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The movement of bridge deck bearings plays a significant role in the safety of bridges. Real time

kinematic global positioning system (GPS) continuous health monitoring using relative

deformations was carried out on a long span Zhujiang Huangpu Bridge. The neural network

aided adaptive filter is used to predict and adjust the GPS monitoring data. The statistical

moments in time and frequency domains were used to analyse the movement of the bridge deck.

The results indicate that (1) the proposed neural network with the adaptive filter model can be

used to de-noise the GPS health monitoring signals, (2) the GPS is highly sensitive for bridge deck

movements, (3) the statistical moments can be used to detect the movements and errors of the

GPS observations, and (4) the bridge is very safe under different loads.
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Introduction
Global positioning system (GPS) is being actively
applied to measuring static and dynamic displacement
responses of large civil engineering structures under
different loads [30], [11], [5], [4], [12], [21]. The
measurement principle works worldwide, continuously
and under all meteorological conditions, and therefore
holds promise as a way to monitor the movement of
structures [15]. The structural monitoring system is
responsible for the reliable collection of response data
measured using GPS with/or other sensors installed in
the structure. The structural health monitoring (SHM) is
a process of measuring the deformation and detection
the damage of structures. The goal of SHM is to
improve the safety and reliability of aerospace, civil, and
mechanical infrastructure by detecting deformation and
damage before it reaches a critical state [7], [22].

Traditional real time kinematic (RTK) GPS position-
ing adopts single reference station, and was often
adversely affected by systematic errors such as iono-
spheric and tropospheric delay [30]. Yeh et al. concluded
that the rover station must be located within ~10 km of
the reference station to achieve centimetre level accuracy
[30]. Medium range (~50 km) RTK GPS positioning has
been proven to be feasible for highly precise applications
[30]. With the development of RTK GPS receiver and
antenna technology, GPS is currently used in areas
where high measurement precision is required within

high dynamic environment [11], [12], [10], [24]. In
addition, continuous GPS measurements have been
used now nearly 15 years for estimation of crustal
deformation [1]. On the other hand, Been et al. and
others summarised the GPS technology in the SHM [15],
[2], [14], [25], [8].

There are numerous sources of errors that affect the
GPS measurements. It is known that most of GPS errors
were removed with using differential GPS technique
except multipath errors. In addition, without the correc-
tion available from a dual-frequency measurement the
ionosphere can produce the largest of these errors [3], [20].
Better measures of the magnitude and stability of the
errors contributed by the satellites are being sought [3].
Likewise, attention is being given to calibrating the
multipath errors in receiver systems [24]. Accurate
correction for these errors is necessary to increase the
accuracy in many GPS applications. Herein, most of the
continuous RTK GPS health monitoring observation
signals (displacement time histories) processed using the
company software for the GPS system used. In the other
hand, the errors analyses of the estimates of continuous
GPS positions have received a lot of attention in the last
few years [11], [5], [4]. The signal processing methodology
is one of the core issues in GPS errors elimination. An
example of a digital signal processing system is the
adaptive filter (AF).

An adaptive filtering technique has been used wider
and wider since the 1960s [10], [18], [23]. When the priori
knowledge of input signal is unknown, the AF can adjust
the weight coefficient after N iterations, so as to achieve
the best filtering. The minimum mean square error as the
standard of traditional AF has the drawback of excessive
computing [23]. The neural network (NN)’s whole
connection among layers is a one-way connection. The
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learning process is composed of the input’s forward-
propagation and errors’ back propagation [28]. The
hidden layer neuron uses sigmoid function. Although
the increase in layers can improve the accuracy, but the
network also needs more training time. Therefore, this
article used the network topology that contains a hidden
layer structure. Errors in hidden layer are decreased by
increasing the number of neurons [18], [23], [28], [27]. The
NN and AF are used separately or combined with other
filters in the process and identified GPS and monitoring
signals before, refer to [18], [29], [26], [9].

However, the focus of this research is: (1) to examine
the NN with AF in errors elimination of GPS survey
observations, (2) to use the linear NN with AF to
process the continuous RTK GPS observations, (3) to
demonstrate the possibilities that the GPS data proces-
sing technique can be used in SHM, and (4) to analyse
the deck bridge deformation based on RTK GPS
monitoring system.

GPS health monitoring system
The GPS health monitoring system of Zhujiang Huang-
pu Bridge in China for the case study bridge is discussed
in this section. This bridge is composed of a 705 m-long
cable-stayed bridge and an 1108 m-long cable-sus-
pended bridge. The width of deck and the height of
towers for the Bridge are 34?5 and 195?476 m, respec-
tively. There were 14 GPS units installed on the two
bridges after August 15, 2009, including 13 rover
stations and 1 base station as shown in Fig. 1.

The distance between base station and point (107) is
1?00 and 1?50 km from point (101) according to Fig. 1.
The reference station refreshes the RTK correction
messages for the GPS monitoring stations with a
frequency of 1 Hz via the optical fibre communica-
tion system. LEICA Geo-systems antennas and dual-
frequency GPS receivers were used to observe the GPS
satellite signals; the satellite elevation cut-off angle is
13u, at least nine satellites. The observations were split
into single hour observations for the processing pur-
poses. The data collected were mixed with that
generated by the receivers’ own oscillators, and then
LEICA Spider 2?1 RTK software was used to process
RTK GPS data. The data collected are processed
coordinates in World Geodetic System (WGS-84) and
converted to the local coordinate system by the
coordinate transformation, Ogundipe et al. [21] and
Elsheimy [6] summarised the coordinate transformation
system which was used in this case of study. A local
bridge coordinate system was established to be used in
the analysis and the evaluation of the observation data.
The X data represent the relative displacement changes
along the longitudinal direction of the bridge; the Y data
represent the relative displacement changes along the
transverse direction of the bridge while the Z data
represent the relative displacement changes along the

altitude direction of the bridge [11]. The outputs from
GPS monitoring stations include monitoring point
number and RTK GPS three-dimensional coordinates,
GPS time, satellite status data, GPS receiver status data,
and so on, and the raw GPS outputs, if required as
shown in Fig. 2. The resonant frequency of the bridge is
considered a very important parameter in the bridge
structural and safety analyses. The relative displacement
changes of the bridge deck will be in millimetres.

The neural network adaptive filter model
There are many algorithms applied to the AF. For
example, least mean square (LMS) algorithm as well as
its various improved algorithms, recursive least square
algorithm, fast transverse filter algorithm [23], etc. The
basic objective of an AF model is to set its parameters,
in such a way that its output tries to minimise a
meaningful objective function involving a reference
signal [18], [17]. Adaptive finite-duration impulse
response (FIR) filters are the most popular ones due to
their stability [18]. The structure of the FIR filter is
shown in Fig. 3a. Here, we can define the complex-
valued tap-weight vector with M coefficients as

ŵ(n)~½w0(n), w1(n), . . . ,wM{1(n)�T (1)

where [?]T is the transpose of a vector or a matrix. With
the M-length tap-weight vector shown as above, the
complex-valued input signal can be defined as

u(n)~½u(n), u(u{1),:::,u(n{M{1)�T (2)

where the u(n) denotes the input signal, then the output
of the filter is

y(n)~ŵH(n)u(n) (3)

where [?]H is the Hermitian transpose of a vector or a
matrix and y(n) is the AF output signal. Herein, d(n) is
used as a reference or a desired signal at time instant
n. Therefore, the error signal e(n) is calculated as
e(n)5d(n)2y(n). The error signal is then used to form
a performance function that is iteratively minimised by
the adaptation algorithm in order to determine the
appropriate updating of the filter coefficients. The
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minimisation of the objective function implies that the
AF output signal matches the desired signal in some
sense [10], [28], [27], [17]. Meng et al. summarised that
the AF applications are: system identification in layered,
earth modelling, predictive deconvolution in adaptive
equalisation, linear predictive coding in signal detection
and echo cancellation in adaptive beamforming [18].
This study will use the AF to predict the smooth GPS
deformation signals as shown in Fig. 3b.

The NN is motivated by their ability to approximate
an unknown nonlinear input–output mapping through
supervised training. The NN has two remarkable
properties: it can realise a multi-input and multi-output
arbitrary nonlinear mapping by adjusting the link-
weights besides NN has the generalisation ability due
to its nonlinearity [9]. The universal phenomenon for
nonlinear system is used to build the precise mathema-
tical NN model. Therefore, these increase the difficulty
of real time estimation for the system. It is well known
that one of the useful methods for delay time
compensation is the predictive technique [9].

The NN in this work will be incorporated into the AF
in order to compensate the model uncertainties [18], [23],
[28], [27], [9], [17]. Herein, the time-delay neural network
is a multilayered NN, in which the steepest descent
technique is employed to adjust the link weights so that
the differences between the NN outputs and the desired
outputs are minimised. The idea is to incorporate a
linear NN into the AF, and train the NN so that the NN
realise a mapping from the measurement to the additive
correction to the estimation of the AF. The input vector
to the NN is a set of the measurement and the previous
corrected estimation. The output vector of the NN is a
desired signal additive correction to the AF-estimated
state vector to obtain the corrected estimation of the
filter weight coefficient, as shown in Fig. 4. This study
depends on linear NN aided AF with LMS algorithm.
LMS algorithm is based on minimum mean square error
criteria, and it is designed by adjusting the coefficients so
that the mean square value of the output error sequence
is minimised, and modified the weights based on this
data. The iterative formula of the LMS process is as
follows

y(n)~
XM{1

i~1

wi(n)u(n{i)zb (4)

e(n)~d(n){y(n) (5)

wi(nz1)~wi(n)z2de(n)u(n{i) (6)

where, w is the filter weight coefficient; d is the step; M is
the filter order; and b is the neural constant.

The NN is used to implement AF algorithm LMS,
that is, the network is used to solve least squares
problem, as solutions

min
XN

n~N{1

d(n){y(n)j j2~

min
XN

n~N{1

d(n){
XN

i~1

wiu(n{i)zb

�����

�����

2
(7)

Analyse the model
In this section, sample data from bridge Zhujiang
Huangpu GPS health monitoring observations were
used with 200 recorded second. The prediction and
errors signals are calculated by NNAF model. Figure 5
shows the observation, prediction and errors signal of
the measurements data. From Fig. 5, it can be
concluded that the errors, which on the third row, are
uncorrelated signal outputs, which contain mainly

3 a FIR filter: time-shifted structure of the input signal

and b adaptive filtering prediction model

4 Neural network adaptive filter model

5 Observation, predicted and errors of GPS signals
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receiver noise for this short baseline and unfiltered
multipath residuals, and this result is cited in Roberts
et al. [24] which confirmed this fact. In addition, it can
be seen that the NNAF model smoothed the observation
data, whereas the standard deviation of the smoothed
data is decreased by 3?5%, which means that the NNAF
can be used to eliminate the errors due to receiver and
multipath errors and to smooth the GPS observations.
Also, the R-square for the predicted model is 0?90 which
indicates that the balance between the observations and
the predicted signals is high and the predicted signals
expressed the bridge movements. In addition, Fig. 6
shows the auto-correlation function (ACF) of the
residuals. From Fig. 6, it can be shown that the value
of AC falls within 95% of the confidence interval,
therefore the residuals for the NNAF remained in the
boundaries of the ACF confidence interval and there
was no loss of information in the description of the
signal. The calculated mean square of regression errors
is 7?8461026, which means that the prediction model is
more accurate. These results can be concluded that the
NNAF model can be used to de-noise the GPS health
monitoring signals. In addition, the predicted signal
from the model expresses the movements of structures.

Long-span bridge deck movement
analysis
The movements of Zhujiang Huangpu Bridge deck
analysis are described in this section, as shown in Fig. 1.
Two mid span points (103) and (108) are selected. The
statistical moments of the time history of the GPS
coordinates and the time–frequency of the data for the
selected points will be used in this analysis. The mistakes
of the recorded measurements should be removed before
applying the analysis; therefore the relative GPS
observations which increased more than three times of
the standard deviation of the signal observations will be
removed [11], [6], [19].

Time-series statistical moment bridge deck
analysis
As the interface between two surfaces in motion begins to
break down, the shape of the probability density function
changes and tends to become more peaky [16]. This
change can be monitored using the fourth statistical
moments [7], [16]. The first four statistical moments

[mean, standard deviation (SD), skewness (S), and
kurtosis (K)] are often computed when examining raw
time-series data. A brief review on the first four moments
is shown in the following references [7], [17], [16].

This section is concerned with the extraction of basic
signal statistics as movement sensitive features. In order to
show an overview of the raw data’s appearance, GPS-time,
predicted by NNAF model, histories of stages no. 1 to no.
8 from days: 15th, 24th and 26th of September 2009, every
stage is about 2?8 h, GPS observation are plotted as two
points (103) and (108), in a concatenated form. Figure 7
shows GPS RTK signal of moving state and Fig. 8 shows
GPS RTK signal of stationary state condition.

From Fig. 7, it can be seen that the amplitude of the
time histories is relatively consistent, based on visual
inspection. Also, it can be shown that the correlation
between x and y direction is high in the two mid span
points, whereas the z direction movements are highly
correlated with X and Y directions at point 108. In
addition, the Z movement value at point 103 is normally
about 0?05 mm whereas it is about zero at point 108.
The movement’s values at point 108 are greater than
point 103 movements due to the length of span. In
addition, it can be shown that the movement’s values
increased from 6 to 8 stages every day at the two points.
It means that the traffic loads affect the bridge move-
ments at these stages. In addition, it can be seen that the
NNAF model can be smoothed and predicted the GPS
signals with high correlation. In addition, the R-square
values of the three directions on the three days are
greater than 0?93.

In addition, from Fig. 7, it can be shown that the GPS
observation on 15th September at point 108 has errors in
the first three stages. In addition, it can be shown that
the maximum displacement of Zhujiang Huangpu
Bridge is 1?17 mm at point 108. It means that the
maximum displacements are smaller than the accuracy
of GPS used. From these results, it can be concluded
that the movements of the two spans are safe and within
the allowable values during the different loading cases;
whereas the maximum deformation values for the long
span at point 108 is z 0?50 mm and at point 103 is z
0?10 mm, also the GPS is high sensitively under effective
loads. In addition the NNAF model can be used to
simulate the GPS deformation signal with high accurate.

Figure 8 also represents the first four statistical
moments of the three days time histories of the GPS
observations. The mean and SD of the time histories are
give insight about the presence of nonlinearities asso-
ciated with the movement stage conditions (stages no. 7,
no. 15 to no. 16, no. 23 to no. 24). However, there
cannot be given response for the damage states [7]. In
the other hand, the S and K do not show any difference
in the movement states for the three monitoring day
observations, which means that the movements of the
bridge decks are not high effective. While, it can be
shown that the stage conditions (stages no. 19 and no.
22) are different for other stages, it is due to the GPS
signal errors. In addition, the S and K are sensitive to
the errors of GPS observation stages no. 1 to no. 3.
Whereas, the S values are 6?00, 0?88 and 20?01, and the
K values for these stages are 75?74, 3?57 and 1?03,
respectively.

From Fig. 8 it is clear that for almost all of the GPS
observation movements, the S diverges from zero, with

6 ACF and 95% confidence errors intervals of neural net-
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the possible exception to stages no. 19 and no. 22. It is of
interest to note that the S has an opposite sign for the
GPS signal errors and movements due to impact loads,
implying that the response from Z direction at point 108,
has more values below the mean in its movement and
errors condition, vice versa the Z direction at point 103
has more values above the mean. Moreover, in general
these same movement states have larger K (larger than
3?5) than the un-movement stage, and this result is cited

in Martin et al. [16]. Note that the K is larger than 3
which means that most of the variance is caused by non-
frequent extreme deviations from the mean. However,
for both S and K values the changes are significant in
the movement and error effect. This fact points out the
challenge of using GPS observations to detect the
structural movements and GPS signal errors. In conclu-
sion, the skewness and kurtosis can be used as features
to detect movement that results in a linear system

a September15; b September 24; c September 26
7 GPS RTK signal of moving state points 103 (left) and 108 (right)
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subsequently exhibiting nonlinear dynamic response and
the GPS errors can be predicted. In addition, the
skewness and kurtosis can be used to expect the state
of movements. Also the mean and standard deviation
can be referred to the movements of the structures only.

Bridge deck time–frequency analysis
Time–frequency analysis is to study the signal in both
the time and frequency domains simultaneously. The
main advantage of this representation is to track the
evolution of the frequency components of the signal
over time. For stationary signals, the frequency content
should not change over time and vice versa for non-
stationary signals [7], [17]. The important parameters
that influence the dynamic response of the long-span
bridges are vehicle speed, road surface roughness,
vehicle characteristic, vehicles numbers and their travel
path and bridge structure characteristic such as the
bridge geometry, support condition, bridge mass and
stiffness, and natural frequency [13]. In this study, after
using NNAF model for the signal prediction, the bridge
deck frequency components in the time domain for the
longitudinal (X), lateral (Y) and vertical (Z) directions
were determined by using the fast Fourier transforma-
tion based on Hamming window and band-pass filter for
the frequency range 0?02–0?3 Hz. The calculated fre-
quency modes are affected by the high frequency
changes which occur over long-term movements as a

result of random or instantaneously changing loads
affecting the bridge. The following figures show the
time–frequency plot of the deck movements for the three
days analysis.

From Figs. 9 and 10, it can be shown that the first
mode frequency only appears clearly at point 103 while
the first and the second mode frequencies can be
determined clearly at point 108. From Fig. 9, it can be
seen that the maximum frequency in X direction at point
103 is 0?039 Hz and the minimum frequency for three
days is 0?023 Hz. In addition, the maximum and
minimum values for three days in Y direction are
0?036 and 0?022 Hz, respectively, whereas in Z direction
these values are 0?036 and 0?025 Hz. These values refer
to the maximum and minimum values of the first mode
of bridge are close; it implies that the movement of
bridge deck at point 103 is a safe mode on three
dimensions, and correlated.

From Fig. 10, it can be seen that the second mode
frequency of GPS signal movement on three dimensions
is very close to 0?15 Hz. In addition, the maximum and
minimum first mode frequency on X, Y and Z directions
at point 108 for three days are 0?032, 0?037, 0?037 and
0?020, 0?21, 0?20, respectively. From these results it can
be seen that the maximum values are very close. Also the
minimum values are very close too, and this is refer to
the movement of bridge deck at point 108 is very safe at
two modes and correlated. From Figs. 9 and 10, it can

8 First four statistical moments for GPS RTK signal of stationary state condition
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be seen that the first mode of bridge monitoring points
has some changes along monitoring days. That means
that the vehicles (vehicle speed, vehicle characteristic,
vehicle number and their travel path) affect the
frequency modes of the bridge deck.

From Figs. 9 and 10, it can be concluded that the
bridge deck movements in three dimensions of GPS
monitoring at points 103 and 108 are very safe. In
addition, the length of span has an effect on the mode
frequencies of structure based on GPS monitoring
signals. Also, the GPS signal frequency modes are not
influenced by GPS signals errors; therefore, time–
frequency analysis can be used to study the structures’
movement based on GPS signals. In addition, the
movement of bridge deck is correlated in the three
dimensions.

Conclusions
In this study, GPS observations and NN with AF are
proposed to analyse and predict the movements of the
Zhujiang Huangpu Bridge. The analyses in the time and
frequency–time domains have been used to predict the
GPS signals. Based on this limited study, the analysis of
the results leads to the following findings.

1. The NNAF model can be used to de-noise the GPS
health monitoring signals. Also, the predicted signals
from the model were expressed the movements of
structures.

2. The errors due to receiver noise and multipath
residuals can be separated from GPS signal observation
using NNAF model.

3. The RTK GPS with 1 Hz observations show high
sensitivity for the movement of structure; therefore, it
can be used in the structural health monitoring of the
bridge deck to remove the signal noises.

4. The time series analysis for the four statistical
moments (mean, standard deviation, skewness and
kurtosis) can be used to detect the movement of
structures.

5. The time series skewness and kurtosis can be used
to detect the GPS observation errors, in this study, it can
be seen that the kurtosis was higher than 3?50 due to the
GPS signal errors. Whereas, the skewness value within
¡1?0 refer to movements else refer to noise of signals.

6. The GPS movement observation signals in this
study are considered stationary signals, almost.

7. The bridge deck is very safe at the two observation
points 103 and 108.

9 First mode frequency of X, Y and Z directions for days

15th, 24th and 26th September at point 103

10 First (M1) and second (M2) mode frequency of X, Y

and Z directions for days 15th, 24th and 26th

September at point 108
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8. The second mode frequency of the GPS observa-
tions can be clearly determined and identified for the
long span bridge

9. The maximum and minimum frequency for the first
mode at two points 103 and 108 are very close, whereas
the second mode frequency is approximately 0?15 Hz,
with the time at point 108.

10. The mode frequency of GPS signal is not
influenced by errors of the GPS signals, so time–
frequency analysis can be used to study the structures
movement based on GPS observations.
Herein, it can be suggested that the time-series of
skewness and kurtosis can be used to detect the
structures damage using GPS monitoring system.
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