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Monitoring the bridge deformation is the vital task in bridge maintenance and manage-
ment. Talkha highway steel bridge is one of the two oldest steel bridges in Mansoura city.
Nowadays, the Real Time Kinematic-Global Positioning System (RTK-GPS) is capable of
providing fast and accurate measurements of bridge oscillations. Also, the movement
and damage severity can be identified using the dynamic bridge characteristics obtained
from GPS. The aim of the present work is to demonstrate the use of RTK-GPS (1 Hz) to pro-
vide data for use in the assessment of existing structures. The moving average filter is used
to de-noising the GPS observations. Finite Impulse Response (FIR) with moving average are
used to extract the dynamic response and frequency domain of the bridge and Neural Net-
work Auto-Regressive (NNAR) model is used to identify the bridge movement. The results
indicate that: (1) the moving average filter is simple and suitable to smooth high noises
and errors of GPS observation signals; (2) the multi-filter of short-period can reveal the
dynamic displacement of bridge deck movement; (3) the low-frequency movements of
the bridge could not be completed and the observation time should be increased to com-
plete it and (4) the movement output of the NNAR is highly conformed with the observa-
tion filter.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Bridges are vital links in road infrastructure networks
and it is important to keep them well maintained, despite
their difficult operating conditions. So, monitoring bridges
deformation is the vital task in bridge maintenance and
management. The bridge monitoring system is responsible
for the reliable collection of response data measured using
sensors installed in the bridge members. Once data are col-
lected by the monitoring system, bridge members’ defor-
mation and damage detection algorithms are necessary
to automate the task of interrogating the data for signs of
structural distress and deterioration [1–3]. The process of
implementing a movement and damage identification
strategy for civil and mechanical engineering infrastruc-
ture is referred to as Structural Health Monitoring (SHM)
[2]. In addition, SHM is to improve the safety and reliability
of structures by detecting damage before it reaches a crit-
ical state [4].

The applications of the SHM system to bridges are
greater widespread compared with numerous case studies
and successful implementations and operations of SHM to
other structures [1,2]. Because of their slender geometry,
bridges can be significantly affected by wind, vehicle, and
other impact loads. Bridges may, also, suffer from large
deformations due to temperature changes. Thus, bridges
have to be continuously assessed by appropriate monitor-
ing methods to secure their structural performance. All dy-
namic SHM implementations rely on data, measured with
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a suitable sampling rate, acquired by a certain number of
sensors mounted on the structure to be monitored. The
measures obtained from these sensors are the structure re-
sponse to external or internal mechanical excitations due
to wind and other meteorological phenomena, vehicle traf-
fic, seismic events, mass movements [5,6] or use of specific
excitation hardware like mechanical shaker [5]. The state
of the structure can be evaluated by comparing the re-
sponses obtained in reference conditions with the current
ones. These comparisons could be (and, sometimes, are)
performed by directly extracting from the collected time
series information depending only on the structure, for in-
stance their power spectra. A simpler method for the
determination of the dynamic characteristics of structures
is through the use of ambient vibration measurements [6].
In output-only characterization, the ambient response of a
structure is recorded during ambient influence (i.e. with-
out artificial excitation) by means of highly-sensitive
velocity or acceleration sensing transducers [6].

Conventional monitoring methods have been employed
using accelerometer, tilt meters, strain gauges, (laser) opti-
cal devices and survey equipment [7–12]. The accelerome-
ter monitoring system is capable of measuring the
dynamic response of structures; while the survey monitor-
ing methods can be employed for measuring the static re-
sponse [7,8]. Some newly developed techniques, such as
robotic total station and terrestrial microwave interferom-
etry systems, laser displacement sensors and photo/video
imaging methods have been applied to monitoring of
structures with some limitation [8–11]. Unlike other sen-
sors, the use of Global Positioning System (GPS) is readily
able to provide three-dimensional absolute position infor-
mation at a rate of 20 Hz, and higher rates if necessary [13].
Hence providing an opportunity to monitor the dynamic
characteristics of the structure to which GPS antenna is at-
tached, also the rapid advancement of the GPS device and
algorithms has enabled the monitoring of bridges in con-
tinuous real-time, that is commonly referred to as real-
time kinematic (RTK) [8–11,13]. The RTK-GPS is now ac-
tively applied to measure static, quasi-static and dynamic
displacement responses of a large civil engineering struc-
ture under different loads due to its global coverage and
continuous operation under all meteorological conditions
[14]. This enables the analysis of the frequency response
and (by using multiple receivers in strategic locations)
the dynamics of the vertical profile [15]. Attempts have
also been made to use RTK-GPS alone to monitor very long
span suspension bridges due to the shortcomings of using
an accelerometer to measure slow structural movement
with a vibration frequency lower than 0.2 Hz [16]. In the
last years, a large number of measurements of structures
displacements using RTK-GPS has been published (for re-
view, see [8,14]), and these data open a new era for SHM.

Time-series analysis takes into account the fact that
data points taken over time have an internal structure such
as: autocorrelation, trend or seasonal variation [4,17]. The
system models can be simulating the time series of the
output quantities. The models are then expressed as the
relationship between the selected system inputs and
outputs. In SHM, the identification model can be used as
a damage-sensitive feature extractor based on two
approaches [4]: (1) using the identification parameters;
and (2) using the residual errors. The first approach con-
sists of fitting an identical model to signals from undam-
aged and damaged structures. Then, the identification
parameters are used as a damage-sensitive features. The
second approach consists of using the identification model,
with parameters estimated from the baseline condition, to
predict the response of data obtained from a potentially
damaged structure [18,19]. Normally the statistical tests
were used to detect the changes in the time series [4,20].
The neural network can be incorporated into the filtering
mechanism as a dynamic model corrector for identifying
the real-time nonlinear dynamic errors when uncertainty
modeling is considered [21,22]. Jwo et al. [22] stated that
the applications of the neural network aided adaptive Kal-
man filter should be introduced to the GPS navigation and
receiver tracking loop design.

This paper aims to demonstrate the use of RTK-GPS to
provide data for use in the experimental assessment of
existing structures. Also, it investigates the use of GPS
receivers in measuring the system response of the Talkha
highway steel bridge and the nature of its dynamic defor-
mations. In addition, this paper focuses on studying the
bridge movement model identification based on RTK-GPS
observations.
2. Bridge description, data collection and primary
analysis

Talkha highway steel bridge (Fig. 1c) is one of the two
oldest steel bridges in Mansoura city, the bridge consists
of five-spans and has total length of 230.0 m and width
of 20.75 m (Fig. 1a and d) – it has two vehicle lanes for traf-
fic on each direction and two pedestrian walkways. The
bridge crosses Damietta River Nile branch, linking Manso-
ura city (P3) to Talkha city (P4), as shown in (Fig. 1a). The
bridge was designed and constructed from 1951 to 1953
by a German Company (Dortmunder Union). This bridge
is a main connection between P3 and P4, whereas in one
hour at least 4000 vehicles are passing on this bridge. As
shown in Fig. 1d, the bridge contains three parts: the first
part is a simple supported truss (50.0 m); the second part
is a continuous two-spans truss (30.0 m each) and this part
is moved to cantilever supported in case of opening the
ship way of the river and the third part is two-spans con-
tinuous truss (50.0 and 70.0 m). In 1991, the bridge is
closed because of un-normal movement on the third part
of the bridge. Accordingly, this part was stiffened by add-
ing a new bracing system for the bridge deck of this part.

The data analysis in the present paper obtained through
using a GPS (rover) receiver clamped at the mid-span
(points C1 and C2) of the third part and another one (point
C3) at the intermediate support of this part. All points are
located on the top of the handrail of the sidewalk of the
bridge, as shown on Fig. 1d. The measurement system is
a real time kinematic (RTK) GPS to monitor the bridge dy-
namic movements [8]. Under the mode of the RTK, the ref-
erence station serves as a stationary checkpoint whose 3D
coordinates have been previously determined by the con-
ventional static GPS method and constantly records the



Fig. 1. (a) View of Google Earth bridge plan, (b) GPS-base station with side view of the bridge, (c) view of the bridge and (d) longitudinal section of the
bridge with positions of the GPS rover.
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difference between its known position and the position
calculated from the satellite data [8,14]. The detected dif-
ferences are indicative of the errors from the satellite hard-
ware and more important, lower atmospheric delays with
low time required to calculate a rover position. An ultra-
high-frequency radio set is then used to send the errors
to the rover. The rover, which is the GPS receiver whose
position is being tracked, uses this error information to im-
prove its accuracy. The clock offsets in the receivers, satel-
lites and the atmospheric propagation delays can be
ignored because the two receivers are in close proximity,
which means that the errors are strongly correlated. In this
study, the base GPS, rover GPS and radio unit (Fig. 1b and
d) are used to collect raw data at rate of 1 Hz. The measur-
ing condition was favorable and the receiver was free of
any obstruction of 15� angle view of the horizon and at
least four satellites were tracked continuously. The time
observation for each rover point is one hour, approxi-
mately, to monitoring the bridge movement points on
three dimensions and low frequency effects. The GPS base
receiver, recording at 1 Hz, was placed approximately
576.0 m away from point C1 at stable ground, as shown
in Fig. 1b.

The data collected were post-processed using GPS-
Trimble software. The outputs of the GPS software was
the time series of instantaneous Cartesian coordinates of
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the rover receiver in the WGS84 coordinate system (N, E,
H). A local Bridge Coordinate System (BCS) (X, Y, Z) is estab-
lished to be used in the analysis and evaluation of the ob-
served data. According to Fig. 1a, the coordinates in WGS84
are transformed into those in BCS by 2D similarity trans-
formation (Eq. (1)). The azimuth (a) of the bridge is calcu-
lated as 2�18036.710 0. Herein, the X-data represents the
displacement changes along the longitudinal of the bridge,
the Y-data represents the displacement changes along the
transverse of the bridge and the Z-data represents the rel-
ative displacement change a long the altitude direction of
bridge.
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The receiver coordinates in the three dimensions (X, Y, Z)
were transformed into time series of apparent (x, y, z) dis-
placements (dxi, dyi, dzi; i = 1, 2, . . ..., n) around a relative
zero representing the equilibrium level of the monitored
point. This similarity transformation was based on the fol-
lowing equation.
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where n represents the total number of intervals
recordings.

Fig. 2 shows the apparent of unfiltered displacement of
the three dimensions of monitored points (C1, C2 and C3).
The relative displacement of the three points is calculated
based on Eq. (2) and the errors with more than three times
the standard deviation of the relative movements are re-
moved. Table 1 presents the statistical signals (mean, max-
imum, minimum and standard deviation; SD) of the
displacements presented in Fig. 2.

From Fig. 2 and Table 1, the points’ movements on the
x-direction are lower than other directions at the three ob-
served points; in addition the movements of point C2 are
higher than other points in the three directions. Also, the
movements of the three points are greater than the accu-
racy of GPS instruments used (Trimble 5700 GPS receiver),
which is 1 cm + 1 ppm (length of base line) in horizontal
direction and 2 cm + 1 ppm (length of base line) for the
vertical direction [15]. From these results, it can be con-
cluded that the points are moved in the three directions
and the deformation in the z-direction is high at point C2
on bridge response. The sensitivity deformation of the z-
direction is high with traffic load effect, so it is recom-
mended to take the necessary precautions for the deck at
point C2. In addition, the Multipath error is still one of
the major sources of errors in GPS surveying.

Examining Fig. 2, at first glance, there is no evidence of
dynamic displacement due to the dominating ambient
noise. Therefore, it is necessary to de-noise the time series
and extract the useful signal describing the dynamic
displacement of the bridge. For this reason, the filtering
produced with external constraints for analysis of the
time series of apparent displacement defined by Eq. (1) is
presented in the following sections.
3. De-noising of GPS displacement amplitude

The time series data shown in Fig. 2 are de-noised using
a simple low-pass moving average filter with a step of 55 s
and the output results are then smoothed [23,24]. Fig. 3
shows the original and the smoothed signals (red). The dif-
ference between the original and smoothed signals is pre-
sented in Table 1. From this figure, it can be seen that the
errors of this receiver is high and the moving average filter
is suitable to eliminate the errors and noise; whereas the
accuracy of the smoothed signals is increased by about
15% than that of the original signals. The mean value of
the bridge displacement (Table 1) is very low at the three
points in the three dimensions. In addition, the remaining
displacement amplitude is high at point C2. Also, the ob-
served deformation changes in lateral and longitudinal
directions are almost the same at points C1 and C2
(Fig. 3), whereas the movements at the three directions
of point C3 are not the same. The displacements of point
C3 reveal the movement of the cantilever handrail of the
bridge. The temperature changes and wind speed at the
observation time were about 3 �C and 18 km/h. Based on
previous studies [19,25], these temperature changes and
wind speed are ineffective on the bridge movement.
Accordingly, the main source of the bridge deformation is
the traffic loads.
4. Bridge dynamic analysis

Designing a proper digital filter for the extraction of
structural dynamics is an important aspect of structural
deformation analysis [23,24]. In this section, the bridge
vibration is analyzed based on two steps [13,26]. The first
step concerns computing the short-period component of
the GPS observation signals and the second step deals with
the spectral analysis of the low frequency displacement.
4.1. Short-period GPS observation component

A Hamming window-based Finite Impulse Response
(FIR) filter is used in the design of a band-pass filter using
pass-band and stop-band frequencies, pass-band ripple in
decibels, filter order and window type as its input param-
eters to the filter [23,24,27]. FIR filter is a linear phase
which is important in digital filter design whereas it results
in a pure time delay with no amplitude distortion and the
Hamming window is optimized to minimize the leakage of
the signal energy to other frequencies [24]. As shown in
Fig. 4, the frequency responses of a 100th order FIR type
digital filter can be used to detect responding frequencies
between 0.02 and 0.40 Hz. This filter is designed in Matlab
with the following parameters: 100th-order; pass-band
normalized frequency 0.04 6 wn 6 0.8; pass-band ripple
zero dB and Hamming window of length 101. The short-
period displacement components of the z-direction at the
three points are shown in Fig. 5. It can be seen that the
short-period contains the dynamic displacement of the
vibration signals with high noise. Based on previous stud-
ies, this occurred due to white noise with Multipath and
receiver errors [26–28]. Herein, the dynamic response of
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Fig. 2. GPS monitoring displacement of points: (a) C1, (b) C2 and (c) C3.

4286 M.T. Elnabwy et al. / Measurement 46 (2013) 4282–4292
the bridge oscillations contains a handrail vibration effects
which can be computed from the short-period using sec-
ond level filter. The short-period components were filtered
using a simple moving average filter over a 37 s period
using the following equation.

yðjÞ ¼ 1
k

Xj

j�k

xðjÞ ð3Þ

where; y(j) is the dynamic response of the structure at
epoch j and k is the size of moving average window (this
equates to 37 points at a data rate 1 Hz).

The dynamic displacement filtered from short-period
component is, also, shown in Fig. 5. It can be seen that
the errors of the GPS signals due to Multipath, receiver
and white noise are very high with this receiver type. Also,
some remnant noise still exists (Fig. 5b and f and Table 2)
where the excitation period is well marked and is well dis-
tinct from the periods before and after second filter. Olur-
opo et al. [13], Meng [27] and Roberts et al. [28] used
Choke ring antennas in order to mitigate some of the ef-
fects of multipath. In addition, the multi filter can elimi-
nate some of the errors as shown in Fig. 4 and this result
is cited in references [7,8,13,18,22,27,28]. The short-period
and the dynamic displacement of the bridge oscillations at
the three points are within +3 cm and +5 mm, respectively
(Fig. 5a, c and e). The results of this analysis reveal that the
dynamic behavior of the bridge is safe under the current
loads.
4.2. Spectral analysis of the dynamic displacement

In this part, the Fast Fourier Transformation (FFT) is
used to compute the low frequency effects of the dynamic
displacement of the bridge. The dynamic amplitude spec-
tral on the z-direction of the bridge monitored points is
shown in Fig. 5. Table 2 summarizes the first five dynamic
low-frequency modes response of the bridge. The multi fil-
tering of the GPS signals displacement allows the appear-
ance of the low-frequency modes of structures when
comparing it with previous studies [19,29]. From Table 2,
it can be seen that the five modes are appeared on the z-
direction at the three points and in the x and y-directions
at point C2 only. In addition, the values of the second mode
to the fifth mode are close at the three monitored points
whereas the first mode is different. Thus means that the
first mode in the three dimensions at the three points are
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due to the remaining noise of the GPS signals [26]. Also, the
low frequency calculated for the three monitored points of
the bridge are found to be approximately equal. The main
reason for this is due to the fact that the observation time
for the bridge (one hour) was lower than the time neces-
sary for the determination of low-frequency changes in
the bridge movements. However, it can be concluded that
the low-frequency movements of the bridge could not be
completed in the given observation time and the observa-
tion time should be longer than one hour. Based on the
current study, the bridge dynamic modes are safe as per
the presented frequencies.
5. System identification of bridge movement

In most practical applications, the system is not known
and has to be estimated from the available information.
This is called the identification problem. The identification
method depends on the model used [14,30]. The three
main choices in system identification are data, model class
and criterion. In addition, system identification often in-
volves several runs of the empirical cycle which consists
of the specification of the problem, the estimation of a
model by the criterion optimization, the validation of the
resulting model and possible adjustments that may follow
from this validation. In this section, the deformation iden-
tification for the z-direction of point C2 is studied and
model identification is created based on a single-output
movement of the bridge deck using Neural Network
Auto-Regressive (NNAR).

In general, the Auto-Regressive (AR) structure
[17,21,23,24] uses delayed inputs and outputs in order to
determine a prediction of the output at one (or more) sam-
ple interval(s) in the future. It is presented in the form gi-
ven by the following equation:

~yðtÞ ¼ ~f ½xðtÞ� ð4Þ

where ~yðtÞ represents the model prediction, x(t) represents
the regression vector of current and past inputs, outputs
and additive pre-filtered noise and f̂ ð:Þ is some function
of x(t).

Parameter estimation of the linear AR models followed
a standard minimization of the sum squared errors ap-
proach [21]. In the absence of noise, the model could be
determined directly from linear algebra from very few data
points, in a relatively trivial manner. In the AR structures, it
is assumed that the noise is equivalent to pre-filtered
white noise where the poles of the filter are identical to
those of the resulting AR model. Practically, this means
that iterations may be necessary to ensure that deviation
from this assumption does not have a deleterious effect
on the model predictions [17]. Assuming unit sampling
interval, there is an output quantity or signal y(t) = 1, 2,
3, . . ., n. Assuming that the signals are related by a linear
system AR model, this is can be presented in the following
form:

~yðtÞ þ yðtÞða1q�1 þ a2q�2 þ . . . anaq�naÞ ¼ eðtÞ ð5Þ

where a1, a2, . . . ,ana are constant coefficients which form
the parameters to be estimated; ~yðtÞ is the one-step-ahead
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Fig. 3. Smoothed GPS displacement signals of the monitored points.
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Fig. 4. The FIR digital band-pass filter of 100th order.
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prediction of y(t) the actual output; q�1, q�2,. . .q�na repre-
sent the delay operator, e(t) is the additive noise, na length
of the output regression vector.

In this paper, using Multilayer Perceptron (MLP) net-
work to estimate the parameters and predict model output
of Eq. (5). The MLP-networks considered here having only
one hidden layer and only hyperbolic tangent and linear
activation functions (f, F):

~yiðw; WÞ ¼ Fi

Xq

j¼0

Wijfj

Xm

l¼1

wjlzl þwj0

 !
þWi0

 !
ð6Þ

where, ~yiðw;WÞ is the prediction of the model as a function
of network weights; wj0 and Wi0 are the bias parameters; m
is the number of input units and q is the number of hidden
units. The function f(.) that is implemented in this paper is
tangent function and F(.) is linear function output. The
weight (alternatively by the matrices w and W) are the
adjustable parameters of the network; zl represents the
feature vector of length m, presented to the input of a feed
forward neural network. In this case, a feed-forward neural
network is used with an input layer of m nodes for n = 1. . .

m, one hidden layer and a single output layer. The input
layer includes the input variables. The hidden layer con-
sists of five hidden neurons or units placed in parallel. Each
neuron in the hidden layer performs a weighted summa-
tion of the weights which then passes an activation func-
tion. The output layer of the neural network is formed by
another weighted summation of the outputs of the neu-
rons in the hidden layer [21]. The purpose of the neural



(a) Short-period and dynamic displacement of point C1 (b) Amplitude spectrum of point C1 

(c) Short-period and dynamic displacement of point C2 (d) Amplitude spectrum of point C2 

(e) Short-period and dynamic displacement of point C3 (f) Amplitude spectrum of point C3 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time (Sec)

D
is

pl
ac

em
en

t (
m

)
short-peroid
Dynamic

0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

5

6
x 10-5

Frequency (HZ)

Am
pl

itu
de

0 500 1000 1500 2000 2500 3000 3500
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time (Sec)

D
is

pl
ac

em
en

t (
m

)

short-peroid
Dynamic

0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10-5

Frequency (HZ)

Am
pl

itu
de

0 500 1000 1500 2000 2500 3000
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time (Sec)

D
is

pl
ac

em
en

t (
m

)

short-peroid
Dynamic

0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

5

6

7

8

9
x 10-5

Frequency (HZ)

Am
pl

itu
de

Fig. 5. Short-period with dynamic displacement and amplitude spectrum in the z-direction.
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network learning process is to apply corrective adjust-
ments to the synaptic weight of neuron in order to make
the output to come closer to the desired response in a
step-by-step manner to satisfy the minimum loss function
and the Akaike’s Final Prediction Error (FPE). Finally, the
following neural network regression model is proposed:



Table 2
The first five�frequency modes shape of the bridge movement (Hz).

Point Frequency modes x-
Direction

y-
Direction

z-
Direction

C1 f1 0.0156 0.0137 0.0146
f2 0.0381 0.0381 0.0381
f3 0.0654 0.0664 0.0713
f4 0.0957 0.0967 0.0967
f5 – – 0.123

C2 f1 0.0186 0.0166 0.0166
f2 0.0391 0.0391 0.0381
f3 0.0674 0.0654 0.0684
f4 0.0967 0.0967 0.0967
f5 0.125 0.1211 0.1182

C3 f1 0.0176 0.0127 0.0137
f2 0.0391 0.0391 0.0391
f3 0.0664 0.0693 0.0693
f4 0.0947 0.0918 0.0918
f5 – – 0.1221

Table 3
Parameters of NNAR models of the deck displacements in z-direction. For
point C2.

Model k0 FPE (e�8)

NNAR(5) 1.5 e�5 4.7
NNAR(10) 1.2 e�5 4.6
NNAR(15) 1.9 e�6 4.5
NNAR(20) 1.5 e�5 4.5
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~yi ¼
XP

i¼1

ðuiyi�1 þ bÞwkj ð7Þ

where ui are weights that defined or determined;
i = 1,2. . .p is the number of lags as in the case of AR models,
wkj are the optimized weights from hidden to input layer
and b is the bias which is a vector of ones as in the case
of the ordinary least squares method. In addition, the fol-
lowing criteria can be used to evaluate and compare the
quality of the model. The first: is the value of the loss func-
tion defined as:
(a) AR(15) model with original signal
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Fig. 6. AR(15) model identification and
k0 ¼
1
n

Xn

t¼1

e2ðtÞ ð8Þ

where e(t) is an error value between the observed and the
predicted model values (e(t) = y(t)�~yðtÞ). The second crite-
rion includes penalties for model complexity similar to the
FPE criterion which is defined as:

FPE ¼ k0 1þ 2k
n� k

� �
ð9Þ

where k0 is the loss function and k is the number of param-
eters in the model. The FPE represents a balance between
the number of parameters and the explained variation.
The third quality criterion for the model is provided by
the Auto-Correlation Function (ACF) of the errors. The lag
(m) Auto-Correlation (AC) is defined as:

kðmÞ ¼
1
n

Xn

t¼1

eðt �mÞeðtÞ ð10Þ

Herein, the error is white noise; the AC kðmÞ is zero
when k is nonzero. A large AC when k is nonzero indicates
that the error is not zero-mean white noise and also im-
plies that the model structure is not relevant to the model
system or that there might be a need to increase the model
order. In real applications, AC kðmÞ cannot be zero when m
is nonzero because of limited length of observation points.
If the value of AC falls within 95% of the confidence inter-
val, the AC value is insignificant and this value is consid-
ered to be equal to zero [21].

The results of this model are shown in Table 3 and
Fig. 6. The model evaluation criteria; loss function kð0Þ
and FPE values were calculated. The minimum kð0Þ and
FPE values were selected as the proper model to express
the deck deflection (Table 3). The ACF and 95% confidence
intervals of the residuals for the selected NNAR(na) model
for z-direction are presented in Fig. 6b. In the definition of
the Talkha bridge movements with NNAR model, time lags
are taken into account as well as the previous input and
output quantities. This type of model reflects the dynamic
system as ‘‘systems that store energy and release it over a
(b) ACF and 95% confidence AR(15) model 
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time span’’. However, the bridge movement was modeled
with NNAR model shown in Table 3 and Fig. 6a which have
the capability of modeling dynamic response of the studied
bridge. The results of the multiple regression analysis facil-
itated the definition of single output AR models of different
orders and time lags. From Table 3, it can be concluded that
the NNAR(15) model is suitable to predict the deck deflec-
tion. The movement output of the NNAR(15) model and fil-
ter observations of the bridge deck deflection at point C2 is
presented in Fig. 5a. It is clearly seen that the model output
is in conformity with the observations filter. ACF and 95%
confidence intervals of the NNAR(15) model residuals is
also presented in Fig. 6b. It can be concluded that no loss
of information was observed since the residuals of this
model stayed within the confidence interval of the auto-
correlation function. The autoregressive models were, also,
tried and it was concluded that they were harmonious
with z-movement mode of different degrees as given in Ta-
ble 3. Accordingly, the NNAR(15) model reflects the behav-
ior of the bridge deck deflection at point C2 under effective
loads and can be used to present more accurately move-
ment of the bridge without any loss of information.
6. Conclusions

Talkha highway steel bridge is one of the two oldest
steel bridges in Mansoura city. With the increasing of the
traffic between Talkha and Mansoura cities, it becomes
necessary to monitor this bridge periodically. In this study,
RTK-GPS (1 Hz) is used to monitor and model the move-
ment of the bridge deck. From this study, it could be con-
cluded that.

The three monitoring points are moved in three direc-
tions and the deformation in the z-direction is high at point
C2. So, it is recommended to take the necessary precau-
tions of the bridge deck at point C2. In addition, the Multi-
path error is still one of the major sources of error in GPS
surveying. It is also clear that some synthesis of this data
is needed to make it meaningful. At first glance, the data
provides no evidence of dynamic displacement due to the
dominating ambient noise.

The moving average filter is suitable to smooth the high
noise and errors of GPS observation signals; whereas the
accuracy of the smoothed signals is increased by about
15% than that of the original signals. After signal smooth-
ing, the displacement amplitude remains high at point
C2. The observed deformation changes in the lateral and
the longitudinal directions are almost the same at points
C1 and C2; whereas at point C3, the movements of three
directions are not the same. In addition, the movements
of point C3 reveal the movement of cantilever handrail of
the bridge. The temperature changes and wind speed at
the time of the study were about 3 �C and 18 km/h which
seems to be ineffective on the bridge movement; so the
effective loads on the deformation of the bridge is the traf-
fic loads.

The multi filter and FIR with moving average filter of
short-period can be used to reveal the dynamic displace-
ment of the bridge deck movement. The errors of the GPS
signals due to Multipath, receiver and white noise are very
high with receiver use. Also, the multi filter can be used to
eliminate some of errors. The FFT is used to compute the
frequency of the dynamic displacement of the bridge. The
summarized first five dynamic frequency modes response
of the bridge are presented. The multi filtering of the GPS
signals displacement is used to show the frequency modes
of the structure. In addition, the computed values from the
second mode to the fifth modes are close at the three mon-
itored points whereas the first mode is different due to the
remaining noise of the GPS signals. In addition; it can be
seen that the low-frequency movements of the bridge
could not be completed in the given observation time
and the observation time should be longer than one hour.
The five dynamic modes of the bridge are safe based on
these observations.

To identify the output movement of this bridge, a NNAR
model is used. From the statistical analysis of the parame-
ters and output residuals, it can be seen that the NNAR(15)
model is suitable to predict the deck deflections. The
movement output of the NNAR(15) is very conformed with
the filter observations. ACF and 95% confidence intervals of
the model residuals of NNAR(15) shows that no loss of
information is observed since the residuals of this model
stayed within confidence interval of the auto-correlation
function. Herein, we can conclude that the NNAR(15) mod-
el reflects the behavior of the bridge deck deflection at
point C2.
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