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In this paper, RTK-GPS system was used for movement data collection. Two identification
models namely; Multi input–single output (MISO) robust fit regression and Neural Net-
work Auto-Regression Moving Average with eXogenous input (NNARMAX) models were
used for the identification of these data. The analysis of test results indicate that: (1) the
NNARMAX [4411] and [5415] models defined by taking into account the results of robust
regression analysis estimate structural movements more accurately than the NNARMAX
[0100] model, and (2) the robust fit regression models have good capacities for mapping
relationship of applied loads effects factors and displacements of tower. However, temper-
ature and humidity effects on the entire modal shapes are insignificant and (3) the traffic
loads are the main factor affects tower bridge displacement.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Global Positioning System (GPS) monitoring has been
interested in a sensing technology of the structural re-
sponses to monitor the condition of a structure because ba-
sic data are obtained by field measurements. Also, GPS can
be used in the displacement monitoring of large structures
directly, whereas the GPS can be measured the three
dimensional coordinates of the monitoring points [1,2].

Bridges are one of the important infrastructures in the
national economy, which are considered the crucial links
in transport network. Many bridge failures caused by nor-
mal or abnormal loadings. Monitoring the bridge deforma-
tion is the vital task in bridge maintenance and
management. The process of implementing a damage iden-
tification strategy for aerospace, civil and mechanical engi-
neering infrastructure is referred to as structural health
monitoring (SHM).
Dynamic measurements of several high-rise building,
suspension bridges and offshore structures were under-
taken and used in system identification [3,4]. During this
period the interest in using parametric time domain mod-
els for system identification of structural systems in-
creased. In civil engineering, the use of multivariate time
domain models has especially attracted the attention, see
[5,6–11].

The system models can be simulating the effects of the
physical laws pertaining to the system when available with
the help of input–output quantities [12,13]. In addition,
when there is little information on the physical laws per-
taining to the system or when the system is too complex,
identification methods such as parametric identification
are used to define the model of the system. In this case,
preliminary assumptions are made on the order of com-
plexity, input and output parameters of the system. The
model is then expressed as the relationship between the
selected system inputs and outputs [10,14,15].

However, the focus of this research is: (1) To examine
the RTK-GPS technique in deformation monitoring of the
bridge tower. (2) To develop parametric models to assess
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the dynamic behavior of the Yonghe tower bridge utilizing
RTK-GPS measurements. (3) To transfer functions express
the relationship between the displacements of the south-
ern tower in two directions (X and Y) and the variations
of temperature, humidity, wind speed and number of vehi-
cles on the bridge have been defined with the use of para-
metric MISO NNARMAX and robust fit regression models.
(4) To find out the reasons affect tower bridge
displacements.
2. Bridge description, GPS information and data
collection

The Yonghe bridge links the two cities in China (Tianjin
and Hangu). This bridge was constructed by pre-stressed
concrete in December, 1987, closed in October 2006 be-
cause of cracks over mid-span and opened in August
2007 after rehabilitation. The Yonghe bridge has four lanes
with the total length of 510.00 m, and main span of the
bridge is 260.00 m (Fig. 1). For safety assurance, a sophisti-
cated long-term SHM system has been designed and
implemented by the Research Center of Structural Health
Monitoring and Control of Harbin Institute of Technology
(HIT) to monitor loads and response of the bridge. The
SHM system for the Yonghe bridge comprises a data acqui-
sition and processing system with a total of approximate
179 sensors, including accelerometers, strain gauges, dis-
placement transducers, anemometers, temperature sen-
sors, weight-in-motion sensors and three GPS’s (Figs. 1
and 2b). The GPS’s were permanently installed on the
two towers tops of the bridge and bank near the bridge.
The GPS observations are real time kinematic (RTK) with
differential GPS (DGPS) system. The receivers are LEICA
GMX902 antenna (24 channel L1/L2 code and phase, 20
HZ data rate, SmartTrack technology for high precession,
accuracy of 1 mm + 0.5 ppm (horz.); 2 mm + 1 ppm (ver.))
and pre-processed data using the software GPS Spider
2.1. The coordinate components for each observation
epoch are derived. Hence, the time sequences of positions
for each station located on the bridge were generated.
Two-rover observation stations were considered along
the bridge in two tower of bridge, every rover station is ob-
served for 24 h.

A local Bridge Coordinate System (BCS) was chosen for
the analysis and evaluation procedures of the observations
performed [11,18]. In this coordinate system, the Y-axis
shows the traffic direction (span direction), the X-axis
shows the lateral direction and the Z-axis gives the vertical
direction of the bridge (Fig. 2a). It was assumed that this
GPS

Fig. 1. Elevation and SHM sy
coordinate system would be beneficial for the evaluation
of performed observations, description of the movement
of the structure and allow a better interpretation of the
analysis results as it is related to the movement directions
of the structure.
3. Methods

3.1. GPS data pr-processing

During the complex noises in the GPS data, so to analyz-
ing and identified the signals, a pre-processing should be
done first [16,17]. That is to delete noises and extract use-
ful signals. Wavelet analysis is a strong tool to eliminate
noises according to the noise characteristics. There are
two methods of eliminating noises. First one is a compul-
sive that the high frequency coefficients are processed to
be zero in the decomposed signal constructions of wavelet
analysis, and some scale or different scale signal compo-
nents with these coefficients in the data time series are
all eliminated. Then, the signals are reconstructed to ana-
lyze their spectrum features. Another method is a thresh-
old eliminating noise processing that a threshold value is
defined depending on experience, and used to process
the high frequency coefficients of wavelet analysis, i.e.
the coefficients greater than the threshold are reserved,
and the coefficients less than it are processed to be zero
[16]. In this research used de-noising process of a one-
dimensional signal, which depended on the wavelet analy-
sis. In this process used Daubechies40 wavelet at level 16
to decompose the original signal, then can obtain approxi-
mation coefficient (low frequency parts of original signal)
and detail coefficients (high frequency parts of original sig-
nal), after that, reconstruct the signal using the approxima-
tion coefficient. For comparing the results after wavelet
analysis with that of the former processing method with-
out wavelet eliminating noises are present. This processing
was implemented in MATLAB [19]. After that, the best
straight-line fit is removed from the data before identifica-
tion. This treatment enables the removal of the DC-compo-
nents that can badly influence the identification results
[17].

3.2. Identification models

In most practical applications the system is not known
and has to be estimated from the available information.
This is called the identification problem. The identification
method will depend on the intended model use. The three
GPS

GPS

stem of Yonghe bridge.



Fig. 2. The (a) global and local coordinate system and (b) layout of GPS positions of the Yonghe bridge.

Fig. 3. ARMAX model structure.
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main choices in system identification are data, modal class
and criterion. In addition, system identification often in-
volves several runs of the empirical cycle which consists
of the specification of the problem, the estimation of a
model by optimization of the criterion, the validation of
the resulting model, and possible adjustments that may
follow from this validation. However, in this section cre-
ated two models identification between the multi-input
data, temperature, wind, traffic, and humidity and single-
output movement of tower in X and Y-directions. Using ro-
bust fitted regression and NNARMAX models as follow:

3.2.1. Robust fitted regression
The most common general method of robust regression

is, introduced by [1]. Consider the fitted model:

y¼ aþ b1xi1 þ b2xi2 þ . . . . . .þ bkxik þ ei ði¼ 1;2; . . . . . . ;nÞ
ð1Þ

Where yi are the observed output quantities or signals, xi1,
xi2, . . .. . . xik are the observed input quantities or signals, a,
b1, b2, . . .. . . bk are unknown parameters, the number of un-
knowns u = k + 1, k is the number of input quantities, n is
the number of observations and ei is the random error with
E(ei) = 0; var(ei) = r2. The unknowns form a vector of un-
knowns, U, i.e. UT = [a, b1, . . .. . ., bk]T. Unknown parameters
X in Eq. (2) can be estimated and tested for statistical sig-
nificance using the least squares method. The estimation
process should be repeated after removing the insignifi-
cant parameters from the model (1).

U ¼ ðAT PAÞ
�1

AT Py ð2Þ

V ¼ y� AU ð3Þ

Where A is the design matrix, y is the vector of the n ob-
served output quantities, V is the vector of the n residuals
(VT = [v1, . . .. . ., vn]T) and P is the weight matrix (P = diag
(w1, . . .. . ., wn)), wi is the chosen weight function in Eq. (4).

It is usually assumed that the response errors follow a
normal distribution, and that extreme values are rare. Still,
extreme values called outliers do occur. The main disad-
vantage of Least Square (LS) fitting is its sensitivity to out-
liers. Outliers have a large influence on the fit because
squaring the residuals magnifies the effects of these ex-
treme observation points. Bi-square weighted robust pre-
dictors were used in the regression analysis to minimize
the influence of outliers. Bi-square weights; minimize a
weighted sum of squares, where the weight given to each
observation point depends on how far the point is from
the fitted line. Points near the line get full weight. Points
farther from the line get a reduced weight. Robust fitting
with bi-square weights uses an iteratively re weighted LS
algorithm, and follow the weight function.

wi ¼
1� ðv i

r Þ
2

h i2
forjv ij 6 r

0 forjv ij > r

8>><
>>:

ðr ¼ 4:685Þ ð4Þ

Solving the robust model (1) is a weighted least-squares
problem, minimizing

P
w2

i v2
i . The weights, however, de-

pend upon the residuals; the residuals depend upon the
estimated coefficients, and the estimated coefficients de-
pend upon the weights. An iterative solution is therefore
required:

1. Select initial estimates U, such as the LS estimates. 2.
At each iteration t, calculate residuals ei(t�1) and associ-
ated weights from Eq. (4) from the previous iteration. 3.
Solve for new weighted-least-squares estimates using
Eqs. (1) and (4). The procedure is completed when the fit
converges. Otherwise, next iteration of the fitting proce-
dure should be performed by returning to the first step
[19].

3.2.2. The NNARMAX model
The general input–output model structure (Fig. 3) used

for modeling of nonlinear and time invariant dynamic
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systems excited by deterministic input is Auto-Regressive
Moving Average with eXternal input (ARMAX), assuming
unit sampling interval, there are an input and output quan-
tity or signals u(t) and y(t) respectively, t = 1, 2, . . .. . . n. the
input–output relationship can be written as [21]:

Aðq�1; hÞyðtÞ ¼ Gðq�1; hÞuðtÞ þ Hðq�1; hÞeðtÞ ð5Þ

where A(q, h), G(q, h), H(q, h), h are the parameter vector,
y(t) the output at time t (t = 1, 2, . . .. . .), u(t) the input
and e(t) the stochastic input e(t) are innovations, which is
an equivalent process of the noise and prediction error.

To identify a neural network ARMAX (NNARAX) model,
the nonlinear model is determines as follow:

ŷðtjhÞ ¼ gðyðt 1Þ; . . . . . . ; yðt naÞ;uðt nkÞ; . . . . . . ; uðt nb nk

þ 1Þ; eðt 1Þ; . . . ; eðt ncÞÞ
ð6Þ

In the statements presented above, ŷðtjhÞ is the output
neural network (prediction vector), na is the past output
used for determining the prediction, nb is the past input,
nk is the time delay, and nc is the past residuals.

Herein, the Multilayer perceptron (MLP) network con-
sidered here is furthermore confidence to those having
only one hidden layer and only hyperbolic tangent and lin-
ear activation function (f, F):

ŷiðw;WÞ ¼ Fi

Xq

j¼0
Wijfj

Xm

l¼1
wjlzl þwj0

� �
þWi0

� �
ð7Þ

Here, wj0 and Wi0 are the bias parameters; m is the number
of input units; and q is the number of hidden units. The
function f(.) that is implemented in this paper is tangent
function and F(.) is linear function output. The weight
(alternatively by the matrices w and W) are the adjustable
parameters of the network, and they are determined from
through the process called training. The training data are a
set of input u(t), and corresponding desired outputs y(t).
Specify the training set by [22]:

zn ¼ ½uðtÞ; yðtÞ� t ¼ 1;2; . . . . . . ;n ð8Þ

The objective of training is then to determine a mapping
from the set of training data to the set of possible weights,
so that the networks will predictions ŷðtÞ; which are close
to the true. The prediction error approach is based on the
introduction of measure of closeness in terms of a mean
of mean square error criterion [8,21]:

Vnðh; znÞ ¼
1

2n

Xn

t¼1
yðtÞ � ŷðtjhÞ½ �T yðtÞ � ŷðtjhÞ½ � ð9Þ

The weights are then found:

ĥ ¼ arg min Vnðh; znÞ ð10Þ

The NN model for ARMAX consists of three layers, i.e.
one input layer (y, u, e), one hidden layers and one output
layer ŷ. The identification method for the NNARMAX model
is the Levenberg–Marquardt method, which provides a
numerical solution to the problem of minimizing a func-
tion, generally nonlinear, over a space of parameters of
the model. These minimization problems arise especially
in least squares curve fitting and nonlinear programming.
In addition, it does not only provide an estimate of the
NNARMAX model parameters, but also, of the covariance
matrix of the parameters. The square roots of the diagonal
elements of this matrix are estimates of the standard
deviations of individual model parameters. With this
covariance matrix, it is also possible to estimate the
standard deviations of a new observation. The standard
deviations can be used to establish confidence intervals
around the predicted values [8]. If a new observation lies
outside the confidence intervals on the prediction, it is
likely that the system is damaged [20].

The following criteria can be used to assess and com-
pare the quality of models used. The first criterion: Model
parameters have to be tested whether or not the deviations
at the ‘‘0’’ expected values are significant. In order to do
this, t̂ test values can be calculated as follows: (t̂ = param-
eter/parameter standard deviation); the testing values are
compared with pre-determined 1�a confidence levels
and tf,1�a/2 confidence limit of t distribution dependent
on the f order of freedom. As results of the test, insignifi-
cant parameters are excluded from the function and this
procedure is continued till all parameters become signifi-
cant [23,24].

The second criterion: is the value of the loss function,
defined as:

k0 ¼
1
n

Xn

t¼1
e2ðtÞ ð11Þ

where e(t) is a residual of the observation and the pre-
dicted model (e(t) = y(t)–ŷðtÞ).

The third criterion includes penalties for model com-
plexity similar to the Akaike’s Final Prediction Error (FPE)
criterion which is defined as:

FPE ¼ k0 1þ 2k
n� k

� �
ð12Þ

k0 is the loss function and k defines the number of
parameters in the model. The FPE represents a balance be-
tween the number of parameters and the explained
variation.

The fourth quality criterion for a model is provided by
the Auto-Correlation Function (ACF) of the residuals. If
the value of AC falls within 95% of the confidence interval,
the AC value is insignificant and this value is considered to
be equal to zero [21,22]. The final quality criterion for a
prediction model is R-square; the R-square represents a
balance between the old and the predicted data variation.
4. Results and discussions

4.1. Displacements of the tower

Three days continuous measurement of GPS, tempera-
ture, humidity, number of vehicle and wind velocity,
which were from 0:00 of January 10, 2008 to 24:00 of
January 12, 2008, are used in this study. The averages
of all observations in the 20-min segment are plotted
in Figs. 4 and 5. The original displacement history mea-
surements in X and Y directions (BCS) on the tower were
extracted using wavelet de-noising process. The trend
components in the series were investigated from the
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Fig. 4. Mean 20-min displacement of de-noised signals for southern tower in (a) X and (b) Y-directions.
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Fig. 5. Variation in (a) temperature, (b) humidity, (c) number of vehicle, and (d) wind speed during the observation.
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obtained data within de-noising process analysis. The
trend component in the series represents the long-term
changes related to time and it can be defined by a poly-
nomial function in the time domain. From Fig. 4, it was
found that the de-noised signal is high correlation with
the original signal; it means that this method is suitable
to remove the observation GPS noises. In addition, it can
be seen that the maximum and minimum residuals be-
tween the original and de-noised signals are 11.86 and
�3.63 cm, respectively. This indicated that the multipath
errors of GPS signals are high. This error due to the base
station is near to building, which contains the process
monitoring system.

As well as, it can be seen that the de-noising processing
caused an increased in the signals accuracy by 24%. The re-
sults have shown that noises can effectively be removed
and the useful signals can be extracted from original sig-
nals with wavelet analysis as Fig. 4.
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From Fig. 4, it can be seen that the X and Y-directions
displacement of the tower show increase from starting
the measurements at 0.00 (January, 10, 2008) to 10.00
(1.73, 1.60 cm) then decrease at 1.00 (January, 11, 2008)
(�1.41,-1.04 cm). The same cycles were shows in another
days 11 and 12 January 2008. In addition the maximum
displacement becomes significant at 11.00 (January, 11,
2008) in X and Y-directions, 2.44, 1.76 cm, respectively,
whereas, the minimum displacements are �1.66 and
�1.50 cm in X and Y-directions respectively. Accordingly,
it can be assumed that the tower displacement in two
directions change in a similar manner. However, it can be
concluded that the correlation between two directions
are strongly influenced. It can be seen from Fig. 5 that
the temperature increased and decreased random with
the time, whereas, it can be show the maximum and min-
imum temperature are 0.80 �C and �8.76 �C at 2.00 and
20.00 (January, 12, 2008), respectively (Fig. 5a). In addition,
the humidity can be assumed constant with the time
observations, whereas shows increased at (18.00–20.00)
in January, 10 (Fig. 5b). On the other hand, wind speed de-
creased from the starting to 11.00 (January, 11) then in-
creased significantly till 12.00 January, 12 and decreased
afterwards, as shown in Fig. 5d. Wind direction was be-
tween South East and North West during the observation
period (150–350�) and mostly direction is South West
(250�). The vehicle number, as shown in Fig. 5c, increased
and decreased significantly with the displacement of tower
in X and Y-directions. In addition, the time intervals for
changes in the number of vehicles also coincided with
the time intervals for the changes in the displacement X
and Y-directions of the tower. However, it can be con-
cluded that the main factor of displacements in X and Y-
directions are the number of vehicle. Also, the wind may
be affects on the displacement of two directions in the last
day of observations.
4.2. Models identification results

Yonghe bridge will hereafter be referred to as ‘‘the sys-
tem’’ in the identification study and the tower will be con-
sidered as the components of the system. Temperature (T),
the number of vehicle on the bridge (V), the wind speed
(W) and humidity (H) were chosen as the input quantities
of the input signal, and the displacements in the X and Y-
directions were chosen as the output quantities of the sys-
tem. Robust fit regression and NNARMAX models were
considered in the development of the transfer functions
describing the relationship between the input and output
quantities observed at tower. Transfer functions consid-
ered in expressing the relationship between the observed
Fig. 6. Input–output quantities and models considered in the deve
input and output quantities of the tower are illustrated
in Fig. 6.

The bridge tower models have to be accurate and reli-
able and this depends on the accuracy and reliability of
the observations used to define the model. The accuracy
of the observations was checked with the instruments
used. The accuracy of the instruments used can be shows
in Section 2. The observations needed to be checked for
outliers, where they increase the difficulty of defining the
inherently complex NNARMAX models. So, the existence
of outliers in the X and Y-directions were investigated in
the definition phase of the robust fit regression model.
The trend of the displacements recorded in the X and Y-
directions were calculated in the initial phase of the model
definition. Afterwards, the unknown parameters UT of the
robust regression model and the covariance matrices of
these parameters were predicted using LS method. How-
ever, due to the sensitivity of the LS method to incompat-
ible measurements, the existence of outliers was checked
with bi-square weighted robust predictors. As a result of
the investigation, wi bi-square weights were found to be
close, or near to ‘‘1’’ which showed that there were no out-
liers in the observations for the X and Y-directions. There-
fore, model parameters for the tower displacements for X
and Y-directions and their respective covariance matrices
were predicted with bi-square weighted robust predictors.
The results of this model were shown in Table 1 and Fig. 7.
In addition, the model evaluation criteria; loss function k0,
FPE and R-square values were calculated. The statistical
significance of the model coefficients presented in Table 1
were tested by comparing them with the confidence
boundary of the t-distribution related to the degree of free-
dom ‘‘f’’ at a confidence level of 95%, tf,1�a/2. Test results re-
vealed that the coefficient pertaining to the temperature
and humidity in the model 1 representing the displace-
ments of the tower in the X and Y-directions were statisti-
cally insignificant since tT,H < 1.96. Hence, the effect of
temperature and humidity on the tower displacements in
the X and Y-directions were ignored. Therefore, the models,
model 2, used for calculating the tower displacements in
the X and Y-direction were defined with respect to the vari-
ations in wind speed and the number of vehicles on the
bridge (Table 1).

It can be seen in Table 1 that the k0, FPE and R-square
values of the models describing the displacements of the
tower in the two directions are nearly the same. This con-
firms that temperature and humidity has a negligible effect
on the tower displacements in the two directions. As a re-
sult, the models used for calculating the tower displace-
ments in the two directions were defined with respect to
the number of vehicles on the bridge (V) and wind speed
lopment of transfer functions for the Yonghe bridge tower.



Table 1
Robust fit model of the displacement of tower in X and Y directions with respect to the number of vehicle (V), wind speed (W), temperature (T), and humidity
(H).

Model Dis = b0 + b1 V + b2 W + b3T + b4H t (V,W,T,H) k0 FPE R2

1 X = �0.0168 + 0.00012V + 0.0018W�6.4e�5T�0.0010H 18.08, 5.35, �0.31, �2.80 2.6e�5 2.7e�5 0.63
Y = �0.0112 + 9.8e�5V + 0.0011W + 0.00016T�0.00069H 17.45, 3.89, 0.93, �2.26 1.7e�5 1.8e�5 0.62

2 X = �0.0136 + 0.00012V + 0.0019W 19.43, 5.85 2.6e�5 2.7e�5 0.62
Y = �0.0099 + 9.5e�5V + 0.0012W 18.33, 4.45 1.7e�5 1.8e�5 0.61
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Fig. 7. Observation displacement and output produced by robust fit regression of southern tower in (a) X and (b) Y-directions.
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change (W) (model 2). Robust predictors were used to
check the existence of possible outliers in the observations
and to identify the significant input parameters in the def-
inition of multiple regression models for the X and Y dis-
placements. In this type of models, there are no time lag
between the inputs and outputs. Therefore, tower re-
sponds synchronously to the input quantity which is typi-
cal for static systems. Thus, it would not be incorrect to
rephrase the robust multiple regression models as ‘‘static’’
robust multiple regression models. Furthermore, the val-
ues of the previous system inputs and outputs are not ta-
ken into account in this model. Static robust multiple
regression models derived in this manner can be expressed
with the na; nb; nc and nk parameters of the NNARMAX
model presented in Eqs. (5) and (6). Static robust multiple
regression models used to define the displacements of the
tower in this manner can be expressed with the NNARMAX
[0100] model of [na; nb; nc; nk] = [0; 1; 0; 0]. In this situa-
tion, robust static multiple regression models used to de-
fine the X and Y displacements of the tower have
exogenous orders of nb = [11], the past error nc = [00] and
time lags of nk = [00] for auto-regressive order of na = 0
and the number of input variables of nu = 2 (number of
vehicles and wind speed).

NNARMAX models with the capability of taking into ac-
count the previous input–output and stochastic quantities
and the time lag of the system were used to define the
transfer functions of the tower displacements. These mod-
els can be quite difficult to set up when there is more than
one input quantity. Insignificant input parameters and out-
liers in the observations significantly increase the difficulty
of setting up the NNARMAX models. For this reason, results
of the robust fit regression analysis were used to facilitate
the definition of NNARMAX models of the tower displace-
ments in Eq. (5). A number of NNARMAX models with dif-
ferent orders of complexity and time lags were considered
in the selection of the proper order of complexity and time
lag. Parameters of these models were predicted with the
least square method. NNARMAX models with the mini-
mum k0, FPE and maximum R-square values were selected
as the proper models to express the tower displacements
(Table 2).

Each of the models presented in Table 2 have different
orders and time lags. In the selection process for the proper
model for the tower, the residuals predictions of the mod-
els were tested to see whether they are within the ACF
confidence interval. It was seen that the model corrections
are within the ACF kðmÞ (�u1�a/2 srm < kðmÞ < u1+a/2 srm)
confidence interval (Fig. 9). ACF (for m > 0) has a normal
distribution with an average value of zero and a standard
deviation of srm � 1=

ffiffiffi
n
p
� a assumed significance level,

u1�a/2 is the standard normal variable in the 1�a/2 proba-
bility. The ACF confidence interval for a = 0.05 is
�1:96=

ffiffiffi
n
p

. Here, n is the number of observations.
The displacement outputs of the NNARMAX models

(Table 2) and the field observations of the tower displace-
ments are presented in Fig. 8. It can be seen from these fig-
ures that the model outputs are very conformity with the
field observations. ACF and 95% confidence intervals of
the model residuals of NNARMAX describing the X and Y
displacements of the towers are also presented in Fig. 9.

In the definition of the tower displacements of the Yon-
ghe bridge with NNARMAX models, time lags were taken
into account as well as the previous input and output
quantities. These types of models reflect the definition of
dynamic systems as ‘‘systems that store energy and release



Table 2
Parameters of NNARMAX models of the towers displacements in the X and Y-directions.

Displacement direction NNARMAX [na, nb, nc, nk] k0 FPE R2

X NNARMAX [4, 4 2, 1 2, 1 4] 1.83e�6 2.93e�6 0.90
Y NNARMAX [5, 4 1, 1 1, 5 3] 1.67e�6 2.59e�6 0.86
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Fig. 8. Displacements output of the NNARMAX models for the tower displacements.
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Fig. 9. ACF and 95% confidence intervals of NNARMAX models describing the displacements of the tower.
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it over a time span’’. Hence, the tower displacements of the
bridge were modeled with NNARMAX models shown in
Table 2 which have the capability of modeling dynamic
response [10].

The ACF and 95% confidence intervals of the residuals
for the NNARMAX models for two directions, which
presented in Table 2 and the static robust multiple regres-
sion NNARMAX [0100] models used to describe to the dis-
placements of the tower in the two directions. There were
a loss of information in the static models describing the
tower displacements in the two directions which can be
calculated as the residuals of ACF of static NNARMAX
[0100] models for the X and Y tower displacements were
out of the confidence interval �1:96=

ffiffiffi
n
p

for a = 0.05.
Residuals for the NNARMAX [4411] and [5415] models,
however, remained in the boundaries of the ACF
confidence interval and there was no loss of information
in the description of the X and Y tower displacements as
can be seen in Fig. 9. The fact that, k0, FPE and R-square
values (Table 1) of the robust fit regression models are
higher and less, respectively, than those of the NNARMAX
models (Table 2), confirms the selection of NNARMAX
for modeling the displacements response of the bridge
towers.

5. Conclusions

In this study, we propose and analyze a MISO identifica-
tion models, which are robust fit multiple regression and
neural network ARMAX models. Based on this limited
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study, the analysis of the results leads to the following
findings:

1. The proposed surveying techniques using RTK-GPS
can provide valuable deformation data of the struc-
tural members.

2. GPS signals noise contains complex errors, and the
signals accuracy obtained from the wavelet analy-
sis (de-noised process) increased by 24%. So, it is
recommended to use wavelet analysis in the de-
noised of GPS signals.

3. The robust fit regression models have good capaci-
ties for mapping relationship of applied loads
effects factors and displacements of tower. How-
ever, temperature and humidity effects on the
entire modal shapes are insignificant.

4. The robust fit multiple regression results facilitated
the definition of NNARMAX models of different
orders and time lags.

5. It has been noted that the robust fit multiple
regressions or NNARMAX [0100] behave in a static
manner which can lead to a loss of information to
be used in calculating the tower displacements.

6. NNARMAX [4411] and [5415] models were found
to be suitable for obtaining the tower displace-
ments. In addition, no loss of information was
observed since the residuals of these models stayed
within the confidence intervals of the auto-correla-
tion functions.

7. The predicted models reflect the behavior of the
bridge tower displacements were a general
increase in the number of vehicle on the bridge,
however the traffic loads are the main factor dis-
placements of tower.
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