotics. 

ML is a branch of AI that focuses on creating systems that can learn from 

data and make decisions or predictions based on that data. ML can be 

applied to various domains, such as computer vision, natural language 

processing, recommender systems, and more. Additionally, Natural 

Language Processing (NLP) is a specialized field within AI that focuses 

on the interaction between computers and human languages. Its 

overarching goal is to equip computers with the ability to comprehend, 

analyze, generate, and manipulate natural language texts and speech. The 

applications of NLP span a wide range and include machine translation, 

speech recognition, sentiment analysis, information extraction, text 

summarization, question answering, and the creation of chatbots. 

Expert systems are AI-driven computer programs designed to tackle 

complex issues within defined domains. They consist of a knowledge base, 

an inference engine, and a user interface. Drawing from facts and rules 

sourced from human experts or authoritative references, the inference 

engine employs logical reasoning to derive new conclusions. The user 

interface enables interaction, allowing users to ask questions, offer 

feedback, or update the knowledge base. Despite their utility, expert 
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systems may falter when faced with unforeseen circumstances and 

typically lack common sense or inventive problem-solving capabilities. 

Computer vision is an integral field within AI that empowers machines to 

comprehend and make decisions based on visual information, mirroring 

human vision capabilities. Some common computer vision algorithms 

include Sobel, Prewitt, or Canny for image filtering and edge detection, 

ANNs for image classification, object detection, and image segmentation, 

U-Net for image segmentation, SIFT (Scale-Invariant Feature Transform) 

and SURF (Speeded Up Robust Features) for feature extraction, Lucas-

Kanade and Horn-Schunck for estimating the motion of objects in 

consecutive frames of a video, and Eigenface, Fisherfaces, and Local 

Binary Patterns (LBP) for face recognition (Szeliski, R., 2010). 

Last but not least, AI Planning is a specialized field within AI dedicated to 

the development and execution of plans to achieve specific goals. The core 

tasks in AI Planning involve determining a sequence of actions that 

transition from an initial state to a desired goal state, followed by the 

execution of these actions in either a real or simulated environment. 

4.3 Generative and Non-Generative AI 

Generative AI (Gen-AI) and non-generative AI (Non-Gen AI) represent 

two broad categories of AI systems based on their capabilities and 

functionalities. 

Gen-AI 

In January 2021, a breakthrough in AI creative abilities was announced 

when DALL-E was open for the public to experiment with. DALL-E is a 

platform that converts text to images through generative AI. In July 2022, 

another breakthrough in AI creative abilities was announced when 

MidJourney was open for the public to experiment with. MidJourney is 

another text-to-image generative AI model, but it was resulting in more 

realistic generated images with more options. 

Since then, DALL-E and MidJourney were developed, and new versions 

were published gradually with more options including inpainting, 
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outpainting, and image-to-image generation reaching DALL-E v3 and 

MidJourney 5 at the time of writing this research. Also, other image 

generation models were developed including Adobe Firefly and stable 

diffusion. 

Of course, Many fields have leveraged the power of such models and 

capabilities and the architectural field is no exception and many 

applications of using image generation AI models in architecture were 

explored in section 7.2.2. 

In fact, the advent of both generative and non-generative AI has 

significantly transformed the architectural design process. Generative AI, 

with its prowess in divergent thinking and algorithmic creativity, has 

become a catalyst for idea generation. Furthermore, generative AI 

facilitates collaboration between architects and machines, fostering a 

symbiotic relationship that leverages the strengths of both.  

Gen AI refers to systems that have the ability to generate similar new 

content, often in the form of images, text, sound, 3d models, speech, code, 

video, etc. These systems can create outputs that are not explicitly present 

in their training data by understanding the distribution of data. 

Text Generation 

Text generation techniques encompass a diverse array of algorithms and 

models aimed at producing coherent and contextually relevant textual 

content across various domains. Markov Models leverage probability-

based predictions, while Recurrent Neural Networks (RNNs) process 

sequences with hidden states to capture context. Long Short-Term Memory 

(LSTM) Networks overcome limitations in capturing long-range 

dependencies, and Generative Adversarial Networks (GANs) produce 

realistic text through an adversarial training process. Transformers, like 

BERT, utilize self-attention mechanisms to enhance contextual 

understanding, and Large Language Models (LLMs) represent a 

cornerstone in natural language processing (NLP), pre-trained on extensive 

text corpora. LLMs, such as GPT and BERT, demonstrate remarkable 

performance in tasks like text generation and classification. They are 
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adaptable across various domains, from general language understanding to 

domain-specific applications like medical data analysis. With their 

pervasive applications in education, healthcare, customer service, and 

beyond, LLMs are shaping the future of human-computer interaction and 

information processing. 

Image Generation 

Image generation AI encompasses algorithms and models designed to 

create new images, leveraging deep learning architectures trained on large 

datasets. Key approaches include Generative Adversarial Networks 

(GANs), Variational Autoencoders (VAEs), PixelCNN/RNN, Deep 

Dream, CLIP, and DALL-E. GANs, like DCGAN and StyleGAN, produce 

diverse images, while VAEs capture latent representations. 

PixelCNN/RNN generate images pixel by pixel, Deep Dream enhances 

patterns, CLIP generates images from textual prompts, and DALL-E 

generates images based on textual descriptions by directly creating pixels 

in the generation process. It does not explicitly involve a separate noising 

and denoising mechanism. Stable diffusion algorithms, such as Diffusion 

with Denoising Priors (DDPM) and Noise-Contrastive Estimation (NCE), 

use controlled noise to transform images gradually, contributing to realistic 

and diverse image generation (figure 4-1). 

 

Figure 4-1- The denoising process used by Stable Diffusion. 

https://en.wikipedia.org/wiki/Stable_Diffusion#/media/File:X-Y_plot_of_algorithmically-

generated_AI_art_of_European-

style_castle_in_Japan_demonstrating_DDIM_diffusion_steps.png 

https://en.wikipedia.org/wiki/Stable_Diffusion#/media/File:X-Y_plot_of_algorithmically-generated_AI_art_of_European-style_castle_in_Japan_demonstrating_DDIM_diffusion_steps.png
https://en.wikipedia.org/wiki/Stable_Diffusion#/media/File:X-Y_plot_of_algorithmically-generated_AI_art_of_European-style_castle_in_Japan_demonstrating_DDIM_diffusion_steps.png
https://en.wikipedia.org/wiki/Stable_Diffusion#/media/File:X-Y_plot_of_algorithmically-generated_AI_art_of_European-style_castle_in_Japan_demonstrating_DDIM_diffusion_steps.png
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Last but not least, inpainting and outpainting techniques, utilizing 

generative models, fill in missing or extend image content. These methods 

cater to various image generation requirements, highlighting the versatility 

and significance of AI in creating visually compelling content. 

Videos Generation 

Video generation in AI uses advanced techniques to create realistic and 

dynamic video content, simulating the appearance and motion of real-

world videos. This field, part of generative modeling, leverages models 

like GANs, RNNs, LSTM networks, VAEs, 3D CNNs, and flow-based 

models to understand and synthesize dynamic visual content. GANs 

employ adversarial training to create realistic video sequences, capturing 

temporal and spatial patterns from video datasets. RNNs and LSTM 

networks handle temporal dependencies between frames, predicting the 

next frame to maintain coherent sequences. VAEs learn probabilistic 

distributions from training videos, sampling from these distributions to 

produce diverse video sequences. 3D CNNs process video data in three 

dimensions, capturing spatial and temporal features simultaneously from 

video volumes. Flow-based models focus on learning motion and 

transformations between frames, generating videos with realistic motion 

by modeling the underlying dynamics. These algorithms, trained on large 

video datasets, adjust model parameters to minimize the difference 

between generated and real videos, resulting in the creation of diverse and 

realistic visual content. 

3D Models Generation 

3D model generation in AI involves using advanced techniques to create 

three-dimensional representations of objects, scenes, or environments 

from 2D images, point clouds, or other input data, enabling AI systems to 

understand and replicate the three-dimensional nature of the physical 

world. Several notable models and algorithms are employed for this task, 

each leveraging different approaches. Depth Estimation Networks use 

CNNs to predict depth information from 2D images, learning from datasets 

containing RGB images and corresponding ground truth depth maps. Point 

Cloud Generative Models, including PointNet and PointNet++, generate 
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3D point clouds representing object surfaces, trained on datasets with 3D 

point cloud representations. Volumetric Representations with 3D CNNs 

divide 3D space into small cubes (voxels) and use CNNs to learn and 

generate volumetric representations from 2D images.  

GANs are adapted for 3D model generation through adversarial training, 

refining the generator's ability to create realistic 3D structures from input 

data such as 3D models or point clouds. Multi-View Synthesis uses 

multiple 2D images from different viewpoints to synthesize a coherent 3D 

representation, leveraging neural rendering techniques and training on 

datasets of multi-view images.  

Neural Radiance Fields (NeRF), introduced by Mildenhall, B., et al., 2020, 

represents 3D scenes as continuous functions outputting color and density 

for any 3D point, excelling at modeling complex scenes with detailed 

geometry and appearance. NeRF is trained on images captured from 

different viewpoints and uses ray marching to estimate color and density 

values, allowing for realistic and high-fidelity 3D representation. These 

algorithms are trained on diverse datasets containing 2D images, 3D point 

clouds, or volumetric representations, adjusting model parameters to 

minimize differences between generated 3D structures and real-world 

examples, thus enabling the reproduction of intricate three-dimensional 

scenes and objects. 

 

Figure 4-2 – NeRF pipeline - Mildenhall, B., et. Al., 2020, NeRF: Representing Scenes as Neural 

Radiance Fields for View Synthesis 

The examples of algorithms mentioned in this section showcase the 

versatility of generative AI in creating content across visual art, music, 

text, and more. As the field continues to advance, generative models are 

likely to contribute to various creative and practical applications. 
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Non-Gen-AI 

Non-generative AI focuses on tasks such as classification, regression, 

pattern recognition, and prediction, rather than generating new content. 

These systems are trained on labeled datasets to learn the relationship 

between features and labels. Applications include image classification with 

CNNs, where objects within images are identified and categorized, and 

NLP models for sentiment analysis, such as BERT or LSTM, which 

determine the sentiment of a given text. Regression models are widely used 

in finance for predicting stock prices based on historical data. Other 

applications of non-generative AI include clustering, association rules, 

dimensionality reduction, object detection, and face recognition. These 

models excel in prediction and pattern recognition, making them valuable 

tools across various domains. 

In summary, generative AI focuses on creating new and original content, 

while non-generative AI is more oriented toward tasks that involve 

classification, regression, and pattern recognition without the explicit 

generation of new data. Both approaches have their own strengths and 

applications, and the choice between generative and non-generative AI 

depends on the specific requirements of the task at hand. 

4.4 ML Definition and Types 

Non-generative AI (ML) excels in analytical support, aiding architects in 

data analysis, simulation, and visualization. It contributes to realistic 

renderings, project management optimization, and quality assurance. 

However, the integration of AI in architecture poses challenges, including 

ethical considerations regarding biases, the delicate balance between 

technological efficiency and human creativity, and the need for architects 

to adapt to evolving workflows. In navigating these challenges, architects 

can harness the benefits of AI to enhance their design processes, ensuring 

a harmonious integration of technological advancements with traditional 

practices. 

ML is a sub-set of AI which aids in discovering intricate patterns within 

data, utilizing good generalization on unseen data with very precise 
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predictions. In ML several disciplines meet such as database, data mining, 

pattern recognitions, etc. This process does not require explicit 

programming of ML algorithms and meanwhile, many explorations in 

applying ML are being widely conducted in different fields. ML algorithms 

could be categorized as supervised learning, unsupervised learning, and 

reinforcement learning. Specific types of data are used with ML algorithms 

including images, text, numbers, and sounds. However, all these types 

require the ability to be transformed into numerical values so that they can 

be processed by machines. In architectural form design, numerical 

predictions require being labeled to be used in their predefined parameters 

afterwards to generate a model. 

Types of ML 

Machine learning can be broadly categorized into three main types based 

on the learning style and approach: 

Supervised Learning 

In supervised learning, the algorithm is trained on a labeled dataset, where 

each input data point is paired with its corresponding output or target. The 

goal is to learn mapping from inputs to outputs, enabling the algorithm to 

make predictions or classify new, unseen data. ML supervised learning 

algorithms perform both regression and classification tasks. Regression 

quantifies the relationship between input and target variables, predicting 

numerical values, suitable for predicting architectural parameters like 

lengths, widths, heights, and distances. Classification categorizes inputs 

into classes, useful for making binary decisions in architectural models, 

such as detecting the presence of windows in a wall. Artificial Neural 

Networks (ANNs), a subcategory of ML under deep learning, consist of 

interconnected nodes or perceptrons and have advanced significantly, 

enhancing capabilities in both regression and classification tasks. 

Unsupervised Learning 

Unsupervised learning deals with unlabeled data, exploring its inherent 

structure and patterns without explicit guidance to discover relationships, 

clusters, or representations within the data. Key techniques include 
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clustering algorithms, which group similar data points; dimensionality 

reduction algorithms, which reduce feature numbers while preserving 

essential information; and association rules, which describe relationships 

among items in a dataset. Association rules are commonly used in market 

basket analysis to identify products frequently purchased together. An 

association rule is typically written in the form "If {X}, then {Y}," 

indicating the relationship between two itemsets. These techniques help 

uncover patterns, correlations, and co-occurrences in data. 

Reinforcement Learning 

Reinforcement learning involves an agent learning to make decisions by 

interacting with an environment and receiving feedback in the form of 

rewards or penalties. The agent, which is the decision-making entity, learns 

optimal strategies over time through its actions. The environment is the 

external system with which the agent interacts. Examples of applications 

include game playing, where agents learn through trial and error, and 

robotics, where robots learn to perform tasks in a physical environment. 

These three types represent the fundamental paradigms in ml, each serving 

different purposes and applications. Additionally, there are hybrid 

approaches and specialized techniques within these categories, 

contributing to the diversity and richness of the field. 

4.5 Data Sets in ML 

In ML, a data set is a collection of data points that are used for training, 

testing, and evaluating machine learning models. Datasets play a crucial 

role in the development and assessment of ML algorithms, allowing 

models to learn patterns and make predictions based on the provided 

information. Data provided to algorithms could be in many forms 

including numerical, text, images, audio, videos, etc. according to the 

problem under study. 

Any data set consists of features or input variables (attributes) which the 

model uses to make predictions. Inputs could be either numeric or 

categorical and this defines the problem and how it is approached. On the 
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other hand, labels or outputs are the desired output or target values that the 

model aims to predict. 

Data sets could be either labeled or unlabeled. While labeled data are data 

which contain input features with corresponding labels, unlabeled data 

contain only input features without corresponding labels. Labeled data is 

used to train supervised learning models for either regression or 

classification tasks. On the other hand, in unsupervised learning and with 

the absence of labels, the model’s task is to discover patterns or structures 

in the data without explicit guidance. 

Data set splitting 

Data set splitting is a crucial step in machine learning, dividing a dataset 

into training, validation, and testing subsets to assess model performance 

and prevent overfitting. The training dataset, comprising input-output 

pairs, is used to train the model. The testing dataset, separate from the 

training set, evaluates the model's generalization to new data. A validation 

dataset, distinct from both training and testing sets, helps tune 

hyperparameters and avoid overfitting. For small datasets, a split of 70-

80% for training and 20-30% for testing is common. Large datasets allow 

for an additional validation set, with splits typically being 60-70% for 

training, 15-20% for validation, and 15-20% for testing. Random shuffling 

ensures representative subsets, and stratified splitting maintains class 

proportions in imbalanced datasets. Cross-validation, like k-fold, involves 

multiple splits for robust evaluation. 

Challenges associated with having an ML-ready data set 

Handling datasets in machine learning poses several challenges that can 

impede model generalization on unseen data. These challenges include 

data quality, imbalance, dataset size, dimensionality, noise, and missing 

values. Poor data quality can lead to biased models and inaccurate 

predictions, while imbalanced class distributions can result in biased 

models favoring majority classes. Noise and missing values further 

complicate model training, requiring careful preprocessing. High-

dimensional spaces exacerbate the curse of dimensionality, necessitating 
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techniques like feature selection and dimensionality reduction. Scaling and 

normalization address numerical feature discrepancies, while one-hot 

encoding handles categorical variables. Prior to model training, thorough 

exploratory data analysis and cleaning are essential to ensure dataset 

organization, balance, sufficiency, dimensionality, and cleanliness, as these 

factors significantly impact model performance (Aggarwal, C., 2015). 

4.6 ML Algorithms 

Machine learning algorithms are computational methods or procedures 

used by machines to learn from data and make predictions or decisions 

without being explicitly programmed. These algorithms enable machines 

to improve their performance on a specific task over time through the 

experience gained from the data they process. There are various types of 

machine learning algorithms, and they are explained in this section. 

A) Regression 

Regression analysis quantifies relationships between a dependent variable 

(also known as the target variable) and independent variables (also known 

as features or covariates), aiding predictions or inferences. Ordinary Least 

Squares (OLS) is a common method, minimizing error sum of squares to 

establish a 'best fit' line. Assumptions include uncorrelated, zero-mean, and 

constant-variance errors for parameter estimation, with normal distribution 

for hypothesis tests and interval estimation. Advanced tests verify these 

assumptions for specific regression equations, making regression analysis 

a vital tool across scientific disciplines. 

Ensemble learning 

Ensemble learning combines decisions from multiple ML models to reduce 

error and enhance predictions compared to a single model. The maximum 

voting technique is then applied to aggregated decisions for the final 

prediction. In an ensemble of trees, each tree is grown based on a random 

vector realization, and final predictions are generated through voting with 

equal weights. Ensemble learning utilizes Bagging (parallel ensemble) and 

Boosting (sequential ensemble) methods. Bagging, introduced by Breiman 

in 1996, builds each tree using a bootstrap sample drawn with replacement 
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from the training dataset. This reduces prediction errors by averaging and 

variance reduction, as explained by Breiman in 1998 and further detailed 

by Hastie et al. in 2001. Random forests further reduce variance by 

minimizing correlation between aggregated quantities. Ensemble learning 

algorithms include random forests, decision trees, XGBoost, etc. 

A random forest regressor aim to reduce correlations by introducing an 

additional level of randomness. These models utilize a random subset of 

variables, selecting a subset of covariates at random. Cerquitelli, T., et al. 

(2019), investigated the use of random forest and ridge regression to 

forecast power consumption in buildings using the SPEC engine. Their 

study demonstrated the effectiveness of these methods in forecasting both 

fine-grained values and coarse levels of power consumption in buildings. 

Breiman asserts that random forests possess two key advantages: They 

achieve remarkable prediction accuracy. And this high accuracy is 

achieved across a broad spectrum of settings for the single tuning 

parameter utilized. 

Additionally, Decision trees utilize a modified version of the C4.5 

algorithm introduced by Quinlan in 1993. In regression trees, leaf nodes 

can represent distinct values corresponding to the concept or include a 

function for determining the value of the target attribute. Yu, Zhun, et al. 

(2010), employed a decision tree algorithm to predict the energy 

performance indexes of residential buildings, achieving a model accuracy 

of 92%. 

Last but not least, XGBoost, short for eXtreme Gradient Boosting, utilizes 

additive modeling by sequentially incorporating new decision trees to 

minimize loss through gradient descent. This strategy prevents overfitting 

by integrating the outputs of existing trees with those of the new tree until 

loss is minimized or a predefined tree limit is reached. Yucong, W., and 

Bo. W., in 2020, introduced the EA-XGBoost model for predicting 

buildings' energy consumption, achieving an R2 score of 0.93, an MAE of 

46.82, and an RMSE of 47.01. 
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Ridge  

Ridge regression is a method used to improve model performance in the 

presence of multicollinearity within the data. By utilizing L2 

regularization, it tackles scenarios where multicollinearity results in 

unbiased least-squares estimates and high variances, leading to substantial 

deviations between predicted and actual values. 

KNN  

The k Nearest Neighbor (k-NN) method, categorized as a non-parametric 

and supervised technique, requires three essential elements: a set of labeled 

entities, a metric for calculating object distances or similarities, and the 

specification of k, representing the number of nearest neighbors. In a study 

by Hong, G., et al. (2022), the k-NN regressor was examined for predicting 

hourly energy consumption in community buildings. The researchers 

concluded that the algorithm's overall RMSE results fell within the 

acceptable range according to ASHRAE guidelines. 

Linear Regression  

Linear regression is employed to assess the relationship between 

independent and dependent variables, aiming to find optimal coefficients 

(w = w1, ..., wn) that accurately represent a linear correlation. In a study 

by Boukarta, S. (2021), linear regression was examined to predict the 

annual energy demand for heating and cooling in residential buildings, 

despite the small sample size of only 60 samples. Remarkably, the model 

achieved an impressive R2 score of 0.94%. 

Multivariate Polynomial Regression 

Polynomial regression is a method that allows for flexible curve fitting, 

particularly focusing on a single independent variable X. When applied to 

situations with multiple independent variables, it is referred to as 

Multivariate Polynomial Regression. In a study conducted by 

Mavromatidis, L., et al. (2013), polynomial regression models were 

investigated for predicting the thermal performance of composite dynamic 
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building envelopes. The results of the models indicated errors that were 

deemed acceptable under most conditions. 

B) Classification 

Classification is a data mining technique that is employed to predict the 

categorization of data instances into specific groups.  A set of classification 

algorithms could be used to predict the classification of data including 

Random Forest, k-NN, Radius Neighbor Classifier, and MLP. The main 

difference between these algorithms when used in regression and when 

used in classification is that instead of analyzing and predicting continuous 

values, binary values are predicted. 

C) ANNs and Deep Learning 

ANNs constitute a broad class of machine learning models inspired by the 

human brain's functioning. They can be shallow or deep, with varying 

numbers of layers. Deep learning, a subset of machine learning, 

specifically focuses on neural networks with multiple hidden layers, 

allowing for the creation of deep neural networks. This characteristic depth 

enables deep learning models to automatically learn intricate hierarchical 

representations of data, enhancing performance in handling complex 

patterns. Deep learning algorithms include Multilayer Perceptron (MLP), 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks 

(RNNs), Long Short-Term Memory (LSTM), and Transformer Models 

(e.g., GPT, BERT). MLP, a type of ANN, is particularly effective in 

regression tasks. It comprises artificial neurons, which take input values 

and apply weights specific to the neuron before passing through an 

activation function. Deep learning finds extensive applications in image 

and speech recognition, natural language processing, and strategic gaming 

due to its ability to learn hierarchical features automatically. Figure 4-3 

shows the architecture of deep ANN. 
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Figure 4-3- Architecture of a deep ANN - https://freecontent.manning.com/neural-network-

architectures/, Last Access: 30-8-2023 

4.7 A Review on Using Non-Gen-AI in Architecture 

Non-Gen-AI applications include tasks like classification, prediction, 

pattern recognition, etc. This kind of application does not include creative 

generation of new outputs such as images, text, 3d models, etc. 

Non-Gen-AI offers a diverse range of applications in architectural projects, 

spanning from project scheduling and cost estimation to energy 

performance analysis and building code compliance. Machine learning 

algorithms can optimize schedules, allocate resources, and predict delays, 

while also assisting in estimating construction costs and analyzing building 

designs for energy efficiency. AI tools can ensure compliance with 

building codes, aid in site selection, and enhance facility management 

through predictive maintenance and energy optimization. Additionally, 

collaborative design tools powered by AI facilitate real-time collaboration 

and intelligent design suggestions, while optimization algorithms help in 

material selection based on factors like cost and sustainability. 

Accessibility analysis further ensures compliance with accessibility 

standards, making AI a valuable asset in various facets of architectural 

design and management. 

In 2023, Topuz, B., and Alp., N., reviewed the applications of ML in 

different architectural design sub-disciplines with themes including CAD, 
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Computer-Aided-Engineering (CAE), and Computer-Aided 

Manufacturing (CAM). The researchers focused on 60 articles published 

in different journals. These studies spanned 21 different areas in 

architecture, addressing a myriad of challenges within each domain as 

shown in figure 4-4. 

 

Figure 4-4 Architecture subfields in 60 articles discussing applying ML in architecture (Topuz, B., 

and Alp, N., 2023, Machine Learning in Architecture) 

The breakdown exemplifies the extensive range of applications for 

machine learning in architecture, showcasing its potential to address 

problems related to design optimization, historic preservation, 

sustainability, building performance, and many other facets of the 

architectural process.  

In the following discussion, different applications of non-gen-AI are 

presented. 

Sustainability and Energy Efficiency 

Numerous studies within sustainable architecture have employed Machine 

Learning (ML) techniques to optimize building energy efficiency and 
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consumption. For instance, Tansas and Xifara developed a statistical ML 

framework to scrutinize the influence of variables like wall area and 

glazing area on residential building heating and cooling loads, 

emphasizing the accuracy of ML predictions aligned with the training data. 

Chou and Bui, 2014 utilized various AI techniques to estimate heating and 

cooling loads, with the ensemble approach and Support Vector Regression 

standing out. Robinson et al., 2017 found that gradient boosting regression 

models excelled in predicting commercial building energy consumption.  

Also, Roy et al., 2023, explored advanced ML techniques for residential 

buildings, while Deng et al., 2018 cautioned about nuanced performance 

compared to linear regression for US commercial building energy use. 

Studies by Rahman and Smith showcased ML's capability, including 

Neural Networks and Gaussian process regression, in predicting fuel 

consumption in commercial buildings. Additionally, Fan et al. applied 

Deep Learning for short-term building cooling loads, demonstrating DL's 

potential for accurate prediction models. Yang et al. introduced an adaptive 

artificial neural network capable of predicting unexpected data behavior. 

Gonzalez and Zamarreno employed a feedback ANN for short-term 

electric load consumption prediction, highlighting its simplicity and 

resource efficiency.  

Moreover, Kristianse, T., et al., 2022, explored applying Artificial Neural 

Networks (ANNs) to predict annual daylight illuminance and operative 

temperature, aiming to reduce simulation time, achieving a promising 96% 

reduction in overall time using ANN models. These studies underscore the 

versatility and effectiveness of AI and ML techniques in addressing various 

challenges associated with electricity consumption prediction in diverse 

building contexts. Additionally, Sebestyen, A., 2020, evaluated ML model 

predictions of radiation values and sunlight hours compared to software 

plugin metrics like Ladybug toolsets in Grasshopper3d for Rhinoceros3d. 

In 2019, Feng et al. introduced a method blending parametric design with 

ML algorithms to evaluate early-stage environmental performance in 

building design, addressing uncertainties associated with design choices. 

Singh, M., et al., 2022, developed a convolutional neural network approach 

for energy prediction, addressing key challenges and providing 
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interpretable BPS information through a web tool. He, Y., et al., 2021, 

introduced a hybrid framework for rapid evaluation of pedestrian-level 

wind environments in architectural sustainable design, demonstrating 

efficiency and accuracy in providing design optimization information. 

Collectively, these studies highlight ML's potential to enhance 

sustainability and efficiency in architectural design and energy 

consumption prediction. 

Architectural Theories 

Several studies have leveraged machine learning (ML) techniques to 

enhance various aspects of architectural analysis and design. Uzun and 

Colokoglu (2019) utilized a pretrained Faster-RCNN-Inception-V2-

COCO model to classify architectural drawings images into plans and 

sections, highlighting challenges due to dataset size. Wang et al. (2022) 

employed CNN-based models for classifying architectural styles, 

achieving satisfactory performance with preprocessing and attention 

mechanisms. Xu et al. (2014) addressed the multi-class problem in 

architectural style classification using probabilistic analysis and 

deformable part-based models. Sun et al. (2022) proposed a deep learning 

framework for understanding architectural styles and age epochs, 

demonstrating its effectiveness in analyzing building façades.  

Moreover, Shalunts et al. (2011) successfully clustered façade elements by 

architectural style using k-means, achieving high accuracy percentages 

ranging between 92.5 and 98.1 according to the class. Alymani et al. (2019) 

introduced a workflow combining database systems and unsupervised 

learning algorithms to cluster architectural design aspects, highlighting the 

efficacy of K-Means clustering. Millan et al. (2022) presented a 

methodology utilizing data analysis and machine learning to track the 

design process in architecture, revealing insights into design strategies and 

problem-solving pathways. Qin et al. (2023) introduced the 

"NeoDescriber" model for automatic identification and description of 

Neoclassical buildings, achieving effective performance in classification 

and detection tasks. These studies collectively demonstrate the diverse 
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applications and promising outcomes of ML in architectural analysis and 

design. 

Form Prediction 

Cudzik and Radziszewski (2018) trained an artificial neural network 

(ANN) to predict detailed configurations of Roman Corinthian order 

capitals, positioning the algorithm as a co-designer capable of generating 

potential spatial variations for examined forms. The dataset included 

samples enabling the analysis of local deformation, with input data 

comprising sample coordinate values, surface normal vectors, and volume 

center plane deviations. Through the backpropagation of errors learning 

procedure, the ANN was trained with 28,900 samples, resulting in a Mean 

Square Error below 0.001. The successfully trained ANN demonstrated its 

ability to generate three-dimensional variations of new capital forms based 

on given input parameters, enhancing the design process by providing 

computer-generated solutions. This research showcases the valuable role 

of neural networks in architectural computational design, extending the 

range of available design tools. 

 

Figure 4-5 - Designed capitals with ML - Cudzik, J., 2018, Artificial Intelligence Aided 

Architectural Design 

Lakzaeian (2020) addressed challenges in multi-planar building facades 

segmentation by introducing a specialized algorithm designed to 

differentiate between structural and non-structural elements in complex 

facades. The algorithm achieved a 98% accuracy for single complex 

openings and an overall average accuracy of at least 91% when applied to 

buildings in Dublin, Ireland. Additionally, Zheng and Yuan (2021) 

developed a specialized artificial neural network aimed at enhancing the 
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precision and computational efficiency of learning and generating 3D 

geometries as vectorized models. This involved creating a custom data 

structure with feature parameters aligned with the neural network's 

requirements, resulting in improved design feature extraction. 

 

Figure 4-6 - Expected forms and predicted forms from test dataset - Zheng, H., and Yuan, P., 

2021, A generative architectural and urban design method through artificial 

The neural network's generative abilities demonstrate its predictive power, 

efficiently learning and extrapolating geometric design features from 

existing building data. This data-driven approach provides designers with 

a powerful tool for informed and efficient design exploration. 

BIM Models Semantics 

In their 2018 study, Bloch, T., and Sacks, R., explored the classification of 

room types in residential apartments using an ANN algorithm, comparing 

it to rule-inferencing. The research highlighted the direct applicability of 

machine learning to space classification, while rule-inferencing proved 

unsuitable for this context. This underscores the importance of selecting 

appropriate AI methods for specific BIM object classification challenges. 

Similarly, in 2019, Koo, B., et al. utilized support vector machines (SVM) 

to evaluate the semantic integrity of mappings between BIM elements and 

IFC classes. Their approach, trained on a dataset of 4187 unique elements 

from six architectural BIM models, demonstrated high accuracy in 

classifying elements and subtypes within classes. These studies contribute 

to automating quality checks in BIM deliverables and enhancing semantic 

enrichment for domain-specific analysis. 
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Design and Fabrication 

In 2020, Yazici, S. integrated ML and ANN algorithms with geometry, 

material, and structural performance simulation data to support decision-

making processes. They trained an ANN, non-linear regression model 

(NLR), and a Gaussian mixture model (GM) using data from structural 

performance simulations to predict materials based on architectural 

geometry and panel clusters on the shell model. The results demonstrated 

fast solutions and accurate predictions, offering valuable insights for 

decision-making. 

 

Figure 4-7 - GM algorithm implemented towards prediction of panel clusters based on the area 

size and planarity of panels. - Yazici, C., 2020, A machine-learning model driven by geometry, 

material and structural performance data in architectural design process 

In 2018, Tamke, M., et al. explored ML's application to enhance design 

and fabrication adaptation in Robotic Incremental Sheet Forming (RISF). 

ML was used to manage forming tolerances by creating, adapting, and 

improving fabrication instructions. The integration of ML into fabrication 

processes utilized data mining techniques and trained ML models on 

physical outputs, acquired via 3D scanning of ten panels, yielding 

approximately 45,000 samples. Two approaches were employed: a 

regression-based method for local adjustments within panels and a neural-

network-based approach for predicting and adjusting entire panel 

geometries. The regression-based method used in-process measurements 

for achieving required tolerances, while the neural network predicted the 
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final shape of the panel after fabrication, enabling adjustments based on 

predicted springback. 

 

Figure 4-8 - different input–output training sets and the achieved accuracy – Tamke, M., et. Al, 

2018, Machine learning for architectural design: Practices and infrastructure 

Layouts Design Evaluation 

In 2020, Mandow, L., et al. explored sketch generation for energy-efficient 

single-family dwellings using a combination of shape grammars and 

reinforcement learning. Their approach involved defining shape grammar 

rules and applying reinforcement learning to generate habitable and 

energy-efficient sketches. The study highlighted the reinforcement 

learning process and provided experimental results demonstrating 

convergence, along with validation using energy simulation software. 

Moreover, in 2017, Takizawa, A., and Furtura, A., investigated spatial 

feature assessment using computer-generated modeling, VR, and deep 

learning. They utilized a computer-generated model of a street in Osaka to 

capture omnidirectional images, incorporating depth information at 50 

observation points. Virtual reality preference evaluations informed the 

training of deep convolutional neural networks (DCNNs), revealing that 

the model error rate was significantly lower for RGBD images as well as 

the importance of integrating color/texture and geometric features for 

enhanced spatial evaluations. This interdisciplinary approach offers 

avenues for more accurate spatial analyses in urban environments, 

although further foundational research is needed for widespread 

applications. 
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4.8 A Review on Using Gen-AI in Architecture 

As discussed in section 4.3, Gen-AI applications involve generating new 

content, ideas, or solutions based on input data or predefined parameters. 

In the context of architectural design, generative AI can play a significant 

role in creating, modifying, or optimizing designs by leveraging algorithms 

and computational models. In this section, some gen-AI applications in 

architectural design used by researchers and architects today are reviewed. 

A) Text Generation 

Text generation AI models could be used in various fields of architecture. 

In 2023, Caliskan, E., explored the potential applications of ChatGPT in 

third-year architectural design studios. The research involved structuring 

interviews with ChatGPT, with findings evaluated using the Delphi 

technique among experts. ChatGPT demonstrated the ability to address 

design issues but faced limitations in accessing maps and discerning 

geopolitical entities. Beyond documented studies, architects increasingly 

utilize large language models (LLMs) like ChatGPT, LlaMa, and Bard. 

These models aid in generating prompts for image generation tasks, 

conceptual design images, floor plans, and architectural details. Moreover, 

the human-like text generated by LLMs facilitates direct communication 

with clients and stakeholders, enabling architects to convey messages 

effectively. 

In an experiment utilizing ChatGPT v3.5, architects explored its role in 

brainstorming architectural design concepts for a Mercedes-Benz 

exhibition. Appendix D showcases the conversation, revealing ChatGPT's 

organized responses and ability to ask pertinent questions, guiding the 

discussion. The model demonstrated awareness of project criteria, 

suggesting ideas aligned with Mercedes-Benz's precision and 

craftsmanship ethos. Furthermore, ChatGPT's responses became more 

specific as discussions progressed, highlighting its potential in generating 

innovative design concepts through iterative questioning and refinement. 

This process underscores the value of LLMs in enhancing brainstorming 

phases, fostering creativity, and unlocking new design possibilities. 
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B) Generating Layouts 

Image generation AI in architecture has become an innovative and 

influential tool, providing architects and designers with new ways to 

conceptualize, visualize, and iterate on design ideas. There are several 

applications through which image generation AI started to influence the 

architectural field. 

In 2019, Chaillous, S., utilized nested GANs to generate a diverse array of 

floor plan designs, employing a classification methodology for 

exploration. These nested GANs enabled the capture of complexity in floor 

plans and addressed challenges sequentially. Following this, a pipeline was 

employed to produce finalized plans with walls and furniture. Utilizing 

Boston's building footprints database, an algorithm was trained to generate 

footprints based on the layouts. Subsequently, algorithms were trained with 

over 700 annotated floor plans, each designated for a specific room count. 

Lastly, a model was trained to furnish entire units and expanded to include 

room-specific furnishing based on function (figure 4-9). 

 

Figure 4-9 - Resulting Furnished Units (Chaillous, S, 2019., AI & Architecture – An Experimental 

Perspective – Harvard University GSD) 

The model was further developed to solve entire buildings, adding 

windows and doors rationally. And the author applied a transfer-style 

method to train the GAN to create plans based on a specific architectural 

style as shown in figure (4-10). 
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Figure 4-10- 15th Floor Processed Under Each Style: Baroque (Far-Left), Manhattan (Center-

Left), Row-House (Center-Right), Victorian (Far-Right) (Chaillous, S, 2019., AI & Architecture – 

An Experimental Perspective – Harvard University GSD) 

Afterwards, the classification algorithm categorizes the generated floor 

plans based on various criteria, aiding users in exploring different designs. 

This user-oriented approach allows architects to intervene in the pipeline's 

steps, making the process architect-centered. 

Aalaei et al. (2023) explored architectural layout generation using graph-

constrained conditional GANs, introducing methods for translating high-

level constraints like bubble diagrams and implementing a fully vectorized 

workflow. Their key contribution involved applying a convolutional 

message passing (CMP) approach, considering both topological and 

geometric conditions. They presented a distinct network architecture and 

an iterative pipeline utilizing three separate GAN models with unique 

objectives. Figure 4-11 illustrates the proposed pipeline which includes 

user input, model-generated layout, user modifications, and final 

architectural plan and 3D model. 
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Figure 4-11 - Iterative and collaborative human–machine workflow for architectural floor plan 

generation. (Aalaei, M., et. Al., 2023, Architectural layout generation using a graph-constrained 

conditional Generative Adversarial Network (GAN)) 

Karadag et al. (2022) trained a Pix2Pix GAN algorithm using two datasets 

of educational school buildings’ space layouts. They developed two 

algorithms: one generated footprints and suggested furniture layouts in 

block zoning, while the other generated furniture drawings in the plans. 

This innovative approach targeted the problem directly, instead of relying 

on existing datasets. The model successfully generated outputs not only 

from the training dataset but also from the validation dataset. Figure 4-12 

displays the results of the trained model on the validation set. 

 

Figure 4-12 - Test results on the validation data set of EDU-AI (Karadag, I., et. Al., 2022, EDU-

AI: a twofold machine learning model to support classroom layout generation) 

As, I., et. Al, 2018, presented a deep Neural Network (DNN) approach 

utilizing graphs for the generation of conceptual designs. The system 

demonstrated its capability to assess and score designs, decompose them 

into fundamental building blocks (figure 4-13), and creatively recombine 

them into novel compositions. Additionally, a Generative Adversarial 

Network (GAN) method was introduced, capable of producing new 

designs which were not present in the training set. 
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Figure 4-13 - A subgraph, that is, building block, discovered by the DNN highlighted within the 

larger graph of a home (As., I., et. Al, 2023, Artificial intelligence in architecture: Generating 

conceptual design via deep learning) 

Also, Liu et al. (2022) utilized the Pix2Pix GAN algorithm to generate 

private garden layout plans based on given site conditions, learning from 

traditional Chinese private gardens. 

C) Modifying Images Contextually 

Moreover, Sun et al. (2022) employed GANs to abstract historic 

architecture styles and automatically generate stylized facades (figure 4-

14). Their study curated a bespoke dataset from Harbin Central Street, 

implementing a data augmentation process. The generated designs were 

quantitatively and qualitatively assessed, demonstrating high accuracy, 

realism, and diversity. Two applications validated the feasibility and 

adaptability of the proposed workflow, enhancing historic urban area 

renovation design processes.  
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Figure 4-14 - Generated facades for the Harbin Central Steer (Sun, C., et. Al., 2022, Automatic 

generation of architecture facade for historical urban renovation using generative adversarial 

network) 

D) Generating Images from Texts 

Basarir and Erol (2021) proposed an AI framework to generate 

architectural sketches based on client briefs, using semantic analysis and 

visual pattern recognition. Additionally, Ploennings and Berger (2023) 

explored the use of AI art platforms like Midjourney, DALL·E 2, and 

Stable Diffusion in concept design, noting their effectiveness in ideation, 

sketching, and modeling. They evaluated AI models' versatility in 

architectural tasks, highlighting successes in generating inspirational 

images and addressing challenges in responding to generic requests. The 

study also analyzed 85 million MidJourney queries, revealing prevalent 

usage patterns and suggesting structured workflows for interior and 

exterior design (figure 4-15). These findings not only showcased the 

current capabilities of image generation models in architectural design 

tasks but also illuminated potential advancements and avenues for further 

exploration in the integration of AI tools within the creative processes of 

architecture. 
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Figure 4-15 – (left) Minimal workflow for Midjourney (a–d), DALL· E 2 (e–h), and Stable 

Diffusion (i–l) (Ploennings, J., and Berger, M., 2023, AI in Architecture), (right) Refinement and 

variant generation in Midjourney (a–c), DALL· E 2 (d–f), and Stable Diffusion for a walkway (g) 

and a second story (h, i) - (Ploennings, J., and Berger, M., 2023, AI in Architecture) 

E) Generating Images from Images and Text 

Bao and Xiang (2023) examined Stable Diffusion, MidJourney, and 

DALL-E 2 as smart assistants in preliminary design processes. They 

analyzed the impact of AI activities on architects and students using a 

survey with AI-generated images (figures 4-16 and 4-17). Results showed 

AI's potential to optimize architectural design by reducing time and 

enhancing visualization, with satisfactory performance reported by users. 

 

Figure 4-16 - Base input sketch for AI generation (Bao, Y and Xiang, C., 2023 - Exploration of 

Conceptual Design Generation based on the Deep Learning Model-Discussing the Application of 

AI Generator to the Preliminary Architectural Design Process) 

 

Figure 4-17- Rendering generation results made by MidJourney, Stable Diffusion and DALL-E 2 

(from left to right respectively). (Bao, Y and Xiang, C., 2023 - Exploration of Conceptual Design 

Generation based on the Deep Learning Model-Discussing the Application of AI Generator to the 

Preliminary Architectural Design Process) 

Hu et al. (2021) introduced the Low-Rank Adaptation (LoRA) method, 

optimizing large pre-trained language models for downstream tasks by 
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decomposing weight updates (ΔW) and reducing trainable parameters. 

During inference, the weight update is seamlessly merged into the main 

weights without additional overhead, facilitated by a LoRA scaling factor 

(α). Kuang et al. (2023) proposed a workflow using LoRA to generate 

facade images of historical styles for urban renewal projects, preserving 

the city's historical identity. Utilizing the LoRA and ControlNet models, 

architects could automatically generate facade images of specific historical 

styles. This approach efficiently preserved and integrated historical 

architectural elements into urban renewal projects, contributing to the 

maintenance of the city's historical identity. 

 

Figure 4-18- Arcade facade renewal based on prompt and ControlNet. - Kuang, Z., et. Al, 2023, 

Advancing Urban Renewal: An Automated Approach to Generating Historical Arcade Facades 

with Stable Diffusion Models 

Although image generation using AI seems very promising in terms of 

visual appearance, ideas, and even consistency, some questions and 

concerns are present within this approach. These concerns will be 

discussed later in this chapter. 

F) 3d-Models Generation 

AI-driven methods, particularly Generative Adversarial Networks 

(GANs), are revolutionizing 3D model generation by autonomously 

producing intricate and realistic structures. Akizuki et al. (2020) applied 
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Reinforcement Learning (RL) within a 3DGAN framework to generate 

furniture 3D models with topological consistency by voxelizing thousands 

of furniture 3d models to train the algorithm, showcasing the algorithm's 

ability to create complex structures within specified constraints. 

 

Figure 4-19 - Object generation via 26-actions model - from left to right, input voxel geometries, 

voxels, pipes, and smoothened meshes. Akizuko, Y., et. Al., 2020, Generative Modeling with 

Design Constraints – Reinforcement Learning for Object Generation 

Nichol et al. (2022) utilized a two-step approach for 3D scene generation, 

employing text-to-image diffusion models (GLIDE) to create synthetic 

views, followed by generating 3D point clouds conditioned on the 

generated images. The models were trained on millions of 3D models, with 

diverse post-processing steps implemented to ensure data quality. To 

standardize the data, each 3D model was rendered from multiple angles as 

RGBAD images using Blender, ensuring consistency for subsequent 

analysis and processing. 

Integrating AI to the Conventional 3D Modeling Pipelines 

Liu et al. (2021) utilized style transfer NN algorithms to generate 2D 

photos from floor plans and truss structures, aiding in 3D modeling for 

architectural design. The algorithms processed floor plans as content 

images and truss structures as style images, generating transferred images. 
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These images were then translated into floor plans for innovative structure 

design, with vertical components serving as pillars. This transformation 

from 2D-style transferred images to 3D geometries presents new 

possibilities for architectural design processes. 

 

Figure 4-20 - Transferred Image Translation (Liu, C., et. Al., 2021, Pipes of AI – Machine 

Learning Assisted 3D Modeling Design) 

AI generative algorithms allow other types of generation including codes 

and videos. In 2023, Ceylan et al. explored text-guided video editing with 

the 'Pix2Video' algorithm, utilizing pre-trained image models to achieve 

desired edits while preserving source video content. The method involves 

employing a pre-trained structure-guided model for text-guided edits on an 

anchor frame and propagating changes to future frames through self-

attention feature injection.  

Similarly, Chai et al. introduced 'StableVideo,' enhancing text-driven 

diffusion models to generate consistent appearances for edited objects, 

employing an inter-frame propagation mechanism within the diffusion 

video editing framework. Blattmann et al. applied the Latent Diffusion 

Model (LDM) paradigm to high-resolution video generation, fine-tuning 

on encoded image sequences and aligning diffusion model upsamplers for 

temporal consistency.  

Moreover, Karras and colleagues developed DreamPose, a diffusion-based 

method for generating animated fashion videos from still images, 

achieving state-of-the-art results in fashion video animation by 

transforming a pre-trained text-to-image model into a pose-and-image 

guided video synthesis model. These advancements highlight the growing 

potential of AI-driven techniques in text-to-video and image-to-video 

generation for diverse applications. 
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To conclude, The integration of machine learning into the architectural 

design process holds immense potential across all planning phases, 

transforming both repeatable and predictable activities. Machine learning 

tools can effectively replace certain tasks, particularly those involving 

decision-making, by learning from the work performed by architects. This 

evolution introduces complex machine learning methods, bringing 

artificial intelligence to the forefront of architectural and product design. 

This shift has the power to redefine the value of algorithmic design, 

moving beyond being a mere computational tool to becoming an equal 

collaborator in the design process. This collaborative synergy between 

human designers and machine learning systems has the capacity to 

revolutionize the architectural design landscape, fostering efficiency, 

creativity, and the exploration of novel design paradigms.  

Also, and more importantly, such collaboration could be described as 

‘human-centered’ where the machine aids in automating the process rather 

than interfering in creative and aesthetic aspects of the design which we 

argue that they are the essence of an architectural product. These aspects 

along with many others require the architect to be the center of the process 

seeing the whole picture and taking decisions that respect the complicated 

network of all design aspects.  

Recently, many AI applications have been introduced to the architectural 

design process including encompassing modeling, classification, 

rendering, and more. However, getting predictions that aid in form 

modeling was not experimented with deeply. Also, the basic knowledge of 

a framework to codify a building to retrieve its parameters and to create 

efficient data sets remains crucial for the success of such applications. 

4.9 Generative AI Drawbacks in Architectural Design 

Today, the field of architecture has seen many experiments with generated 

designs in the form of images. Recently, some architects have started to 

generate design ideas through image generation gen-AI models either by 

providing a prompt expressing the project requirements, some certain 

ideas, etc. in the form of text, or by providing sketches. 
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Gen-AI’s impact on the authenticity of designs is a pivotal aspect of this 

evolution. The authenticity of generative AI architectural designs is a 

nuanced consideration, encompassing both the innovative potential of AI-

generated creations and the preservation of unique human expression in 

design. Generative AI excels at exploring diverse design possibilities, 

pushing the boundaries of conventional architecture, and fostering 

creativity. However, questions arise regarding the authenticity of designs 

when algorithms autonomously generate solutions. Critics argue that 

reliance on generative AI might lead to a homogenization of designs, with 

the risk of overlooking the distinct cultural, historical, and contextual 

nuances that human architects often incorporate into their work. 

Millet et. Al, 2023, revealed an anthropocentric bias in art appreciation, 

suggesting a prevailing human-centric viewpoint in assessing creativity, 

particularly in the context of AI-generated art. Their experiments, 

encompassing over 1,700 participants, unveiled a consistent bias against 

AI-created art, perceived as less creative and awe-inspiring compared to 

human-made counterparts. Similarly, Ragot et. Al., 2020's extensive study 

involving 565 participants identified a preference bias toward human-

made creations, with art perceived as AI-generated receiving less favorable 

evaluations. These findings underscore a persistent negative perception 

bias towards AI in the realm of art, reflecting a broader inclination to view 

creativity as an exclusively human trait. As AI continues to advance in the 

creative domain, these biases pose challenges to fostering an inclusive 

perspective that recognizes and appreciates the unique contributions of 

both human and machine creativity. Addressing these biases is essential for 

cultivating a more open-minded appreciation of AI's potential as a tool for 

artistic expression. 

Yet when it comes to the originality of ideas in image generation models 

like diffusion models, it is important to note that these models are trained 

on existing data. The originality of generated samples depends on the 

diversity and complexity of the training data. If the training data includes 

a wide range of unique and novel examples, the model has the potential to 

generate original outputs. However, diffusion models, like other generative 

models, do not inherently generate truly novel ideas in the creative sense—
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they synthesize new examples based on patterns learned from the training 

data. 

Moreover, gen-AI models could be eclectic. The term "eclectic" in the 

context of image generation could refer to the ability of a model to combine 

diverse elements from its training data to create novel and varied images. 

If a diffusion model has been trained on a diverse dataset containing 

images with different visual styles, objects, and scenes, it may be capable 

of generating images that incorporate elements from various sources. 

In the case of diffusion models, the process typically involves iteratively 

adding noise to an input until it transforms into a sample from the target 

distribution. The ability to create eclectic images could arise from the 

model's capacity to blend and remix features it has learned from disparate 

examples in its training data (Rombach, R., et. Al., 2022). 

Thus, proponents of generative AI emphasize its capacity to reinterpret and 

combine design elements in novel ways, challenging traditional notions of 

authenticity. AI-generated designs can be seen as a reflection of the data 

they are trained on, capturing and reinterpreting architectural styles and 

features from various sources. This dynamic process can result in 

unexpected designs that embody a new form of randomness rooted in 

computational creativity. 

Navigating the authenticity of generative AI architectural designs requires 

a careful balance. Architects and designers must actively engage with AI 

tools, guiding the algorithms to align with their vision while also 

embracing the serendipity and novelty that AI can introduce. The synthesis 

of human insight and machine-generated possibilities can lead to truly 

authentic designs that are both innovative and deeply connected to human 

sensibilities. As the field continues to evolve, a thoughtful and critical 

approach to the integration of generative AI will be essential in preserving 

and redefining the authenticity of architectural design. 

Among many researchers and architects, Chaillou, S., who utilized Gen-

AI in creating floor plans in 2019 had beliefs which are rooted in the 

assertion that a statistical approach to design conception profoundly shapes 
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the potential of AI in the field of architecture. The departure from 

deterministic methodologies toward a more holistic, less-prescriptive 

character is seen as a unique opportunity within the architectural domain. 

Rather than viewing machines solely as tools for optimizing predefined 

variables, Chaillou advocates relying on AI to extract significant qualities 

and emulate them throughout the entire design process, marking a 

paradigm shift toward a more dynamic and exploratory design experience. 

Furthermore, according to Chaillou, the conviction lies in the pivotal role 

of designing the right pipeline to ensure the success of AI as a new 

architectural toolset. The preference for the "Grayboxing" approach, as 

introduced by Witt, A., 2018, is considered strategic and likely to yield 

optimal results. Chaillou contrasts this with the "black box" model, where 

users input information upfront and receive finished design options at the 

end, without influence over intermediate generation steps. The 

"Grayboxing" approach, as advocated by Chaillou, involves breaking 

down the pipeline into discrete steps, empowering the user to intervene at 

various stages as mentioned in chapter 1. 

This hands-on control over the machine ensures the user's ultimate 

guarantee of the quality of the design process, offering a more 

collaborative and iterative interaction between human insight and AI 

capabilities. This deliberate approach, as expressed by Chaillou, 

underscores a commitment to a thoughtful integration of AI into 

architectural practices, emphasizing user agency and creativity within the 

technological framework. 

The gray box approach seems logical especially with today’s mathematical 

applications in architectural generative designs which includes 

optimization and simulation techniques for instance. Also, AI applications 

in architectural design could involve such an approach. Especially, that it 

includes different applications (APIs) that could be learnt and used in the 

form of an internal black box operation in the design process without 

needing to learn what is behind -as users and not as developers-. 

In fact, while strongly agreeing with Chaillou that AI should be dealt with 

as a ‘toolset’ for the architect that involve many advantages, I strongly 
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believe that today’s Gen-AI applications which generates images (used as 

designs) -at least till the time of writing this research- are as far as possible 

not only from what architectural design profession is about but also from 

what an architectural design methodology could be and could propose as a 

solution to a problem. I believe that an architectural design product is not 

just drawings. It is rather an experience and a process. And this process 

most likely -if not always- includes problem solving of a handful of issues 

from a handful of other disciplines as well as architectural rules (form, 

commodity, and delight).  Those other disciplines include structural, 

societal, psychological, philosophical, humanitarian, and environmental, 

to name a few. All of these issues could never be diminished to whatever a 

generated architectural drawing image could encompass because every 

project should be designed with a whole new character and new thoughts.  

Also, and more importantly regarding text-to-image applications 

specifically, ‘can all the aspects of an architectural design in words be 

diminished?’. Architects who mostly follow the ‘black box’ approach find 

it hard to clearly express their ideas and how the form is generated. And 

worse, even those who apply the ‘glass box’ approach either by following 

function, relying on generative design various techniques, etc., still have 

hard time realizing the process and the reasons of the resulting product 

which is usually hard to explain to a machine. A gen-AI photo generation 

model cannot understand the orientation of the building, or the parametric 

approach taken to stabilize the structure, or the best façade pattern or form 

manipulation to reduce solar gain. Instead, Gen-AI models generate 

responses based on patterns learned during training. And of course, such 

manners are taken into consideration from day 1 in the design process and 

are ‘applied directly’ more than ‘thought of’. If architects skip such 

techniques in the process and start with a generative design (created by AI-

Gen models), it is most likely that the end product will be as far as possible 

from these images, and then the architects should ask themselves, ‘what 

was the benefit?’ Even with newly introduced models including LoRA and 

ControlNet. Still, the ‘control’ they provide the architect with, is more 

control of an outline or a boundary of the building or getting closer results 
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to the words descriptions. Still, this whole process deals with an 

architectural product as a 2-dimensional product. 

In addition, architectural design is about understanding what a user desires, 

and not only the architect’s aesthetic and creative parts. If this part of the 

architect’s job is well perceived, they would most probably find themselves 

in need of designing something that is unseen before, even if some 

details/techniques are reused. In this sense, relying on a dataset of 

previously designed projects could contradict this theory. 

And in this manner, I would strongly suggest differentiating between the 

product of Gen-AI models and the product of a generative design as there 

are no contradictions if the previous theory on generative design is applied. 

As discussed in chapter 4, generative design is still controlled by the 

architect who defines the parameters and the goals for which a machine 

searches the solutions to achieve. Even when imagining a generative 

design based on a simulation analogy, there are defined goals that spark 

the simulation. And even the parameters affected by the simulations are 

defined by the architect. 

So, after all, answering the question ‘can gen-AI fit in a professional 

architectural design process’, of course. But it could be integrated into 

some phases of the process rather than starting the process. In the next 

section, some applications of gen-AI that could possibly add value to the 

process are suggested. 

4.10 Generative and Non-Generative AI Usage Possibilities in 

Architectural Design 

AI technology could be seen and thought of as a great tool for automating 

the design process which includes by nature visualization of ideas. Earlier 

in this chapter some of these applications were exhibited where a Gen-AI 

could generate a plan after defined boundaries (regardless of the idea that 

those boundaries were decided by AI in those examples). 

Ali, S., 2020, argues that architectural visualization plays a crucial role in 

augmenting the comprehension of knowledge by minimizing cognitive 
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load. The utilization of visualization tools enables individuals to grasp 

information more efficiently and to a deeper extent. By representing data 

in visual formats such as charts, graphs, or diagrams, complex concepts 

are simplified, aiding in quicker assimilation and enhanced retention. This 

visual approach leverages the brain's capacity to process and interpret 

images rapidly, allowing individuals to extract meaningful insights with 

greater ease. Whether conveying intricate datasets or illustrating abstract 

ideas, visualization serves as a powerful cognitive aid, facilitating a more 

intuitive and expedited understanding of information. Ultimately, the 

integration of visualization tools proves instrumental in optimizing the 

communication of knowledge across diverse fields.  

However, and according to Ali, S., 2020, visualization in architecture has 

become a target more than a tool especially in architectural education. In 

fact, visualization could be misleading or deceptive. The beauty of a 

‘hyper-realistically’ and aesthetically rendered glass box could mislead the 

client’s preferences. In this regard, visualization should be carefully dealt 

with by architects as a tool rather than as a product. 

In terms of visualization, the idea of transforming sketches is seen very 

powerful and with more development it could make a great tool for 

visualizing plans, sections, other drawings, and perspectives when the 

machine has a 100% ability to generate images which apply exactly what 

is defined in a sketch. This application is seeing many developments today 

especially with the introduction of techniques like inpainting, outpainting, 

and Low-Rank Adaptation (LoRA). The more datasets to be fed to the 

generative algorithm, the more precise it will be in visualizing the 

architect’s sketch instead of generating new ideas. 

Also, such technology could aid a lot in a phase of the design process called 

the ‘mood board’ in which architects search for inspirational designs and 

show it to the client in order to be on the same ground during the design 

phase. Such a phase is important before starting the concept design and is 

usually related to aspects like façade elements, aesthetical elements, and 

design style. However, this step is not meant to have a significant impact 

on the core of the form making/finding process. 
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Gen-AI image generation in this case, could have an added value based on 

the data it is trained on, and it is believed to have the same result as 

collecting the inspirational images from the web. 

Additionally, Gen-AI applications regarding transforming images into 3D-

models could have a huge impact on automating design tasks. Especially, 

if 3d-model gen-AI models developed to generate surfaces and clean 

meshes rather than point clouds or voxels. Such an application is not far 

from reality. It could develop through integrating the gen-AI model to a 

pipeline which exhibits an automated way to segment images and extract 

the main points’ coordinates. Such an application could be exhaustive at 

first, but if better data sets are collected and engineered, it could not be 

regarded as impossible. 

Finally, another bright application of Gen-AI is the video Gen-AI which 

could create animations and walkthroughs which are considered an 

architectural output in some projects. The idea of generating videos 

through photos collected from around a 3D-model using diffusion is now 

present and could be applied in such tasks. 

On the other hand, and as discussed earlier in this chapter, non-gen-AI 

models do not generate data as images, text, 3d-models, etc. Instead, they 

are capable of predicting and generalizing on unseen data based on the 

pattern they learn during their training process. In this regard, non-gen-AI 

will not produce an image, but may predict numbers, or classes. These 

numbers and classes could be projected to the architectural field as 

parameters which could be used by the architects themselves or automated 

systems to generate products. This particular description aligns well with 

the approach taken to deal with the architectural process as a holistic 

system rather than a process of processes (described in chapter 1). 

The idea of dealing with a building as a set of parameters which are 

interrelated and strongly connected in the design phase, could make good 

use of non-gen-AI applications. Accordingly, turning a building’s design 

parameters to data sets which could be used to train AI and ML algorithms 

could yield many possibilities. Training a model with parameters either 

numerical or text to predict design decisions is thought to be an automation 



 

120 

 

 Artificial Intelligence and Machine Learning in Architecture 

process saving time and effort for architects in the future. Imagine 

designing a cluster of buildings (a residential or administrative compound). 

Such projects could take months to create variations or prototypes of the 

building with different areas, functions, etc. but with the same architectural 

style and theme or either days but with more manhours or architects. With 

the aid of coding in extracting all the parameters and generating a data set 

including many designs with different areas that is used to train ML models 

for example, this could automate the 3d modeling tasks of different 

prototypes with different characteristics. Also, and looking from the same 

perspective, non-gen-AI models could be used to predict spatial relations 

and to detect proper spaces’ areas based on learned data. Moreover, the 

models could predict and make decisions based on other aspects such as 

environmental and legislative aspects. For instance, they could predict a 

length parameter that defines the spacing between two staircases based on 

firefighting code or the tilt angle of louvers which reduce solar gain, or 

minimum required spacing that respects setbacks, etc. However, such 

decisions require neat and precise data sets so that predictions are 

mirroring real decisions based on real data. Those models are guaranteed 

to have learnt data directly from the architect. 

In general, non-gen-AI models could be thought of the same way as 

generative-design techniques like optimization and simulations in the 

sense that the product is unknown, but it is still applying certain rules 

controlled by the architect through the data sets they learn from which 

could be very specific to the details-of-every-parameter extent and unique 

rather than general and repetitive. Thus, the overall process is controlled 

by the architect against any random decisions that could be made by gen-

AI models. 

Summary 

This chapter provides a comprehensive exploration of the multifaceted 

definition of Artificial Intelligence (AI) and its transformative impact on 

technology. It begins by defining AI as the development of machines and 

systems capable of performing tasks traditionally requiring human 
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intelligence, encompassing everything from rule-based systems to 

advanced neural networks. 

Also, the chapter delves into the history of AI as well as its types and 

applications. The distinction between generative AI (Gen-AI) and non-

generative AI (Non-Gen-AI) is explored, with profound implications in 

technical, ethical, and societal dimensions. Moreover, Machine Learning 

(ML), a subset of AI, is introduced as the backbone of intelligent systems, 

enabling machines to learn from data and improve performance over time. 

The symbiotic relationship between AI and ML is emphasized, with ML 

providing adaptive capabilities for AI to navigate dynamic environments. 

The chapter explores various ML approaches, including supervised 

learning with labeled data, unsupervised learning uncovering patterns in 

unlabeled data, and reinforcement learning where agents learn through trial 

and error. The versatility and applicability of ML methods across domains 

are highlighted. The chapter introduces a brief overview of specific ML 

algorithms used in the research and the evaluation metrics employed to 

assess trained ML models. 

Moreover, different up-to-date applications of both Gen-AI and Non-Gen-

AI in architecture and similar fields were presented. Gen AI algorithms 

showcase great innovation in the product. Most of the examples introduced 

using the machine as a designer, taking decisions, and forming a product. 

On the contrary, Gen-AI tools should be seen as assistants, providing 

architects with valuable insights and options rather than replacing the 

human element in design thinking.  

In addition, the evolution of AI creative capabilities in the architectural 

field is explored from a skeptical perspective, particularly focusing on 

image generation models, which have progressed through various models 

and techniques, each introducing more options like inpainting, outpainting, 

and image-to-image generation. The impact of both generative and non-

generative AI on the architectural design process is highlighted. Generative 

AI, known for its divergent thinking and algorithmic creativity, plays a 

pivotal role in idea generation and its reliability as a tool used in the 

architectural design process is questioned. Collaboration between 
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architects and generative AI is emphasized as well as the architect’s role in 

the process. In general, applying AI in the architectural field fits well with 

the grey box approach of design thinking. In a holistic design process 

composed of other processes that relate to each other cyclically, with 

today’s design tools which benefit mainly from mathematics and physics, 

architects could think of some processes with a black box approach. In 

such processes, the embedded operations that happen form no concerns as 

the architect totally controls and directs them freely. In fact, the architect 

can direct and control Gen-AI systems, but it is concluded that the 

architectural design process cannot be diminished in a 2D-space with an 

image that hardly involves other design aspects. Such a process could lead 

to laziness and stripping the architectural design of its meaning. Also, the 

authenticity of AI-generated designs was discussed. From the 

understanding of how the models work, those models could be described 

as eclectic collage makers which present innovation through repeating 

elements that are learned from the training data set. Moreover, architectural 

visualization's direct influence is discussed as a useful tool using AI 

generative models. 

Non-generative AI, on the other hand, excels in analytical support, aiding 

architects in data analysis, decision making, predicting, and classification 

tasks. The integration of AI in architecture, however, poses challenges, 

including ethical considerations, the balance between technological 

efficiency and human creativity, and the need for architects to adapt to 

evolving workflows to develop them rather than being a user. The chapter 

concludes by delving into benefits of using non-gen-AI models in the 

design process as automation assets to the architect in the decision making 

based on authentic and unique data provided by the architects themselves.  

To conclude, this chapter reflects the dynamic and evolving nature of AI's 

role in architecture, ranging from opaque generative processes to 

transparent analytical tools. It is also concluded that many ML algorithms 

could aid in the architectural design process as well as architectural 

analysis studies and architectural education. In those applications, the AI 

process is human-centered, and AI is considered a tool for automatic heavy 

tasks using regression, classification, clustering, and RL algorithms.
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Chapter 5: Architectural Form Generation: 

Applying Machine Learning Algorithms on 

Architectural Parameters Datasets 

Preface 

In this chapter, a framework for utilizing ML in the form-generation 

process is explained. This process is considered form-finding in a sense 

that the models predict the parameters defining the form but is also 

considered form-making in a sense that it is made and decided by the 

machine according to how it learnt from the architect ed. Est., mapping the 

architect’s decision-making black box approach. So, this process is better 

described in the space between form-making and form-finding being closer 

to form-finding literally. 

This chapter defines the methods and tools used in the process. The coding 

process of the 3D-model to extract parameters is explained as well as how 

those parameters are related. After that, a resulting sample of the 

parameters data set is presented. And finally, how the full data set was 

generated is explained with the scope and limitations of the project. 

Additionally, in this chapter exploratory data analysis is performed to two 

data sets to gain insights about the data. First, the parameters (features and 

targets) are correlated to each other and pre-process the data accordingly. 

After that, the data is resampled to either increase the number of samples 

or balance the data based on the problem. Then, the data sets are split to 

train and test sets before training different regression and classification 

models. 

5.1 A Framework for Utilizing Machine Learning in Form 

Generation 

This section presents a comprehensive framework that aims at automating 

the design process by predicting architectural design parameters using 

machine learning. By harnessing parametric modeling tools to create 

dynamic, data-rich design alternatives, and applying machine learning 
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algorithms to analyze and predict optimal outcomes, this process 

transforms the way architectural decisions are made. The integration of 

computational techniques into the design process allows for more 

informed, data-driven choices, ensuring that design iterations are both 

innovative and feasible. 

The following framework encompasses the key stages of creating a 

parametric building model, generating multiple design alternatives, and 

extracting critical parameters to form a dataset. From this data, machine 

learning models are trained, validated, and used to predict design 

parameters that meet specific goals. This framework not only enhances the 

efficiency of the design process but also paves the way for greater 

collaboration between architects and computational tools, facilitating a 

more integrated and intelligent approach to design. 

1. Creating a Fully Parametric Model of the Building: 

In the early stages of the design process, the architectural model 

must remain flexible to allow for rapid iteration and adaptation to 

changing requirements. A parametric model is a dynamic 

representation of a building that can adjust its form and function in 

response to predefined variables, or parameters. These parameters 

typically include critical aspects of the building’s geometry, such 

as height, width, depth, floor area, and window-to-wall ratio, along 

with structural considerations and façade treatments. Through 

parametric modeling, architects can explore a wide design space 

efficiently, ensuring that various design alternatives are responsive 

to both aesthetic and practical constraints. The parametric model is 

structured to allow for changes in variables, creating numerous 

design variations that can be analyzed later. 

The development of parametric models involves scripting 

techniques and parametric control setups in design software. 

Parametric modeling is grounded in algorithmic design, where 

relationships between design parameters are explicitly defined 

through code. Here, a system of inputs and rules governs the 
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creation and modification of geometry, facilitating the automation 

of form generation.  

2. Designing a Large Number of Well-Studied Alternatives 

Once the parametric model is established, it is used to explore a 

wide range of design alternatives. These alternatives are driven by 

different configurations of the model's parameters, reflecting 

variations in architectural expression, performance, and structural 

feasibility. The process ensures that each alternative aligns with 

certain project-specific criteria, such as the form’s tangible 

characteristics including proportions and areas, maximizing natural 

light, optimizing energy efficiency, or adhering to zoning 

regulations. This step is particularly critical in early-stage design, 

where exploring multiple design pathways helps stakeholders 

choose optimal solutions. 

3. Extracting the Parameters of Each Alternative to Create a Large 

Dataset 

Each design alternative can be represented by a unique 

combination of parameters, such as floor area, building height, 

structural efficiency, and environmental performance. Capturing 

and recording these parameters is essential for creating a 

comprehensive design dataset. This dataset not only helps in 

understanding the design space but also allows for data-driven 

decision-making, making it easier to select or refine specific design 

outcomes based on quantitative analysis. 

The parametric design space can be encoded into a structured 

dataset, where each alternative is represented as a row and each 

parameter as a column. This data is stored in formats such as CSV, 

allowing for easy manipulation and analysis in various 

computational tools (Python, R, etc.). Each entry in the dataset 

reflects both independent variables (design parameters) and 

dependent variables (performance metrics), which will be critical 

for subsequent machine learning tasks. The structured format also 
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allows for integration with external data sources, such as energy 

simulations, cost analysis, and environmental impact assessments. 

4. Data Preprocessing 

Studying the Relation Between Parameters 

In architectural design, parameters are often interrelated. For 

instance, increasing the window-to-wall ratio might improve 

daylighting but could negatively affect energy performance due to 

heat loss. Understanding these relationships is crucial for informed 

design decisions. A thorough exploration of how various 

parameters influence each other, and the overall design is 

fundamental to ensuring that design alternatives are both functional 

and aesthetically pleasing. 

This step involves the application of statistical techniques to 

understand the dependencies between parameters. Correlation 

analysis and visual tools such as scatter plots and heatmaps are 

employed to examine these relationships. In more complex 

scenarios, dimensionality reduction techniques such as Principal 

Component Analysis (PCA) can reveal underlying patterns within 

the data, helping to streamline the design space by focusing on the 

most influential parameters. These methods allow for a deeper 

understanding of how changes in one parameter influence others, 

offering insights that can inform both design and optimization 

strategies. 

Splitting the Dataset According to Parameter Relations 

Not all design alternatives will be equally relevant to the project's 

goals. By segmenting the dataset based on specific parameter 

groupings, designers can focus on the most critical areas of the 

design space. This step is vital for filtering out irrelevant or 

suboptimal alternatives, allowing the focus to shift to designs that 

meet certain thresholds for structural performance, sustainability, 

or user comfort. 
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Cluster analysis, such as K-means or Hierarchical Clustering, can 

be applied to partition the dataset into subsets based on parameter 

similarities. This clustering enables more efficient learning by 

training models on smaller, more homogeneous groups of data. 

Segmentation based on parameter relations ensures that each subset 

is more cohesive, allowing machine learning models to learn 

specific behaviors within subspaces of the design space. 

Balancing the Data through Resampling Techniques 

In architectural datasets, certain types of design alternatives may 

be overrepresented, leading to biased results when training 

predictive models. Balancing the dataset ensures that all design 

typologies and configurations are equally considered, leading to 

more generalizable and reliable predictions across the entire design 

space. 

Resampling techniques such as SMOTE (Synthetic Minority Over-

sampling Technique) and undersampling are used to ensure that the 

dataset is balanced. This step is important in tasks where certain 

design outcomes might be rare, and thus underrepresented in the 

dataset. Balancing the dataset prevents the model from becoming 

biased towards more common outcomes, ensuring that minority 

designs are given equal consideration. 

Cleaning the Dataset 

Ensuring that the dataset is free from inconsistencies or errors is 

critical for meaningful analysis. Missing or erroneous values in the 

dataset may represent incomplete or faulty designs that should not 

be considered in the final analysis. 

Data cleaning involves handling missing values, removing outliers, 

and standardizing the dataset. Missing data can be addressed 

through imputation (e.g., mean, median, or k-nearest neighbor 

imputation), while outlier detection methods can be employed to 

identify and remove extreme values that could distort the results. 

Standardization or normalization techniques may also be applied to 
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scale the data appropriately, ensuring that all parameters are on 

comparable scales. 

5. Training and Validating Machine Learning Models 

Training Machine Learning Algorithms 

Machine learning algorithms are trained to identify patterns in the 

data and predict new designs. These models learn from past design 

alternatives, allowing architects to predict the behavior of new 

designs based on historical data. This process helps architects to 

quickly evaluate a wide range of alternatives, reducing the need for 

manual exploration. 

Various machine learning algorithms are applied, depending on the 

problem at hand. For regression tasks (e.g., predicting continuous 

variables like energy consumption or structural stability), 

algorithms such as Linear Regression, Random Forests, and 

Gradient Boosting are used. For classification tasks (e.g., 

categorizing building types or design styles), algorithms like 

Support Vector Machines (SVM) and Neural Networks are 

employed. The models are trained using cross-validation 

techniques to avoid overfitting and to ensure that they generalize 

well to new data. 

Choosing a Champion Model Based on Validation Metrics 

The selection of a "champion" model is based on how well it 

predicts desired design outcomes, balancing accuracy with 

interpretability. The chosen model should not only provide accurate 

predictions but also align with the designer's intuition and 

architectural goals. 

Validation metrics such as R-squared, Mean Squared Error (MSE), 

Accuracy, and F1-Score are used to evaluate the performance of 

the trained models. Cross-validation is used to compare different 

models and select the best one (the "champion") based on its 
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performance across multiple datasets. This model will be used to 

make predictions in the next phase of the design process. 

6. Predicting, Parsing Parameters & Fine-Tuning 

Using the Champion Model to Predict the Parameters 

Once trained, the model can predict new design parameters based 

on user-defined criteria. For example, an architect may specify that 

a building should maximize daylight while minimizing energy 

consumption, and the model will predict the optimal set of 

parameters that satisfy these goals. Additionally, an architect may 

specify the area of the building, and the model will predict the 

lengths and widths of the floor slabs. 

The chosen model is deployed to predict the design parameters for 

new building scenarios. Input features may include high-level 

goals, such as cost limits or sustainability targets, or tangible goals 

like the built-up area of the building, walls offset from slabs, etc. 

and the model will output a set of parameter values that reflect the 

best design solution based on learned patterns in the data. 

Parsing the Predicted Parameters to the 3D Model in Modelling 

Software and Finetuning them 

The predicted parameters are reintroduced into the parametric 

model, allowing for the real-time generation of 3D geometry that 

reflects the machine learning model’s suggestions. This process 

creates a seamless connection between data-driven predictions and 

the physical form of the design, enabling architects to immediately 

visualize how the suggested parameters translate into architectural 

space. 

By updating the 3D model in real-time, architects can rapidly 

iterate on the design, assessing both its functional and aesthetic 

qualities. The parametric nature of the model allows for 

flexibility—if certain parameters need adjustment for practical or 

creative reasons, they can be fine-tuned directly in the design 
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software. This direct feedback loop helps maintain the balance 

between algorithmic optimization and architectural intuition, 

ensuring that the machine-generated designs remain responsive to 

the unique contextual and human factors inherent in architectural 

projects. 

For example, if a machine learning model predicts optimal 

window-to-wall ratios based on energy efficiency goals, these 

parameters can be directly applied to the 3D model in the 3D 

modelling software. The facade's geometry will automatically 

update, allowing the architect to visualize and evaluate the design 

from multiple perspectives, considering light distribution, visual 

impact, and user comfort, among other factors. This integration 

facilitates a more interactive and informed design process where 

data enhances, rather than replaces, the designer's expertise. 

The suggested framework integrates parametric modeling and machine 

learning to optimize architectural design. A fully parametric model 

generates multiple design alternatives, which are analyzed by extracting 

key parameters into a dataset. After preprocessing the data—studying 

parameter relationships, splitting the dataset, balancing, and cleaning—

machine learning models are trained to predict optimal design parameters. 

The best-performing model is selected, and its predictions are parsed back 

into the 3D parametric model. Finally, the design is fine-tuned, combining 

data-driven insights with architectural judgment to achieve the desired 

outcomes.  

Although the architect’s decisions (way of thinking) could be ill-defined 

or ill-structured, this framework should give results which stick to the 

pattern found within the architect’s decisions expressed in the choice of 

parameters which affect the outcome.  

Figure 5-1 explains the suggested framework to utilize ML in the form-

finding process. 
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Figure 5-1- Suggested Machine Learning framework for Regression and Classification Tasks in 

Architectural Modeling - By the Author 

Following, the suggested framework is applied to a contemporary villa 

design to validate it. 

5.2 Problem Definition, Scope, and Limitations 

The problem in this project is described as analyzing whether ML models 

could map the architect’s way of thinking and -metaphorically- take 

decisions based on patterns that might exist in his black-box described 

thoughts or not. 

To test this case, a villa is designed parametrically in a contemporary style 

for the sake of simplicity. Modeling this villa by coding resulted in full 

control over the parameters to generate 600 samples (consciously 

designed) and ease of transforming them into a ML-ready data set. 

The project is applied to give the user (architect) full control of 

requirements including a rectangular land’s length and width, total built-

up area, setbacks, four neighbor types, and number of building blocks. 
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Those parameters directly decided the form-generation process by 

affecting tangible parameters including each slab’s length and width, 

recess and dimensions between slabs, windows’ existence and widths, 

shading devices numbers and width, and walls relations to each other. Only 

tangible parameters were tested for simplicity.  

The generated data set was used to train different ML models to test 

whether they find the pattern that was consciously presented by the 

designer or not. Those models included a variety of regression and 

classification models which are compared to tests which would suit this 

type of problems. So, the target was not to develop an ML model but to 

test them and test the reliability of the generated data set. 

To evaluate the results (predictions) of the used ML models, regression 

results are evaluated based on R2 score, MSE, MAE, and RMSE. And to 

evaluate classification results, accuracy, precision, recall, and f1 scores 

were used as evaluation metrics. Also, a classification report is generated 

for each classification model. Multiple regression and classification 

metrics scores are used to assess the results. 

5.3 Methods and Tools 

Modeling the parametric villa is done using C# component on Grasshopper 

v. 1.0 for Rhinoceros3d v.7 implementing the RhinoCommon’s API. 

The analysis in this study is performed using the Jupyter Notebook v.6, and 

Python v.3.10. Scikit-learn library v.1.3.0 for Python was used for ML and 

TensorFlow v.2.10.1 and Keras v2.10 were used to train ANNs. 

Also, NumPy v.1.23.5 was used to manipulate data as arrays during the 

process and Pandas v.2.0.3 was used to manipulate data in a CSV1 format 

as data structures. Additionally, for data visualization Matplotlib v.3.7.2 

and Seaborn v.0.12.2 libraries for Python were used. 

 
1 CSV stands for "Comma-Separated Values." It is a simple and widely used file format 

for storing tabular data, such as a spreadsheet or database, in a plain text format. 
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PC Specifications: 16 GB RAM, Intel (R) Core (TM) i7-8700K CPU 

@3.70GHz, Nvidia GTX 1060 3GB. 

The tools used in this study were selected for their efficiency and suitability 

in handling complex architectural modeling and machine learning tasks. 

C# in Grasshopper with RhinoCommon API allows for precise control of 

parametric models, essential for creating 3D models. Jupyter Notebook 

and Python offer an interactive environment for analysis, while Scikit-

learn provides robust machine learning algorithms for parameter 

evaluation. TensorFlow and Keras are ideal for training artificial neural 

networks, crucial in design optimization. NumPy and Pandas streamline 

data manipulation, and Matplotlib with Seaborn enhances data 

visualization, ensuring clear insights throughout the process. 

5.4 Coding an Architectural Design Model 

In this section the modeling of the villa by coding using C# is explained 

and how the parameters were related to affect each other and to build a 

consistent model is discussed. Finally, a resulting sample of the data set is 

presented. 

5.4.1 Modeling the project 

A villa prototype is modelled in C# language using RhinoCommon API 

(figure 5-2). To model the villa, walls and slabs were created as boxes with 

a starting point (x, y) that varies depending on the design and is directly 

affected by the setbacks. Walls are interconnected to each other with ruling 

parameters that define where a wall starts and how long is a wall offset 

from another one. Windows are modeled by cutting in the walls using the 

boolean command and mullions are added as boxes spaced by dividing the 

window width to an integral number parameter. The parametric model 

allows the user to parametrically change the land width, land length, 

neighbors (street/neighbor), setbacks, number of blocks for the villa, 

starting point, walls widths, walls lengths, walls heights, slabs lengths, 

slabs widths, floors heights, whether there is a window in each wall or not, 

width of window in each wall, and window’s center point distance from 
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the wall’s center point. The number of building blocks is either 2 or 3 to 

facilitate modeling villas with larger areas. 

 

Figure 5-2 – Villa prototype coded in C# on Grasshopper for Rhinoceros3d 

The slabs widths and lengths are ruled mathematically to not exceed the 

setbacks. 

 

Figure 5-3 – Slabs Annotations 

And changing the slabs dimensions affects the area of the villa which is 

calculated by the equation: 

𝐴𝑟𝑒𝑎 = (𝑟𝑜𝑜𝑓1𝑥 ×  𝑟𝑜𝑜𝑓1𝑦) + ((𝑟𝑜𝑜𝑓2𝑥 × (𝑟𝑜𝑜𝑓2𝑦𝑏 − 𝑟𝑜𝑜𝑓2𝑦𝑎) ) × 2)

+ (((𝑟𝑜𝑜𝑓3𝑥 𝑜𝑓𝑓𝑠𝑒𝑡 − 𝑟𝑜𝑜𝑓3𝑥) × 𝑟𝑜𝑜𝑓3𝑦) × 3) 
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Or 

𝐴𝑟𝑒𝑎 = (𝑟𝑜𝑜𝑓1𝑥 ×  𝑟𝑜𝑜𝑓1𝑦) + ((𝑟𝑜𝑜𝑓2𝑥 × (𝑟𝑜𝑜𝑓2𝑦𝑏 + |𝑟𝑜𝑜𝑓2𝑦𝑎|) ) × 2)

+ (((𝑟𝑜𝑜𝑓3𝑥 𝑜𝑓𝑓𝑠𝑒𝑡 + |𝑟𝑜𝑜𝑓3𝑥|) × 𝑟𝑜𝑜𝑓3𝑦) × 3) 

Variables in the equation are shown in figure 5-3. 

5.4.2 Parametric relationships 

The starting point ‘SP’ is the base of the coded model. This starting point 

is affected by the setbacks and is conditioned to have x and y values that 

are equal to or greater than the setbacks values. At the same time, it starts 

shaping roof 1, which is modeled with intervals starting from the starting 

point and heading towards the x and y directions. Roof 2 is parametrically 

connected to roof one. Its starting point is roof 1’s point ‘rf1b’ and its y 

dimension is ‘roof2ya’ + ‘roof2yb’ which are mathematically related to 

roof 1’s point ‘rf1b’. In the case of having three building blocks, roof 3’s 

starting point is roof 2’s point ‘rf2b’. The x dimension of roof 3 is equal to 

‘roof3x’ + ‘roof3x offset’. The point between the two lines ‘rf3b’ has the 

same x coordinate as point ‘roof2b.’ Block 1 is modeled to have only one 

floor, block 2 is modeled to have two floors, while block 3 is modeled to 

have three floors. Figure 5-4 shows points annotations. 
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Figure 5-4 – Points annotations of the villa 

The walls are modeled in relation to the floors and to each other. So, a wall 

can be offset from the roof’s edge or falls exactly on its edge. This requires 

a relationship between each two perpendicular walls where a wall’s length 

could vary depending on the other walls’ exact location. 

Also, the windows were parametrically built in each respective wall with 

parameters regarding the center of the window relative to the center of the 

wall and how windows’ lengths should not exceed the respective wall’s 

length. And conditions were added to choose whether there is a window in 

a wall or not with true/false values. 

Handrails are also modelled with mathematical relations with the roofs 

edges so that they can be offset from the roofs or on the roofs’ edges. Their 

shapes also change automatically depending on the relation between the 

building blocks. 

5.4.3 Resulting sample 

Using coding, a CSV file is automatically created to receive the parameters 

of the villa. And automatically again by coding, the parameters are 
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transferred to the file by pressing a button in grasshopper canvas. The 

sample shape has two rows and 125 columns, and the set looks as shown 

in table 5-1: 

Table 5-1 - Sample Data Shape 
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5.5 Generating A Machine-Learning Ready Dataset 

In this section, the generated data sets are analyzed and explained in detail. 

The 2 created data sets are composed of 600 samples of villas designs. 

Each data set has different targets to be predicted. The targets of the 2 data 

sets are the parameters used to create the villa’s model using C# coding in 

grasshopper3d. Figure 5-5 shows the resulting model of the target 

parameters. 
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Figure 5-5 – Resulting villa model which was built by using parameters in code. 

Each 100 samples are designed to have a specific land area, and setbacks 

options. Several villas’ areas are designed within a specified range and the 

samples are divided into 4 categories where neighbor types are changed 

which affected the parameters. Table 5-2 shows samples numbers and 

parameters that affected the designs. 

Table 5-2 - Numbers of samples and parameters that affect the designs. 
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Figure 5-6 - Screenshots of random samples of the data set 

5.5.1 Data set 1 (form data set): 

In the first part of this data set (areas data), the features including land 

dimensions, total built-up area, number of blocks, and setbacks are used to 

predict the slabs locations as well as their dimensions, and the building’s 

starting point (targets). The slabs widths and lengths are ruled 

mathematically to not exceed the setbacks. 

Changing the slabs dimensions affects the area of the villa which is 

calculated by the equation: 

𝐴𝑟𝑒𝑎 = (𝑟𝑜𝑜𝑓1𝑥 ×  𝑟𝑜𝑜𝑓1𝑦) + ((𝑟𝑜𝑜𝑓2𝑥 × (𝑟𝑜𝑜𝑓2𝑦𝑏 − 𝑟𝑜𝑜𝑓2𝑦𝑎) ) × 2)

+ (((𝑟𝑜𝑜𝑓3𝑥 𝑜𝑓𝑓𝑠𝑒𝑡 − 𝑟𝑜𝑜𝑓3𝑥) × 𝑟𝑜𝑜𝑓3𝑦) × 3) 

The second part of this data set (rest of parameters data) involves 

parameters related to distances between walls, walls’ locations measured 

from slabs edges, and number of shading devices added to the first floor. 

Those variables are predicted according to the same features from the first 

part in addition to neighbor types. 
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5.5.2 Data set 2 (windows data set): 

In the first part of this data set, the features are the same as used in data set 

1 while the targets are whether there is a window or not in a wall. The 

second part of this data set has the same features as the first part, but the 

targets are the widths of the windows in walls. 

5.6 Data Correlations 

Heat maps are created to thoroughly explore the correlations between the 

variables in the regression data sets (figures 5-7 and 5-8) and through a 

point-biserial correlation the correlations between the variables in the 

classification data set is explored (figure 5-9). 

 

Figure 5-7 – Correlation heatmap between features and targets for the data set 1 

From this correlation matrix, some variables that were consistent along the 

data set could be noticed. These variables should be removed. Also, 
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drawing from the matrix, it could be also found that some variables could 

cause misguidance to the ML including some variables with negative 

values. Also, many features are not directly affecting many targets and vice 

versa. 

 

Figure 5-8- – Correlation heatmap between features and targets for dataset 2 (regression) 

The same is noted in this data set with some variables being consistent 

along all the samples. Also, high correlation is noticed between some 

windows width and the aligning slab length. 

Also, when plotting a point-biserial correlation between features and 

binary targets in data set 2, some consistent variables that need to be 

dropped are found. 
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Figure 5-9 – Point-Biserial correlation between features and binary targets in data set 2 

(classification) 

5.7 Data Pre-Processing 

The two original data sets under investigation consist of 94 columns 

containing all the parameters mentioned in section 9.4. 

Data set 1 has 45 columns while data set 2 has 57 columns. However, both 

data sets share 10 columns which are supposed to serve as features 

including the land dimensions, built-up area, neighbor types, and setbacks. 

Each data set has 600 samples designed by changing the parameters and 

screenshot of the villa design depending on the parameters set is saved in 

the same order as the csv data set for later practical validation (figure 3). 

Those 600 samples are designed carefully, and the parameters were 

changed intentionally depending on the architect’s satisfying results 

regarding proportions, neighbors, areas, etc. This may ensure that a 

particular pattern exists within the data which the machine could observe. 
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5.7.1 Cleaning continuous data 

To achieve high efficiency in areas results after prediction, some of the 

highly correlated variables needed to be adjusted. Instead of predicting 

roof1x, roof1y, roof2x, roof2ya, roof2yb, roof3x, roof3x offset, and roof3 

y, and to ensure logical training, some of these variables are replaced with 

more relevant data that can ensure the areas prediction accuracy and can 

mathematically output the replaced data. For example, roof1y was replaced 

with roof1 area, roof 2 ya which happens to have a negative value usually 

was replaced with roof2 area, and roof3 y was replaced with roof3 area. 

This process was important to make the numeric pattern clearer to the 

algorithms. Figure 5-10 shows roofs labels. However, this process was not 

done on the windows data set because the lengths and widths of walls 

played a key role in defining the windows’ width because walls lengths 

were mostly related to slabs dimensions. 

 

Figure 5-10 - Roofs labels 

In the form data set, some targets are found consistent among the data set 

and are dropped to make it easier for the machine to find relationships. 

From the features, neighbor 3 was dropped from both data sets for always 

having a ‘neighbor’ value set as 0.  Also, setbacks in the X dimension and 

in the Y dimension were found to be similar to each other in all of the 

samples so, setbacks Y was dropped. 
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5.7.2 Cleaning categorical data 

Some of the data in the set are of a string type like neighbor and street. And 

some are boolean with ‘True’ and ‘False’ values like whether a window 

exists in a wall or not. Text in these cases is converted to numerical values 

for ML algorithms compatibility and achieving efficient computation. In 

this case, both ‘true’ and ‘street’ values are set to ‘1’ while ‘false’ and 

‘neighbor’ values are set to ‘0’. Moreover, some targets are dropped for 

having consistent values in all samples.  

The results of data cleaning led to the areas and rest of parameters data set 

to have 33 columns, and the windows data set to have 42 columns. 

5.8 Data splitting and choosing features and targets 

Features in ML are the input data that the user gives to predict some values. 

The values to be predicted are called labels or target variables. In this 

problem, and as mentioned in section 9.4, the features and targets are 

chosen as shown in table 5-3: 

Table 5-3 - Features and Targets of The Model 

Features (Inputs) Targets (Outputs) 

Feature 
No. of 

Features 
Target 

No. of 

Targets 

Land length 1 Starting point 2 

Land width 1 Walls parameters 22 

Setbacks 1 Slabs dimensions 8 

Built-up area 1 Windows existence 22 

Number of blocks 1 Windows widths 22 

Neighbors 4 
Shading Devices Number 1 

Shading Devices Widths 1 

 

Initially, the features include what an architect should input to the program 

to output the numerical parameters that control the architectural aspects 

like proportions, dimensions of walls, and windows, etc. 

The inputs include the building area, land width, land length, number of 

blocks, neighbors, and setbacks. The dataset is split to a form dataset where 
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form parameters are predicted such as walls offsets, slabs dimensions, 

starting point of the form, etc. and another “windows” dataset for 

predicting windows existence as well as windows dimensions. 

5.8.1 Form data set splitting 

The correlation matrix between features and each column in targets is 

plotted. The correlation matrix was plotted as a heatmap using Seaborn 

library in Python and some variables were excluded from the data frame 

for a cleaner dataset. 

 

Figure 5-11 - Heatmap showing correlations between the variables in the dataset (By the Author) 

The plot shows that only a few features which could affect the building 

area represented in slabs dimensions. Those include land length, land 

width, built-up area, and number of blocks. 
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For this reason, the form dataset is split to areas related dataset to predict 

the slabs dimensions thus, the building area, and another dataset to predict 

the walls offsets, and other form related parameters. 

The features of the first data set are land length, land width, setbacks, built-

up area, and number of blocks. 

While the other data set includes all the targets and features of the cleaned 

dataset to train the model for predicting the rest of form parameters using 

features like land length, land width, setbacks(X), built-up area, number of 

blocks, and the types of the neighbors. Figures 5-12 and 5-13 show the 

correlations between each dataset’s variables. 

 

Figure 5-12 - Heatmap showing correlations between the variables of the form areas data set (By 

the Author) 
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Figure 5-13- Heatmap showing correlations between the variables of the form rest-of-parameters 

data set (By the Author) 

5.8.2 Windows data set splitting 

The windows dataset includes 12 features which are the neighbor types, 

the number of blocks, and the slabs’ dimensions which logically points to 

whether a window exists in a wall or not and the width of the window (in 

the designs and dataset, the walls were directly correlated to the slabs 

dimensions). The targets are the windows’ width and whether a window 

exists in a wall or not. This shows two types of targets, one is boolean and 

one is continuous. Those two types require classification and regression 

models respectively. So, the targets were split to classification targets and 

continuous targets. Figure 5-14 shows the correlation matrix heatmap 
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between continuous targets and features while figure 5-15 shows Point-

Biserial correlation between binary targets and features. 

  

Figure 5-14 - correlation matrix heatmap between continuous targets and features 

 

Figure 5-15 - Point-Biserial correlation between binary targets and features 
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Both the correlation heatmap and point-biserial correlation map give us 

precise thoughts of how the dataset was generated. Regarding the binary 

targets, clear correlations exist between the neighbors and the slabs’ side 

and the window in the wall which lies under the slabs side and facing this 

exact neighbor. Also, the correlation matrix heatmap reads well in the same 

manner.  

5.9 Data Resampling 

Resampling in ML refers to the process of creating a new dataset by either 

duplicating instances (oversampling) or removing instances 

(undersampling) in order to achieve a more balanced class distribution. 

The goal is to improve the performance of ML models, particularly in cases 

where one class is significantly underrepresented compared to another. 

There are only 600 samples of designs that were created by the architect 

which could be insufficient for ML to analyze the data. To produce enough 

samples for ML training, employ general-purpose resampling functionality 

in Sklearn library which performs oversampling in this case. 

150 of the 600 samples have neighbor 1 value as ‘0’, and 450 have 

neighbor 1 value as ‘1’. Also, 150 samples have neighbor 2 value as ‘0’, 

and 450 have neighbor 2 value as ‘1’. So, neighbor 1 and neighbor 2 as 

neighbors (‘0’ value) are considered minority classes while the two 

columns as streets are considered dominant classes. In this case the 

resample technique was used to oversample the minor classes to balance 

the class distribution. The resulting data set includes 30,600 samples for 

the areas’ data set and 30,600 for the windows’ regression data set. 

Synthetic Minority Oversampling Technique (SMOTE) 

Regarding the windows classification data set, a significant imbalance in 

data was noticed, which was a result of the architect’s preferences. Figure 

5-16 shows count plots of windows classification targets before applying 

SMOTE. 
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Figure 5-16 - Count plots of targets of the windows data set before applying SMOTE 

The same resampling technique used with the areas’ data set was not able 

to balance the data. SMOTE was applied to this data set. It is a technique 

that generates synthetic samples for minority classes to tackle imbalanced 

data sets. SMOTE primarily operates within the feature space, creating 

new instances by interpolating between closely positioned positive 

instances. 

Figure 5-17 shows count plots of windows classification targets after 

applying SMOTE. 
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Figure 5-17 - Count plots of targets of the windows data set after applying SMOTE 

5.10 Train-Test Splitting 

To perform a ML task, data should be split to at least a training set and a 

test set. The test size in this case is set to be 20% of the whole dataset while 

the remaining 80% are assigned for the training set. The data is shuffled 

before splitting to get a test set with randomized instances representing the 

entire data set. K-fold cross validation was applied. 

5.11 Training Models 

After having preprocessed and cleaned data, ML techniques were applied 

to predict architectural design parameters of the villa model. The problem 

involves both regression and multi-class classification. 

There are three regression tasks, one for predicting the areas and slabs 

dimensions, one for predicting the architectural parameters including walls 

offsets, and one for predicting the windows’ widths and one classification 
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task which predicts the existence of windows in different walls. Table 5-4 

shows different problem types in this study. 

Table 5-4 – Machine learning problem types in this study 

P
re

d
ic

ti
o
n

 T
a
sk

s Problem Type 

Regression Classification 

Slabs dimensions and starting 

point 
Existence of a window in each 

wall 
Architectural parameters 

Windows’ width 

 

Different regression and classification models were applied directly using 

scikit-Learn, TensorFlow and Keras modules for Python. All these models 

were discussed earlier in section 4.3.: Random Forest, XGBoost, Ridge, 

K-Nearest Neighbor, Linear Regression, Polynomial Regression, Decision 

Tree, and Multi-Layer Feedforward Neural Network (MLP) in 

TensorFlow. All the ML regressors were used with their default parameters 

while the MLP regressors hyperparameters’ were tuned to get the best 

possible scores. 

For the MLP, the best trained ANN consisted of 3 layers: an input layer of 

64 perceptrons and a ‘Relu’ activation level, a hidden layer with 64 

perceptrons and a ‘Relu’ activation level. And an output layer with 15 

perceptrons and a ‘linear’ activation level. The loss was calculated based 

on the mean squared error and the used optimizer was ‘Adam’. The batch 

size used in training was 32 and the number of epochs was 100. 

A set of classification algorithms are used to predict windows existence in 

walls including Random Forest, k-NN, SVC, Decision Tree, AdaBoost, 

and XGBoost. All the ML classifiers were used with their default 

parameters. 

Table 5-5 shows trained models used in this project. 
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Table 5-5- Different models trained for regression and classification tasks 

Trained Models 

Regression Classification 
Random Forest Random Forest 

XGBoost XGBoost 

Ridge AdaBoost 

k-NN k-NN 

Linear Regression Support Vector Classification (SVC) 

Decision Tree 

Decision Tree 
Polynomial Regression 

MLP-Scikit-Learn 

MLP TensorFlow 

 

Summary 

In this chapter an application as a framework is introduced to utilize ML 

in the form-finding/making process, the problem was explained, being 

exploring a way to test ML algorithms on architectural design parameters 

as data sets to see how well ML models could generalize and find patterns 

that are consciously made by the author. Then the materials and methods 

used to perform this study were explained starting from choosing software, 

programming languages, and programming modules to analyze the data 

and build the models. It is also discussed in detail how the 3d-model was 

built using coding by C# language and how all the parameters were related 

together to make a fully parametric contemporary villa where every 

parameter could change other parameters with full control over them to 

automate the generation of a data set which contains only numerical and 

text values as variables. This data was split into two data sets. One to 

explore the parameters related to the form-generation and the other to 

control the parameters deciding windows’ creation. 

Additionally, the chapter delved into analyzing the data set by drawing 

correlations between variables. Such correlations are essential to 

understand how variables correlate to each other. The result of this phase 

led to splitting the large data set into two data sets, each having variables 

that directly affect each other, making it easier for the machine to learn 
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form and conclude patterns. Further splitting is done to each data set 

according to the same concept where some variables were crucial in 

determining the area of the building while others affected parameters 

related to walls placements and formation. Also, in the second data set, 

some parameters fit into a classification task while others required a 

regression task. So, the data set ends up split into four sub-data sets. The 

sub data sets were cleaned from variables which were consistent along the 

whole data set and some variables were mapped to numerical values. 

Furthermore, the analysis of data balance was crucial in the study. Some 

techniques including SMOTE for classification and Oversampling for 

regression data sets were used to balance the data. After that, the four data 

sets were split into train and test data sets with an 80-20% ratio 

respectively. Finally, different regression and classification models were 

trained on the four data sets to gain insights on which models were more 

suited to this specific problem. 

In the next chapter, the results of the training phase are explained and 

analyzed. 
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Chapter 6: Machine Learning Analysis and Results 

Preface 

In this chapter the results of the different ML models are presented, 

analyzed, and compared. Additionally, the model learning of both the form 

data set and the windows data set based is discussed and evaluated on the 

evaluation metrics discussed earlier. Also, how predictions are done after 

training the models and choosing the best model are discussed. After that, 

a fine-tuning phase is proposed to give the architect control over the ML 

outcome to modify the built 3d-model easily to become a natural part of 

the design process. Finally, final conclusions are drawn from the results of 

the project. 

6.1 Feature importance 

According to the findings, the building area - as suggested - was the most 

important feature in the final areas’ dataset (as shown in Fig. 6-1). 
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Figure 6-1 - Feature Importance Score for a Random Forest Regressor 

This feature was directly affecting the areas of the floor slabs which is 

calculated based on the lengths and widths of the slabs. While the land 

length, land width, and setbacks were affecting only two targets which are 

‘Starting Point X’ and ‘Starting Point Y’ representing the x and y 

coordinates of the starting point. 

6.2 Evaluation Metrics 

There are some metrics that show how an ML algorithm performs while 

training and with unseen data as well. These metrics vary according to the 

problem type, either a regression model or a classification model. 
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6.2.1 Evaluating regression performance 

A regression model's performance is evaluated using metrics such as R2 

score, mean squared error (MSE), root mean squared error (RMSE), and 

mean absolute error (MAE). 

R2 score measures the proportion of variation in the dependent variable (Y) 

that is explained by the independent variable (X). R2 score is calculated by 

finding the sum of residuals squared and the total sum of squares. The sum 

squared regression is the sum of the residuals squared, and the total sum of 

squares is the sum of the distance the data is away from the mean all 

squared. This is a critical measure for assessing model fit, with values 

ranging between 0 and 1. An R2 score ≥ 0.9 is considered excellent, > 0.8 

is good, and ≥ 0.6 can be acceptable in some scenarios, although there 

might be noticeable predictive errors. An R2 score ≤ 0.5 indicates poor 

explanation of data variation and potential limitations in prediction. MSE 

evaluates how well the regression model fits the data and its square root 

provides an estimate of the standard deviation (σ) of the random error term. 

Although RMSE is not an unbiased estimator of σ, it remains a dependable 

tool for this purpose. These metrics primarily measure the magnitude of 

regression errors but do not provide insights into the explained portion of 

the variance. MAE is the average absolute error between actual and 

predicted values. (Equations are shown in appendix B). 

6.2.2 Evaluating classification performance 

Accuracy, precision, recall, and F1 scores are evaluation metrics for 

classification tasks. Also, a classification report is typically generated. 

These scores can assess the performance of a classification model. 

Accuracy represents the ratio of accurate predictions to total guesses. 

Precision relates to a classifier's capability to correctly classify a negative 

instance as negative. Sensitivity/recall, often called the true positive rate, 

gauges the model's proficiency in identifying all positive occurrences in 

relation to the combined count of true positives and false negatives. F1 

score is the harmonic means of precision and recall. The harmonic mean is 

a mathematical average derived by dividing the total number of 
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observations or elements in a series by the reciprocal of each individual 

number within that series. 

The harmonic mean of accuracy is the F1 score. The number of actual 

instances of the class in the provided dataset is referred to as recall and 

support. (Equations are shown in appendix B). 

6.3 Model learning analysis 

ML analysis was conducted on the two data sets. 

6.3.1 Form data set analysis 

To estimate the slabs dimensions and the rest of parameters, 8 ML models 

were conducted which are: random forest, XGBoost, Ridge, k-NN, linear 

regression, polynomial regression, decision tree, and MLP with 

TensorFlow.  A total of 30,600 samples were used (24,480 samples for 

training and 6,120 samples for testing) for each model.  

According to the findings, ensemble learning models had the best results 

among other algorithms. The results were very accurate especially when 

done on the areas sub-data set and the predicted slabs dimensions 

parameters succeeded to give very close values of total-built up area as 

required in the input. Figure 6-2 and table 6-1 show a comparison between 

the regression metrics between the 9 trained models. 
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Figure 6-2 - Comparison of the regression metrics between the 9 trained models for the areas sub-

data set. 

 

Table 6-1- Comparison of the regression metrics between the 9 trained models for the areas sub-

data set 

Model R2 Score MAE MSE RMSE 
Random Forest 0.97 0.57 7.15 2.67 

XGBoost 0.97 0.61 7.11 2.67 

Ridge 0.69 4.96 93.16 9.65 

k-NN 0.96 0.68 9.17 3.03 

Linear Regression 0.69 4.96 93.16 9.65 
Polynomial 

Regression 
0.84 3.29 53.50 7.31 

Decision Tree 0.97 0.57 7.21 2.68 
MLP-Scikit-

Learn 
0.86 2.65 36.02 6.00 

MLP TensorFlow 0.99 3.11 45.67 0.52 
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In addition, the graph in figure 6-3 shows the training loss and validation 

loss during training the Feed-forward MLP. The graph shows convergence 

to almost 0 in both training and validation during epochs. 

 

Figure 6-3- Training loss and validation loss during training the Feed-forward MLP on the areas 

regression sub-data set 

Also, figure 6-4 shows a scatter plot with the best-fit regression line. This 

graph shows neither signs of overfitting nor underfitting. 

 

Figure 6-4 - Averaged scatter plot on test data set with the best-fit line Created by Random Forest 

Regressor (areas sub-data set) 
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Even with the rest of parameters sub-data set, ensemble models yielded 

much better results than other algorithms like ridge, linear regression, and 

polynomial regression. However, k-NN algorithm result was close to 

ensemble learning algorithms. Figure 6-5 and table 6-2 show a comparison 

of the regression metrics between the 9 trained models for the rest of 

parameters sub-data set. 

 

Figure 6-5 - Comparison of the regression metrics between the 9 trained models for the rest of 

parameters sub-data set. 

 

Table 6-2- Comparison of the regression metrics between the 9 trained models for the areas sub-

data set 

Model R2 Score MAE MSE RMSE 
Random Forest 0.79 0.10 0.27 0.52 

XGBoost 0.79 0.10 0.28 0.53 

Ridge 0.19 0.35 0.82 0.90 

k-NN 0.78 0.10 0.31 0.55 
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Linear Regression 0.19 0.35 0.82 0.90 
Polynomial 

Regression 
0.49 0.24 0.63 0.79 

Decision Tree 0.79 0.10 0.28 0.53 
MLP-Scikit-

Learn 
0.52 0.20 0.42 0.65 

MLP TensorFlow 0.62 0.22 0.52 0.07 

 

 

The graph in figure 6-6 shows the training loss and validation loss during 

training the Feed-forward MLP. The graph shows convergence to almost 

0.20 in training while convergence in validation loss was higher reaching 

almost 0.53. 

 

Figure 6-6- Training loss and validation loss during training the Feed-forward MLP on the rest of 

parameters regression sub-data set 

Overall, the random forest algorithm performed exceptionally and had the 

best metrics results. 

Figure 6-7 shows the best-fit line, visualizing the relationship between the 

average true values and average predicted values from the random forest 

regressor for all targets in the rest of parameters sub-data set which also 
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show neither overfitting nor underfitting although some outliers appear but 

generally the line looks well-generalizing the relation. 

 

Figure 6-7 - Averaged Scatter Plot with Best-Fit Line Created by Random Forest Regressor the 

rest of parameters sub-data set 

The results of the first data set are highly promising in terms of evaluation 

metrics. 

6.3.2 Windows data set analysis 

The windows data set featured two problems which are a classification 

problem to detect whether a window exists in a wall or not and a regression 

problem to predict the windows’ widths. 

Various ML algorithms were trained on both sub-data sets. In regression, 

7 algorithms were trained which are: random forest, XGBoost, ridge, k-

NN, linear regression, decision tree, and MLP. All the ensemble learning 

algorithms (random forest, XGBoost, and decision tree) performed 



 

 

165 

 

 Chapter 6 

exceptionally well and their scores were very close. Even k-NN performed 

well and very close to the mentioned algorithms. Only linear regression 

and ridge models underperformed with a low R2 score of 0.49 for each. 

Figure 6-8 and table 6-3 show comparison of scores between the 7 

algorithms used with the windows width sub-data set. 

 

Figure 6-8- Comparison of scores between the 7 algorithms used with the windows width sub-data 

set 

Table 6-3- Comparison of the regression metrics between the 7 trained models for the windows 

width sub-data set 

Model R2 Score MAE MSE RMSE 
Random Forest 0.98 0.03 0.08 0.28 

XGBoost 0.99 0.03 0.08 0.28 

Ridge 0.49 0.66 1.46 1.21 

k-NN 0.99 0.03 0.10 0.31 

Linear Regression 0.49 0.66 1.50 1.21 

Decision Tree 0.99 0.03 0.08 0.29 

MLP TensorFlow 0.99 0.12 0.06 0.25 
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Moreover, the feed forward NN also performed very well with a loss value 

that started with 0.92 and dropped to as low as 0.06. However, its MAE 

score was higher than k-NN and ensemble learning algorithms. 

 

Figure 6-9- Training loss and validation loss during training the Feed-forward MLP on the 

windows width regression data set 

Overall XGBoost achieved the best results. Figure 6-10 shows the best-fit 

line, visualizing the relationship between the average true values and 

average predicted values from the XGBoost regressor for regression 

targets in the windows widths sub-data set. 
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Figure 6-10 - Averaged Scatter Plot with Best-Fit Line Created by XGBoost Regressor with the 

windows widths sub-data set 

Regarding predictions of windows existence in walls, several classifiers 

were trained including random forest, support vector classifier (SVC), k-

NN, XGBoost, AdaBoost, and decision tree. The problem features a multi-

class classification problem. To apply the algorithms, for each algorithm, 

12 classifiers were trained so that each classifier is responsible for learning 

and predicting one class from the 12 targets. And to evaluate the model, 

average accuracies, recalls, precisions, and f1 scores are calculated for the 

12 classifiers that each model has. All the 6 algorithms performed well 

with the data set and achieved high scores in all the metrics. Only SVC had 

slightly lower scores. 

Figure 6-11 and table 6-4 show a comparison of the metrics achieved by 

the 6 algorithms. 
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Figure 6-11 - Comparison of the metrics achieved by the 6 classification algorithms trained with 

the windows existence sub-data set. 

Table 6-4- Comparison of the classification metrics between the 6 trained models for the windows 

existence sub-data set 

Model Accuracy Precision Recall F1 Score 

Random Forest 0.98 0.98 0.98 0.98 

SVC 0.91 0.94 0.88 0.91 

k-NN 0.95 0.96 0.93 0.95 

XGBoost 0.98 0.98 0.98 0.98 

AdaBoost 0.96 0.97 0.95 0.96 

Decision Tree 0.97 0.97 0.96 0.97 

 

A confusion matrix is a tabular representation that illustrates the various 

outcomes arising from predictions and actual results in a classification 

problem. It provides a structured presentation of the classifier's predictions 

and the true values, aiding in the visualization of their interactions. The 

matrix displays a comprehensive overview of predicted and observed 

values within the classification process. Confusion matrices are visualized 

for all the classifiers in all classification models as shown in figure 6-12. 
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Figure 6-12 - Confusion matrices for all the classifiers in all classification models 

The matrices show how all the models performed well and had very low 

classification errors compared to the right decisions. It also shows that 

SVC had the greatest number of false positive values and false negative 

values. 

Figures 6-13 to 6-15 show the confusion matrices of the 12 classifiers of 

the random forest model which achieved the best overall results, XGBoost, 

and decision tree models respectively. 
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Figure 6-13 - the confusion matrices of the 12 classifiers of the random forest model 

The matrix shows how the classifier with the largest number of errors 

(Class FF Wall 10 Window) had falsely predicted only 10 times out of 134 

predictions. 

 

Figure 6-14- the confusion matrices of the 12 classifiers of the XGBoost model 
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Figure 6-15 - the confusion matrices of the 12 classifiers of the decision tree model 

Again, from the present results, it is significant that both the regressor and 

classifier algorithms performance were remarkable in both windows sub-

data sets in terms of the evaluation metrics. Thus, many algorithms could 

generalize on unseen data. 

6.4 Predictions 

To sum up, the study was conducted on two architectural design data sets 

that are prepared to be numerical through coding. ML algorithms were 

trained on both data sets. Some regression models were trained on the first 

data set to predict the values of the slabs dimensions and other parameters 

related to walls dimensions and spacings. While other regression and 

classification algorithms were trained on the second data set to predict 

windows width and windows existence, respectively. However, to predict 

windows existence and windows widths, the same inputs passed for the 1st 

data set’s predictions are not used because all the algorithms are required 

to complete a one single design prediction process. So, the passed inputs 

are the predictions of the slabs’ dimensions obtained from training the first 

set of algorithms which are trained on the first data set as inputs to predict 
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the windows existence and windows widths with the second set of 

algorithms. In this sense, one seamless connected framework is achieved 

utilizing ML in architectural form finding based on the architects’ data and 

preferences which are used to train ML models. 

6.5 Model Fine-Tuning 

To make sure that the final design of the villa is satisfying, a fine-tuning 

phase is modeled to modify the design obtained by parsing ML output 

values. In this phase, the architect has all the control needed to 

increase/decrease any parameter to reach the required final form. 

Parameters are controlled with low values sliders to achieve a precise 

satisfying design. This resulting design, as well as any future designs could 

be easily added to the dataset and the ML cycle can be triggered again 

which should be enhanced when more designs are fed to it. 

6.6 Discussion 

The main aim of the present study was to evaluate the suggested ML 

framework where an architectural model is transformed into data sets 

containing all the possible parameters in a form of a numeric CSV files 

ready to train ML algorithms. Two data sets are applied: one related to 

slabs dimensions and walls dimensions and spacings and one related to 

windows existence and windows dimensions. In ML, data sets play a 

crucial role in the success of algorithms in generalizing for unseen data. 

So, an important part of this research was to pre-process the data and check 

if patterns can be found. In this regard, sub-data sets were created from the 

original data sets changing the targets and features for each one depending 

on the features importance to targets. Moreover, some targets related to 

slabs dimensions had to be changed so that the built-up area of the training 

data maps correctly with the slabs’ dimensions and by trial, this proved to 

be important for the algorithm to create a logical best-fit line to predict the 

dimensions correctly. Also, some targets and features were consistent 

along all the samples, so they were dropped. 

Training the models with cleaned data after the previous step was 

successful and the evaluation metrics were acceptable. However, another 
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step was taken to optimize the algorithms performance which was 

oversampling. The data sets originally had 600 samples. The form data set 

was oversampled to have 30,600 samples by increasing the samples with 

minor classes, while SMOTE was used to oversample the windows 

classification sub-data set to balance the data. And this enhanced the 

algorithms’ performance significantly. 

After data engineering and oversampling, a set of ML algorithms were 

trained on the datasets including -for regression- ensemble learning 

methods like random forest, XGBoost, and decision tree, and other 

algorithms like linear regression, polynomial regression, ridge, k-NN, and 

Multi-layer perceptron feed forward NN. For classification, algorithms 

included random forest, XGBoost, decision tree, SVC, k-NN, and MLP. 

Ensemble learning methods were very successful in the whole study. All 

of these algorithms succeeded in terms of achieving the best evaluation 

metrics among other algorithms.  

As shown in table 6-5, overall, random forest regressor performance was 

very successful regarding evaluation metrics when trained with both of 

form’s sub-data sets. 

Table 6-5 – Random Forest Metrics Scores for Roofs Data Set 

Sub-data set 
Best R2 

Score 

Mean 

R2 

Score 

MSE 
Mean 

RMSE 
MAE 

Areas 0.97 0.97 6.15 2.48 0.54 

Rest of 

parameters 
0.79 0.78 0.26 0.51 0.1 

 

XGBoost, showed the best results when compared to other algorithms with 

the windows width sub-data set. Table 6-6 compares the results of the most 

successful algorithms in this scenario. The table shows how 5 out 7 

algorithms performed very similarly to each other. 
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Table 6-6 - Metrics comparison between different algorithms trained on the windows widths sub-

data set 

Algorithm 
Best R2 

Score 

Mean 

R2 

Score 

MSE 
Mean 

RMSE 
MAE 

XGBoost 0.99 0.96 0.07 0.26 0.03 

Random 

Forest 
0.98 0.96 0.07 0.27 0.03 

k-NN 0.99 0.97 0.08 0.28 0.03 

Decision Tree 0.99 0.97 0.07 0.27 0.03 

MLP - 0.99 0.06 0.24 0.12 

 

Even the classification task to predict whether a window exists or not, has 

seen a huge success regarding evaluation metrics. To do this task with the 

multi-class classification problem, 12 classifiers were created for each 

algorithm. Each classifier was trained to predict one output only. In this 

manner, MLP showed great results unlike when trained on continuous data. 

Still, ensemble learning methods showed better overall performance, 

especially the random forest algorithm for which a confusion matrix was 

visualized, and the number of false predictions was very low. Also, the k-

NN algorithm performed exceptionally in this task. 

The success of ensemble learning methods was expected as ensemble 

learning tends to combine the predictions of multiple base models, often 

leading to better overall predictive performance compared to individual 

models. This can result in higher accuracy, lower error rates, and improved 

generalization to new, unseen data. Also, by aggregating the predictions of 

multiple models, ensemble methods can help mitigate overfitting, which 

occurs when a model is too complex and performs well on the training data 

but poorly on the test data. Ensemble methods tend to make the final 

predictions more robust and less prone to overfitting. In addition, 

ensembles capture different aspects of intricate relationships through 

diverse base models, allowing for a more comprehensive understanding of 

the data. 

To predict values to be parsed to the code on grasshopper3d to build the 

predicted model, predictions were taken first from the roofs and rest of 
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parameters data. The predicted slabs dimensions were then used as inputs 

to predict windows existence and windows’ dimensions. And the resulting 

model was very satisfying as it was built with the same architectural style 

that the models were trained with. The results were very similar to the 

visualized samples renders. 

Subsequently, a fine-tuning stage was introduced within the framework to 

guarantee the development of a thoroughly refined product. During this 

phase, the architect gains complete control over all the parameters, albeit 

within a more constrained range of values, facilitating effortless model 

adjustments. 

Summary 

The present study is done to search for a proper framework for utilizing 

ML power in architectural design. To achieve this goal, various steps were 

taken to transform an architectural model into an ML ready dataset. The 

deep study of proper parametric relationships between the model’s 

components was crucial to translate the components into the smallest 

possible unit of data representing coordinates, dimensions, and boolean 

options.  

Using coding was very important to create such a complex network of 

interconnected parameters and to automate the tasks of exporting the 

parameters to a dataset in the form of a CSV file that is ready to be used in 

a ML pipeline. In a normal design and architectural modeling workflow, 

even using parametric tools and software, creating many 

designs/prototypes of the same design style takes a lot of time in modeling 

and modifying each prototype. This process could need even more 

architects depending on the number or required prototypes. But as the 

study proves, not only did coding facilitate how an architect can read 

geometry as a container of information, but also the creation of a great 

number of samples with the same design style leading to a large dataset in 

much less time than a usual design workflow can take to model different 

prototypes with different areas and parameters.  



 

176 

 

 Machine Learning Analysis and Results 

After that, the dataset was validated by extracting simpler dataset to predict 

the roofs dimensions to ensure that an ML regression model can predict 

parameters value that could lead to a building with a requested area. 

Exploratory data analysis was done to extract the variables that are most 

correlating to the roofs’ dimensions. And data pre-processing was needed 

to ensure that the model can predict well by replacing some roofs 

dimensions with roofs areas with simple mathematical equations. This step 

was crucial for the success of the study because negative values of some 

roofs led to very low metrics scores when a regressor was trained. Also, 

data was oversampled to ensure better learning for the algorithm where the 

number of samples was increased by 30,000. After trials, this step proved 

to be very important for the success of the model which could not 

generalize well on 600 samples, a small sample space. The dataset was 

split into train/test sets with ratios of 80% and 20% respectively and a 

simple random forest regressor was trained on the dataset with its default 

parameters. 

The study exhibited a great success with the random forest regressor for 

which the scores metrics R2 score, MSE, RMSE, and MAE were 0.97, 

6.15, 2.48, and 0.54, respectively. A practical validation was followed by 

reversing the mathematical calculations to get the villa’s area which 

happened to be the same as the required area or very close to it. The 

predicted parameters were then parsed into the code of the villa model with 

only a button click in grasshopper canvas to check how the model looks 

like. What this study proved is that the machine could learn and map the 

patterns that an architect follows when designing a building. It is like the 

architect taught the machine how he designs. A process that is hard to 

explain to another architect in words. This approach could lead to a great 

effect in the architectural design process especially that the result is as 

close as possible to what the architect could think inside his brain.  

Finally, a fine-tuning phase was added to the framework to ensure a 

satisficing product for the architect. In this phase, the architect gets full 

control of all the parameters but with a smaller range of numbers to modify 

the model easily. 
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 Chapter 6 

The results can be described in terms of time and effort distributed between 

AI and human interventions across two stages of a design process shown 

in figures 6-16 to 6-18. In Stage 1, the pie charts illustrate the time 

allocation between AI (30%) and human input (70%) in the design process, 

with human intervention being dominant. On the right, a parallel 

comparison for coding shows a similar distribution, where design 

comprises 30%, and coding consumes 70% of the effort. 

  

Figure 6-16 Stage 1: Time and Effort Estimation for AI/Human (left) and human design/coding 

(right) 

Stage 2 shifts significantly towards AI involvement, with AI contributing 

95% and human involvement reduced to 5%, indicating an advanced level 

of automation. 

 

Figure 6-17- Stage 2: Time and Effort Estimation for AI/Human Intervention 

The overall assessment at the bottom, showing AI taking 30% and human 

70%, summarizes the cumulative effort across both stages. This 

demonstrates the evolving role of AI in design and coding, highlighting the 

efficiency gained from AI while retaining essential human input in the 

creative stages. 
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Figure 6-18- Overall: Design Intervention Estimation 

Regarding time, the estimated time for stage 1, which includes modelling 

the villa using coding, creating 600 consciously designed samples, and 

training ML models took around 15 days while stage 2 takes a maximum 

of 5 minutes to generate a new design. 
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Research Conclusion 

The present study provides evidence about the efficiency of utilizing ML 

algorithms with architectural design numeric data sets and coding being an 

important skill for architects. The study proves a novel direction on how 

to apply ML in the form generation process. 

Artificial Intelligence has seen a lot of improvements and applications 

recently in many fields and architecture is no exception. However, being a 

field which exhibits a lot of creativity and logic makes it hard to apply AI 

algorithms as with other fields. Architecture is considered a complicated 

practice which requires knowledge in many disciplines including 

psychology, physics, mathematics, art, and more. The product of 

architecture is considered to be complicated as well because of the many 

considerations that accompany it. An architect thinks in a cyclic way 

through a complex design process to produce a building design. This 

makes the learning of architectural and creative thinking as well as 

problem solving an essential necessity to architects. Add to that, how at 

some point an architect takes decisions based on a black box thinking 

approach. In this case, can the machine and today’s AI algorithms map how 

the architect thinks? 

According to the analytic study of architectural design elements and 

motifs, it is clearly observed that those elements and motifs are repeatedly 

used by architects according to the design era. A pattern between them 

could be identified. For instance, in contemporary architecture of villas, 

the use of L, C, U shapes in facades by modifying slabs and walls to create 

frames is observed as a repetitive motif. Additionally, the use of rectilinear 

shading elements is repeatedly used by architects. If one could observe 

such patterns, the machines can also do so, today. 

Design methods including parametric design, generative design, 

algorithmic design, etc. benefited from what the computers could do, 

adding an algorithmic characteristic to the design process making it clearer 

and more logical to the architect. Even some decisions regarding structural, 

environmental, and energy aspects could be taken using optimization. All 
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of these methods would not have seen light without the advent of visual 

programming languages where an architect codes the building using 

parameters and operations on them. Moreover, coding is considered to 

have a significant effect on the design process giving the architect more 

power, freedom, and spruceness as well as helping them break free from 

any bias that is present in today’s modelling software and educational 

phase. 

AI applications in architecture have seen many trials since the late 19th 

century. However, they became more popular when image generation 

through Gen-AI models was introduced. In essence, AI algorithms could 

do much better than creating images which is believed to be machine-

centric today rather than human-centric because of the image generation 

process and the data the algorithm learns with. AI algorithms could help in 

automating many tasks including predicting numbers, classifying numbers 

and images, clustering, etc. Such algorithms are ensured to make the 

design process more human-centric where the architect feeds the algorithm 

with dataset related only to his problem while the dataset being designed 

by the architect themselves based on their experience or past projects. 

These benefits of using non-gen AI against the image generation tasks 

which cannot map a real complicated design process dealing with the 

building as information drawn from a lot of issues and disciplines as well 

as authenticity issues, show non-gen AI’s superiority. 

To utilize machine learning in the 3d model generation (form finding), 

transforming architects’ ideas and designs into numbers become essential 

and could be achieved by dealing with the buildings’ parameters as small 

entities of data. This could show a huge advancement in applying ML in 

the architectural design field to automate tasks that consume a lot of time 

like creating many prototypes with different parameters but with the same 

design style. Coding could open many possibilities by altering the 

architect’s mind from thinking about geometry as geometry to thinking 

about it as a container of information. The information could create an 

infinite number of possibilities regarding how buildings’ components 

correlate with each other parametrically. This approach could utilize 

automating the creation of a dataset of architectural design parameters to 
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be used to train ML models which could predict and automate the design 

phase of new prototypes of the same design style with different parameters 

and properties.  

To overcome the data set creation challenge and generate hundreds of 

studied designs in a short time while obtaining valuable insights from the 

data using ML techniques, an architectural 3d model was generated 

parametrically so, its parameters should be strongly related and could be 

transformed into data sets containing all the possible parameters in a form 

of a numeric CSV file ready to train ML algorithms. For this task, the 

model was algorithmically designed and coded in C# using RhinoCommon 

geometry functions in a sense where every parameter was related to a target 

such as the total built-up area, land dimensions, neighbor types, and 

setbacks.  Two datasets were generated. A form dataset is designed with 

parameters related to the building design including walls lengths, slabs 

lengths and widths, heights, number of building blocks, louvers’ numbers 

and distances between them, as well as walls distance from slabs. The other 

data set is designed to have windows data including window’s existence in 

each wall and their widths. 

In this study, six hundred samples of designs with 122 parameters were 

created. The inputs (features) were the length and width of the land, 

neighbors, built-up area, setbacks, and a starting point. On the other hand, 

the outputs (targets) were all the numeric and textual parameters of the 

walls and windows (112 parameter). 

Training ML algorithms with the two data sets exhibited some challenges, 

including weak relations between some parameters and data imbalance due 

to design limitations. To address these issues, the data sets had to be 

preprocessed and engineered to ensure that the relationships between 

different parameters are clearer to the machine. Some string parameters 

were transformed into numeric values, and some parameters were 

mathematically processed. 

To tackle creating a larger data set while balancing it, another step was 

taken to optimize the algorithms’ performance which was oversampling. 

The data sets originally had six hundred samples. The form data set was 



 

182 

 

 Conclusion and Future Research 

oversampled to have thirty thousand and six hundred samples by 

increasing the samples with minor classes, while SMOTE was used to 

oversample the windows classification sub-data set to balance the data. 

This enhanced the algorithms’ performance significantly especially when 

ensemble learning algorithms were applied. After data engineering and 

oversampling,  

After preprocessing the data and splitting the data sets to training and test 

data sets using K-cross validation, a set of ML algorithms were trained on 

the datasets including -for regression- ensemble learning methods like 

random forest, XGBoost, and decision tree, and other algorithms like linear 

regression, polynomial regression, ridge, k-NN, and MLP. On the other 

hand, for classification, algorithms included random forest, XGBoost, 

decision tree, SVC, and k-NN. To solve the multi-class classification 

problem, twelve classifiers for each algorithm were created. Each classifier 

was trained to predict one output only, which was whether a window exists 

or not. The models were evaluated using regression metrics like R2 score, 

MSE, RMSE, and MAE, and classification metrics like accuracy, 

precision, recall, and F1. 

Overall, in regression tasks, random forest regressor performance was 

successful regarding evaluation metrics when trained with both of form’s 

sub-data sets. Additionally, XGBoost showed the best results when 

compared to other algorithms with the windows width sub-data set. 

Additionally, the classification task was successful in terms of evaluation 

metrics. In this manner, ensemble learning methods showed better overall 

performance, especially the random forest algorithm for which a confusion 

matrix was visualized, and the number of false predictions was low. Also, 

the k-NN algorithm performed exceptionally in this task. The success of 

ensemble learning methods was expected because these models tend to 

combine the predictions of multiple base models, often leading to better 

overall predictive performance compared to individual models. In 

addition, ensembles capture different aspects of intricate relationships 

through diverse base models, allowing for a more comprehensive 

understanding of the data. Also, by aggregating the predictions of multiple 

models, ensemble methods could help mitigate overfitting, which occurs 
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when a model was too complex and performs well on the training data but 

poorly on the test data. This resulted in higher accuracy, lower error rates, 

and improved generalization for new, unseen data.  

To predict values which were parsed to the code on grasshopper3d to build 

the predicted model, predictions were taken first from the roofs and rest of 

parameters data. The predicted slabs dimensions were then used as inputs 

to predict windows existence and windows’ dimensions. As practical 

validation, the predictions were validated numerically by making sure the 

design achieves the required area and respects legal constraints. Also, it 

was an easy task to tell if the predicted numbers lead to a satisfactory 

output because the training dataset was generated based on the authors’ 

designs. The resulting model was satisfying as it was built with the same 

architectural style that the models were trained with and the required areas 

were predicted precisely. And the results were similar to the visualized 

samples renders. Subsequently, a fine-tuning stage was introduced within 

the framework to guarantee the development of a thoroughly refined 

product. During this phase, the architect gains complete control over all 

the parameters, albeit within a more constrained range of values, 

facilitating effortless model adjustments. Generally, the algorithms were 

successful because the designed data set already ensured clear 

relationships between targets and features. And this proves that 

architectural design is based on traceable rules applied to the design 

algorithms by the designer. In this case, the machine could automate the 

3D model design process by learning these rules and predicting based on 

them. 

Finally, the suggested framework is tested against tangible aspects of 

architectural design which do not depend on certain design patterns but 

adapt to the architect’s decisions presented in the final parameters of the 

data set. Additionally, only straightforward form aspects related to 

proportions were tested for simplicity. Adding more aspects to the design 

such as environmental aspects could make the patterns harder to find by 

the ML algorithms. However, if patterns exist between the features and 

targets -building requirements and building parameters- the framework 

should lead to ‘accurate’ results and in this case accurate denotes the 
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architect’s way of thinking showing in the parameters they choose and 

create.  

Future Directions 

As advancements in artificial intelligence and ML are already affecting all 

the fields daily, architectural design field is no exception. Explorations 

with how to automate architectural design tasks and applying ML to the 

design process are becoming inevitable, especially that the architectural 

field is considered one of the latest fields to benefit from AI. 

Future research could include how to improve the data sets created by 

coding because data is the most important aspect when applying ML in any 

field. How to increase the number of samples is a crucial requirement. 

Increasing the number of samples with varying parameters space could 

lead to better trained ML models. For instance, adding more samples with 

much varying land lengths and widths, built-up areas, etc., with smaller 

differences range could enhance training the models. 

Also, creating different sets regarding architectural design style with more 

parameters and more options to train a model to predict the parameters of 

the building according to its style, wide range of heights, number of blocks, 

and typologies could be efficient to generalize the prospect applications 

leading to better performance on ground.  

Future investigations could also consider creating models on other design 

platforms away from Rhinoceros3d and Grasshopper3d. Investigations on 

creating a whole new type of software that automates the coding process 

of the data sets, especially with new AI coding Copilots introduced lately 

as well as Large Language Models which deal with coding like GPT and 

Llama is essential. The new software could then use ML algorithms to train 

on the data sets created and return the architectural form instantly. Such 

applications could lead to a much lighter and easier to use interface that 

makes the 3D modelling process smoother and more straightforward. 

Additionally, exploring more advanced and intricate design parameters 

could lead to a design framework that is much closer to the real world. 
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Such parameters could include various design aspects like environmental, 

cost, as well as other intangible aspects such as psychological and 

philosophical aspects of architecture. For instance, adding features 

(building requirements) to the design samples including daylighting 

metrics such as sDA and ASE or solar radiation analysis results being 

independent parameters that affect different building parameters (targets) 

could lead to better results regarding an all-in-one architectural design 

form prediction approach. In this case, the architect could add intended 

sDA and ASE values to the input parameters to decide the target parameters 

of the building. 

Other applications including materials choice could be investigated within 

the same framework to give more information regarding the resulting 3D 

model which could then be used within a BIM workflow seamlessly. 

Additionally, other building parameters could be explored including 

building orientation, rooms and services locations, interior design 

parameters, etc. 

Also, other types of problems could be explored. For example, instead of 

training ML models to predict form parameters they could be trained to 

predict floor plans designs, urban design compositions, etc. Such 

applications could use the exact same framework, and more than one 

application could be integrated to work on different problems at the same 

time moving forward to a multi-tasking AI model. However, each problem 

will require more investigations regarding the best working ML models 

and ensemble learning models do not guarantee the result. In this case, 

deep learning models may capture more intricate patterns and suit better 

such complicated workflows. 

Finally, enhancing the framework to be designed and used by multi-users 

needs investigations. If different users could generate design samples 

according to a certain goal, the framework could significantly enhance the 

design process. For example, a user could be responsible for choosing 

parameters regarding form proportions, another for specifying materials 

and cost, another for optimization tasks and environmental responsiveness, 

etc.
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Appendices 

Appendix A (Glossary) 

Accuracy: A metric in classification that measures the ratio of correctly 

predicted instances to the total instances. 

AdaBoost (Adaptive Boosting): An ensemble learning method that 

combines weak learners into a strong learner. It assigns weights to 

instances in the dataset, allowing subsequent weak learners to focus on the 

misclassified instances from the previous ones. 

Algorithm: A finite sequence of instructions followed by a computer 

system. 

Algorithmic Design: Design process that relies on algorithms, step-by-

step procedures, or formulas, to generate and manipulate design elements. 

API (Application Programming Interface): A set of rules and tools that 

allows different software applications to communicate with each other. 

APIs define the methods and data formats for requests and responses. 

Artificial intelligence (AI): The simulation of human intelligence in 

machines that are programmed to think and learn, enabling them to 

perform tasks that typically require human intelligence.  

Artificial general intelligence (AGI): The representation of generalized 

human cognitive abilities in software so that, faced with an unfamiliar task, 

the AGI system could find a solution.  

Artificial narrow intelligence (ANI): A type of AI that is focused on 

performing a specific task or set of tasks. 

Artificial super intelligence (ASI): A speculative type of AI that surpasses 

human intelligence in all respects. 

Artificial Neural Network (ANN): Computational models inspired by the 

structure and function of biological neural networks, used in machine 

learning to recognize patterns and make decisions. 
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Area Under the Curve (AUC):  The area under the Receiver Operating 

Characteristic (ROC) curve. AUC is a single value summary of the ROC 

curve, where a higher AUC generally indicates better model performance. 

Automation: Handling a process with machines or software so that less 

human input is needed. 

Bagging An ensemble learning technique that leverages bootstrapping to 

improve the performance and robustness of machine learning models. In 

bagging, multiple models (often of the same type, such as decision trees) 

are trained on different bootstrap samples of the dataset. The final 

prediction is obtained by aggregating the predictions of individual models, 

typically through averaging (for regression) or voting (for classification). 

Bagging helps reduce overfitting and enhances the model's generalization 

capability. 

Bard: A chatbot developed by Google, released in March 2023. 

Best-Fit Line: In statistics, the line that best represents the relationship 

between two variables, typically determined through methods like linear 

regression. 

Bias: The assumptions that an AI makes to simplify its tasks. 

Big data: Very large datasets that normal data-processing software can’t 

handle. 

Bing Chat: An AI chatbot feature integrated into Bing, released in 

February 2023. 

Boosting: An ensemble learning technique where multiple weak models 

are combined sequentially to create a strong model, with each model 

giving more weight to misclassified instances. 

Bootstrapping: a resampling technique in which multiple subsets, called 

bootstrap samples, are generated by randomly sampling with replacement 

from the original dataset. It is commonly used in statistics and machine 

learning to assess the variability of a statistic, estimate confidence 

intervals, or improve the robustness of model training. 
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Categorical Data: Data which consists of variables that can take on a 

limited set of discrete values or categories. 

Chatbot: A software application that mimics human conversation, usually 

through text. 

ChatGPT: An AI chatbot released by OpenAI in November 2022 

Classification: A type of supervised machine learning task where the goal 

is to categorize input data into predefined classes or categories. 

Classification Report: A summary of the performance of a classification 

model. It typically includes metrics such as precision, recall, F1 score, and 

accuracy, providing a comprehensive evaluation of how well the model is 

classifying instances into different classes. 

Coding: The process of writing instructions for a computer to execute, 

typically using a programming language. 

Computational Design: The use of computational tools and techniques, 

often involving algorithms, to assist in the creation and manipulation of 

design elements. 

Computer Vision: A field of artificial intelligence that focuses on enabling 

machines to interpret and understand visual information from the world, 

often involving image and video analysis. 

Continuous Data: Data which represents variables that can take an infinite 

number of values within a given range. 

CNN (Convolutional Neural Network): A type of neural network 

architecture designed for processing structured grid data, particularly 

images. It uses convolutional layers to automatically learn hierarchical 

features from the input data. 

Correlation Matrix: A table showing correlation coefficients between 

variables. Each cell in the table represents the correlation between two 

variables, with values ranging from -1 to 1. It is often used in statistics and 

data analysis to understand relationships between different variables. 
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Cost Function: A function that measures the difference between predicted 

values and actual values, guiding the learning process in machine learning 

algorithms. 

Cross-Validation: A technique used to assess the performance of a 

machine learning model by dividing the dataset into multiple subsets. The 

model is trained on some of these subsets and tested on the remaining 

subset. This process is repeated multiple times, and performance metrics 

are averaged, providing a more robust evaluation of the model's 

generalization capability. 

Data Resampling: Techniques such as oversampling or undersampling 

used to address imbalances in class distribution within a dataset. 

Data set in ML and AI: A collection of data used for training, testing, and 

validating machine learning and artificial intelligence models. It typically 

includes input features and corresponding output labels for supervised 

learning or only input features for unsupervised learning. 

Decision Trees: A fundamental machine learning algorithm that 

recursively splits the data based on features to make decisions. Each 

internal node represents a decision based on a feature, and each leaf node 

represents an output or class label. 

Deep learning: A subfield of machine learning that involves the use of 

artificial neural networks, particularly deep neural networks with multiple 

layers (deep architectures). These networks are capable of automatically 

learning hierarchical representations of data, leading to powerful models 

for tasks such as image recognition, natural language processing, and 

more. 

Diffusion: The process by which something (e.g., information, substances) 

spreads or moves from one place to another within a medium. In the 

context of machine learning and AI diffusion models are a class of 

generative models that use a diffusion process to model the generation of 

images. In these models, a latent image is iteratively transformed through 

a series of steps, introducing noise at each step. The process gradually 
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refines the image, and the noise is controlled in a way that enables the 

generation of high-quality and diverse images. 

Discriminator: A neural network that evaluates input data and tries to 

distinguish between real and generated data. The goal of the discriminator 

is to correctly classify whether the input data comes from the real dataset 

or was produced by the generator. 

Dimensionality Reduction: The process of reducing the number of 

features (variables) in a dataset. It aims to retain the most important 

information while minimizing the loss of data, often improving 

computational efficiency, and mitigating the curse of dimensionality. 

Ensemble Learning: A machine learning technique where multiple models 

are combined to improve overall performance and accuracy. Common 

methods include bagging (e.g., Random Forest) and boosting (e.g., 

AdaBoost). 

Exploratory Data Analysis (EDA): The process of visually and 

statistically analyzing datasets to uncover patterns, trends, and anomalies 

before applying machine learning algorithms. 

F1 Score: A metric in classification that combines precision and recall into 

a single value, balancing false positives and false negatives. 

Feature importance: The measure of the impact of each feature (input 

variable) on the model's predictions. 

Features: The input variables or attributes used by machine learning 

algorithms to make predictions. 

Form Finding: In design and engineering, it refers to the process of 

determining the optimal form or shape of a structure based on specified 

constraints and criteria. 

Form Making: In the context of design, it generally refers to the process 

of creating physical or digital forms, shapes, or structures. 
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GAN (Generative Adversarial Network): A type of artificial intelligence 

model consisting of two neural networks, a generator, and a discriminator, 

trained adversarially to generate realistic data. 

Generative AI: AI systems that generate output according to a learning 

mechanism. 

Generative Design: An approach in design and engineering where 

algorithms are used to explore a range of possible design solutions based 

on specified criteria, enabling the creation of innovative and optimized 

designs. 

Generative pre-trained transformer (GPT): A type of LLM used in 

ChatGPT and other AI applications. 

Generator: A neural network responsible for generating synthetic data. It 

takes random noise as input and transforms it into data that ideally is 

indistinguishable from real data. 

Gradient Descent: An optimization algorithm used to minimize the cost 

function in machine learning by adjusting model parameters iteratively in 

the direction of steepest descent. 

K-Fold Cross-Validation: A specific type of cross-validation where the 

dataset is divided into 'k' subsets or folds. The model is trained 'k' times, 

each time using a different fold as the test set and the remaining folds as 

the training set. The performance metrics are then averaged over the 'k' 

iterations, providing a more reliable estimate of the model's performance 

compared to a single train-test split. Common values for 'k' are 5 or 10 in 

practice. 

k-NN (k-Nearest Neighbors): A type of algorithm used for classification 

and regression tasks, where an object is classified by the majority vote of 

its k nearest neighbors. 

Large language model (LLM): A neural net trained on large amounts of 

text to imitate human language. 
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Machine learning (ML): The study of how AI acquires knowledge from 

training data. 

Mean Absolute Error (MAE): A measure of the average absolute 

difference between predicted and actual values in a regression problem. 

Mean Squared Error (MSE): A metric in regression analysis that 

measures the average squared difference between predicted and actual 

values. 

MidJourney: An AI image generator released in July 2022. 

Natural language processing (NLP): The study of interaction between 

computers and human language. 

NeRF (Neural Radiance Fields): a novel approach to 3D scene 

representation and rendering using neural networks. It models a scene as a 

continuous 3D function that maps 3D spatial coordinates to scene color 

and density. NeRF has been applied to generate highly detailed and 

realistic renderings of scenes, making it particularly useful for computer 

graphics and virtual reality applications. 

Non-Generative AI: AI models or systems that don't generate new content 

or data but instead focus on analyzing, classifying, or making predictions 

on existing data. 

Normalization: The scaling of features to a standard range, often between 

0 and 1. It ensures that different features with varying scales contribute 

equally to the model, preventing dominance by features with larger 

magnitudes. 

OpenAI: A leading AI company that developed ChatGPT and DALL-E. 

One-Hot Encoding: is a technique to represent categorical variables as 

binary vectors. Each category is mapped to a unique binary value, creating 

a sparse matrix where only one element is "hot" (1) while others are "cold" 

(0). 
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Overfitting: A modeling error that occurs when a machine learning 

algorithm captures noise or random fluctuations in the training data, 

leading to poor performance on new, unseen data. 

Parameter: A variable in an AI system that it uses to make predictions. 

Parametric Design: A design approach that uses parameters and rules to 

create variations within a system, allowing for flexible and dynamic 

designs based on changing parameters. 

Precision: A metric in classification that measures the proportion of 

predicted positive instances that are actually positive. 

Principal Component Analysis (PCA): a dimensionality reduction 

technique used to transform high-dimensional data into a lower-

dimensional representation while retaining as much of the original 

variance as possible. It identifies the principal components, which are 

linear combinations of the original features, and ranks them by their ability 

to explain variance. 

Programming: The process of giving instructions to a computer (using 

computer code). 

Prompt: The input from the user to which the AI system responds. 

R2 Score (Coefficient of Determination): A metric that represents the 

proportion of the variance in the dependent variable that is predictable 

from the independent variables. 

Random Forest: An ensemble learning method that constructs a multitude 

of decision trees during training and outputs the mode of the classes for 

classification tasks or the average prediction for regression tasks. 

Recall (Sensitivity or True Positive Rate): A metric in classification that 

measures the proportion of actual positive instances correctly predicted by 

the model. 

Regularization: A technique used in machine learning to prevent 

overfitting by adding a penalty term to the model's cost function. It 
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discourages overly complex models by penalizing large coefficients, 

promoting a balance between model complexity and accuracy. 

Reinforcement Learning: A type of machine learning where an agent 

learns to make decisions by interacting with an environment. The agent 

receives feedback in the form of rewards or penalties based on the actions 

it takes. 

Regression: A statistical technique used to model and analyze the 

relationship between a dependent variable and one or more independent 

variables. Or a type of supervised learning where the goal is to predict a 

continuous outcome variable based on one or more input features. 

RhinoCommon: A .NET-based framework for developing software that 

integrates with Rhino, a 3D modeling software. It allows developers to 

create custom applications, plugins, and scripts to automate design and 

modeling tasks within Rhino. 

Ridge: Refers to Ridge Regression, a linear regression technique that adds 

a penalty term based on the squared values of the coefficients, helping to 

prevent overfitting. 

RNN (Recurrent Neural Network): A type of neural network architecture 

that is well-suited for processing sequential data. It has connections that 

allow information to be passed from one step of the sequence to the next, 

enabling it to capture temporal dependencies in data. 

ROC Curve (Receiver Operating Characteristic):  A graphical 

representation of the trade-off between the true positive rate and false 

positive rate at various thresholds usually used with classification 

problems. 

Root Mean Squared Error (RMSE): The square root of the mean squared 

error, providing a measure of the average magnitude of errors in 

predictions. 

Scikit-Learn: An open-source machine learning library for Python. It 

provides a variety of tools for data analysis and machine learning, 
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including algorithms for classification, regression, clustering, and model 

evaluation. 

Scripting: Writing scripts, which are sets of instructions written in a 

scripting language, for automating tasks or processes. 

SDK (Software Development Kit): A set of software development tools 

that allows developers to create applications for a certain software 

package, hardware platform, computer system, or operating system. 

SMOTE (Synthetic Minority Over-sampling Technique): A technique 

used in machine learning to address class imbalance by generating 

synthetic samples for the minority class. 

Stable Diffusion: A process where the spreading or movement of a 

substance or information is steady and does not result in rapid or extreme 

changes. Stability in diffusion implies a more controlled and gradual 

progression. 

Supervised Learning: A type of machine learning where the model is 

trained on a labeled dataset, meaning it is provided with input-output pairs 

to learn the mapping between input data and corresponding output. 

Support Vector Machine (SVM): A supervised machine learning 

algorithm used for classification and regression tasks. SVM finds the 

hyperplane that best separates data into different classes in a high-

dimensional space. It aims to maximize the margin between classes and 

can handle linear and non-linear relationships through the use of different 

kernel functions. 

Targets: The output variable that machine learning algorithms aim to 

predict. 

Test Data Set: A subset of data used to evaluate the performance of a 

trained machine learning model on new, unseen instances. 

Training Data Set: The subset of data used to train a machine learning 

model. 

Turing test: A test of a machine’s ability to display human intelligence. 
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Underfitting: A modeling error that occurs when a machine learning 

algorithm is too simple to capture the underlying patterns in the training 

data, resulting in poor performance on both the training and new data. 

Unsupervised Learning: A type of machine learning where the model is 

trained on unlabeled data, and the system tries to learn the patterns and 

relationships within the data without explicit guidance on the output. 

Validation Data Set: A separate subset of data used to tune and optimize 

model hyperparameters during training. 

XGBoost (Extreme Gradient Boosting): An efficient and scalable 

implementation of gradient boosting. It is designed for speed and 

performance and is widely used for both classification and regression 

tasks. 
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Appendix B (Formulas and Equations) 

1- Regression 

Linear regression: 

Any linear regression equation (without error) takes the following 

form: 

�̂� = 𝑏𝑋 + 𝑎 
Where: 

�̂�: Predicted values of Y 

b: Slope = Rate of predicted ↑/↓ for Y scores for each unit increase 

in X. 

a: Y-intercept = level of Y when X = 0 

Univariate linear regression: 

Univariate linear regression focuses on determining the 

relationship between one independent (explanatory variable) 

variable and one dependent variable. 

In a linear regression equation, the hypothesis, parameters, cost 

function, and goals are determined as follows: 

Hypothesis: ℎ𝜃(𝑥) =  𝜃0 + 𝜃1𝑥 

Parameters: 𝜃0, 𝜃1 

Cost Function: 𝐽(𝜃0, 𝜃1) =  
1

2𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))

2𝑚
𝑖=1  

Goal: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝜃0, 𝜃1) 

In order to minimize the cost, a gradient descent method is used 

which has the following equation: 

Repeat until convergence: 𝜃𝑗 ∶=  𝜃𝑗 −  𝛼 
𝜕

𝜕𝜃𝑗
 𝐽(𝜃0, 𝜃1) 

Where 𝛼 is the learning rate of the algorithm which can control the 

jump size of the weight update in each iteration. 
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The gradient descent graph in both 2D and 3D spaces could be 

presented as follows: 

 

 

Gradient Descent in 2D Space (Left) and in 3D Space (Right) 

(https://www.analyticsvidhya.com/blog/2020/10/what-does-gradient-descent-actually-mean/, 

https://www.hackerearth.com/blog/developers/3-types-gradient-descent-algorithms-small-large-

data-sets/) 

 

General Gradient Descent Equations: 

 𝜃0 ∶=  𝜃0 −  𝛼 
1

𝑚
∑ (ℎ𝜃(𝑥𝑖) − 𝑦𝑖)

𝑚
𝑖=1  

𝜃1 ∶=  𝜃1 −  𝛼 
1

𝑚
∑((ℎ𝜃(𝑥𝑖) − 𝑦𝑖)

𝑚

𝑖=1

𝑥𝑖) 

https://www.analyticsvidhya.com/blog/2020/10/what-does-gradient-descent-actually-mean/
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Linear regression with Multi Variables (Multivariate) 

Multivariate regression is a technique that estimates a single 

regression model with more than one outcome variable. 

n = number of features 

x(i) = input (features) of ith training example 

xj
(i) = value of features j in ith training example (j: row number, i: 

column number) 

Hypothesis: ℎ𝜃(𝑥) =  𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2  + ⋯+ 𝜃𝑛𝑥𝑛  … 

Multivariate 

For convenience of notation, define 𝑥0 = 1. 

ℎ𝜃(𝑥) = [𝜃0  𝜃1  𝜃2  … 𝜃𝑛]  ∙  

[
 
 
 
 
𝑥0

𝑥1

𝑥2

…
𝑥𝑛]

 
 
 
 

=  𝜃𝑇 ∙ 𝑥 =  𝜃0 + 𝜃1𝑥1 +

 𝜃2𝑥2  + ⋯+ 𝜃𝑛𝑥𝑛   

Note that X = 

[
 
 
 
 
𝑥0

𝑥1

𝑥2

…
𝑥𝑛]

 
 
 
 

𝜖 ℝ𝑛+1 and 𝜃 =  

[
 
 
 
 
𝜃0

𝜃1

𝜃2

…
𝜃𝑛]

 
 
 
 

𝜖 ℝ𝑛+1 and 𝜃𝑇 =

 [𝜃0  𝜃1  𝜃2  … 𝜃𝑛] = (n + 1) x 1 matrix.. 

Parameters: 𝜃0, 𝜃1, … 𝜃𝑛 

Cost Function: 𝐽(𝜃0, 𝜃1) =  
1

2𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))

2𝑚
𝑖=1  

Goal: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝜃0, 𝜃1,𝜃2, …𝜃𝑛) 

In this scenario, the gradient descent equation will be: 

Repeat until convergence: { 

𝜃0 ∶=  𝜃0 −  𝛼 
1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)) . 𝑥0

(𝑖)

𝑚

𝑖=1

 

𝜃1 ∶=  𝜃1 −  𝛼 
1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)) . 𝑥1

(𝑖)

𝑚

𝑖=1

 

𝜃2 ∶=  𝜃2 −  𝛼 
1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)) . 𝑥2

(𝑖)

𝑚

𝑖=1

 

… 

} 

And the general gradient descent equation will be: 
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Repeat until convergence: { 

𝜃𝑗 ∶=  𝜃𝑗 −  𝛼 
1

𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)) . 𝑥𝑗

(𝑖)𝑚
𝑖=1  for j := 0…n} 

XGBoost 

XGBoost is one of the most popular and efficient implementations 

of the Gradient Boosted Trees algorithm, a supervised learning 

method that is based on function approximation by optimizing 

specific loss functions as well as applying several regularization 

techniques. 

The objective function (loss function and regularization) at 

iteration t that needs to be minimized is the following: 

The gradient boosting ensemble technique operates through a 

series of straightforward steps to enhance the predictive power of 

a model: 

 

Initialization: A base model (F0) is established to make initial 

predictions for the target variable y. The differences between the 

actual values and (F0) predictions represent the residuals. 

Model Fit to Residuals: A new model (h1) is then fitted specifically 

to the residuals obtained from the initial model. This second model 

is designed to capture the patterns or information that the first 

model failed to predict accurately. 

Boosting and Model Combination: The boosted model (F1) is 

formed by combining the initial model (F0) with the new model (h1) 

This amalgamation results in an improved model (F1) with a lower 

mean squared error compared to (F0). The process can be iteratively 

repeated for (m) iterations, with each new model capturing and 

refining the residuals from the previous ensemble, ultimately 

reducing prediction errors to the extent possible. This iterative 

approach enhances the overall performance of the ensemble by 

addressing deficiencies in the predictions made by earlier models. 
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𝐹𝑚(𝑥) < − 𝐹𝑚−1(𝑥) + ℎ𝑚(𝑥) 

F0(x) should be a function which minimizes the loss function or 

MSE (mean squared error), in this case: 

𝐹0(𝑥) =  𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑𝐿(𝑦𝑖2  𝛾)

𝑛

𝑖=1

 

𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑𝐿(𝑦𝑖2  𝛾) = 

𝑛

𝑖=1

𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑(𝑦𝑖 −  𝛾)2 

𝑛

𝑖=1

 

Taking the first differential of the above equation with respect to γ, 

it is seen that the function minimizes at the mean i=1nyin. So, the 

boosting model could be initiated with: 

𝐹0(𝑥) =  
∑ 𝑦𝑖 

𝑛
𝑖=1

𝑛
 

F0(x) gives the predictions from the first stage of the model. Now, 

the residual error for each instance is (yi – F0(x)). 

The residuals from F0(x) could be used to create h1(x). h1(x) will 

be a regression tree which will try and reduce the residuals from 

the previous step. The output of h1(x) won’t be a prediction of y; 

instead, it will help in predicting the successive function F1(x) 

which will bring down the residuals. 

The additive model h1(x) computes the mean of the residuals (y – 

F0) at each leaf of the tree. The boosted function F1(x) is obtained 

by summing F0(x) and h1(x). This way h1(x) learns from the 

residuals of F0(x) and suppresses it in F1(x). 

This can be repeated for 2 more iterations to compute h2(x) and 

h3(x). Each of these additive learners, hm(x), will make use of the 

residuals from the preceding function, Fm-1(x). 

2- Classification 

The specific equations used in classification in machine learning 

can vary depending on the algorithm being employed. 

Logistic Regression: 
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The logistic regression equation models the probability that the 

dependent variable (x) is 1 as a function of the independent 

variables (x1, x2, …, xn) and their corresponding coefficients (b1, 

b2, …, bn).  

Logistic regression uses a logistic function called a sigmoid 

function to map predictions and their probabilities. The sigmoid 

function refers to an S-shaped curve that converts any real value to 

a range between 0 and 1. 

The sigmoid function (
1

1+𝑒−𝑧) ensures that the output is between 

0 and 1. 

𝑓(𝑥) =  
𝐿

1 + 𝑒−𝑘(𝑥−𝑥0)
 

Where: 

f(x) is the output of the function. 

L is the curve's maximum value. 

e is bae of natural logarithms 

K is logistic growth rate or steepness of the curve. 

x0 is the x value of the sigmoid midpoint. 

and x is a real number. 

The functions could be written as: 

𝑃 = 
1

1 + 𝑒−(𝑎+𝑏𝑋)
 

where P is the probability of a 1 (the proportion of 1s, the mean of 

Y), e is the base of the natural logarithm (about 2.718) and a and b 

are the parameters of the model. The value of a yields P when X is 

zero, and b adjusts how quickly the probability changes with 

changing X a single unit (There can be standardized and 

unstandardized b weights in logistic regression, just as in ordinary 

linear regression). Because the relation between X and P is 
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nonlinear, b does not have a straightforward interpretation in this 

model as it does in ordinary linear regression. 

Decision Trees 

Decision trees employ a tree-like flowchart structure to illustrate 

predictions derived from a sequence of feature-based divisions. 

The process initiates at a root node, where the dataset is split based 

on specific features. Subsequently, this branching continues until 

reaching terminal nodes known as leaves, where final decisions or 

predictions are made based on the characteristics of the data within 

those leaves.  

In the context of decision trees, the concept of impurity is crucial 

in determining how to split the data effectively. The goal is to create 

splits that lead to homogeneous subsets, where all instances share 

the same class label, making the split "pure." A "pure" split means 

that after the split, the resulting subsets ideally contain instances 

belonging to only one class, making it easier to make accurate 

predictions for that subset. In binary classification, this would mean 

that a split results in subsets where one contains instances labeled 

"yes" and the other contains instances labeled "no." The decision 

tree algorithm aims to iteratively create such pure splits to 

effectively classify instances based on the selected features. The 

measure of impurity (or purity) helps guide this decision. Common 

impurity measures include Gini impurity and entropy. 

Mathematically Gini index can be written as: 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 − ∑(𝑃𝑖)
2

𝑛

𝑖=1

 

= 1 − [(𝑃+)2 + (𝑃−)2] 

Where P+ is the probability of a positive class and P_ is the 

probability of a negative class. 

For the right split, the Gini Index will be 0.5. 

Weighted Gini index is calculated afterwards. That is the total Gini 

index of this split. Similarly, this algorithm will try to find the Gini 
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index of all the splits possible and will choose that feature for the 

root node which will give the lowest Gini index. The lowest Gini 

index means low impurity. 

Entropy has a mathematical formula using logarithmic function as 

follows: 

𝐸(𝑆) = −𝑝(+)𝑙𝑜𝑔𝑝(+) − 𝑝(−)𝑙𝑜𝑔𝑝(−) 

However, many boosting algorithms use the Gini index as their 

parameter because logarithmic calculations present in the entropy 

equation take more time than the Gini index. 

The key distinction between decision trees and random forests lies 

in their approach to modeling and predicting outcomes. Random 

Forest, classified as a bagging method, deviates from the singular 

nature of decision trees by constructing an ensemble of decision 

trees. This ensemble is created by training each tree on a distinct 

subset of the original dataset, a process known as bootstrapping. 

This unique feature significantly contributes to mitigating 

overfitting, a common challenge associated with individual 

decision trees that tend to capture noise in the training data. By 

aggregating the predictions of multiple trees, Random Forest 

produces a more robust and generalized model. Furthermore, its 

versatility is evident in its applicability to both classification and 

regression problems. In classification tasks, the ensemble 

combines the class predictions of individual trees, while in 

regression tasks, it averages the predictions for continuous 

outcomes. The utilization of Random Forest thus stands as an 

effective strategy for enhancing predictive accuracy, overcoming 

overfitting concerns, and accommodating diverse machine learning 

scenarios. 

3- Evaluation 

Evaluation metrics for regression include R-squared, MSE, MAE, 

and RMSE. Those metrics can be calculated as follows: 
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R-squared measures the proportion of the variance in the dependent 

variable that is predictable from the independent variables. RSS is 

the sum of squared residuals (model prediction errors), and TSS is 

the total sum of squares. 

𝑅2 = 1 − 
𝑅𝑆𝑆

𝑇𝑆𝑆
 

MSE calculates the average squared difference between actual (𝑌𝑖) 

and predicted (�̂�𝑖) values. It penalizes larger errors more heavily 

due to the squaring operation. 

𝑀𝑆𝐸 =  
1

𝑛−(𝑘+1)
 ∑ (𝑌𝑖 − �̂�𝑖)

2𝑛
𝑖=1   

RMSE is the square root of MSE, providing a measure in the same 

unit as the target variable. It offers an interpretable scale for the 

average prediction error. 

𝑅𝑀𝑆𝐸 = √ 
1

𝑛 − (𝑘 + 1)
 ∑(𝑌𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 

MAE calculates the average absolute difference between actual (𝑌𝑖) 

and predicted (�̂�𝑖) values. It provides a more interpretable metric 

that is less sensitive to outliers compared to MSE. 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|𝑌𝑖 − �̂�𝑖|

𝑛

𝑖=1

 

In these formulas, n represents the number of observations in the 

dataset, 𝑌𝑖 is the actual value, and �̂�𝑖 is the predicted value. 

Evaluation metrics for classification include Accuracy, Precision, 

Recall, and F1. Those metrics can be calculated as follows: 

Accuracy measures the proportion of correctly classified instances 

out of the total instances. It provides an overall assessment of the 

model's correctness. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Precision quantifies the accuracy of positive predictions. It is the 

ratio of correctly predicted positive observations to the total 

predicted positives. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall assesses the model's ability to capture all relevant instances. 

It is the ratio of correctly predicted positive observations to the total 

actual positives. 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑅𝑒𝑐𝑎𝑙𝑙)

=
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

The F1 Score is the harmonic means of precision and recall. It 

provides a balanced measure that considers both false positives and 

false negatives. 

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

In these formulas, "True Positives" are instances correctly 

identified as positive, "False Positives" are instances incorrectly 

identified as positive, and "False Negatives" are instances 

incorrectly identified as negative. 

4- Normalization 

Normalization is a process used in machine learning to scale 

numerical features to a standard range, typically between 0 and 1. 

One common normalization formula is: 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 
𝑥 − min (𝑋)

max(𝑋) − min (𝑋)
 

Here: 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is the normalized value of the feature. 

x is the original value of the feature. 

min(X) is the minimum value of the feature in the dataset. 

max(X) is the maximum value of the feature in the dataset. 

This formula ensures that the feature values are linearly 

transformed to a range between 0 and 1, with 0 representing the 

minimum value and 1 representing the maximum value. 

Normalization helps prevent features with larger scales from 



 

 

235 

 

 Mathematical Background: Formulas and Equations 

dominating the learning process, especially in algorithms sensitive 

to the scale of input features, such as gradient-based optimization 

algorithms. 

 

5- Regularization 

Regularization is a technique used in machine learning to prevent 

overfitting by adding a penalty term to the model's cost function. 

For linear regression, one common form of regularization is L2 

regularization (also known as Ridge regularization). The formula 

for the cost function with L2 regularization is: 

𝐽(𝜃) =  𝑀𝑆𝐸 +  𝜆 ∑ 𝜃𝑖
2

𝑛

𝑖=1
 

Here: 

𝐽(𝜃) is the regularized cost function. 

MSE is the Mean Squared Error (without regularization). 

𝜆 is the regularization parameter, controlling the strength of the 

regularization. 

𝜃𝑖 are the model parameters. 

The regularization term 𝜆 ∑ 𝜃𝑖
2𝑛

𝑖=1  penalizes large values of the 

parameters 𝜃𝑖. The parameter 𝜆  determines the trade-off between 

fitting the data well and keeping the model parameters small. 

Higher values of 𝜆 result in stronger regularization. 

In the context of regularization, L1 regularization (Lasso 

regularization) is another common approach, and it adds the 

absolute values of the parameters to the cost function. The general 

form of the cost function with L1 regularization is: 

𝐽(𝜃) =  𝑀𝑆𝐸 +  𝜆 ∑ |𝜃𝑖|
𝑛

𝑖=1
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Regularization helps to prevent the model from becoming too 

complex and overfitting the training data, improving its ability to 

generalize to new, unseen data. 

6- K-Cross Validation: 

The k-fold cross-validation process involves dividing the dataset 

into k subsets or folds. The general steps for k-fold cross-validation 

are as follows: 

1. Dividing the Dataset: Splitting the dataset into k approximately 

equal-sized folds. 

2. Iteration (k Times): 

a) Train-Test Split: In each iteration, one of the k folds is used 

as the test set, and the remaining k-1 folds are used as the 

training set. 

b) Model Training: Train the model on the training set. 

3. Performance Metric Calculation: Evaluate the model's 

performance on the test set for each iteration. 

4. Average Performance: Calculate the average performance 

metric over all k iterations. 

Now, the mathematical formulas for k-fold cross-validation: 

1. Test Set Index in each Iteration: 

• Test set index in iteration 𝑖 = 𝑖 𝑚𝑜𝑑 𝑘 

• Where 𝑖 is the iteration index (0 to k-1) 

2. Performance Metric Calculation in each Iteration: 

• Let Metrici be the performance metric in iteration i. 

• The average performance metric (Avg_Metric) is 

calculated as: 

𝐴𝑣𝑔𝑀𝑒𝑡𝑟𝑖𝑐 = 
1

𝑘
 ∑ 𝑀𝑒𝑡𝑟𝑖𝑐𝑖

𝑘−1

𝑖=0
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This generalizes the k-fold cross-validation process 

mathematically. It's important to note that various performance 

metrics (such as accuracy, precision, recall, etc.) can be used in 

place of "Metric" depending on the specific evaluation criteria for 

the machine learning task.
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Appendix C (Default Parameters and 

Hyperparameters Used for ML Models) 

 

This appendix specifies the parameters and hyperparameters of different 

ML models used in this research for regression and classification tasks. As 

mentioned in chapter 9, Scikit-Learn Python Module is used for regression 

and classification. This module comes with different models which are 

easily called using simple lines of code. The models come with default 

parameters and hyperparameters which were not modified.2 

Regression Models: 

Random Forest Regressor: 

Parameter Default Value 

n_estimators 100 

criterion 

{“squared_error”, “absolute_error”, 

“friedman_mse”, “poisson”} 

squared_error 

max_depth None 

min_samples_split 2 

min_samples_leaf 1 

min_weight_fraction_leaf 1.0 

max_leaf_nodes None 

min_impurity_decrease 0.0 

bootstrap True 

oob_score False 

n_jobs None 

random_state None 

verbose 0 

warm_start True 

ccp_alpha 0.0 

max_samples None 

Linear Regression 

 
2 https://scikit-learn.org/stable/modules/classes.html 
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Parameter Default 

Value 

fit_intercept True 

Copy_X True 

positive False 

Ridge 

Parameter Default 

Value 

alpha 1.0 

fit_intercept True 

copy_X True 

max_iter None 

tol 1e-4 

solver {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, 

‘sag’, ‘saga’, ‘lbfgs’}, default=’auto’ 
auto 

positive False 

random_state None 

k-NN 

Parameter Default Value 

n_neighbors 5 

weights{‘uniform’, ‘distance’} unifor 

algorithm{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’} auto 

leaf_size 30 

p 2 

metric ’minkowski’ 

metric_params None 

n_jobs None 

 

Decision Tree 

Parameter Default Value 

criterion{“squared_error”, “friedman_mse”, 

“absolute_error”, “poisson”} 
squared_error 

splitter{“best”, “random”} best 
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max_depth None 

min_samples_split 2 

min_samples_leaf 1 

min_weight_fraction_leaf 0.0 

max_features {“auto”, “sqrt”, “log2”} None 

random_state None 

max_leaf_nodes None 

min_impurity_decrease 0.0 

ccp_alpha 0.0 

XGBRegressor 

Parameter Default Value 

Booster Type gbtree 

Learning Task reg:squarederror 

n_estimators 100 

learning_rate 0.3 

max_depth 6 

min_child_weight 1 

Gamma 0 

Subsample 1.0 

colsample_bytree 1.0 

lambda 1 

alpha 0 

Classification Models: 

Random Forest 

Parameter Default 

Value 

n_estimators 100 

criterion{“gini”, “entropy”, “log_loss”} gini 

max_depth None 

min_samples_split 2 

min_samples_leaf 1 

min_weight_fraction_leaf 0.0 

max_features sqrt 

max_leaf_nodes None 

min_impurity_decrease 0.0 

bootstrap True 
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oob_score False 

n_jobs None 

random_state None 

verbose 0 

warm_start False 

class_weight None 

ccp_alpha 0.0 

max_samples None 

k-NN 

Parameter Default Value 

n_neighbors 5 

weights :{‘uniform’, ‘distance’} ‘uniform’ 

algorithm{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’} auto 

leaf_size 30 

p 2 

metric Minkowski 

metric_params None 

n_jobs None 

Decision Tree 

Parameter Default 

Value 

criterion{“gini”, “entropy”, “log_loss”} gini 

splitter best 

max_depth None 

min_samples_split 2 

min_samples_leaf 1 

min_weight_fraction_leaf 0.0 

max_features None 

max_leaf_nodes None 

min_impurity_decrease 0.0 

random_state None 

class_weight None 

ccp_alpha 0.0 

AdaBoost 

Parameter Default Value 
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estimator None 

n_estimators 50 

learning_rate 1.0 

algorithm : {‘SAMME’, ‘SAMME.R’} SAMME.R 

random_state None 

base_estimator None 

SVC 

Parameter Default Value 

penalty{‘l1’, ‘l2’} l2 

loss{‘hinge’, ‘squared_hinge’} squared_hinge 

dual True 

tol 1e-4 

C 1.0 

multi_class{‘ovr’, ‘crammer_singer’} ovr 

fit_intercept True 

intercept_scaling 1.0 

class_weight None 

verbose 0 

random_state None 

max_iter 1000 
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Conversation with ChatGPT v3.5 to brainstorm the form making of an 

exhibition for Mercedes-Benz. 

Q1: Architect: Imagine that you are my architectural design partner to 

discuss and form a concept of a new design project. 

ChatGPT: Certainly! I'm excited to collaborate with you on your 

architectural design project. To get started, could you provide some initial 

details about the project? What type of building or space are we designing, 

and are there any specific requirements or preferences you have in mind? 

Additionally, do you have any particular themes, styles, or inspirations 

you'd like to explore in the design? 

Q2: Architect: We are designing a car exhibition for Mercedes-Benz. The 

project will have a wide entrance, exhibition spaces with many forms of 

show like physical, VR, holograms, video shows, etc., as well as some 

functional spaces like restrooms, cafeteria, and administration spaces. 

I am thinking of a contemporary design style that should symbolize and 

express the core concepts of the firm (Mercedes-Benz). And right now, we 

need to brainstorm the form-making process. 

ChatGPT: Great! Designing a car exhibition for Mercedes-Benz sounds 

like a fantastic project. Let's dive into the form-making process and explore 

some concepts for the overall design. Since we want to capture the essence 

of Mercedes-Benz and convey their brand identity, here are a few initial 

ideas to consider: 

• Fluid Lines and Elegance: Incorporate fluid lines and elegant 

curves in the architecture to reflect the sleek and dynamic design 

of Mercedes-Benz cars. Consider using materials with reflective 

surfaces to evoke the polished finish often found in luxury cars. 

• Showcase of Innovation: Integrate cutting-edge technology into the 

design to reflect the innovation associated with Mercedes-Benz. 

Use LED displays, interactive touchscreens, and advanced lighting 

systems to create an immersive and futuristic experience. 
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• Spatial Hierarchy: Design the exhibition spaces with a clear 

hierarchy, emphasizing key car models and innovations. Create 

focal points within the exhibition area to draw attention to flagship 

vehicles or groundbreaking technologies. 

• Branding Elements: Integrate Mercedes-Benz branding elements 

into the architecture, such as the iconic logo, in a subtle and 

sophisticated manner. Explore the use of branded colors and 

textures that align with the company's visual identity. 

• Multi-sensory Experience: Incorporate a variety of sensory 

experiences, including virtual reality (VR), holograms, and 

dynamic video displays to engage visitors on multiple levels. 

• Consider the use of ambient sounds that evoke the sensation of 

being on the road or in a high-tech automotive environment. 

• Green Design: Infuse sustainable design principles into the project, 

aligning with the growing emphasis on eco-friendly practices. 

Consider incorporating greenery and natural elements to create a 

harmonious and inviting atmosphere. 

• Spatial Flexibility: Design flexible exhibition spaces that can adapt 

to different types of showcases, ensuring versatility for various 

events and car presentations. 

Let's discuss these concepts further and refine them based on your 

preferences. Are there any specific aspects you'd like to emphasize or any 

particular features you envision for the exhibition space? 

Q3: Architect: Yes, we need to dive deeper in the form-making aspects. 

How should the building look like, and I am thinking to have an analogy 

from nature that expresses Mercedes-Benz codes and concepts 

ChatGPT: Certainly, delving deeper into the form-making aspects and 

drawing inspiration from nature can result in a unique and meaningful 

design. Let's explore the analogy from nature to express Mercedes-Benz 

codes and concepts. Here are a few nature-inspired ideas: 
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• Flowing Lines and Organic Forms: Take inspiration from the 

streamlined shapes found in nature, such as the curves of a river or 

the organic forms of plant leaves. Consider incorporating these 

flowing lines into the architecture, creating a sense of movement 

and elegance that mirrors the design philosophy of Mercedes-Benz. 

• Biomorphic Architecture: Explore biomorphic architecture, which 

mimics the forms and structures found in living organisms. Use 

organic shapes and patterns reminiscent of natural elements, 

providing a visual connection to the brand's emphasis on 

innovation and evolution. 

• Tree-Inspired Canopy: Design a canopy structure inspired by the 

branching and interwoven patterns of trees. This canopy can serve 

as a unifying element over the entrance and exhibition spaces, 

providing shade and a sense of cohesion while symbolizing growth 

and strength. 

• Reflective Surfaces Inspired by Water: Draw inspiration from the 

reflective qualities of water surfaces, like a calm lake or a flowing 

stream. Use reflective materials on certain surfaces to create a 

dynamic play of light, enhancing the sense of luxury and 

sophistication. 

• Geometric Patterns Inspired by Crystals: Consider incorporating 

geometric patterns inspired by the precision and clarity of crystals. 

These patterns can be integrated into the design of structural 

elements or even as artistic installations, emphasizing the precision 

and craftsmanship associated with Mercedes-Benz. 

• Landscaped Courtyards: Create landscaped courtyards with 

carefully selected vegetation, emphasizing a connection to nature. 

These green spaces can serve as areas for relaxation and reflection, 

providing a contrast to the high-tech exhibition spaces. 

• Dynamic Facade Inspired by Wind Patterns: Look to wind patterns 

as inspiration for a dynamic and responsive facade. Design 

elements that move or adjust based on environmental conditions, 



 

246 

 

 Appendix D 

symbolizing adaptability, and responsiveness—qualities associated 

with Mercedes-Benz. 

As we explore these nature-inspired concepts, please feel free to provide 

feedback or let me know if there's a particular direction you find intriguing. 

We can further refine the ideas to ensure they align seamlessly with the 

vision for the Mercedes-Benz exhibition space. 

Q4: Architect: instead of expressing the precision and craftsmanship using 

Crystal patterns, let's suggest another pattern that expresses Mercedes-

Benz sustainability. 

Absolutely, let's explore a pattern inspired by sustainability for expressing 

precision and craftsmanship. One compelling option could be the use of 

"Geometric Patterns Inspired by Sustainable Materials." 

Consider incorporating patterns reminiscent of sustainable materials like 

bamboo, recycled wood, or even recycled metals. These materials can be 

translated into geometric patterns that symbolize environmental 

responsibility and the commitment to sustainability. The repetition of these 

patterns can create a visually striking and cohesive design element 

throughout the exhibition space. 

This not only aligns with the sustainability aspect but also emphasizes 

precision in the use of materials and craftsmanship in creating a 

harmonious design. Additionally, using sustainable materials in the 

construction of the exhibition space reinforces Mercedes-Benz's 

commitment to environmental consciousness. 

How does this idea resonate with you, and is there a specific sustainable 

material or concept you'd like to emphasize within the geometric patterns? 

Q5: Architect: How could the geometry inspired by bamboo look like? 

ChatGPT: Designing geometry inspired by bamboo can add a natural and 

sustainable aesthetic to the exhibition space. Here are some design 

elements and principles that could be incorporated: 
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Vertical Rhythm: Mimic the vertical rhythm found in bamboo stalks. Use 

vertical lines or columns to create a sense of height and rhythm throughout 

the space. 

These vertical elements can be part of the structural design, interior 

partitions, or even incorporated into artistic installations. 

Segmentation and Joints: Emulate the segmented structure of bamboo 

stalks with distinct joints. These joints can be represented through the use 

of varying materials, textures, or color changes. 

Consider using contrasting materials to highlight these joints, showcasing 

the precision and craftsmanship in the design. 

Natural Curves and Tapers: Integrate gentle curves and tapers reminiscent 

of bamboo stalks. This can be applied to the layout of pathways, the 

curvature of walls, or even in the design of furniture and fixtures. These 

natural curves add a sense of fluidity and organic beauty to the space. 

Latticework Patterns: Incorporate latticework patterns inspired by bamboo 

weaving techniques. These patterns can be applied to screens, partitions, 

or as decorative elements within the exhibition spaces. The latticework not 

only adds a visual appeal but also allows for the play of light and shadow, 

creating a dynamic and engaging atmosphere. 

Natural Color Palette: Draw inspiration from the natural colors of bamboo, 

such as earthy greens and browns. Use a palette that reflects the warmth 

and sustainability associated with natural materials. Incorporate these 

colors into furnishings, finishes, and decorative elements throughout the 

space. 

Modularity and Flexibility: Take inspiration from bamboo's modularity 

and flexibility in design. Create modular elements that can be rearranged 

or repurposed, promoting adaptability and sustainability in the use of 

space. 

By integrating these elements, the exhibition space can evoke the essence 

of bamboo while emphasizing precision and sustainability. This design 

approach not only aligns with Mercedes-Benz's commitment to 
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environmental responsibility but also creates a visually captivating and 

cohesive experience for visitors. How does this concept resonate with your 

vision for the project? 

Q6: Architect: how can we adopt such concept to le Corbusier’s regulating 

lines? 

ChatGPT: Combining the concept of bamboo-inspired geometry with Le 

Corbusier's regulating lines involves incorporating the principles of both 

into the design. Le Corbusier's regulating lines, based on his Modulor 

system, emphasize human proportions and geometric harmony. Here's how 

you can integrate these two concepts: 

Vertical Modules Inspired by Bamboo: Use Le Corbusier's modular system 

to establish vertical regulating lines based on human proportions. Align the 

vertical rhythm of the regulating lines with the vertical segments of the 

bamboo-inspired design. This creates a sense of harmony and proportion 

within the space. 

Human-Scale Integration: Leverage the Modulor system to determine the 

scale of various elements within the exhibition space, such as display areas, 

partitions, and seating. 

Apply the bamboo-inspired geometry within these modules, ensuring that 

the natural elements align with the human-scale proportions defined by Le 

Corbusier. 

Segmented Joints within Regulating Lines: Integrate the segmented joints 

inspired by bamboo within the regulating lines. This creates a visually 

cohesive and harmonious relationship between the precision of Le 

Corbusier's geometric principles and the organic, sustainable elements 

inspired by bamboo. 

Curvilinear Forms Aligned with the Modulor: Apply Le Corbusier's 

principles of modularity to introduce curvilinear forms within the 

exhibition space. Incorporate the natural curves and tapers inspired by 

bamboo, ensuring that these organic elements align with the modular scale 

defined by Le Corbusier. 
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Latticework Patterns within Proportional Modules: Utilize Le Corbusier's 

proportional modules to guide the placement and design of latticework 

patterns inspired by bamboo. Ensure that the latticework patterns align 

with the regulating lines and modular grid, reinforcing a sense of order and 

proportionality. 

Natural Color Palette and Modulor Harmony: 

Integrate the natural color palette inspired by bamboo within the Modulor 

system. Harmonize the earthy greens and browns with the proportional 

modules, creating a balanced and visually appealing color scheme. 

By integrating the bamboo-inspired geometry within the framework of Le 

Corbusier's regulating lines, you create a design that marries organic, 

sustainable elements with precise, human-centered proportions. This 

approach not only aligns with the principles of both concepts but also 

results in a sophisticated and harmonious exhibition space for Mercedes-

Benz. How does this synthesis of ideas resonate with your vision for the 

project? 
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 ملخص البحث 

أدت التطورات السدددددريعدة في التعلم اىلي إلى العدديدد من التطبيقدات العمليدة في مختلف لقدد  

ا في اسددتكشدداف إمكانات تعلم اىلة  وقد المجالات.  بدأ المهندسددون المعماريون والباحنون أيضددً

لتعزيز عملهم. ومع ذلك، غالبًا ما تفشل التطبيقات الحالية في توفير نماذج معمارية دقيقة وسهلة  

يسدددتخدمها المهندسدددون  والتيوالرسدددم المتعارف عليها الاسدددتخدام ضدددمن برامم التصدددميم  

نهجدًا جدديددًا يعزز انددسدددددة الترميز في  حدث بفي ادذا الالمعمداريون. ولمواجهدة ادذا التحددق، نقددم  

مات المعمارية إلى أنواع بيانات يمكن فهمها بواسدطة اىلة، منل وعملية خوارزمية لترجمة المعل

بارامترية . يبدأ المسدار المقتر  من تصدميم فيلا نصدوصالصدحيحة وال رقاموالأ  الأرقام الكسدرية

نشددداء مجموعة ذلك لإ#، وC لغة البرمجةباسدددتخدام  و  Rhinoceros3d  باسدددتخدام برنامم

، نم تددريدن نمداذج تعلم اىلدة بداسدددددتخددام المعداملات )المتغيرات(بيداندات كبيرة عن طريت تغيير  

 المعاملاتمجموعة البيانات. يشدددمل النموذج البارامترل الذق تم إنشددداوه مجموعة واسدددعة من 

اد التجداويف، وخصدددددائص ، وارتفداع الأرضددددديدات، وأبعد حوائطالمترابطدة، بمدا في ذلدك أبعداد ال

النوافدذ، ومسددددداحدة البنداء، وأبعداد الأرف. يتم تنفيدذ النموذج بددكملدغ بداسدددددتخددام لغدة البرمجدة  

RhinoCommon API وC يسهل النموذج البارامترل الناتم التخزين التلقائي للبيانات .#

 وتم في نطدا  البحدث اختبدارمنسدددددت لاسدددددتخددامدغ مبداشدددددرة في تعلم اىلدة.    CSVفي ملف  

 تم إنشدداواا من النموذج والتي  بياناتمن الخوارزميات تعلم اىلة المختلفة على أربع مجموعات  

المتعلقدة    املاتالمتعلقدة بدالمنداطت، وواحددة للتنبو بدالمعد   بدالمعداملاتمجموعدة بيداندات للتنبو  واي  

بمعلمدات النموذج الأخرل، وواحددة للتنبو بوجود النوافدذ في كدل جددار، وأخرل للتنبو بعرف 

. المعداملاتالنوافدذ. تتطلدن مجموعدات البيداندات خوارزميدات الانحددار والتصدددددنيف للتنبو بجميع  

بداسدددددتخددام طر  التعلم المجمعدة مع جميع مجموعدات   جيددةتحقيت نتدائم    وقدد نتم عن التجربدة

 0.99و 0.79و  0.97تصدددددل إلى   R2مهدام الانحددار إلى درجدة  وقدد وصدددددلدت نتدائم  البيداندات.  

% في مهمة 98الأخرل ومجموعات بيانات عرف النوافذ ودقة تصل إلى   والمعاملاتللمناطت 

يانات الاختبار. تسدددلط اذه  حسدددان جميع النتائم على مجموعة ب وقد تمتصدددنيف وجود النوافذ.  

  النتدائم الضدددددوء على فعداليدة نهجندا في توليدد تنبوات معمدارية دقيقدة من خلال تقنيدات التعلم اىلي

 .والتي تعد ذات أامية بالغة في عملية أتمتة النمذجة المعمارية

الصدددندو  الأسدددود، التفكير التصدددميمي المعمارق، الذكاء الاصدددطناعي،    الكلمات المفتاحية:

، التعلم اىلي، الانحدار، التصدنيف، الشدبكات العصدبية،  الوصدول إلى التشدكيلالتصدميم التوليدق، 

 الترميز، البرمجة.

 تمهيد .1

تبين أن أسدالين التصدميم المعمارية التي يسدتخدمها المهندسدون المعماريون عادة اي الأكنر 

 ً طريقة تصدميم الصدندو  الاسدود حيث يولد مفهوم التصدميم في   الأسدالين. وتشدمل اذه غموضدا

يريددون أن  الكنير من المهنددسدددددين المعمداريين  فدنن  بدالطبع،  و  وحدده.عقدل المهنددس المعمدارق  



 

 ن 
 

 ملخص البحث  

يكونوا فريدين من نوعهم، وكل المهندسدين المعماريين يحصدلون على لغتهم ومفرداتهم الخاصدة  

في الهنددسدددددة المعمداريدة التي ينظر إليهدا بطريقدة مدا على أنهدا متكررة وتعبر عن المهنددس 

شدد فيها تنالمعمارق نفسدغ. ومع ذلك، فنن عملية التصدميم لا تكون أبداً خطية. واي عملية دورية 

المعمدداريددة المهندددس   الفكرة  التطورات والتحريرات من خلال تحليددل  للدددخول في حلقددة من 

المعمارق في كل مرحلة وبعد كل خطوة. واذه العملية الدورية تجعل من الصددعن شددر  عملية  

 .التصميم

ومن نداحيدة أخرل، أنر ظهور الحقبدة الرقميدة على العدديدد من مجدالات الفن والعلوم على حد  

عن  سدددواء، بما في ذلك الهندسدددة المعمارية. في البداية، تم التفكير في التصدددميم على الأورا  

الرسددومات. وفي الوقت الحاضددر، تسددتخدم مئات البرامم الحاسددوبية كددوات لمسدداعدة   طريت

المهندس المعمارق على ترجمة أفكاره الخاصدددة التي من الموكد أنها أصدددبحت أكنر تعقيداً مع 

المواد الجديدة وتقنيات التصددنيع التي سددمحت بسددهولة بناء المباني ذات الشددكل الحر. لم تتوقف 

قفزة في   حدنت قط في مسددداعدة المهندسدددين المعماريين للتعبير عن أنفسدددهم، ولكنالتكنولوجيا ف

  مليةع يمكن وصدفغ بدنغ التوليدقالتصدميم و.  توليدقعندما تم إدخال التصدميم ال المجال المعمارق

د اىلة عددا معينا من النواتم )التصدددميمات( اسدددتنادا إلى البيانات التي تهغذل بها. وقد شدددهد يتول

تغيراً في دور المعمارق بعد اذه القفزة حيث تحول من تصدميم بديلين  مجال التصدميم المعمارق

إلى تزويدد اىلدة بتلدك القيود ومعروفدة  أو نلاندة لمبنى معين يسدددددتندد إلى قيود ومتغيرات مختلفدة  

والمتغيرات ومجموعدة من الخوارزميدات لتوليدد مئدات وربمدا اىلاف من البددائدل بدل وتصدددددنيفهدا  

تحقيت  وذلك عن طريتلمسداعدة المهندس المعمارق على اختيار أفضدل البدائل من وجهة نظره 

 .حل المشاكل والقيود

تصدددميم وقد شدددهد اذا التغيير في الدور الكنير من النقد من المصدددممين الذين يعتقدون أن  

بديلين أو نلانة بدائل مدروسة جيداً يمكن أن تكون أكنر كفاءة ومهنية من اىلاف من التصميمات 

غير المدروسة. ليس فقط التدنير على دور المهندس المعمارق الذق تعرف للانتقاد، ولكن أيضاً  

 .أفضل مجموعة من البدائل من اىلاف منها لاختيارالوقت الذق تستغرقغ مرحلة صنع القرار 

والتي تعبر أيضداً عن   -اىن، ماذا لو تم تغذية اىلة بالمتغيرات، القيود، والعلاقات المناسدبة 

من خلال خوارزميدات التي يمكن أن تجعدل اىلدة تولدد أشدددددكدال    -طريقدة المعمدارق في التفكير  

مقبولدة ومددروسدددددة جيدداً بددلاً من توليدد اىلافى وعلاوة على ذلدك، مداذا لو طهبقدت تكنولوجيدات  

الذكاء الاصدددطناعي والتعلم اىلي بحيث يمكن ل لة أن تتعلم من المعمارق اسدددتناداً إلى خياراتغ  

الذق يزوداا بالبيانات للحصددددول    الشددددخص وقراراتغ ويمكنها أن تكون قادرة على التفكير منل

 ىمحددةعلى نتائم 

مع العدديدد من    نجداحداً في العدديدد من الميدادين  الدذكداء الاصدددددطنداعي  في الوقدت الحداضدددددر، حقت

أنظمدة الدذكداء  الأدوات المتداحدة لعدامدة الجمهور لاسدددددتخددامهدا. كمدا أن المعرفدة التي تسدددددتندد إليهدا 

واسدتخدامها بشدكل مباشدر في مختلف  وصدول الجميع إليها  يمكناي أكنر انتشداراً و  الاصدطناعي

 وتطبيقدات AI التجدارن مع تطبيقدات. في الهنددسدددددة المعمداريدة، أجريدت العدديدد من  التطبيقدات
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  ملخص البحث 

ML  لسدددنوات عديدة، اىن. وأفضدددى ظهور اذا البرنامم إلى إتاحة فرص جديدة للمهندسدددين

وضددددع الفكرة المعماريين الذين بدأوا باسددددتخدام نماذج توليد الصددددور للمسدددداعدة في مرحلة 

اليوم    انتشددرت، فضددلاً عن المشدداريع التصددورية، ووضددع الخطط، وما إلى ذلك. كما المعمارية

نماذج  الذكاء الاصدددطناعي التوليديةتطبيقات إنتاج الفيديو والنماذج. ومع ذلك، تسدددتخدم نماذج  

وادذه    .نلانيدة الأبعدادلتوليدد نمداذج   NERF ، أو نمداذجvoxels، أو  point cloudsمندل  

النمداذج لا تولدد نمداذج معمداريدة قدابلدة للتطوير. وعلاوة على ذلدك، أهجرق المزيدد من التجدارن 

 وغيره. ،والتصنيفدة للابتكار في مجالات التخطيط، والتنبو بالمواد، غير المول    التطبيقاتعلى 

في التصميم  MLو AIاستخدام    دراسدةالأسدئلة السدابقة من خلال عن   للإجابةالبحث اذا   يهدف

واذا يتطلن دراسدة متعمقة لسسدلون المعمارق المسدتخدم  التشدكيل.في الوصدول إلى  المعمارق 

لتوليدد  بهدا  ىلدة  ا  تغدذيدةومحركداتدغ إلى متغيرات وقيود مفهومدة يتعين    معداملاتدغمن أجدل ترجمدة  

يهدف تعبر عن المهندس المعمارق والمنتم النهائي المرغون فيغ. وبالإضدافة إلى ذلك،  تصداميم 

اختبار اسدتخدام الترميز في اذا التطبيت نظراً لأن الترميز يهنظر إليغ على أنغ يضديف   البحث إلى

في    تطبيقات مختلفة من تعلم اىلةيسددتخدم والذق  طار في التصددميم المعمارق الإ اذا  الكنير إلى

للحصدددددول على معلومدات عن    MLختبر العدديدد من نمداذج  يث  عمليدة النمدذجدة. كمدا أن البحد 

 النماذج التي تناسن اذه التطبيقات بشكل جيد.

 يةمشكلة البحثال .2

إلا أنغ يصددداحبغ بعف   -مهما بدل مميزاً ومونراً في عملية التصدددميم المعمارق- التوليدقإن التصدددميم  

في اذه العملية يتم توليد آلاف الحلول والبدائل التصدميمية    .المشداكل وخصدوصداً في مراحل اتخاذ القرار

والتي يمكن الاختيدار من بينهدا للتطوير. ومع ادذا، انداك العدديدد من البددائدل لا يمكن الاعتمداد عليهدا بنداءً 

على عوامل عديدة مونرة منل قوانين البناء، الشدددكل المعمارق، بيئة الأفراد، العلاقات بين الفراغات، او  

 تفضيلات المعمارق الجمالية والفنية والتي تخص تكوين الكتلة المعمارية. حتى

بهذا الصددددد، نرل أن كنير من المعماريين يسدددتهلكون الكنير من الوقت لتنظيم وترتين أفضدددل البدائل 

يتم تحدديداا لطر   المولدة ليتم دراسددددتهدا وتطويراا. بالإضددددافة لذلك، فننغ كلمدا كنرت المعداملات التي 

 الأفكار الناتجة والتي تودق لاستهلاك وقت أكبر في اتخاذ القرارات.زادت التصميم التوليدق، كلما 

طيع بنفسدددها تحليل وفرز النتائم الأفضدددل والتي تحقت ما ت كذلك، تحتاج اىلة للكنير من المعلومات لتسددد

يتطلبغ المشددروع بالإضددافة إلى ما يعبر عن شددخصددية المعمارق والمتمنلة في صددندو  الأفكار الأسددود  

حتى تسددتطيع تحسددين النتائم ويتمكن المعمارق من الاعتماد عليها في اتخاذ القرارات لتقليل عدد النتائم 

 قيمة تصميمية أفضل بدلاً من عدد أكبر من البدائل.المولدة والتي تتميز ب 

الوقت المسددتغر  في تصددميم المبنى يدخذ الكنير من سدداعات العمل. حتى تصددميم المزيد من النماذج إن 

الكنير من الوقت على الرغم من أن الأسددددلون قد يكون قد تم تحديده الأولية للمبنى سددددوف يسددددتغر   

  .بالفعل



 

 د 
 

 ملخص البحث  

التي تولد صدوراً )التصدميماتى( من  التوليديةفي ادخار الوقت، توجد بعف النماذج   AI وللاسدتفادة من

ويسدتخدمها المعماريون على نطا  واسدع في الوقت الحاضدر. ومع ذلك، تدتي منل    والمناظير  اتخططمال

اذه التطبيقات مع العديد من القضددددايا المتعلقة بصددددحة، وإبداع، وحتى وظيفة النتيجة التي نعتقد أنغ لا  

 .ينبغي حتى اعتباراا منتجا معماريا

أتمتة بعف المهام في مرحلة التصدميم، تم تجرين بعف تطبيقات التصدنيف والتراجع    وبغرفوأخيراً،  

للتنبو أو تصدنيف المواد، والبارامترات المعمارية، وما إلى ذلك. ومع ذلك، لا يمكننا أن نتتبع أق تجارن  

يمكن اسدتخدامها مباشدرة في مراحل أخرل منل التصدميم   تعلم اىلة من خلال نظام ةلإنشداء نماذج معماري 

 .التخطيطي وتطوير التصميم

يعتبران اليوم متقددمين جداً، فنن انداك العدديد   الذكاء الاصددددطنداعي وتعلم اىلةوعلى الرغم من أن مجدال  

من المفاايم في اذا الميدان بحاجة إلى إعادة النظر فيها من جانن المهندسدددين المعماريين لتسدددخير قوة  

 اىلة في تشغيل المهام التي تستغر  وقتاً طويلاً.

 فرضية البحث .3

ويمكن    التصدددميمي.ن طريقة تفكير المعمارق تهعتبر عملية يمكن تتبعها في مرحلة التفكير  إ

 منتم  لتودق إلى  تتجمع  معاملاتترجمة اذه العملية، مقرونة بمفردات الأسددلون المعمارق، إلى  

 المعاملاتلما يحدث في أذاان المهندس المعمارق في اذه العملية. وإذا ما درسدددت اذه يشدددبغ 

مناسدبة ودقيقة يمكن  توليديةدراسدة جيدة وأدخلت بشدكل جيد إلى اىلة، يمكن ل لة أن توفر بدائل 

أن تقلل من الوقت المسددتهلك في عملية صددنع القرار. وبالإضددافة إلى ذلك، يمكن ل لة أن تتعلم 

من خيارات المهندس المعمارق ومن نم تعطي بدائل أكنر دقة وأكنر صدددلة بالموضدددوع إما في  

إلى عهد جديد من   تودقالمرحلة التالية أو حتى في المشددروع التالي. ويمكن ىلية التعلم اذه أن  

 .اىلية -المفاايم المعمارية التفاعلية البشرية 

 بحثلل  الأهداف الرئيسية .4

يهدف اذا البحث لترسديم طراز العمارة المعاصدرة بمعاملاتغ ومرادفاتغ المتعلقة بالتشدكيل، 

واسدتخدام التصدميم التوليدق لتوليد تصدميمات مختلفة مع توظيف الذكاء الاصدطناعي وتعلم اىلة  

ذق  لتتعلم من القرارات التي يتخذاا المصددمم مما يقلل الاحتمالات التصددميمية الناتجة بالتعلم وال

تدخذ اىلة فيغ شددخصددية المعمارق مما يولد أفكاراً تصددميمية مشددابهة لما قد ينتم منغ باسددتخدام  

 الطريقة التقليدية في التصميم.

 بحثلل  الأهداف الفرعية .5

 :التالية الفرعية من اذا البحث من خلال الأادافالرئيسية ف اادمكن تحقيت الأي

 .ا المختلفةوأساليبه ةعملية التصميم المعمارق التقليدي  تعريف •



 

 

 ه 
 

  ملخص البحث 

بما في ذلك الصددددندو    المعمارق،في التفكير  الاسددددتعارات المسددددتخدمة عريف بعفت •

 .الرمادقوالصندو   الابيف،الصندو   الاسود،

 .الأسلون المعمارق المعاصر تحليل •

 .م مفردات وعناصر أسلون العمارة المعاصريرست •

إلى معاملات يمكن استخدامها في أسالين التصميم ترجمة مفردات الأسلون المعمارق   •
 التوليدق الحدينة.

عن طريت   توليدديدةتطبيت بعف العلاقدات بين البدارامترات من أجدل تشدددددكيدل نمداذج   •

 .الترميز

لفهم قدراتهما وتقرير كيفية الاسدددتفادة   تحليل تطبيقات الذكاء الاصدددطناعي وتعلم اىلة •

 .منهما

 تعلم اىلة.باستخدام في النمذجة المعمارية وضع إطار لصنع القرار  •

اىلدددةسدددددتدخددددام  ا • تدعدلدم  ت  تدقدنديدددات  وضدددددع  صدددددلددة    صدددددمديدمددداتفدي  ذات 
بطابع/أسددلون/خيارات/أفضددليات المهندس المعمارق/المشددروع والخيارات والأفضددليات  

 السابقة التي اتخذاا المهندس المعمارق في اذا الصدد.

 نطاق البحث .6

ويمكن  مجموعة نماذج الذكاء الاصدطناعي.من   تحديداً  تعلم اىلة ذا البحث موجغ نحو اسدتقصداء نماذجا

أن تتنبد أو تصدددنف أو تجمع البيانات اسدددتناداً إلى مجموعات البيانات التي تتعلم منها.  تعلم اىلة لنماذج

البيانات غير المرئية بناء على مفاايم رياضدية   على التعميم تسدتطيع  جديدة ولكن بيانات  تنتملذلك فهي لا  

الدذكداء ومع ذلدك، يجرق التحقيت في طدائفدة أوسددددع من نمداذج   .من الجبر الخطي، الأسددددداليدن الرقميدة

  .لفهم وتحليل الاختلافات بين المفاايم والتطبيقات على حد سواء الاصطناعي

وبالإضافة إلى ذلك، بما أن نتيجة اذا النوع من التطبيقات يمكن اعتباراا " تصميماً مبتكراً "، فنن تحليل  

طبت بها ضدرورق للحصدول على معلومات عن الكيفية التي يمكن أن ت  التوليدقكيفية عمل نظم التصدميم 

 .ختلفةأنظمة تعلم اىلة الم

وللعمل على تعلم اىلات، يوصدددى بدن يتم بناء نمذجة التصدددميم المعمارق من خلال الترميز، وبالتالي، 

لتوليد نماذج فنن البحث موجغ أيضددا نحو إجراء دراسددة شدداملة عن كيفية تسددخير القوة وحرية الترميز 

باسددددتخدام لغة  من خلال الترميز  تهاجم نمذفيلا معاصددددرة وته  تم تصددددميم. ولهذا الغرف، نلانية الأبعاد

 rhinoceros 3dبدددبدددرندددامدددم   Grasshopper 3dتدددطدددبددديدددت  فدددي   #C الدددبدددرمدددجدددة

 .RhinoCommon APIباستخدام
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 ملخص البحث  

  600لدددددد   معاملاتمجموعة بيانات تحتوق على قيم   الحصدول على والنتيجة من اذه الخطوة الأولى اي

نموذج أولي للفيلا المعاصدرة اسدتنادا إلى بعف الحالات ذات الصدلة بنجمالي مسداحة البناء التي تتراو   

، وأبعداد الأرف، وغير ذلدك من ا كدان شدددددارع او مبنىالجدار اذا مد  ومتر مربع،    1000و  200بين  

 إنالبناء والترميز حيث   عمليةأسدلون " معاصدر " لتسدهيل    ذاتليكون   السديناريواات. وقد اختيرت الفيلا

 تعلم اىلدة ، وتددريدن نظدامالفيلا معداملاتالرئيسددددي او إيجداد علاقدة بين مدا يقرن من مدائدة من   الغرف

)البلد( في   . وللسدددبن نفسدددغ، لم يدرج موقع الفيلاالمعاملات واختبار إذا كان يمكن العنور على نمط بين

 .المعادلة

لكل من   الشدددبكات العصدددبية الاصدددطناعيةو  تعلم اىلةوقد اختبرت خوارزميات مختلفة من خوارزميات  

التي أسدندت إما للتنبو بقيم البارامترات أو لتصدنيف بعف البارامترات وتحقيت    والانحدارمهام التصدنيف 

 ادف البحث.

 منهج البحث .7

يتم اتبداع منهجيدات متتداليدة في ادذا البحدث لتحقيت الهددف العدام مندغ والأادداف الجزئيدة، وتشدددددمدل 
 اذه المنهجيات التالي:

 التطبيق  المنهجية

 التحليل النقدق 

 تعريف التفكير وحل المشكلة

 تعريف التفكير المعمارق

 فهم التعقيدات المختلفة في التصميم المعمارق

 تحليل عملية التصميم المعمارق وتكوين الكتلة

 نماط والأشكال المستخدمة في التصميم المعاصرترسيم الأ

 الاصطناعي وتعلم اىلة وتطبيقاتهما وأنواعهماتعريف الذكاء 

 دراسات تحليلية
تحليدل اسدددددتخدامات الذكاء الاصدددددطناعي وتعلم اىلة في التصدددددميم 

 المعمارق

 تجارن عملية

 تحويل العناصر المعمارية لعوامل يتم استخدامها في البرمجة.

 كتابة برنامم للتصميم التوليدق من خلال البرمجة.

معلومات عن معاملات التصدميم يمكن اسدتخدامها لتمرين أنظمة إنتاج  

 تعلم اىلة

 تحديد المشكلات ومعرفة أفضل أنظمة تعلم اىلة لحلها



 

 

 ز 
 

  ملخص البحث 

تطبيت أنظمدة تعلم اىلدة لتسدددددطيع اىلدة أن تتعلم من المعمدارق عن  

طريت ترسديم البيانات والتنبو أو التصدنيف للمعاملات المتعلقة بالمبنى  

 الدراسةتحت  

الهيكددل  الندداتم عن  الأبعدداد  نلاني  النموذج  لتعددديددل  الترميز  تطبيت 

المقتر  ليسددتطيع المعمارق التدخل في مرحلة التعليم ومرحلة تطوير 

 النتيجة بطريقة سهلة.

 

 البحث  هيكل -1

 يرتبط ايكل البحث بمنهجغ في توزيع أجزائغ وأبوابغ:

 عملية التصميم المعماري من الإنسان إلى الآلة الجزء الأول:

يتناول الجزء الأول من البحث تحليلاً لمفاايم مرتبطة بعملية التصددددميم المعمارق والتفكير 

 المعمارق وكيف تحولت اليوم للاعتماد على اىلة بشكل كبير في اتخاذ القرارات.

 التفكير التصميمي المعمارق: الصندو  الأسود أم الصندو  الزجاجيالبان الأول: 

في البدان الأول يتم تعريف التفكير ومفهوم حدل المشدددددكلدة ومفهوم التفكير التصدددددميمي 

المعمارق. كما يتم عرف أنواع التصددميم وبعف الاسددتعارات المتعلقة بالتصددميم والتفكير  

منل الصدندو  الأسدود والأبيف والرمادق. ويتم عرف التعقيدات الملازمة لمجال التصدميم 

يتعرف البدان الأول لعمليدة التصدددددميم  يم النتداج المعمدارق.المعمدارق وعرف كيفيدة تقي

المعمارق وبعف طرقها بالإضافة لما وصلت إليغ العملية اليوم. ويتم شر  تدنير التكنولوجيا  

 الحدينة في اذا المجال.

 ترسيم مكونات التشكيل في العمارة البان الناني:

في اذا البان، يتم تعريف التكوين المعمارق وخصددددائصددددغ وتمييز الفر  بين أنواع توليد 

التشدكيل والتي تشدكل تكوين التشدكيل والوصدول إلى التشدكيل. وفي نهاية البان، يتم عرف  

 وتحليل بعف الأنماط والعناصر المتكررة في العمارة المعاصرة.

الترميز في التصدددميم الحوسدددبي كقاعدة لاسدددتخدام الذكاء الاصدددطناعي في   البان النالث:

 الوصول للتشكيل

في البان النالث يتم تعريف التفكير التصدددميمي الحسدددابي وكيفية نشددددتغ. كما يتم التعريف 

ببعف المصددطلحات التي نتجت عن اتباع اذا النهم والتفرقة بينها. ويركز البان على توليد 



 

   
 

 ملخص البحث  

الوصددول للتشددكيل. نم يتم التعمت في التفكير في التكوينات المعمارية كمعلومات واسددتخدام 

 الخوارزميات والمعاملات في التصميم المعمارق.

كدذلدك يتعرف ادذا البدان لمفهوم الترميز وكيفيدة عمدل برامم النمدذجدة الحداسدددددوبيدة. نم يتم 

شدر  مفهوم لغات البرمجة المرئية والتحيزات المصداحبة لعملية النمذجة المعمارية. ويطر   

البان تطبيت الترميز في نمذجة التكوينات المعمارية للاستفادة بالقوة والحرية المصاحبة لهذه 

 .العملية

الجزء الثااني: تكاامال الترميز وتعلم الآلاة والااكااء الاصاااااطنااعي مم عملياة التصاااااميم 

 لاستخدام الاكاء الاصطناعي في إنشاء التشكيل( هيكل) المعماري

يركز الجزء النداني على عرف اسدددددتخددام الترميز في النمدذجدة نلانيدة الأبعداد في العمدارة 

لشدر  مفاايم وأنواع الذكاء الاصدطناعي وأنظمة تعلم اىلة المختلفة واسدتخداماتها  بالإضدافة 

كمدا يطر     الحداليدة والمحتملدة في مجدال التصدددددميم المعمدارق وتكوين التشدددددكيدل المعمدارق.

الجزء الناني ايكل عملي لاسددتخدام تقنيات تعلم اىلة في عملية الوصددول للتشددكيل ونمذجة 

 التكوينات المعمارية.

 في مجال العمارة البان الربع: الذكاء الاصطناعي وتعلم اىلة

في البان الرابع، يتم تعريف الذكاء الاصطناعي وتعلم اىلة وتاريخ نشدة اذا العلم بالإضافة  

لأنواع كلا التخصدددددصدددددين. ويتطر  البدان للبيداندات التي يتعدامدل بهدا تعلم اىلدة وبعف  

لهذا المجال. وينتهي البان بشددددر  بعف طر  تقييم أداء أنظمة تعلم الخوارزميات كتطبيت  

كمدا يتم في ادذا البدان يتم عرف العدديدد من اسدددددتخددامدات أنظمدة الدذكداء    اىلدة المختلفدة.

 الاصطناعي التوليدية وغير التوليدية في العمارة والمقارنة بينها وتقييمها.

ً يطر  البان   تشدكيكاً في قدرات أنظمة الذكاء الاصدطناعي التوليدية في عملية    الرابع أيضدا

التصددميم المعمارق لمخاوف من ضددمنها أصددالة النتيجة. ويتناول البان بعف الاسددتخدامات 

 المقترحة لكلا النوعين من أنظمة الذكاء الاصطناعي )التوليدية وغير التوليدية(.

توليدد التشدددددكيدل المعمدارق: تطبيت خوارزميدات تعلم الالدة على بيداندات   :الخدامسالبدان  

 البارامترات المعمارية

المشدددكلة ونطا  التجربة والمواد والطر  المسدددتخدمة بها في اذا البان. كما يتم  يديتم تحد

نلاني الأبعداد للمبنى تحدت التجربدة وكيفيدة اسدددددتخراج جدداول    جشدددددر  كيفيدة ترميز النموذ

بيانات ملائمة لاسددددتخدامها في أنظمة تعلم اىلة المختلفة. كذلك يتم شددددر  الهيكل المقتر   

والذق يبدأ بترميز النموذج نلاني الأبعاد وتحضدير جداول البيانات نم تحليل ودراسدة البيانات  

وتجهيزاا بطر  مختلفة للاسدددتخدام المباشدددر مع تقنيات تعلم وإيجاد العلاقات بينها لتعديلها 

اىلة. نم يتم شدر  كيفية تقسديم البيانات لبيانات تسدتخدم في تمرين الأنظمة وبيانات تسدتخدم 

 في الاختبار قبل عرف طريقة تمرين الأنظمة المختلفة.



 

 

 ط  
 

  ملخص البحث 

 تحليل تعلم اىلة والنتائم :السادسالبان 

في البدان الأخير يتم عرف وتحليدل نتدائم تعلم الأنظمدة المختلفدة ومقدارنتهدا مع بعضدددددهدا 

البعف. نم يتم توضدددديف كيفية اسددددتخدام النتيجة للتنبو بالمعاملات المختلفة التي يتم إدخالها  

لنموذج الترميز للحصدددددول على نموذج نلاني الأبعداد يمكن التعدديدل عليدغ من قبدل المعمدارق 

 وسهلة. وينتهي البان بمناقشة النتائم.  بطريقة سريعة

 النتائج والتوصيات

بنداءً على ترتيدن الأجزاء والأبوان يتم عرف النتدائم المتعلقدة بدالددراسدددددة ابتدداءً من بعف 

اىراء التحليلية لاسددددتخدام الذكاء الاصددددطناعي وتعلم اىلة في عملية التصددددميم المعمارق 

للتجربدة التي تم عملهدا وتوضددددديحهدا في البدان الأخير. وينتهي البحدث ببعف   وصدددددولاً 

 ة مستقبلية بنمكانها تطوير النتيجة والإضافة إليها بشكل كبير.التوصيات لأفكار بحني


