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Abstract According to the wide spread use of satellite-
based positioning techniques, especially Global Navigation
Satellite Systems (GNSS), a greater attention has been paid
to the precise determination of geoid models. As it is
known, leveling measurements require high cost and long
time in observation process that make it not convenient for
the practical geodetic purposes. Thus obtaining the ortho-
metric heights by GNSS is the most conventional way of
determining these heights. Verifying this goal was the main
objective behind the current research. The current research
introduces a numerical solution of geoid modeling by
applying a surface fitting for a few sparse data points of
geoid undulation using minimum curvature surface (MCS).
The MCS is presented for deriving a system of linear
equations from boundary integral equations. To emphasize
the precise applicability of the MCS as a tool for modeling the
geoid in an area using GPS/leveling data, a comparison study
between EGM2008 and MCS geoid models, is performed.
The obtained results showed that MCS technique is a precise
tool for determining the geoid in Egypt either on regional and/
or local scale with law distortion at check points.

Keywords Geoid . Orthometric height . Ellipsoidal height .

MCS . Geoid undulation . Geodetic and Cartesian
coordinates . GPS

Introduction

The geoid height (or geoidal undulation) “N” can be
defined as the separation of the reference ellipsoid with
the geoid surface measured along the ellipsoidal normal as
shown in the following sketch. The combined use of GPS
geodetic height “h”, leveling orthometric height “H”, and
geoid height “N” information has been a key procedure in
various geodetic applications. Although these three types
of height information are considerably different in terms
of physical meaning, reference surface definition, obser-
vational methods, accuracy, etc., they should fulfill the
simple geometrical relationship (Kotsakis and Sideris
1999): N=h−H

The geoid is an equipotential surface of the earth that
coincides with the undisturbed mean sea level. There-
fore, one might say that it describes the actual shape of
the earth. The geoid is also the reference surface for
most height networks since leveling gives the heights
above the geoid (Harrie 1993). The geoid is determined
by using several techniques based on using one or more of
the different data source such as: gravimetric method
using surface gravity data, satellite positioning based on
measuring both ellipsoidal heights for stations with known
orthometric heights, geopotential models using spherical
harmonic coefficients determined from the analysis of
satellite orbits, satellite altimetry using satellite-borne
altimetry measurements over the ocean, astrogeodetic
method using stations with measured astronomical and
geodetic coordinates, and oceanographic leveling methods
used mainly by the oceanographers to map the geo-
potential elevation of the mean surface of the ocean
relative to a standard level surface (Saad and Dawood
2002). Other methods are the mathematical models similar
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to that used in this paper using minimum curvature surface
(MCS) method.

Sketch illustrates the relation between ellipsoid height & Elevation

In this paper, precise local geoid determination will be
considered according to geometric method using GPS/
leveling data. First of all, an overview of the most recent
Global Geoidal Model is reviewed. The mathematical
approach of MCS technique is introduced. The data that
are used in computing the geoid over Egypt are described
as well as the two sets of data points that are used in the
evaluation process of the MCS. The next section demon-
strated a comparison between the results of the EGM2008
model and MCS are presented and discussed. Finally, the
conclusions are drawn.

EGM2008 geoidal model

The recent release of the new Earth Gravitational Model
EGM2008 by the US national Geospatial-Intelligence
Agency (Pavlis et al. 2008) is undoubtedly a major

breakthrough in global gravity field mapping. For the first
time, a spherical harmonic model complete to degree 2190
and order 2159, is available for the Earth’s external
gravitational potential, for the used data sources see
Fig. 1. Full access to the model’s coefficients and other
processing programs is available from the NGA site at:
http://earthinfo.nima.mil/GandG/wgs84/gravitymod/index.
html.

The EGM2008 leads to an unprecedented level of
spatial sampling resolution (∼9 km) for the recovery of
gravity field functional contributes in a most successful
way to the continuing efforts of geodetic community
during the last years (and after the launch of the
satellite missions CHAMP and GRACE) for a high-
resolution and high accuracy reference model of Earth’s
static (mean) gravity field. Furthermore, it provides an
indispensable tool to support new gravity field studies
and other Earth monitoring projects and the ongoing
development of Global Geodetic Observing System
(Pavlis et al. 2008).

Following the official release of the EGM08 model,
there is an expected strong interest among geodesists to
quantify its actual accuracy with several validation techni-
ques and external data sets, independently of the estimation
and error calibration procedures that were used for its
development. It is worthwhile to mention that the
EGM2008 does not include any GPS/leveling or astronom-
ic deflection of the vertical data.

Dawood et al. (2010) have found out that the best Global
Geoidal Model that represents the gravitational field over
Egypt is the EGM2008 which produced a standard
deviation of undulation differences that equal to 0.23 m,
which is almost identical with its global precision values.
This value of constant bias of 0.23 m was taken into
account. Figure 2 depicts the geoid over Egypt as calculated
by EGM2008 model.

Fig. 1 A 5′×5′ Δg data availability (source: Pavlis et al. 2008)
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MCS methodology

The practical methods to compute the geoid and estimating
its values for little observed data available, as in Egypt, the
mathematical techniques are considered in solving the
related problems. Based upon the available data for Egypt,
as mentioned in the report of Powell (1997), the geoid
undulation in Egypt can be computed by using the
mathematical techniques that are considered the best
solution to compute the empirically or adjusted value of
the geoid undulation. To obtain the parameters of the
mathematical equations and related statistical quality
indexes, the mathematical methods utilize the least square
techniques to solve its mathematical equations.

According to Erol and Celik (2004), the important
factors that affect the accuracy of GPS/leveling geoid
model are:

– Distribution and number of reference stations (GPS/
leveling stations). These points should be distributed
homogeneously over the model’s coverage area. In
addition, they should be chosen by a way they figure
out the changes of geoid surface.

– The accuracy of GPS derived ellipsoidal heights (h)
and the heights derived from leveling measurements
(H).

– The topographic characteristic of the geoid surface
area.

– The used method in modeling the geoid.

The mathematical method of MCS is an old and over-
popular approach for constructing smooth surface from
irregularly spaced data. The surface of minimum curvature
corresponding to the minimum of the Laplacian power or,
in alternative formulation, satisfies the bi-harmonic differ-
ential equation. Physically, it models the behavior of an
elastic plate. In the one-dimensional case, the minimum
curvature leads to the natural cubic spline interpolation. In
the two-dimensional case, a surface can be interpolated
with bi-harmonic splines or gridded with an iterative finite
difference scheme (EL-Shmbaky 2004).

In most practical cases, the minimum curvature tech-
nique produces a visually pleasing smooth surface. How-
ever, in case of large changes in the surface gradient, the
method can create strong artificial oscillations in the
unconstrained regions. Switching to lower-order methods,
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Fig. 2 The geoid undulation of
Egypt as computed from
EGM2008
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such minimizing the power of the gradient, solves the
problem of extraneous inflections. On the other hand, it
also removes the smoothness constraint and leads to
gradient discontinuities (EL-Shmbaky 2004).

The mathematical formula for (MCS) is seeking for a
two-dimensional surface f(x, y) in region D, which is
corresponding to the minimum of the Laplacian power:Z
D

Z
r2f x; yð Þ�� ��2dxdy ð1Þ

Where r2 denotes the Laplacian operator r2 ¼ @2

@x2 þ @2

@y2

Alternatively, seeking f(x, y) as the solution of the bi-
harmonic differential equation:

r2
� �2

f x; yð Þ ¼ 0 ð2Þ
Equation 1 corresponding to the normal system of

equations in the least square optimization problem (Drakos
1997). On the other hand, Poisson equation can be
expressed as follows:

ðr2Þ2f ðx; yÞ ¼ f ðx; yÞ ð3Þ
The solution of this differential equation can be solved

as follows:

If y=f(x) is a function of one variable, then by Taylor
theorem:

y1 ¼ y0 þ hy
0
0 þ h2

2! y
0 0
0 þ h3

3! y
0 0 0
0 þ . . .

y3 ¼ y0 � hy
0
0 þ h2

2! y
0 0
0 � h3

3! y
0 0 0
0 þ . . .

As shown in Fig. 2, by adding the two equations and
neglecting the higher orders one can get y1 þ y3 ¼ 2y0 þ h2y

0 0
0

with an error of less than h4y
0 0 0 0
0 Þ=12� ���� . y

0 0
0 ¼ 1

h2 y1 þ y3�½
2y0� or in other format: d

2y
dx2 ¼ 1

h2 y1 þ y3 � 2y0½ �
Similarly for a function of two variables as shown in

Fig. 3:

d28
dx2 ¼ 1

h2 8 1 þ 8 3 � 28 0½ �
d28
dy2 ¼ 1

h2 8 2 þ 8 4 � 28 0½ �

)
ð4Þ

Where: 80 is the value of the function f(x, y) at the point
(x0, y0). It is needed to solve numerically the following
partial differential equations (Fig. 4):

1. Laplace’s equation inside any closed boundary can be
written as:

r28 ¼ 0; i:e:;
@28

@x2
þ @28

@y2
¼ 0 ð5Þ

2. Poisson’s equation inside any closed boundary can be
written as:

r28 ¼ f x; yð Þ; i:e:; @
28

@x2
þ @28

@y2
¼ f x; yð Þ ð6Þ

Replacing @28
@x2 and

@28
@y2 by their equivalent expression

from Eqs. 5 and 6, one can get the following:

& For Laplace’s equation:

8 1 þ 8 2 þ 8 3 þ 8 4 � 48 0 ¼ 0 ð7Þ
& For Poisson’s equation:

8 1 þ 8 2 þ 8 3 þ 8 4 � 48 0 ¼ h2f x0; y0ð Þ ð8Þ
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Fig. 7 The geometric distribu-
tion of the common points

Fig. 6 The HARN and NACN
networks
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The four arms about the nodes may be not completed.
So, the two Eqs. 7 and 8 can be rearranged as follows:

28 a

k1 k1 þ k2ð Þ þ
28 c

k1 k1 þ k2ð Þ þ
28 b

l1 l1 þ l2ð Þ þ
28 4

l1 l1 þ l2ð Þ
� ð 2

l1l2ð Þ þ
2

k1k2ð Þ
�
f0 ¼ 0;Laplac

h2f0; Poisson

� ð9Þ

Where:

k1, k2, l1, and l2 are the ratio from the complete grid
arm (h) shown in Fig. 5, and f0 is a function of
unknown value 80.

Now, the area inside the boundaries can be divided into a
network or lattice of squares of side (h). The corners of these
squares are called nodes of the network. The two difference
Eqs. 7 and 8 are written according to the considered problem
for each node. These linear equations can then be solved by
least square adjustment. The parametric least square can be
applied to system of equations with Laplace equation as:

A n;mð ÞV m;1ð Þ ¼ F n;1ð Þ ð10Þ

Where:

N The number of equations
M The number of unknown and known station
F The vector equal to observation difference
V The vector of unknown nods and no. of difference

coordinates for known stations

The values of φ(x, y) at the boundaries should be known
to solve the considered problem (Sedeek 1992).

The used data

In 1995, two national GPS geodetic control networks have
been established, by the Egyptian Survey Authority, to
furnish a nationwide GPS skeleton for surveying and

Fig. 9 The geometric distribu-
tion of the 1st check group
points (regional scale)

Fig. 8 The distortion at the 1st check group points as computed by
EGM2008 geoidal models and MCS
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mapping applications. The first network is the High Accuracy
Reference Network (HARN) that covers the entire Egyptian
territories and consists of 30 stations with approximate
separation of 200 km. The relative precision level of HARN
is 1:10,000,000. The second network is the National
Agricultural Cadastral Network (NACN) that is mainly covers
the Nile valley and the Delta. NACN consists of 112 stations,
with a station separation of 50 km approximately, whose
relative precision is 1:1,000,000. Both networks are depicted
in Fig. 6 (Dawood and Ismail 2005).

Unfortunately, few stations of both networks have ortho-
metric height resulted from leveling work. Our focus only is
concerned on the points that have orthometric heights, about 17
of the HARN points are taken as modeling pins (common
points) with known geoid undulation. The distribution of the
common points are depicted in Figs. 7 and 8. Twelve mixed
stations of HARN and NACN Networks, are chosen for
testing the model (the 1st group of check points) as shown in
Figs. 9 and 10. The geoidal undulation values for both sets are
tabulated in Tables 1 and 2, respectively. The data used for

MCS evaluation process, namely the common data set and the
1st group check points are outlined in Table 3. Additionally,
the computed values of EGM2008 geoidal undulation for both
data sets are giv4n in both Tables 1 and 2. The differences
(Distortion) between the computed values of EGM2008
geoidal undulation and the observed (GPS and orthometric
heights) one are given in the last column of the two tables.

To see the contribution of the developed method in the
local sense, 13 points located on the highway that connects
the High dam and Aswan dam are observed by dual-
frequency GPS and connected to IGS station. A precise
leveling loop is connected to a first-order Bench Mark near
to the High dam to determine their orthometric height. The
location and the distribution of these points are presented in
Fig. 11. The computed geoidal undulation values (N-obs)
are given in Table 4. However, to see the influence of the
developed method over the most recent Global Geoidal
Models, as a reference for comparison, the geoidal
undulation of all the points sets are computed from
EGM2008 geoid model data.

Fig. 10 The geometric
distribution of the 2nd check
group points (local scale)
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Discussions and results

MCS technique can be used as a grid transformation
technique without need a priori variance covariance matrix.
After constructing the grids over the area of study, the steps
of solution can be summarized as in the following:

& The differences between two models are computed.
& The observation equations can be formed according to

Laplace model
& Forming the reduced condition equation of the Laplace

model and applying least square to give the required
posteriori variance.

& The variance of the used common points is obtained
and trials are stopped according to covariance of
variance.

& Computing the geoid undulation at unknown grids and
drawing the contour map. Calculating the distortion at
the chosen points, with excluding the points with
extremes values such as the points (OZ13, OZ15,
OZ19, OZ20, and OZ22) as demonstrated in Table 3.

Comparisons between EGM2008 and MCS techniques
in Egypt

In order to assess the performance of the MCS technique
and EGM2008 model in computing the geoidal undulation
over Egypt, a comparison between the resulted of MCS and
EGM2008 models is presented in the following:

The geoidal undulation at the first group of check
points are computed by MCS and EGM2008 models.

Table 2 The location and
geoidal undulation values of the
first group of check points

Old name New name Lat Long N-obs N-EGM08 Diff.

N7 OY27 30.232176 29.840354 15.088 15.762 0.674

L5 OY35 22.752192 31.848742 11.156 10.615 −0.541
R5 OY36 22.107805 31.552215 9.974 10.31 0.336

Y5 OY41 22.206004 31.554883 10.092 10.256 0.164

P4 OZ32 24.155120 32.968164 11.397 11.054 −0.343
A4 OZ44 25.648151 32.693353 12.02 11.81 −0.21
E5 OZ52 23.429444 32.826730 10.098 10.836 0.738

B3 OZ66 27.325233 31.188597 12.842 12.883 0.041

S2 OZ68 27.411941 30.543393 13.488 13.436 −0.052
A2 OZ70 29.018091 31.159649 15.216 14.977 −0.239
L2 OZ74 28.184611 30.804617 13.738 14.028 0.29

F1 OZ97 30.028739 31.277675 15.268 15.414 0.146

Table 1 The location and
geoidal undulation values of the
common points

Old name New name Lat Long N-obs N-EGM08 Diff.

O5 OZ02 22.422207 31.562574 9.7784 10.284 0.5056

A5 OZ07 24.041360 32.832799 11.0489 11.078 0.0291

B19 OZ08 23.940760 35.397372 10.6675 10.399 −0.2685
B20 OZ09 26.017435 34.321205 12.7134 12.698 −0.0154
M3 OZ10 25.455575 32.156737 12.1578 14.172 2.0142

I15 OZ11 25.543626 29.402926 13.172 12.888 −0.284
OZ12 OZ12 28.507226 29.096832 14.2183 15.046 0.8277

T2 OZ13 27.267525 30.779615 12.751 13.116 0.365

B11 OZ14 27.880185 33.361767 14.6447 15.987 1.3423

OZ15 OZ15 29.350026 34.772391 17.0002 15.731 −1.2692
B10 OZ16 31.119385 34.182068 17.0255 17.007 −0.0185
A6 OZ17 30.119310 32.606234 16.2067 16.146 −0.0607
OZ18 OZ18 31.595945 31.080313 17.8259 18.405 0.5791

E7 OZ19 29.834158 30.601131 14.945 15.571 0.626

D8 OZ20 30.842387 28.935306 15.0668 15.206 0.1392

X8 OZ21 31.327626 27.071952 17.2419 17.816 0.5741

Z9 OZ22 31.437845 25.398634 19.3308 20.002 0.6712
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The value of distortion of both models over the
observed values (the true values) is computed by
finding the differences between the computed and
observed geoidal undulation. The value of distortion of
both models, maximum and minimum distortion and
the standard deviation of distortion are shown in
Table 4. The value of distortion of both models are
depicted in Figs. 7 and 8.

As indicated in Table 4 and Figs. 7 and 8, it is obvious
that the MCS technique gives the best values of distortion

Table 3 The distortion at common and 1st check points groups byMCS

Point Distortion (m)

Common points

O5 0.077

A5 0.003

B19 −0.229
B20 0.053

M3 −0.603
I15 0.773

OZ12 −0.702
T2 −1.079
B11 0.353

OZ15 1.493

B10 0.006

A6 −0.003
OZ18 0.329

E7 −1.068
D8 −1.839
X8 −0.118
Z9 1.084

1st group check points

N7 0.031

R5 0.009

Y5 0.008

P4 0.010

A4 0.017

E5 0.005

B3 0.020

S2 0.017

A2 0.029

L2 0.023

F1 0.036

Max. value 0.036

Min. value 0.005

Average 0.019

SD 0.010

Fig. 11 The distortion at the 2nd check group points as computed by
MCS

Table 4 The distortion as computed by EGM2008 and MCS

Point EGM2008 MCS

N7 0.674 0.031

R5 −0.541 0.009

Y5 0.336 0.008

P4 0.164 0.010

A4 −0.343 0.017

E5 −0.210 0.005

B3 0.738 0.020

S2 0.041 0.017

A2 −0.052 0.029

L2 −0.239 0.023

F1 0.290 0.036

max +0.738 0.036

min −0.541 0.005

S.D. 0.409 0.010

Table 5 The distortion at 2nd check points group by MCS

Point Distortion (m)

2nd group check points

D13 0.0083

D12 0.0083

D11 0.0083

D10 0.0082

D09 0.0082

D08 0.0081

D07 0.0081

D06 0.0080

D05 0.0080

D04 0.0080

D03 0.0080

D02 0.0080

D01 0.0080

Max. ve 0.0083

Min. ve 0.0080

Average 0.0081

STDEV 0.0001
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(minimum values) over Egypt where the computed dis-
tortions are ranged between 5 mm to 3.6 cm while
EGM2008 distortion values ranged between 73.8 and
54.1 cm. Hence, it is easy to see that the geoid undulation
computed by MCS has the highest accuracy.

To see the performance of the MCS technique in
computing the geoidal undulation over a local area, the
second group of check points was utilized. The geoidal
undulation of the thirteen points of the check set is computed
by the MCS. The distortion values of checked points over the
observed geoidal undulation values (the true values) can be
found by computing the differences between the computed
and observed values. The resulted value of distortion,
maximum and minimum distortion and the standard deviation
of distortion are shown in Table 5. The value of distortion of
both models are illustrated in Figs. 9 and 10.

As it is shown in Table 5 and Figs. 9 and 10, the differences
in the geoid undulation of the 2nd group check points are
varied between 8.3 and 8 mm. The results of the 2nd group
confirm again the precise applicability of MCS technique in
computing the geoidal undulation over local areas.

Conclusion

Based on the previous analysis and the obtained numerical
results, the following conclusions can be drawn:

& Among available data and techniques, GPS/Leveling
with MCS technique might be the most appropriate
combination for geoid model precise outputs in Egypt.

& The MCS technique gives a best geoid undulation over
the EGM2008 geoid models in Egypt and it is

recommend to use MCS technique to compute the
geoid undulation in Egypt.
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