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ABSTRACT 
 

Over the last few years, the Global Positioning System (GPS) has 
been used with increasingly more accurate results for precise positioning. 
The GPS observations are analyzed interferometrically to determine 
baseline components in a geodetic network. When the network geometry 
is poor, in terms of lack of observations, some configuration defects 
might exist. A no-check observation, which is one of the most important 
observation defects, may decrease the reliability of the estimated results 
since it can not be examined for blunder detection. This study shows that 
the results of the least-squares adjustment, when examined carefully, 
reveal important information about the deficiencies in the observation 
campaign. The concept of redundancy number is a helpful tool used to 
detect no-check observations. 
 

When using GPS to determine high-precision relative positions, the 
set-up errors associated with the antenna are critical and must be 
considered. The error sources of setting-up the antenna are addressed and 
some precautionary field procedures are reviewed in order to minimize 
these errors and to help avoid blunders. However, the main objective of 
this study was detecting such situations by analyzing the adjustment 
results.  

 
A method was developed and included in an adjustment computer 

program to detect no-check observations. This method handles two 
problems: (a) detecting inconsistent observations, for example due to set-
up errors, for the stations which have redundant occupations in different 
observation sessions; and (b) detecting no-check observations in terms of 
deficiencies in the observation campaign. A full description of this 
method is presented and the results of processing a test GPS network are 
provided. 
 

The developed adjustment program is used to estimate three-
dimensional coordinates of the stations based on the measurements 
obtained from processing double differences of phase observables. The 
fundamentals of the GPS measurements are reviewed with emphasis 
given to the double difference observables and the correlations among 
them. It is expected that, under some circumstances, for the GPS-derived 
baselines in the network mode, the least-squares adjustment suffers from 
three datum defects due to the lack of the datum origin definition. The 
least-squares adjustment method in the extended Gauss-Markoff model 
with pseudo observations was used to overcome the expected rank defects 
by introducing a fiducial station in the network. The program also 



 x

transforms the estimated Cartesian coordinates of the network to geodetic 
coordinates, relative to a specific reference ellipsoid, along with their 
standard deviations in both coordinate systems. The FORTRAN code is 
given in the appendix. 
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CHAPTER I 
 

INTRODUCTION 
 
 
 Since the early 1980s, many geodetic networks have been 
established using the Global Positioning System (GPS) measurements to 
provide baseline vector estimates at better than 1 part per million (ppm) 
level of precision (Goad 1985b, Remondi 1985). Much researches have 
been devoted to examining all possible systematic and random errors (e.g. 
satellite clock errors, receiver clock errors, cycle slips, etc.) in processing 
the GPS observables. However, errors associated with setting-up antennas 
during the observing time period or deficiencies in planning the 
observation campaign can also dangerously decrease the quality of the 
results. 
 
 GPS results are influenced by systematic effects (biases) when the 
observables are not correctly modeled (Beutler et al. 1989). Several 
papers have addressed sources of biases in GPS measurements (e.g. Goad 
1985a, Georgiadou et al. 1988, Lichtenegger et al. 1989). Generally 
speaking, the biases that influence the GPS measurements can be grouped 
under three categories (Well 1986): satellite biases (in both satellite 
ephemerides and clocks); station biases (such as receiver clock biases); 
and observation dependent biases (for instance, ambiguity biases inherent 
in the carrier beat phase observables, multipath, ionospheric and 
tropospheric delay). Besides the systematic effects, the precision of 
baseline determinations from GPS observations is dependent on the errors 
affecting the observations themselves. These error sources include cycle 
slips, antenna phase center movement, and random observation errors. 
The major source of biases and errors, roughly speaking, are the satellite 
ephemerides, the troposphere, the ionosphere, and multipath (Bock et al. 
1986b). 
 
 The detrimental impact of biases sometimes can be suppressed by 
modeling them in order to achieve the highest precision of the GPS 
measurements (Vanicek et al. 1985). However, this task might be difficult 
to achieve because of some limitations. For example, irregular 
ionospheric effects are hard to be modeled correctly when only one 
transmission frequency is observed (Beutler et al. 1989). Besides 
modeling these biases and errors, the known differencing algorithms can 
eliminate, or dramatically reduce, some of the common model errors (e.g. 
clock errors). But, some error sources, such as multipath, cannot be 
modeled or eliminated through differencing.  



 2

 The least-squares adjustment technique is the most famous 
estimation method in the geodetic community. A basic assumption in the 
least-squares technique is that all gross and systematic errors have not 
been considered in the functional model, should be eliminated prior to the 
adjustment (Karvouras 1982). Therefore, committing an undiscovered, 
and hence unmodeled, error in setting up the antenna relative to the 
station mark will limit the precision of the least-squares adjustment. 
These systematic errors are quite probable when the GPS receivers move 
from one station to another to occupy many stations in the available GPS 
observation window, i.e. multi-session observations. Detecting such 
errors is very important as far as the quality of the geodetic networks is 
concerned. 
 
 The errors associated with antenna set-up are significant and 
influence the final output of the network adjustment. These error sources 
may be divided into three main types (Minkel 1989): plumbing error; 
antenna height measurement error; and error in setting of the tripod. 
Some guidelines for GPS field survey procedures are given (FGCC 
1989). However, there is still a chance that one or more of these set-up 
errors might be committed in any station occupation in a GPS network. 
Antenna set-up errors fall in the category of those errors which can 
neither be modeled nor canceled out by differencing.  
 
 Deficiencies in planning a GPS observation campaign can result in 
no-check observations. A no-check observation is an observation that is 
not checked by any other observation in the network. The estimation of 
the coordinates of the stations associated with the no-check baselines are 
not reliable even though they have small residuals. This is due to the fact 
that no blunder detection algorithm can be applied to test the uncontrolled 
observations. 
 
 The redundancy number concept is used to indicate the reliability 
of the adjustment of individual observations (Milbert 1985). A 
redundancy matrix is formed by multiplying the cofactor matrix of the 
residuals by the weight matrix of the observations. The i-th diagonal 
element of this matrix product is called the redundancy number of the i-th 
observation. Leick (1990) finds that the redundancy number of a no-
check observation will be zero. Therefore, the careful inspection of the 
least-squares adjustment results supplies useful information and helps to 
detect no-check observations. 
 
 There is not much literature available on the detection of 
inconsistent observations and the effects of unmodeled errors, especially 
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the antenna set-up errors in GPS network. Moreover, the detection of no-
check observations is very crucial and needs to be employed in any 
geodetic network adjustment. 
 
 The purpose of this study was to develop a method that serves two 
functions: (1) to detect inconsistent observations for those stations which 
have redundant occupations in different observation sessions; and (2) to 
detect no-check observations in a GPS network. The main characteristics 
of this method is that it is based on analyzing the least-squares adjustment 
results, which in turn means that the developed procedure can be part of a 
least-squares program. 
 
 The results of implementing the developed method could be useful 
in the analysis of GPS networks and spotting both configuration defects 
and suspect stations. When recovering the detected error sources or 
deficiencies, the quality of the GPS network is improved. 
 
 First, a concise, but simple, overview of the GPS basics and 
observable types is given in Chapter Two. The phase measurements are 
given much more emphasis in the discussion since they are the most 
accurate GPS observables. Single, double, and triple differencing 
algorithms are also addressed along with the principles of the 
interferometric analysis of the GPS observables. 
 

The use of the Gauss-Markoff model, which is sometimes called 
observation equations, is presented in  Chapter Three since it was applied 
in the developed adjustment program. The datum defects in GPS 
networks, along with the principle of the extended Gauss-Markoff model 
with prior information, are given. The use of the Cholesky factorization 
algorithm is reviewed also. 
 
 Chapter Four, which is the main segment of this thesis, includes a 
detailed explanation of the sources of observation defects in GPS 
networks. The proposed method is demonstrated fully and the results of 
processing a small GPS network are provided. 
 
 Finally, a summary and conclusions are presented in Chapter Five. 
Also, some recommendations for survoyers who work with GPS 
networks are given. 
 
 The FORTRAN code of the developed least-squares adjustment 
program, NANI, is given in the Appendix. 
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CHAPTER II 
 

GLOBAL POSITIONING SYSTEM 
 
 
 
2.1 An overview of the GPS Fundamentals and Observables 
 
 The  Navigation Satellite Timing and Ranging (NAVSTAR) 
Global Positioning System (GPS) is a satellite-based positioning system 
under development by the US Department of Defense (DoD). In its final 
constellation, the GPS may consist of 21 operational (Block II) satellites 
plus 3 in-orbit spares. Each orbit is nearly circular with a 20183 km 
nominal altitude. Once fully operational, the GPS will provide 24-hour, 
all-weather navigation and surveying capability. 
 
 Each GPS satellite transmits at two frequencies: L1 = 1575.42 
MHz; and L2 = 1227.60 MHz modulated with two types of code and a 
navigation message. The L1 signal is modulated with a precise (P) code, 
known also as the Precise Positioning Service (PPS), and a coarse 
acquisition (C/A) code, which is known also as the Standard Positioning 
Service (SPS); the L2 signal is modulated with only the P code. These 
two pseudo-random noise (PRN) codes have a period of 37 weeks and 1 
millisecond for the P and C/A codes respectively, which means that the P 
code is more precise than the C/A code since it provides a predictable 
signal for a long period (Spilker 1978). For national security purposes, 
the DoD may restrict access of the P code only for military users. The 50 
Hz navigation message contains, among other data, the broadcast 
ephemerides parameters and the satellite clock correction coefficients. 
This low frequency stream of data informs the user about the health and 
position of the satellite. 
 
 The surveying techniques used to collect GPS observations can be 
divided, in general, into three groups. In static surveying, GPS receivers 
are kept fixed over ground marks and observe at least four satellites 
simultaneously for a period of time ranging from 1 to a few hours. This is 
the conventional or "classical" GPS surveying. Kinematic GPS surveying, 
used mainly for navigation, is characterized by the continuous tracking 
operation of the receivers as they move from one place to another. The 
third class of GPS surveying techniques is tracked back to the pioneering 
work of Remonsi (1985), known as pseudo-kinematic, where one receiver 
is kept fixed over a known station while another receiver moves to survey 
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other stations for few minutes of observations at each point (Kleusberg 
1990).  
 
 The two basic types of the GPS observables are the pseudorange 
and the carrier beat phase (simply the "phase"). Traditionally, each 
observable type is treated separately. However, recent research provides a 
means of combining both the pseudoranges and phases and, thus, can 
benefit significantly both static and kinematic positioning (Euler and 
Goad 1991). 
 
 Pseudoranges are essentially distance measurements between the 
satellites and the receivers at the epochs of transmission and reception of 
the signals (Figure 1). The pseudorange equation takes the form: 
 
Pi

j = ρi
j + c . (dt – dT ) + dion + dtrop + ε               (2-1) 

 
where 
 
Pi

j  is the measures pseudorange 
c  is speed of light 
Dt  is the offset of the i-th satellite clock from GPS time 
dT  is the offset of the j-th receiver clock from the GPS time 
dion   is the ionospheric delay 
dtrop   is the tropospheric delay  
ε is the effect of the (assumed random) measurements noise and 

unmodeled influences. 
ρi

j   is the geometrical or topocentric distance between the satellite and 
the receiver (at epoch tk of the receiver time): 

 
ρi

j    = [ (Xi – Xj )2 + ( Yi – Yj )2 + ( Zi – Zj)2 ] 1/2             (2-2) 
 
where (Xi, Yi, Zi) and ( Xj, Yi, Zj) denote the Cartesian coordinates of the 
satellite i and the receiver j in the WGS-84 coordinate system (as in most 
GPS literature, the superscripts refer to a particular satellite while 
subscripts refer to a particular ground receiver). 
 
 In the navigation solution, i.e. kinematic surveying, the satellite 
clock offsets are approximated by polynomials in time, whose 
coefficients are included in the broadcast message, and both the 
ionospheric and tropospheric delays are computed from some models. 
That leaves only four unknowns in equation (1), the three-dimensional 
coordinates of the receiver and the offset of the receiver clock. Therefore, 
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observing at least four satellites simultaneously (assuming ε = 0) gives a 
solvable system of equations. 
 
 
 

 
 

Figure 1: Pseudorange Observables 
 
 

The precision of pseudorange measurements is about 1 % of the 
period between successive code phase (Wells 1986). For the C/A code, 
successive epochs are 1 millisecond apart, while they are 0.1 millisecond 
apart for the P code. This implies that the range measurement precision is 
± 3 m and ± 0.3 m for the C/A and P code respectively. 

 
The phase observables is the phase difference between the 

incoming Doppler-shifted carrier signal transmitted at the satellite and the 
integral of the nominally-constant reference frequency generated in the 
receiver. Following the notations of Goad (1985), the phase observable 
could be written (in units of cycles) as: 
 
φi

j (tk) = φi (tk) – f / c ρi
j - φj (tk) + Ni

j + + dion + dtrop + ε             (2-3) 
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where, 
 
φi denotes the received phase of satellite i as measured at the receiver 

j in the received time tk 
φj  denotes the receiver phase at time tk 
f is the receiver oscillator frequency 
c  is the speed of light 
ρi

j  is the distance between the satellite i and the receiver j at time tk 
dion  is the ionospheric delay 
dtrop  is the tropospheric delay 
ε  is the effect of the (assumed random) measurements noise and 

unmodeled influences 
Ni

j is an integer bias representing the ambiguity of the first phase 
measurements, i.e. it denotes the unknown number of integer 
cycles at the initial epoch. Therefore, if lock is maintained, Ni

j will 
be the same for all phase observables between the receiver j and 
the satellite i.  

 
 The phase measurements could be made at 1 % of the carrier signal 
wavelength. For the L1, whose wavelength is 19 cm, the phase 
measurement precision is about ± 3 mm. Consequently, the phase 
ambiguous observables are more precise than the pseudoranges. 
 
 
2.2. Processing of GPS Measurements 
 
 Like any other measurement techniques, the potential of the GPS is 
affected by both random and systematic errors. Various linear 
combinations of the phase observables have been used to reduce or 
eliminate the effects of some of the biases in the phase observation 
equations (equation 3). These bias elimination procedures are illustrated, 
geometrically, in Figure 2.  
 
 The single difference observable is formed by differencing the 
phases of two receivers, j and l, to the same satellite, i, at the same epoch 
k. This linear combination removes the satellite clock error. The single 
difference equation (neglecting dion and dtrop for a moment) is: 
 
φi

j,l (tk) = φj (tk) – φl (tk) + f/c ( ρi
j - ρi

l ) + Ni
j + Ni

l + δε1                      (2-4) 
 
The double difference equation, 
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φi,m

j,l (tk) = f/c ( ρi
j - ρi

l - ρm
j + ρm

l ) + Nm
j - Nm

l - Ni
j + Ni

l + δε2           (2-5) 
 
is obtained by differencing two single-difference observables of the two 
receivers, j and l, with respect to two satellites, i and m, at the same epoch 
k. The double difference does not explicitly include the satellite and the 
receiver clock errors. 
 
 The triple difference is the difference of two double-differences for 
two different epochs, tk and tk+1 : 
 
φi,m

j,l (tk+1 , tk ) = f/c [ ρi
l (tk+1) - ρi

j (tk+1) - ρm
l (tk+1) + ρm

j (tk+1)  - 
      ρi

l (tk) + ρm
l (tk) - ρm

j (tk) + δε3                                   (2-6) 
 
where δε1 , δε2 , and δε3 are the linear combinations of the effects of the 
measurements noise in the single, double, and triple differences 
respectively. It has been noticed that the ionospheric and tropospheric 
delays have not been considered in this section since there are other bias 
estimation procedures, for example wide-lane and narrow-lane, used to 
eliminate or reduce the atmospheric effects (King et al. 1985). 
 
 The main advantage of he triple difference is that it does not 
include the integer-bias ambiguities and, therefore, it can be used in an 
automatic detection procedure for the occurrence of cycle slips (Goad and 
Remondi 1984). Cycle slips occur when the satellite signals are lost, i.e. 
obstructed by buildings, trees, .. etc, and, consequently, when acquiring 
the phases the ambiguity takes on a different value. It is known that the 
presence of cycle slips is one of the most prevalent problems in 
processing the GPS phase measurements. On the other hand, 
disadvantages of the triple differences are the high correlation between 
the observables and inability to use the integer bias values if they are 
known. Although some procedures were suggested, for example by Eren 
(1986), to use the triple difference observables in network adjustment, the 
double differences, or their equivalences, are the most powerful GPS 
measurements. 
 
 In practice, the non-difference (raw) phases are assumed to be 
uncorrelated and have equal variance, say σ2. However, as linear 
combinations are usually formed, the mathematical correlations between 
the differenced observables should be considered. To demonstrate the 
correlations between the double difference observables, let us look at two 
double difference equations between two receivers and three satellites. In 
a simple form, these two equations could be written as: 
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Figure 2: Differencing Procedures 
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φ2,1
 2,1 =φ2

 2,1 - φ1 
2,1 = φ2

2 - φ2
1 - φ1

2 + φ1
1                                               

                 (2-7) 
φ3,1

 2,1 = φ3
 2,1 - φ1 

2,1 = φ3
2 - φ3

1 - φ1
2 + φ1

1                                               
 
In matrix notations: 
 
D = B . ϕ                                                                                               (2-8) 
 
where, 
 
D = [  φ2,1

 2,1      φ3,1
 2,1   ] 

T 
 
 
B =        1     -1     0    -1     1     0       
               1      0   -1     -1     0     1       
 
and,  
 
ϕ =  (  φ1

 1  ,     φ2 
1  ,     φ3

1 ,     φ1
2 ,      φ2

2   ,     φ3
2 ) 

T 
 
 Applying the error-propagation law, the covariance matrix of the 
two double-difference observables, ∑DD, is: 
 
∑DD = B (σ2I ) BT =  σ2  W                                                                  (2-9) 
 
where,  
 
W =       4    2       
               2    4       
 
 
 Therefore, the mathematical correlations between the differenced 
observables should be modeled in the least-squares adjustment algorithm 
when processing the GPS phase measurements. However, the correlation 
between the double differences is more complicated than as it appears in 
the previous simple example. Since the object of this section in the thesis 
is just to highlight some of the GPS issues, the subject of the 
mathematical correlations will not be discussed, here, in full details (the 
interested reader can refer to, for example, Schafrrin et al. 1989, Bock et 
al. 1986a, Goad and Mueller 1988, or Beutler et al. 1987). 
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2.3 Interferometric Analysis of GPS Observations 
 
 Interferometry with the GPS is a technique by which the baseline 
components (and possibly absolute coordinates) in a GPS network can be 
determined in three dimensions with respect to an earth-fixed coordinate 
system. Bock et al. (1986a) present a processing procedure that maps 
phase observations into double differences. The main advantage of this 
procedure is that it extracts the maximum relative positioning information 
available from the raw phases. It, also, takes into account the 
mathematical correlation that is introduced in the differencing process. At 
the heart of this algorithm is a double difference operator, D, which 
constructs an independent set of double differences from all phases 
collected at a certain epoch. That double difference operator is the same 
as the matrix B in the simple example of section 2.2. 
 
 Goad and Mueller (1988) suggest an automated procedure to 
generate the optimum set of independent double differences while 
processing the phase measurements interferometrically. It is known that 
when R stations simultaneously observe S satellites, [ R! / 2 (R-2)!) 
(S!/2(S-2)!) ] = (RS/4) ( R-1) (S-1) possible double differences could be 
obtained. But, among them only (R-1) (S-1) double differences are 
linearly independent (Bock et al. 1986a). Goad and Mueller's algorithm 
depends on three features: (a) selecting the shortest possible baselines to 
enhance the recovery of the integer bias value of the double differences in 
the multiple baseline mode; (b) the use of the Cholesky decomposition 
procedure to detect any dependent double differences. That is due to the 
fact that a zero on the diagonal of the Cholesky factor reveals a situation 
of linear dependence; and (c) the generation of the Gram matrix, which is 
a matrix of linear (dot) products used to determine the linear dependence 
or independence of a set of vectors. A similar algorithm is presented by 
Dong and Bock (1989) which generate the double difference ambiguities 
from the original raw phase ambiguities by means of a mapping based 
primarily on baseline length. 
 
 Following the notations of Bock et al. (1986a), the linearized 
observation equations for the raw phases, in matrix form, (and neglecting 
terms which are removed under the double difference operator) are: 
 
L = A x + ε                         (2-10) 
 
where,  
 
L  is the residual vector (observed minus computed) of the phases 
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A  is the design matrix or partial derivatives of the phases with respect 
to the parameters 

x  is the correction vector of the parameters of interest 
ε is the vector of the observation errors. 
 
Applying the double difference operator, D, yields: 
 
D L = D A x + D ε                                (2-11) 
 
Assuming uncorrelated phases, 
 
L = ( 0 , σ2 I )                (2-12) 
 
The covariance matrix of the double differences is: 
 
E = { D v vT DT } = D (σ2 I ) DT = σ2 D DT                                       (2-13)   
 
with  
 
E { D ε } = 0                         (2-14) 
 
where E denotes the expectation operator. 
 
The least-squares estimate of x is: 
 
x^ = (AT DT (DDT)-1 DA)-1 AT DT (DDT)-1 DL                                   (2-15) 
 
and the covariance matrix of the estimate is: 
 
∑x

^ = σ2 ( AT DT (DDT)-1 DA)-1                                                           (2-16)   
 
The Cholesky decomposition procedure is used in Goad and Mueller's 
algorithm to factor and then invert the matrix ( D DT ) by: 
  
( D DT )-1 = ( S ST )-1 = ( ST )-1 S-1 = ( S-1)T S-1                                  (2-17) 
 
where S is the lower-triangle Cholesky factor. 
 
Therefore, equation 15 could be written as: 
 
x^ = [ (S-1 DA )T (S-1 DA) ]-1 (S-1 DA)T S-1 DL                                   (2-18) 
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 In the decomposition process, DDT is the Gram matrix of the row 
vector of D and, thus, during factorization generating a zero on the 
diagonal of the Cholesky factor, S, will indicate dependence of the 
corresponding double difference which, in this case, should be rejected 
(Goad and Mueller 1988). The process of testing the independence of the 
double differences continues until the maximum number is reached. By 
this independence check, the existence of (DDT)-1 is assured.  
 
 Schaffrin and Bock (1988) propose another processing scheme 
using dual-frequency (L1 and L2) phase observations. In their algorithm, 
they allow for the incorporation of full covariance matrices for both the 
phase measurements and the weighted ionospheric constraints. This 
algorithm depends on constructing the ionospheric-free linear 
combinations. 
 
 In three-dimensional relative geodetic applications, a minimum of 
3(R-1) station occupations are to be adjusted and (R-1)(S-1) phase-bias 
parameters to be estimated, where R is the number of stations and S is the 
number of satellites (Bock et al. 1985). This is the so-called ambiguity-
free solution. Under certain operational conditions, the obtained 
ambiguity parameters may be resolved to their nearest (theoretical) 
integer value and, thus, held fixed in the so-called ambiguity-fixed 
solution. The sequential adjustment provides a helpful tool in searching 
for the correct integer-bias values over all possible near-integer ambiguity 
estimates obtained from the free solutions. 
 
 The ambiguity resolution, i.e. elimination, is an important step in 
processing the GPS phases since it converts the solution from one which 
involves ambiguous ranges to one based on precise unambiguous range 
measurements, and therefore increases the precision of the stations 
position estimation. 
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CHAPTER III 
 
 

A GPS NETWORK ADJUSTMENT PROGRAM 
 
 
 
3.1 The Use of the Least-Squares Adjustment in a Gauss-Markoff 

Model 
 
 
 Since the proposed method for detecting no-check and inconsistent 
observations in GPS networks is based on analyzing the least-squares 
adjustment results, a computer program was developed to satisfy this 
purpose. The least-squares estimation method is quite well known to the 
geodetic community. A review of the use of the Gauss-Markoff model, 
known also as the observation equations technique, is provided. 
 
 In this chapter, it is assumed that the phases have been processed 
and the baselines components are obtained. The basic observation 
equations for the GPS baseline components in the earth-centered body-
fixed (EFC) World Geodetic Cartesian System 1984 (WGS-84) are: 
 
Δ Xij  -  εΔij  =  Xj  –  Xi 
Δ Yij  -  εΔij  =  Yj  –  Yi               (3-1) 
Δ Zij  -  εΔij  =  Zj  –  Zi 
 
which gives the observation equations model 
 
Y = A X + ε                   (3-2)  
 
where  
 
Y  is the n x 1 vector of observations, 
ε is the n x 1 vector of observation errors, with E {ε} = 0 and E {Y} 

= Y - ε = A X, where E demotes the expectation operator, 
A  is the n x m design (or coefficients) matrix of partial derivatives of 

the observations with respect to the parameters, 
X  is the m x 1 vector of unknown parameters, 
n  is the number of the observations = 3 x number of the observed 

baselines, 
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m  is the number of unknown parameters = 3 x number of the stations 
in the network, assuming m ≤ n. 

 
The least-squares adjustment in the linear model (3-2) leads to the normal 
equations: 
 
(AT ∑-1 A ) X^ - ( AT ∑-1 Y) = σo

2 ( N X^ - C) = 0           (3-3) 
 
where  
 
∑= E { ε εT } = σo

2 P-1  is the n x n positive definite covariance 
matrix of the observations, and 

P = σo
2 ∑-1  is the weight matrix, with σo2 being the 

unknown variance of unite weight. 
 
The solution of (3-3) for the parameters is: 
 
X^ = ( AT P A)-1 AT P Y = N-1 C             (3-4) 
 
With the covariance matrix 
 
∑X

^ = ( AT ∑-1 A)-1 = σo
2 (AT P A)-1 =  σo

2 N-1           (3-5) 
 
The adjusted observations are: 
 
Y^ = A X^  = A ( AT ∑-1 A)-1 AT ∑-1 Y               (3-6) 
 
With the covariance matrix 
 
∑Y

^ =σo
2  ( A N-1 AT)                       (3-7) 

 
So that the residual vector is: 
 
ε ^ = Y - A X^  = ( I  -  A  N-1  AT  P ) Y               (3-8) 
 
The estimated variance of unite weight, or the reference factor, is 
computed as: 
 
σo

2 ^ = ε^ T  P  ε^    /    ( n – m )                                (3-9) 
 
where ( n – m ) is the degree of freedom. 
 



 16

Therefore, the estimated covariance matrix of the adjusted parameters is: 
 
∑^

  X
^ = σ^

o
2  ( AT P A) -1                     (3-10) 

 
 If the covariance matrix of the observations, ∑, is a diagonal 
matrix, i.e., the observations are uncorrelated, both the N matrix and the 
C vector can be formed by summing, or accumulating the contribution of 
the observations (one by one) without storing A, ∑, or Y in computer 
memory (Mikhail 1976). 
 
This can be done by: 
 
N = ∑m

i=1 (AT P A)                       (3-11) 
 
C = ∑m

i=1 (AT P Y)                       (3-12) 
 
i.e., 
 
N = ( ∑ r  air  P r  arj ) , C = ( ∑ r  air  pr , yr ) 
 
where A = [ arj ] , Y = [ yr ], and P = diagonal [ pr ] 
  
It has been noticed that N-1 exists if 
 
rank [ N ] = rank [ A ] = m            (3-13) 
 
holds. However, this is not the case in most of the geodetic applications 
due to the rank defects. 
 
 
3.2 Overcoming the Datum Defects in GPS Networks 
 
 From a mathematical point of view, the rank of the square matrix N 
should equal its dimension in order to invert it and obtain a unique 
solution for the normal equation system (3-13). However, in most of the 
geodetic networks a defect exists in defining a geodetic reference system. 
For some geodetic networks, the datum defects are shown in table 1 
(Funcke et al. 1981). For GPS networks, it is necessary to define only an 
origin for the datum since the orientation and scale are implicitly known 
from the phase observations since the coordinates of the GPS satellites 
are assumed to be known. Therefore, the datum defects of the coordinate 
differences count 3 (Banyai 1991). 
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Table 1: Datum Defects in Geodetic Networks 

 
Datum Defects  

Kind of Network No.    Name 
Height net 1    1 translation 

   2 translations 2D Trialateration net 3 
   1 rotation 
   2 translations 
   1 rotation 

2D Triangulation net 4 

   1 scale 
   3 translations 
   3 rotations 

3D net 6 
(7) 

   (1 scale) 
  
 The inner constraints technique, known also as free-network 
adjustment, may be used to detect the internal precision and consistency 
of the field observations. The centroid of the unadjusted coordinates is 
used to control the coordinate translations. Therefore, no external control 
point coordinates need to be held foxed. However, in the final adjustment, 
or fully constrained solution, some stations are considered fiducial points 
in order to merge the GPS network into existing control networks. It is 
known that there are no translation parameters between the NAD83 and 
WGS-84 (DMA 1986). Consequently, one station with known 
coordinates in the North American Datum (NAD83) is enough to 
overcome the three datum defects in the GPS network. 
 
 The model (3-2) has to be extended to accommodate the pseudo 
observations (i.e. the prior information about the coordinates of the 
fiducial point) by adding the equation: 
 
O = [ I  0  ] [ X1 X2 ] T  + εO                       (3-14) 
  
where,  
 
O is the d x a vector of pseudo observations, 
I  is the d x d identity matrix, 
X1 (dx1)  is the vector of the parameters for which the prior 

information is known, 
X2 (qx1)  contains the rest of the parameters, 
εO is the d x 1 random error vector of the prior information, 
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εO ∼ { 0 , ∑o } where ∑o is the d x d positive definite covariance matrix of 
the prior information, assuming no correlation between ε 
and εO , 

d is, in our case, the number of rank defects, i.e., 
 
d = m – rank ( A ) = m – q. 
 
 Combining equations (3-2) and (3-14) yields the extended Gauss-
Markoff model: 
 
 
Y            A1      A2      X1         ε          
       =                                  +           ,   …………………. 
O             I         0       X2         εo      
   
 
     ε                0             ∑    0 
           ∼ (               ,                      )                                               (3-15)   
    εo                0             0    ∑o 
 
 
where the design matrix A( n x m ) is partitioned into two sub-matrices 
A1 ( n x d ) and A2 ( n x q ). The normal equations system of the extended 
model (3-15) can be written as: 
 
Ne  X =  Ce                                           (3-16) 
 
where  
Ne = Ae

T Pe Ae                                 (3-17) 
Ce = Ae

T Pe Ye                                 (3-18) 
 
 
               A1    A2   
Ae   =                                                                                                   (3-19)  
                I       0    
   
                                -1 
               ∑       0                 ∑-1        0                  P        0 
Pe   =                        =                                =                                     (3-20)  
               0      ∑ e                 0         ∑e

1                0        Pe 
   
Pe = σ0

2 ∑o
-1   
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               Y    
Ye   =                                                                                                   (3-21) 
                0    
   
 
               X1    
X    =                                                                                                  (3-22) 
               X2   
   
 
Therefore, Ne and Ce can be written as: 
 
                                
              A1

T P A1     A1
T P A2             N11+ Po       N12 

Ne   =                                             =                                   = N + P'
o (3-23)  

              A2
T P A1     A2

T P A2              N21            N22 
  
 
                                
              A1

T P Y + O Po             
Ce   =                                  =  C + Co                                                   (3-24)  
               A2

T P Y  
  
where, 
 
                                
                Po

         0              
P'

o  =                                                                             (3-25)  
                 0       0  
   
 
                                
              O Po

                
Co  =                                                                             (3-26)  
                0  
  
N and C are previously defined (equation 3-3). 
 
The solution of equation (3-16) is: 
 
X^ = Ne

-1 C                (3-27) 
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where, 
 
                                
              H11        H 12   
Ne

-1   =                                                                                            (3-28)  
              H21      H22

  
     
H11   = (S1 + Po) -1                                                                                (3-29) 
 
H12   = - (S1 + Po) -1 N12 N22

-1                                                            (3-30) 
 
H21   = - N22

-1  N21 (S1+ Po) -1                                                            (3-31) 
 
H22   = N22

-1 N21 (S1 + Po) -1 N12 N22
-1 + N22

-1                                      (3-32) 
 
S1   = N11 – N12 N22

-1 N21                                                                    (3-33) 
 
S1   is called the first Schur complement. 
 
The dispersion of the solution, X^ , is: 
 
                                                     -1 
                       N11+ Po          N12   
D { X^ } =                                                                      (3-34)  
                        N21                  N22

  
 
The residual vector, εe , is: 
 
            ε^ 
ε^

e =                 =   Ye – Ae X^            (3-35) 
            ε^

o 
 
which can be written as: 
 
ε^

e = [ I - Ae Ne
-1 Ae

T Pe ]  Ye               (3-36) 
 
with a dispersion matrix: 
 
D { ε^

e } = D { Ye  } – D { Ae X^ }                (3-37) 
 
The estimated variance component is: 
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σ^
o
2 = ε^

e
T   Pe    ε^

e    /   d.f             (3-38) 
 
where d.f = degree of freedom = ( n + d – m )                                  (3-39) 
 
 From a computational point of view, some of the above equations 
can be simplified in certain cases. If the solution, X^, is the correction to 
be added to a vector of approximate values of the parameters, the vector 
of prior information might be a "random" zero vector. Furthermore, if the 
pseudo observations are given relatively large values (i.e. ∑o is almost 
zero), the inverse of (S1+Po) may be considered zero. Under these 
assumptions, equation (3-27) becomes: 
 
X^ = ( N + P'

o )-1 C                            (3-40) 
 
This special case is known as the observation equations with weighted 
parameters and can be found, in details, in many adjustment texts (e.g. 
Uotila 1986, pp. 104). Nevertheless, it is just a simplified least-squares 
adjustment in the extended Gauss-Markoff model. 
 
 The developed adjustment program also converts the estimated 
parameters, i.e. the Cartesian coordinates of the network stations, to a 
geodetic coordinate system (latitude, longitude, and height) along with 
their covariance matrices. The implemented equations are given by Rapp 
(1976, pp. 56) 
 
 
3.3 The Use of the Cholesky Factorization Algorithm 
 
 The Cholesky factorization algorithm for solving a set of linear 
equations has been applied in geodesy for many years (Schmid 1973). It 
is the LU decomposition technique in which the upper triangular matrix, 
U, is chosen to be the transpose of the lower triangular matrix, L. In terms 
of execution operations, the LU method requires three times fewer 
operations (inner loops) than any other similar procedures, for example 
the Gauss-Jordan routine (Press et al. 1989). 
 

The Cholesky factorization is used, among other functions, to 
invert the symmetric positive-definite normal equation matrix N (or Ne in 
the extended Gauss-Markoff model). N is decomposed to the product of a 
lower triangular matrix, S, and its transpose: 
 
N = S ST               (3-41) 
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The inverse of N could be written as: 
 
N-1 = (S ST)-1 = (ST)-1 S-1 = (S-1)T S-1           (3-42) 
 
 To invert the lower triangular matrix S, less execution time is 
required when compared to the inversion of the full matrix N. 
 
 To obtain ST, two formulas are used for the diagonal and the 
above-diagonal elements (Koch 1988, pp. 37): 
 
sT

ij = ( nij - ∑k=1
i-1 sT

kj ) 1/2                       (3-43) 
 
sT

ij = ( nij - ∑k=1
i-1 sT

ki  sT
kj) 1/2                      (3-44) 

 
for i = 1, 2, ….. m   and j = 1, 2, …. M 
 
 The Cholesky algorithm can also be used to decorrelate a set of 
correlated observations to allow for easy accumulation of the normal 
equations (Milbert 1985). This can be done by factorizing the cofactor 
matrix of the observations, ∑, as:  
 
σo

2 ∑ = R RT              (3-45) 
 
so that 
 
σo

2 ∑-1 = P = ( R-1 )T R-1                                                  (3-46) 
 
Instead of the normal equations (3-3), the model becomes: 
 
N' X = C'                 (3-47) 
 
where  
 
N ' = A' T A '               (3-48) 
C ' = A' T Y '               (3-49) 
A ' = R-1 A               (3-50) 
Y ' = R-1 Y               (3-51) 
 
Therefore, the least-squares solution will be: 
 
X^ = [  (A')T A' ] -1 (A')T Y'              (3-52) 
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in which the transformed observations, Y', have an identity cofactor 
matrix because of 
 
E { ε'  ε' T } = E {  (R-1 ε )  (R-1 εT )  }  
                  = R-1  E { ε εT } (R-1) T 
                  =  R-1  ∑  (R-1) T = R-1  (R RT) σo

2 (R-1) T  
                  =  ( R-1 R) σo

2 (RT) -1 = σo
2 I    

     
 Another advantage of the Cholesky factorization algorithm is that it 
reveals the defects in the normal matrix. The number of the generated 
zeros on the diagonal represents the number of defects. This property is 
important in data snooping since deleting an erroneous observation might 
create a new observation defect in the network. 
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CHAPTER IV 
 
 

DETECTING INCONSITENT AND NO-CHECK OBSERVATIONS 
 
 
 
4.1 Observation Defects in GPS Networks 
 
 For the analysis of geodetic networks, in general, there is a 
distinction of two types of defects: datum defects and observation defects 
(Delikaraoglou 1985). The datum defects have been addressed in section 
3.2. This section of the thesis is devoted to the second type of defects. 
The number of the observation defects is not always known before the 
adjustment process. Moreover, in some cases this number may increase 
during the adjustment. Figure 3 shows an example of some deficiencies in 
a triangulation network. 
 
 Observation defects can be thought of as a lack of observations or 
deficiencies in an observation campaign. In other words, these defects 
arise when the number and geometry of observations are inadequate to 
estimate uniquely the network parameters. An example of this situation is 
point E in figure 3. Suppose that there were two observations connecting 
point E to any other neighboring points, and these observations being 
conflicted and therefore flagged as erroneous observations when 
performing data snooping. Deleting these erroneous observations will 
disconnect point E from the network, with the result that new defect 
(singularities) will be encountered when inverting the normal equation 
matrix. In other situations, the observation defects result when some of 
the network points are situated in a special or poor-geometry 
configuration (for a certain type of measurements). For instance, point C 
in the triangulation network in figure 3 is a defected point since it is 
nearly on the line between points A and G. Therefore, such observation 
defects could be detected by viewing a sketch of the network with expert 
eyes. 
 
 The most crucial type of observation defects (which was the main 
target of this study) is the "no-check". For example, the line from point A 
to point B in figure 3 is connected to the network only through point A, 
and therefore there is independent check for the observed vector 
components of this line. The threat of this type of observations lies in two 
features: (1) no blunder detection algorithm can be applied on no-check 
observations, and (2) the uncertainties of the distant point (point B in 
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figure 3) cannot be judged correctly even though this point might have 
small standard deviations. This is because blunders in the no-check 
observation will adversely affect the adjusted coordinates of this point, 
but not the statistics. 
 
 

 
 

Figure 3: Example of Observation Defects 
 
 To overcome the observation defects, after detecting them, the 
observation plan must be modified by introducing new measurements, or 
deleting some measurements and parameters from the adjustment. For 
example, a new vector from point B to any point in the network 
(including A) needs to be observed to control this weak part of the 
network. This task is known as the third order design (Schmitt 1985). It is 
known that in case of adding or deleting observations, the sequential 
adjustment may be an appropriate and effective tool for performing such 
a function, particularly in large network. 
 
 Because the hazard of the no-check observations, zero residuals, in 
this case, are not necessarily a good indication about the quality of the 
adjustment. Also, small standard deviations cannot be interpreted as a 
measure of the reliability of the estimated parameters. The results of the 
least-squares adjustment need to be examined carefully to reveal any 
deficiencies in the observation campaign and to detect no-check 
observations. 
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4.2 Redundancy Number and Its Implementations 
 
 For measuring the quality of an observation, there are two 
measures. One is precision (the standard deviation is set up as a measure 
of precision). The other is reliability. A redundancy number (known also 
as redundancy contribution) is used to judge the reliability of the 
adjustment of individual observations. A redundancy number of the i-th 
observation is the diagonal element of the matrix product (Qε

^ P) of the 
cofactor matrix of residual (Qε

^) and the weight matrix (P). 
 
 The discussion in this section refers to the Gauss-Markoff model  
with full rank, which is discussed in section 3.1. However, the same 
argument and the corresponding equations are valid for the extended 
Gauss-Markoff model with pseudo observations, which is reviewed in 
section 3.2. 
 
 The residual vector (ε^) can be written as the difference between 
the observations (Y) and the adjusted observations (Y^):  
 
ε^ = Y - Y^                           (4-1) 
 
Since the cofactor matrix of the adjusted observations follows from 
equation (3-7), the cofactor matrix of the residuals is: 
 
Qε

^ = QY - QY
^   

      = P-1 – A N-1 AT              (4-2) 
 
which, when multiplying by the weight matrix P, yields a redundancy 
matrix: 
 
Qε

^ P = ( P-1 – A N-1 AT ) P 
         =    I  –  A N-1 AT   P 
         =    I  –      QY

^       P             (4-3) 
 
The matrix (A N-1 AT P) is, among other characteristics discussed by 
Pope (1976), an idempotent matrix because of 
 
(A N-1 AT P) (A N-1 AT P) = A N-1 ( AT P A) N-1 AT P 
      = A (N-1 N) N-1 AT P 
      = A N-1 AT P              (4-4) 
 
which, in turn, means that the redundancy matrix is also idempotent: 
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(Qε

^P ) ( Qε
^ P ) =  Qε

^ P                     (4-5) 
 
It is known that the trace of an idempotent matrix equals its rank (Koch 
1988, pp. 58). So: 
 
trace ( Qε

^ P ) = trace (  I – A N-1 AT P ) 
                      = trace ( I ) – trace ( A N-1 AT P ) 
                      =      n        – trace ( N-1 AT P ) 
                      =      n        – rank  ( N ) 
                      =      n        – rank  ( A )  
                      =      n        –     m                                 (4-6) 
 
(for the extended Gauss-Markoff model, the right side of equation 4-6 
will be n + d – m). 
 
 Since (n-m) is the degree of freedom, or total redundancy, in the 
Gauss-Markoff model of full rank, it can be seen that: 
 
∑i=1

n (ri) = trace (Qε
^ P ) = n – m              (4-7) 

 
where ri is the diagonal element of (Qε

^ P ), which is called the 
redundancy number and indicates the contribution of the i-th observation 
to the overall degree of freedom. 
 
 Under the assumption that there is no correlation between the 
observations, i.e., P is a diagonal matrix, it can be written that: 
 
ri = qi pi                (4-8) 
 
where qi and pi are i-th diagonal element of Qε

^ and P respectively. 
 
From equation (4-2), and observing Qε

^ as being non-negative definite 
matrix, it is concluded that: 
 
O  ≤  qi   ≤   1/pi               (4-9) 
 
which, when multiplying by pi , yields 
 
O  ≤  ri   ≤   1              (4-10) 
 
If follows from equation (4-1) that 
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QY

^ =  QY
 - Qε

^             (4-11) 
 
 Concerning equations (4-10) and (4-11), many investigators (e.g. 
Caspary 1987 and Leick 1990) provide some interpretations for 
redundancy number in different cases as follows: 
 

(i) If the redundancy number is close to zero, that means that the 
variance of the adjusted observation is close to the variance of 
the observation itself since equation (4-11) will be QY

^ ≈ QY
 . 

This implies that the increase in precision of this adjusted 
observation is low. 

(ii) If the redundancy number is zero, the corresponding i-th 
observation is not checked by any other observation since, in 
this case, equation (4-3) turns to be 

 
ri = (Qε

^ P )i = 1 –[ QY
^
i
 Pi  ]= 0 

                   = 1 – [PYi
 / P Y

^
i  ]= 0 

 
i.e.,  
 
P^

Yi
 = P Yi                     (4-12) 

 
Also, some parameters (e.g. the distant end point of a no-check 

observation) cannot be computed without this uncontrolled observation. 
Therefore, any undetected gross error in this observation is directly 
transferred into the estimated parameters. 
 

(iii) On the other hand, if the redundancy number is close to one, 
i.e., PYi

 / P Y
^
i  almost equals zero, it indicates that the 

observations are adjusted with high precision. 
(iv) Consequently, if ri is one, that means that the i-th adjusted 

observation is perfectly checked by the model since equation (4-
3) becomes 

 
ri = ( QY

^ P ) i = 1 – ( QY
^  P ) i = 1 

                     = 1 – [ PYi / PY
^
i ] = 1  

 
i.e., 
 
PY

^
i = ∞                              (4-13) 
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So, in this case any gross error will be revealed in the residual of 
this observation with the result that it will not have any effect at all on the 
estimation of the unknown parameters (Kavouras 1982). Examples of 
typical values of redundancy numbers in geodetic networks are given in 
table 2 (Caspary 1987): 
 

Table 2: Typical redundancy numbers in geodetic networks 
 

Network Type Values of Redundancy Contribution 
 Traverse net 
 
 Trialateration net 
 
 Combined net 
 
 Leveling net  

0.1 – 0.2 
 

0.3 – 0.6 
 

0.5 – 0.8 
 

0.2 – 0.5 
 
 Accordingly, redundancy numbers that are close to, or equal, zero 
can be thought of as an indication of poor geometry of some parts in a 
network, and a measure of low reliability of subsets of the observations. 
 
 
4.3 Antenna Setup Error Sources 
 
 Generally speaking, reliability of geodetic operations requires, 
among other considerations, self-checking measurement procedures that 
provide checks for gross and systematic errors. The usual method of 
ensuring that the observations are valid is to repeat the observations under 
different circumstances. This replication, or redundancy, besides 
validating the observations, puts some limits on those contributions to 
errors that arise from setup and other systematic effects (Morgan et al. 
1986). 
 
 The U.S National Geodetic Reference System specifications 
require 10 part-per-million (1:100,000) minimum geometric accuracy 
standard for first-order control surveys to meet mapping, land 
information, property, and engineering requirements (FGCC 1984). It is 
known that baselines can be measured routinely using the GPS with 
uncertainties of better than 10 ppm. Assuming that, with the recent 
advances in the GPS relative positioning, the measurement errors and 
biases have been eliminated by differencing or proper modelling, the 
errors associated with the antenna setup become more significant and 
need to be considered. 
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 The error sources in setting up the antenna relative to the station 
mark are (Minkel 1989): collimation error; error in setting the tripod; and 
antenna height measurement error. Collimation error results from 
inaccurate plumbing over the ground station. Most tribraches have a 2-
minute bull's-eye bubble that is used for levelling and plumbing. 
Moreover, a 2-miute error translated to a horizontal error of 0.001 m (1 
mm) at an antenna height of 1.5 m (Minkel 1989). Another method for 
plumbing is to use a plum bob, which under calm weather conditions, 
may be accurate to a millimeter or so. Therefore, a plumb bob could be a 
simple, quick, and good check on the optical plummet. Tripod setting 
might occur and cause significant errors in both collimation and antenna 
height measurements. Precautions should be considered when setting the 
tripod in loose soil. 
 
 Probably, the most important error source is that due to 
inaccuracies in the height determination of the antenna. Normally, a 
height is determined by taping the distance from the plumb point of the 
station to a reference point on the antenna. The distance from the 
reference point to the phase center of the antenna is known and given by 
the receiver's manufacturer. From these two distances, the antenna height 
(from the phase center to the plumb point of the station) is computed. 
Therefore, there are two possible sources of error in the antenna height 
determination. One error may be in measuring or recording the distance 
from the antenna reference point to the plumb point. The second error 
might be in using the incorrect edge-to-center distance. The later error 
may occur in surveys with different types of antennas, where an incorrect 
distance may be used for the antenna. 
 
 Some precautionary guidelines are presented by the FGCC (1989) 
for GPS field procedures in order to minimize the antenna setup errors. 
These instructions could be summarized as follows: 
 

(a) The antenna height should be measured in both feet and metric 
units. 

(b) The antenna height is preferred to be measured before and after 
each survey session. 

(c) Checks should be performed for collimation and levelling before 
and after each occupation. 

(d) The plumb bob, or any other independent plumb point check, 
should be used. 

(e) Frequently, the optical plummets should be checked and adjusted if 
required. 
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(f) If an antenna is moved during an observing session, the set of 
observations for that session may not be acceptable. 

(g) For all survey orders and classes, the antenna must be stably 
located over the mark for the duration of the observing session 
within allowable setup error which is determined from the 
equation: 

 
k = 0.1 p d (β)                       (4-14) 
 
where,  
 
k = the repeatable setup error in (cm) for any component (horizontal or 

vertical) at the 95% confidence level. 
p = minimum geometric standard in parts-per-million (ppm). 
d = distance between any two stations of a survey (km). 
β = 0.05 = critical region factor for the 95% confidence level (β = 1 – 

0.95 = 0.05 ). 
 
 Some examples of the allowable setup errors are given in table 3 
(FGCC 1989): 
 
 

Table 3: Allowable Setup Errors (k) in Centimeters at 95% level of 
Confidence 

(with kmin = 0.3 cm and kmax = 10 cm) 
 

d  (km) Survey 
Class 

p (ppm) 
   0.01       0.1         1.0           10           100 

AA 
A 
B 
1 
2-I 
2-II 
3-I 

0.01 
0.10 
1.00 
10.0 
20.0 
50.0 
100.0 

   0.3         0.3         0.3           0.3          0.3 
   0.3         0.3         0.3           0.3          0.3 
   0.3         0.3         0.3           0.3          0.3 
   0.3         0.3         0.3           0.5          5.0 
   0.3         0.3         0.3           1.0          10.0 
   0.3         0.3         0.3           2.5          (10) 
   0.3         0.3         0.5           5.0          (10) 

 
 Moreover, committing an undetectable setup error is still possible 
with the result that the least-squares results might be significantly 
influenced. A method is required to obtain some measure about the 
sensitivity of the estimated parameters to such undetectable errors. 
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4.4 A Proposed Method for Detecting Inconsistent Observations 
Associated with Incorrect Antenna Placements 

 
 The proposed procedure is based on analyzing the least-squares 
adjustment results to reveal a measure of the "sensitivity" of detecting 
any existent setup errors. It should be emphasized that the suggested 
method is not intended to compute the magnitude of such setup errors, if 
any. The main purpose, here, is to obtain "an indication of controllability" 
of the setup errors and, therefore, reveal information about the reliability 
of the estimated parameters. 
 
We start again with equation (3-8) for the residuals vector: 
 
ε^ = Y - A X^  = ( I  -  A  N-1  AT  P ) Y  
 
Instead of using the model 
 
Y - ε = A X 
 
For the observation equations, we will use an extended model: 
 
Y - ε = A X + B τ             (4-15) 
 
which is often used in the hypothesis testing for outliers (Kok 1984, Koch 
1988). τ is an t x 1 vector which contains the setup errors assumed to be 
present in the observations, and B is an n x t coefficient matrix 
corresponding to the derivatives of the observations with respect to those 
assumed errors such that rank ( A, B ) ≤ n. 
 
 The symbol "t" refers to number of possible setup errors. In the 
network mode of GPS surveying, a number of receivers are deployed to a 
number of stations to collect data simultaneously in the so-called 
"session". Some stations are occupied more than once, in different 
sessions, in order to obtain redundancy in the GPS networks. This leads 
to a number of total setup operations greater than the number of stations, 
with the result that the number of possible setup errors, t, is greater than 
the number of the stations, m. 
 
Substituting equation (4-15) in equation (3-8) yields the following: 
 
ε^ =[ I  -  A  N-1  AT  P ]   [ A X + B τ ]                    (4-16) 
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Differentiating (4-16) with respect to the setup error vector τ yields: 
 
δε^ / δτ  = [ I  -  A  N-1  AT  P ]  B                     (4-17) 
 
where (δε^/δτ) is an n x t matrix that describes the sensitivity of the 
residuals, ε^ , to detect effects of setup errors, τ. 
 
 In order to interpret the results of equation (4-17), two different 
situations are discussed: 
 
4.4.1 Detecting Uncontrolled Setup Errors: 
 
The worst situation occurs when 
 
δε^ / δτ  = 0                                                             (4-18) 
 
which happens if and only if the matrix B belongs to the null space of the 
matrix [ I  -  A  N-1  AT  P ], i.e., the range space of the design matrix A. 
Therefore, the matrix B can be expressed as a linear combination of A: 
 
B = A G               (4-19) 
 
for some matrix G (i.e., rank [A,B] = rank A). 
 
 It is known that the matrix [ I  -  A  N-1  AT  P ]T is orthogonal to the 
design matrix A since 
 
[ I  -  A  N-1  AT  P ] A = 0            (4-20) 
 
Therefore, an additional vector B τ with 
 
B τ ∈ R(A)               (4-21) 
 
Does not change the residuals, if they are computed via (3-8). 
 
 A geometrical interpretation of this result is shown in figure 4. In 
this case, the setup errors will not be revealed in the residuals (and, hence, 
do not affect the adjusted observations), but are directly transferred to the 
estimation of the parameters. Accordingly, it can be said that if δε^/δτ 
equals zero, the setup errors are "uncontrolled". This situation is the case 
of no-check observations. 
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Figure 4: Influence of Setup Errors on the Residuals 
 
 4.4.2 Detecting Controlled Setup Errors: 
 
The best situation is encountered when 
 
AT P B = 0                (4-22) 
 
which yields (from equation 4-17): 
 
δε^ / δτ  = B                                                             (4-23) 
 
Integrating (4-23) gives 
 
ε^ =  B τ  +  ε                                                  (4-24) 
 
 Equation (4-24) could be  interpreted as the estimated residuals, ε^, 
and describes effects of both the observational error, ε , and the setup 
errors, τ. Therefore, the adjusted observations are determined with high 
precision which results in an accurate estimation of the parameters. In this 
case, it can be said that the setup error are "controlled". 
 
 A measure that is easy to interpret, in any situation, is developed 
based on the computed n x t matrix (δε^/δτ) . It can be realized from 
equation (4-17) that each column of this matrix corresponds to one of the 
setup error. Therefore, it could be written that 
 
(δε^/δτ)i  = [ I  -  A  N-1  AT  P ]  bi                     (4-25) 
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for i = 1, 2, …. t 
 
A weighted L2-norm of this column (or vector) is 
 
║ (δε^/δτ)i ║2

P =  (δε^/δτ)i
T    P  (δε^/δτ)I             (4-26) 

 
which, after some manipulation, can be expressed as 
 
║ (δε^/δτ)i ║2

P =  bi
T [ P – P A N-1 AT P ] bi           (4-27) 

 
A normalized weighted L2-norm of this vector is 
 
Si =  bi

T [ P – P A N-1 AT P ] bi  /   bi
T   P   bi

                      (4-28) 
 
 The maximum value of Si occurs when AT P B =0, and therefore 
(Si) max = 1. That is corresponding to the case 4.4.2 when the setup errors 
are 100% revealed in the residuals. On the other hand, Si equals zero 
when the setup errors belong to the range space of the design matrix A, 
and they cannot be detected in the residuals, i.e., no-check observations. 
 
Accordingly, it can be written that 
 
0 ≤ Si ≤ 1                 (4-29) 
 
 This indication, Si , is called a "measure of sensitivity" since it 
describes the sensitivity of the residuals to detect the effects of setup 
errors. 
 
4.5 The Use of the Produced Method for Detecting No-Check 

Observations 
 

A no-check observation is a result of deficiencies in planning the 
observation campaign. This type of observation defects has to be located 
to detect weak parts of the network. A no-check observation is 
characterized by a setup error that lies in the range space of the design 
matrix A, with the result that these errors will be transferred directly to 
the estimated parameters. Based on this rule, it can be expected that this 
error cannot be revealed in the residuals. That was the key used in the 
proposed method to detect no-check observations. 
 

Depending on how the matrix B was constructed, it can be expressed 
as a linear combination of the coefficient matrix A; in this case: B (nxt) = 
A (n,m) L (m,t) for some matrix L. According to the argument of case 
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(4.4.1), this situation will cause (δε^/δτ) to be zero since the setup error 
vector, B τ belongs to R(A). 
 
 The use of the redundancy number may not be the finest tool in 
recognizing no-check observations. This routine relies on examining the 
diagonal element of the matrix[ I – A N-1 AT P ]. It is known that this 
matrix is, in general, not a diagonal matrix. Therefore, neglecting the 
influences of the off-diagonal elements might produce misleading 
interpretation. 
 
 The proposed procedure has some merits, over the redundancy 
number concept, in terms of detecting no-check observations. The 
method carries the test on the obtained (δε^/δτ) matrix, which is the 
product of multiplying [ I – A N-1 AT P ] by B. That means that we have 
included some other information, throughout the matrix B, about possible 
setup errors that might be present in the observations. Also, it is known 
that a product of two matrices can contain some zero elements even if one 
of the matrices has non-zero diagonal elements. A third advantage is that 
the matrix (δε^/δτ) reveals the influences of the off-diagonal elements of 
the original matrix [ I – A N-1 AT P ]. Therefore, the suggested method 
identifies no-check observations more effectively. 
 
 The main advantage of the proposed method is its simplicity which 
enables it to be included in any least-squares adjustment procedure 
without additional computations. The method is directly based on the 
obtained least-squares results and is used efficiently for both the original 
two objectives: (1) obtaining a sensitivity measure about the 
controllability of setup errors; and (2) detecting no-check observations in 
a GPS network. 
 
 
4.6 A Practical Experiment with a Small GPS Network 
 
 A small GPS network was used to test the developed program and 
the proposed method of detecting inconsistent and no-check observations. 
The network, in figure 5, consists of 23 stations connected by 36 
baselines. Station 1 has previously known accurate coordinates, in the 
GRS80 datum, and therefore was held fixed to overcome the expected 
three datum defects. The estimated Cartesian coordinates of the stations 
are presented in table 4. The adjusted baseline components along with 
their residuals are provided in table 5. 
 
 



 37

 
 
 

 
 

Figure 5: A Sketch of the Tested GPS Network 
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Table 4: The Estimated Cartesian Coordinates (m) of the GPS Network 
Stations 

 
Station      X              (stdv)       Y                 (stdv)        Z            (stdv) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

593898.888 (0.000) 
592228.445 (0.081) 
592177.300 (0.078) 
592154.053 (0.085) 
592143.654 (0.076) 
592078.258 (0.089) 
592784.445 (0.071) 
593319.278 (0.056) 
593354.851 (0.084) 
593996.999 (0.044) 
595126.249 (0.060) 
595200.236 (0.061) 
595660.216 (0.076) 
595703.643 (0.060) 
595157.857 (0.045) 
594632.457 (0.041) 
594053.416 (0.064) 
593329.609 (0.083) 
593452.569 (0.086) 
594576.862 (0.041) 
592709.211 (0.074) 
595768.849 (0.064) 
592759.323   (0.076)

-4856214.546 (0.000) 
-4857180.590 (0.139) 
-4856760.593 (0.133) 
-4856289.716 (0.145) 
-4855982.308   (0.143)
-4855599.001 (0.199) 
-4855427.648 (0.122) 
-4855416.043 (0.102) 
-4854952.029 (0.148) 
-4854862.455 (0.091) 
-4855004.190 (0.192) 
-4855346.527 (0.188) 
-4855788.863 (0.204) 
-4857185.141 (0.182) 
-4857243.109 (0.157) 
-4857273.274 (0.137) 
-4857338.677 (0.122) 
-4857089.844 (0.115) 
-4856581.524 (0.153) 
-4855007.774 (0.124) 
-4856232.800 (0.127) 
-4856306.567 (0.177) 
-4856986.598   (0.131)

4078710.706 (0.000) 
4077844.926 (0.116) 
4078352.338 (0.097) 
4078915.013 (0.110) 
4079276.772 (0.110) 
4079741.541 (0.152) 
4079821.118 (0.088) 
4079738.310 (0.076) 
4080287.962 (0.110) 
4080291.250 (0.072) 
4079989.698 (0.121) 
4079573.785 (0.124) 
4078986.747 (0.158) 
4077307.170 (0.134) 
4077326.103 (0.107) 
4077342.816 (0.082) 
4077351.903 (0.113) 
4077767.661 (0.097) 
4078345.751 (0.137) 
4080036.405 (0.078) 
4078884.680 (0.092) 
4078337.358 (0.134) 
4077988.316 (0.099)
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Table 5: The Adjusted Baseline Components (m) of the GPS Network 
 

No. From To     dX        (VdX)    dY         (VdY)        dZ       (VdZ) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

5 
16 
8 
12 
14 
4 
16 
2 
6 
20 
2 
8 
4 
18 
22 
23 
19 
21 
23 
7 
8 
8 
21 
7 
22 
1 
8 
1 
22 
17 
1 
16 
1 
1 
15 
11 

21 
15 
7 
11 
15 
21 
17 
23 
5 
10 
3 
9 
3 
23 
13 
19 
23 
3 
21 
5 
10 
10 
23 
21 
14 
18 
1 
22 
12 
1 
3 
1 
20 
10 
1 
20 

 565.567   (0.058) 
 525.401   (0.058) 
-534.832   (0.041) 
-73.987     (0.033) 
-545.786   (-0.057) 
 555.158   (-0.006) 
-579.041   (-0.007) 
 530.878   (-0.001) 
   65.387   (0.000) 
-579.863   (0.032) 
-  51.145   (-0.000) 
   35.573   (0.000) 
   23.247   (0.006) 
-570.286   (-0.019) 
-108.633   (0.000) 
 693.246   (0.000) 
-693.246   (0.000) 
-531.911   (0.019) 
-50.112     (-0.008) 
-640.801   (0.045) 
 677.721   (-0.037) 
 677.721   (-0.035) 
  50.112    (0.035) 
 -75.234    (-0.145) 
 -65.206    (-0.066) 
-569.279   (-0.083) 
 579.610    (-0.005) 
1869.962   (0.119) 
-568.613    (0.363) 
-154.528    (-0.038) 
-1721.588  (-0.073) 
-733.569    (-0.027) 
 677.975    (-0.059) 
   `98.111   (-0.027) 
-1258.970  (-0.083) 
-549.386    (0.139) 

-250.491   (0.015) 
39.165      (-0.207) 
-11.605     (-0.059)
342.338    (-0.062) 
-48.968     (0.014) 
56.917      (-0.004) 
-65.403     (0.028) 
193.992    (-0.020) 
-383.307   (0.000) 
145.319    (-0.023) 
419.996    (0.007) 
464.014    (0.000) 
-470.877  (-0.006) 
103.246    (0.085) 
517.704    (0.000) 
405.073    (0.002) 
-405.073  (0.004) 
-527.794  (-0.035) 
753.798    (-0.015) 
-554.661  (-0.019) 
553.588    (0.061) 
553.588    (0.055) 
-753.798   (-0.062)
-805.152   (0.165) 
-878.574   (0.025) 
-875.298   (0.088) 
-798.503   (0.006) 
-92.021     (0.443) 
960.040    (0.339) 
1124.131  (0.050) 
-546.048  (0.089) 
1058.728  (0.055) 
1206.771  (0.057) 
1352.091  (0.052) 
1019.563  (0.231) 
-3.584       (0.312) 

-392.092 (-0.114) 
-16.712   (0.118) 
82.808    (0.032) 
415.913  (0.031) 
18.933    (-0.029) 
-30.334   (0.004) 
9.087       (-0.019) 
143.390   (0.015) 
-464.769  (0.000) 
254.846   (0.026) 
507.411   (-0.005) 
549.652   (0.000) 
-562.676  (0.003) 
220.655   (-0.043) 
649.389   (0.000) 
357.435   (-0.001) 
-357.435  (-0.001) 
-532.342  (0.022) 
896.364   (-0.001) 
-544.346  (0.007) 
552.941   (-0.037) 
552.941    (-0.034) 
-896.364   (0.024) 
-936.438   (-0.077) 
-1030.188 (-0.058) 
-943.045   (-0.048) 
-1027.604 (0.005) 
-373.348   (-0.354) 
1236.427  (-0.182) 
1358.803  (-0.035) 
-358.368   (-0.051) 
1367.890  (-0.044) 
1352.699  (-0.036) 
1580.545  (-0.019) 
1384.602  (-0.154) 
46.706      (0.171) 
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 The matrix B, which contains the derivatives of observations with 
respect to the setup errors as appeared in equation 4-17, has n x t size, 
where n is the number of observations and t is the number of setup errors. 
It is inconvenient to construct B with this huge size. For example, the 
small network has been observed in 19 sessions with 54 different station 
occupations. That means that n = 36 x 3 = 108, and t = 54 x 3 = 162, 
which makes B require a computer space approximately 35 kilobytes. To 
overcome this problem, the test 4-17 is performed in a slightly different 
way. The strategy of performing the test is based on the idea that the 
occurrence of setup errors in a station will affect those baselines that pass 
by that station and are observed in the same session. With this concept, 
the test is carried out session by session and baseline by baseline. For 
each baseline, each of the end points is checked separately where n is 
now the number of baselines connected to this station in the current 
session. Consequently, the number of possible setup errors, t, is always 3. 
This procedure reduce the required size of matrices and, hence, facilitates 
checking. 
 
 A no-check observation, for example on baseline 9 in figure 5, will 
be the only baseline passing by one of its end points (station 6). In this 
case, the matrix B of that point will be a 3 x 3 matrix and is a linear 
combination of the corresponding part of the design matrix A. Therefore, 
equation (4-19) holds which validates the equality in equation (4-18). 
Consequently, this baseline is flagged to be a no-check observation. The 
complete results of the performed test are presented in table 6. 
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Table 6: Results of Detecting No-Check Observations in the GPS 
Network 

 
Session 
No. 

Baseline 
No. 

From (status) To  (status) Final 
Result 

1 
1 
2 
3 
3 
4 
4 
4 
5 
6 
6 
7 
7 
8 
8 
9 
10 
10 
11 
11 
12 
12 
13 
13 
14 
14 
15 
15 
16 
16 
17 
17 
18 
18 
19 
19 

5 
25 
4 
15 
29 
16 
17 
19 
14 
13 
31 
28 
35 
2 
32 
7 
26 
30 
18 
23 
9 
20 
1 
6 
8 
11 
3 
24 
12 
22 
21 
27 
10 
34 
33 
36 

14 
22 
12 
22 
22 
23 
19 
23 
18 
4 
1 
1 
15 
16 
16 
16 
1 
17 
21 
21 
6 
7 
5 
4 
2 
2 
8 
7 
8 
8 
8 
8 
20 
1 
1 
11 

(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(N.C.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  

15 
14 
11 
13 
12 
19 
23 
21 
23 
3 
3 
22 
1 
15 
1 
17 
18 
1 
3 
23 
5 
5 
21 
21 
23 
3 
7 
21 
9 
10 
10 
1 
10 
10 
20 
20 

(O.K.)  
(O.K.)  
(O.K.)  
(N.C.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(N.C.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  
(O.K.)  

Good 
Good 
Good 
No-Check
Good 
Good 
Good 
Good 
Good 
Good 
Good 
Good 
Good 
Good 
Good 
Good 
Good 
Good 
Good 
Good 
No-Check
Good 
Good 
Good 
Good 
Good 
Good 
Good 
No-Check
Good 
Good 
Good 
Good 
Good 
Good 
Good 

N.C. = No-Check Station 
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CHAPTER V 
 

SUMMARY AND COINCLUSIONS 
 
 
 
 With the high accuracy of GPS measurements, post-adjustment 
analysis of the obtained lease-squares results become a must. It has been 
a matter of principle in every geodetic problem that not only the 
estimated solution but also a measure of its quality is provided. The 
quality of a network could be, generally, made up of three factors: 
Economy; Precision; and Reliability. The network reliability, which 
describes the ability of redundant observations to check model errors, is 
the major area of this study. 
 
 Due to lack of observations or weak geometry of a network, some 
observation and configuration defects exist. Among these defects, a no-
check observation is of special interest because it can dramatically 
decrease the quality of the results. No-check observations may also be 
produced during the adjustment process itself in case of some 
observations being rejected when applying a testing procedure for outlier 
detection. Therefore, the detection of no-check observations in a GPS 
network cannot be based only on experience of survoyers when reviewing 
a sketch of the network. A more rigorous and effective test is needed to 
reveal these harmful situations. A careful analysis of the least-squares 
adjustment results, mainly the computed residuals, provides a basic tool 
for developing an efficient test to detect no-check observations. 
 
 Errors associated with antenna setup, relative to the station mark, 
contribute a significant error source in GPS measurements. Probably the 
largest error in antenna setup is because of inaccuracies and blunders in 
the antenna height measurements. This error may be due to an error in 
measuring the distance from the station mark to a reference point on the 
antenna edge, or an error in using the incorrect known distance from the 
reference point to the phase center of the antenna. Some precautionary 
instructions (reviewed in section 4.3) are recommended as field checks to 
detect such setup errors. However, these guidelines cannot assure that all 
possible errors are discovered in the field. 
 
 Based on analyzing the least-squares adjustment results, a proposed 
algorithm was constructed to detect no-check observations and, in the 
same time, to give a measure of sensitivity, which describes the 
controllability of setup errors. The performed analysis shows that the 
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setup errors are not revealed in the residuals in case of no-check 
observations. Instead, these errors are completely transferred to the 
estimated parameters even though those parameters might have small 
standard deviations. This result highlights the importance of detecting no-
check observations in GPS networks as far as the reliability is concerned. 
 
 The proposed test should be implemented as a post-adjustment 
analysis procedure in any GPS network. It was designed such that its 
integration in a least-squares routine is straightforward without additional 
sophisticated computations or large computer memory requirements. The 
result of the developed program are in table 6, which it is easily 
understood and interpreted by survoyers. The test is also recommended to 
be repeated again if some baselines are to be removed after being flagged 
as erroneous observations. This step is suggested because changing the 
network geometry might create new no-check observations which were 
previously checked by the rejected baselines. Therefore, the testing 
algorithm may be invoked more than once during the adjustment process. 
 
 Upon detecting no-check observations in a GPS network, the 
observations campaign should be modified in order to overcome these 
observation deficiencies. It is highly recommended that new baselines be 
observed to provide some redundant occupations of the no-check stations 
and, therefore, produce some checks for those uncontrolled observations. 
 
 The estimated parameters in a GPS network should not be the only 
important output of a least-squares adjustment process. Post-adjustment 
analysis is a helpful tool that reveals valuable information about the 
observations and the network geometry. Small standard deviations, as a 
measure of precision, may not be the only indication for a "good" GPS 
network. The ability of the network redundant observations to detect 
model errors is the second measure of quality control of GPS network. 
Detecting observation defects and producing strong sensitivity measures 
could be thought of as indicators for reliable GPS networks. 
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APPENDIX A 
 

NANI: A program for Network Adjustment with No-Check 
Identification 

 
 
 
 

PROGRAM NANI 
c 
c  By: GOMAA MOHAMED DAWOD 
c 
c THE OHIO STATE UNIVERSITY – COLUMBUS, OHIO, USA 
c  COPYRIGHT 1991 
c ALL RIGHTS RESERVED 
c 
c 
c This program adjusts a GPS network and identifies 
c no-check observations 
c  
c 
c Required Parameters: 
c    nobs = No of observations = 3 * No. of baselines 
c    npar = No. of parameters = 3 * No. of network stations 
c    nses = No. of sessions in GPS campaign 
c    maxses = Maximum No. of baselines observed in one session 
c 
c 
 PARAMETERS (nobs =108, npar =69, nses = 19, maxses = 6) 
c 
c 
 implicit double precision (a-h, o-z) 
 double precision n1, m1 
 integer*2 obs, obsn, ses, observ, jfrom, jto, session 
c 
c 
 dimension p(3,3), b(3,3), a(3,3), coeff(3,npar), bpy(3), y(3), ising(5) 
 dimension atpa(npar,npar), atpy(npar), x(npar), bp(3,3), bpa(3,3) 
 dimension s(npar,npar), dummy(nobs), atpai(npar,npar), fixed(3) 
 dimension v(nobs), v1(3) , pris(maxses*3,3) 
 dimension bb(maxses*3,3), anat(maxses*3, maxses*3) 
 
 dimension obs(maxses), iif(maxses), iit(maxses), aa(maxses*3,npar) 
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 dimension ap(maxses*3,maxses*3), kobs(maxses*3) 
 dimension kfrom(maxses), kto(maxses), pp(3,3) 
 dimension ap2(maxses*3,maxses*3), anatp(maxses*3,maxses*3) 
  dimension temp1(3,3), temp2(3,3) 
c 
c 
$large: atpa, s, atpai, atpy, v, dummy 
c 
c 
c 
 open (1, file = 'network.inp') 
 open (2, file = 'netcov.inp') 
 open (3, file = 'results.out') 
 open (4, file ='fixed.inp') 
c 
c 
c 
 do 3 i = 1, npar 
  atpy(i) = 0.d0 
  do 3 j = 1, npar 
   atpa (i,j) = 0.d0 
   s (i,j) = 0.d0 
3 continue  
 nstat = npar / 3 
 nbase = nobs / 3 
 write (*,*) ' Please Wait' 
 do 70 k1 = 1, nbase 
  jk = 2*k1+k1-2 
  do 8 i = 1, 3 
   dummy (i) = 0.d0 
   bpy (i) = 0.d0 
  do 6 j = 1, 3 
   a(i,j) = 0.d0 
   b(i,j) = 0.d0 
   p(i,j) = 0.d0 
   bp(i,j) = 0.d0 
   bpa(i,j) = 0.d0 
6  continue 
  do 7 k = 1, npar 
   coeff(i,k) = 0.d0 
7  continue 
8  continue 
c 
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c 
 read(1,*,end=71) line, ifrom, ito, session, dx, dy, dz 
 y(1)=0.d0 
 y(2)=0.d0 
 y(3)=0.d0 
 do 10 i = 1, 3   
  read (2,*) (p(i,j), j = 1,i) 
10 continue 
 do 20 i2 = 1, 2 
 do 20 j2 = i2+1, 3 
  p(i2, j2) = p(j2,i2) 
20 continue 
 call ainv(p,dummy,3) 
 j1 = 2*ifrom+ifrom-2 
 j2 = 2*ito+ito-2 
 do 25 i = 1, 3 
  coeff(i,j1+i-1)= -1.do 
  coeff(i,j2+i-1)= -1.do 
25 continue 
 l1 = 1 
 do 60 k2 = 1, npar 
  l4 = 2*k2+k2-2 
  do 30 i = 1,3 
  do 30 j = 1,3 
   b(i,j) = coeff(i,j+l1-1) 
30 continue 
 l1 = l1 + 3 
 call ab (b, p, bp, 3, 3, 3) 
 call ab (bp, y, bpy, 3, 3, 1) 
 atpy(l4) = atpy(l4)+bpy(1) 
 atpy(l4+1) = atpy(l4+1)+bpy(2) 
 atpy(l4+2) = atpy(l4+2)+bpy(3) 
 l2 = 1 
 do 50 k3 = 1, nstat 
  do 35 i = 1, 3 
  do 35 j = 1, 3 
   a(i,j) = coeff(i,j+l2-1) 
35 continue 
 call ab (bp, a, bpa, 3, 3, 3) 
 l3 = 1 
 do 40 i = 1, 3 
 do 40 j = 1, 3 
   atpa(i+l4-1,j+l2-1)=atpa(i+l4-1,j+l2-1)+bpa(i,j) 
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40 continue 
 l2 = l2+3 
50 continue 
60 continue 
70 continue 
c 
c 
71 read(4,*) icode 
 If(icode.eq.1) then 
  read (4,*) ae 
  read (4,*) finv 
  read (4,*) nfix 
  read (4,*) (fixed(i), i=1,3) 
  call togeod (ae,finv,fixed(1),fixed(2),fixed(3),dlat,dlon,h) 
  call dtodms (dlat,latd,latm,slat) 
  call dtodms (dlon,lond, lonm, slon) 
 elseif(icode.eq.2) then 
  read (4,*) nfix 
  read (4,*) ae 
  read (4,*) finv 
  read (4,*) latd, latm, slat 
  read (4,*) lond, lonm, slon 
  read (4,*) h  
  call dmstod (latd,latm,slat,dlat) 
  call dmstod (lond,lonm,slon,dlon) 
  call frgeod (ae,finv,fixed(1),fixed(2),fixed(3),dlat,dlon,h) 
 else 
  write(*,*) 'error in CONVERT: Check the Fixed data file' 
  write(3,*) 'error in CONVERT: Check the Fixed data file' 
  go to 281 
 endif 
 locat=2*nfix+nfix-2 
 do 101 i=locat,locat+2 
101 atpa(i,i)=1d20 
 do 102 j = 1,5 
102 ising(i)=0 
 call chdec(npar,atpa,s,nsing,ising) 
 if (nsing.gt.0) then 
  write(3,31) nsing 
  write(*,31) nsing 
  go to 456 
 endif 
 call ainv(s,dummy,npar) 
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 call atra(s,atpai,npar,npar) 
 do 829 i=1,npar 
 do 829 j=1,npar 
  if(abs(atpai(i,j).lt.1d-12) atpai(i,j)=0.d0 
829 continue 
 call ab(atpai,atpy,x,npar,npar,1) 
 do 103 i=1,npar 
  if(abs(x).le.1d-12) x(i)=0.d0 
103 continue 
 l5=1 
104 do 105 i=1,3 
105 x(i+l5-1)=x(i+l5-1)+fixed(i) 
 l5=l5+3 
 if(l5.lt.npar) go to 104 
 vtpv=0.d0 
 l1=1 
 rewind 1 
 rewind 2 
 do 170 k7=1,nbase 
  do 108 i=1,3 
   y(i)=0.d0 
   v1(i)=0.d0 
   do 106 j=1,3 
106   p(i,j)=0.d0 
  do 107 k=1,npar 
   coeff(i,k)=0.d0 
107  continue 
108  continue 
 read(1,*,end=171) line,ifrom,ito,session,dx,dy,dz 
 y(1)=dx 
 y(2)=dy 
 y(3)=dz 
 do 110 i=1,3 
  read(2,*) (p(i,j),j=1,i) 
110 continue 
 do 120 i2=1,2 
 do 120 j2=12+1,3 
  p(i2,j2)=p(j2,i2) 
120 continue 
 call ainv(p,dummy,3) 
 j1=2*ifrom+ifrom-2 
 j2=2*ito+ito-2 
 do 125 i=1,3 
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  coeff(i,j1+i-1)=-1.d0 
  coeff(i,j2+i-1)=-1.d0 
125 continue 
 call ab(coeff,x,v1,3,npar,1) 
 do 130 i=1,3 
130  v1(i)=v1(i)-y(i) 
 sumf=0.0 
 call atba (v1,p,sumf,dummy,3,1) 
 ctpv=vtpv+sumf 
 do 135 i=1,3 
135 v(l1+i-1)=v1(i) 
 l1=l1+3 
170 continue 
171 asigma=dsqrt(vtpv/(nob-npar+3)) 
 do 190 i=1,npar 
 do 190 j=1,npar 
  atpai(i,j)=asigma*asigma*atpai(i,j) 
190 continue 
 write(3,4) nbase 
 write(3,5) nstat 
 write(3,84) nnfix 
 do 83 i=1,nstat 
  l9=2*i+i-2 
  stdvx=dsqrt(atpai(l9,l9)) 
  stdvy=dsqrt(atpai(l9+1,l9+1)) 
  stdvz=dsqrt(atpai(l9+2,l9+2)) 
  write(3,97) i,x(l9),stdvx,x(l9+1),stdvy,x(l9+2),stdvz 
83 continue 
 write(3,96) asigma 
 write(3,99) 
 rewind 1 
 ly=1 
 do 280 k8=1,nbase 
  l8=2*k8+k8-2 
  d0 208 i=1,3 
   y(i)=0.d0 
   v1(i)=0.d0 
208  continue 
 read(1,*,end=281) line,ifrom,ito,session,dx,dy,dz 
 y(1)=dx 
 y(2)=dy 
 y(3)=dz 
 do 235 i=1,3 
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235  v1(i)=y(i)-v(ly+i-1) 
 write(3,199) line,ifrom,ito,v1(1),v(l8),v1(2),v(l8+1),v1(3),v(l8+2) 
 ly=ly+3 
280 continue 
281 f=1.d0/finv 
 esq=(2.d0-f)*f 
 esqone=1.d0-esq 
 pi=4.d0*datan(1.d0) 
 ro=pi/180.d0 
 second=206265.d0 
 write(3,284) nfix 
 do 380 i=1,nstat 
  j9=2*i+i-2 
  call togeod(ae,finv,x(j9),x(j9+1),x(j9+2),dlat,dlon,h) 
  call dtodms(dlat,latd,latm,slat) 
  call dtodms(dlon,lond,lonm,slon) 
  do 330 i1=1,3 
  do 330 j1=1,3 
   a(i1,j1)=0.d0 
   b(i1,j1)=0.d0 
330  continue 
 sinp=dsin(dlat*ro) 
 cosp=dcos(dlat*ro) 
 sin1=dsin(dlon*ro) 
 cos1=dcos(dlon*ro) 
 w=dsqrt(1.d0-esq*sinp*sinp) 
 m1=ae*esqone/w/w/w 
 n1=ae/w 
 p(1,1)=-sinp*cos1*second/(m1+h) 
 p(1,2)=-sinp*sin1*second/(m1+h) 
 p(1,3)=cosp*second/(m1+h) 
 p(2,1)=-sin1*second/(n1+h)/cosp 
 p(2,2)=cos1*second/(n1+h)/cosp 
 p(2,3)=0.d0 
 p(3,1)=cosp*cos1 
 p(3,2)=cosp*sin1 
 p(3,3)=sinp 
 do 340 i2=1,3 
 do 340 j2=1,3 
  a(i2,j2)=atpai(i2+j9-1,j2+j9-1) 
340 continue 
 call abat(p,a,b,dummy,3,3) 
 stphi=dsqrt(b(1,1)*30.922d0) 
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 stlam=dsqrt(b(2,2)*30.922d0) 
 sth=dsqrt(b(3,3)) 
 write(3,385) I,latd,latm,slat,stphi,lond,lonm,slon,stlam,h,sth 
380 continue 
456 write(3,457) 
 call nocheck(nob,npar,nses,maxses,atpai,bb,anat,pris,obs,iif, 
        + iit,aa,ap,kobs,kfrom,kto,pp,ap2,anatp,temp1,temp2,dummy) 
c 
c 
4 format(2x,'No of baselines =',i3,/) 
5 format(2x,'No of stations =',i3,/) 
31 format(/,5x,'After fixing the datum, ',i2,' singularities have been 
       +  encountered !',//,10x,' Please, check your network.', 
       +  //,10x,'The program is terminated') 
72 format(6(f11.5)) 
80 format(i3,3(3x,f15.5)) 
84 format(//,5x,'THE ESTIMATED PARAMETERS in (GRS80)  
        +   Cartesian Coordinates:',//, 
        +  7x,'(Note that station No.',i3,' has been fixed)', 
        +  ///,'Station',3x,'X     (stdev)',9x,'Y     (stdev)',12x, 
        +  'Z      (stdev)',/) 
96 format(///,5x,'A-POSTERIORI STANDARD DEVIATION OF', 
       +  'UNIT WEIGHT σ = ',f10.5)   
97 format(i3,3(2x,f14.3,1x,'(',f6.3,')')) 
99 format(//,5x,'THE ADJUSTED OBSERVATIONS AND THEIR 
       +  RESIDUALS:',///, 
       +  'Vector',3x,'From',3x,'To',/,13x,'dX  (vdX)',10x,'dY', 
       +  4x,'(vdY)',12x,'dZ    (vdZ)',/) 
199 format(i3,4x,i4,3x,i4,/,8x,3(2x,f11.3,1x,'(',f6.3,')')) 
284 format(///,5x,'THE ESTIMATED PARAMETRS IN (GRS80) 
        +   Geodetic Coordinates:',//, 
        +  7x,'(Note that station No.',i3,' has been fixed)', 
        +  ///,'Station',3x,'Latitude     (st.dv)',6x,'Longitude     (st.dv)',8x, 
        +  'Height      (st.dv)',/ 
        + 11x,'d:m:sec     (m)',11x,'d:m:sec     (m)',10x, 
        +  '   m     (m)',/) 
385  format(i2,2x,i4,1x,i2,1x,f8.5,2x,'(',f6.3,')',1x,i4,1x,i2,1x, 
        +  f8.5,1x,'(',f6.3,')',3x,f9.3,'(',f6.3,')') 
457 format(///,20x,'End of Adjustment Computations') 
c 
c 
c 
 END 
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 subroutine nocheck(nobs,npar,nses,maxses,atpai,b,anat,pris,obs, 
      +  ifrom,ito,a,p,kobs,kfrom,kto,pp,p2,anatp,temp1,temp2,summy) 
c 
c 
c This subroutine for detecting No-Check observations in a GPS 
c network. 
c 
 implicit real*8 (a-h,o-z) 
 integer*2 obs,obsn,ses,observ,jfrom,jto,session 
c 
 dimesion atpai(npar,npar),b(maxses*3,3) 
  dimesion anat(maxses*3,maxses*3),pris(maxses*3,3) 
 dimesion obs(maxses),ifrom(maxses),ito(maxses) 
 dimesion a(maxses*3,npar),p(maxses*3,maxses*3) 
 dimesion kobs(maxses),kfrom(maxses),kto(maxses) 
 dimesion pp(3,3),p2(maxses*3,maxses*3) 
 dimesion dummy(nobs),anatp(maxses*3,maxses*3) 
 dimesion temp1(3,3),temp2(3,3) 
c 
$large:atpai,dummy 
c 
 open (1,file='network.inp') 
 open (2,file='netcov.inp') 
 open (3,file='results.out') 
c 
 write(3,901) 
 rewind 1 
 rewind 2 
 write(*,*) 'no-check detection' 
 write(*,*) '    ' 
 ses=1 
1 do 5 i=1,maxses 
 ifrom(i)=0 
 kfrom(i)=0 
 ito(i)=0 
5 kto(i)=0 
 do 9 i=1,maxses*3 
  do 6 kk=1,3 
   pris(i,kk)=0.d0 
6  b(i,kk)=0.d0 
 do 7 k=1,npar 
7 a(i,k)=0.d0 
 do 8 j=1,maxses*3 
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  p(i,j)=0.d0 
  p2(i,j)=0.d0 
8  anat(i,j)=0.d0 
9 continue 
 write(*,*) 'session # ',ses 
 obsn=1 
 do 100 i=1,nobs 
  read(1,*,end=101) observ,jfrom,jto,session,dx,dy,dz 
  do 55 i2=1,3 
  do 55 j2=1,3 
55  pp(i2,j2)=0.d0 
  do 60 i2=1,3 
60  read(2,*) (pp(i2,j2),j2=1,i2) 
  if(session.ne.ses) go to 100 
  obs(obsn)=observ 
  ifrom(obsn)=jfrom 
  ito(obsn)=jto 
  do 65 i2=1,2 
  do 65 j2=1+1,3 
   pp(i2,j2)=pp(j2,i2) 
65  continue 
  kk=obsn*2+obsn-2 
  do 70 i3=1,3 
  do 70 j3=1,3 
   p(kk+i3-1,kk+j3-1)=pp(i3,j3) 
   p2(kk+i3-1,kk+j3-1)=pp(i3,j3) 
70  continue 
  obsn=obsn+1 
100 continue 
101 obsn=obsn-1 
 kgomaa=1 
1002 i0=1 
 iff=1 
 kobs(iff)=obs(i0) 
 kfrom(iff)=ifrom(i0) 
 kto(iff)=ito(i0) 
 itest=ifrom(i0) 
 do 110 i=2,obsn 
  if(ifrom(i).eq.itest) then 
   iff=iff+1 
   kobs(iff)=obs(i) 
   kfrom(iff)=ifrom(i) 
   kto(iff)=ito(i) 
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  elseif(ito(i).eq.itest) then 
   iff=iff+1 
   kobs(iff)=obs(i) 
   kfrom(iff)=ifrom(i) 
   kto(iff)=ito(i) 
  endif 
110 continue 
 do 130 i=1,iff 
  kk=2*i+i-2 
  jj=2*kfrom(i)+kfrom(i)-2 
  jjj=2*kto(i)+kto(i)-2 
  do 120 l=1,3 
   a(l+kk-1,l+jj-1)=-1.d0 
   a(l+kk-1,l+jjj-1)=-1.d0 
120  continue 
130 continue 
 do 150 i=1,iff*3 
 do 135 k=1,napar 
  dummy(k)=0.d0 
  do 135 l=1,npar 
135 dummy(k)=dummy(k)+a(i,l)*atpai(l,k) 
 do 150 j=i,iff*3 
  anat(i,j)=0.d0 
  do 140 l=1,npar 
140   anat(i,j)=anat(i,j)+dummy(l)*a(j,l) 
150 anat(j,i)=anat(i,j) 
 if(iff.ne.1) then 
  do 170 ii=1,iff-1 
   jm=2*ii+ii-2 
   jm1=2*ii+ii+1 
   do 160 i=1,jm+2 
   do 160 j=jm1,3*iff 
    cc=dsqrt(p(i,j)) 
    dd=dsqrt(p(j,j)) 
    p(i,j)=0.2d0*cc*dd 
    p(j,i)=p*(i,j) 
160   continue 
170   continue 
 endif 
 do 180 i=1,npar 
180 dummy(i)=0.d0 
 im=iff*3-1 
 do 185 k=1,iff*3 
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  do 182 j=1,im 
   dummy(j)=p(i,j+1)/p(1,1) 
182  continue 
  dummy(iff*3)=1/p(1,1) 
  do 184 l=1,im 
   do 183 j=1,im 
    p(l,j)=p(l+1,j+1)-p(l+1,1)*dummy(j) 
183   continue 
   p(l,iff*3)=-p(l+1,1)*dummy(iff*3) 
184  continue 
  do 185 j=1,iff*3 
   p(iff*3,j)=dummy(j) 
185  continue 
  do 190 l=1,iff*3 
  do 190 m=1,iff*3 
   anatp(l,m)=0.d0 
  do 190 n=1,iff*3 
190   anatp(l,m)=anatp(l,m)+anat(l,n)*p(n,m) 
  do 196 i=1,iff*3 
  do 196 j=1,iff*3 
   if(i.eq.j) anatp(i,j)=1.d0-anatp(i,j) 
   if(i.ne.j) anatp(i,j)=-anatp(i,j) 
196  continue 
  do 200 i=1,3 
200  b(i,j)=1.d0 
  if(iff.ne.1) then 
   if=1 
   do 230 ji=2,iff 
    if(ifrom(ji).eq.itest) then 
     if=if+1 
     km=2*if+if-2 
     b(km,1)=1.d0 
     b(km+1,2)=1.d0 
     b(km+2,3)=1.d0 
    elseif(ito(ji).eq.itest) then 
     if=if+1 
     kkm=2*if+if-2 
     b(kkm,1)=1.d0 
     b(kkm+1,2)=1.d0 
     b(kkm+2,3)=1.d0 
    endif 
230   continue 
  endif 
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  do 240 l=1,iff*3 
  do 240 m=1,3 
   pris(l,m)=0.d0 
  do 240 n=1,iff*3 
240  pris(l,m)=pris(l,m)+anatp(l,n)*b(n,m) 
  noch=0 
  do 250 i=1,iff*3 
  do 250 j=1,3 
   if(abs(pris(i,j)).lt.1.d-12) pris(i,j)=0.d0 
   if(pris(i,j).eq.0.d0) noch=noch+1 
250  continue 
  itest=ito(i0) 
  ifd=1 
  do 610 i=2,obsn 
   if(ifrom(i).eq.itest) then 
   do 610 i=2,obsn 
    if(ifrom(i).eq.itest) then 
     ifd=ifd+1 
     kobs(ifd)=obs(i) 
     kfrom(ifd)=ifrom(i) 
     kto(ifd)=ito(i) 
    elseif(ito(i).eq.itest) then 
     ifd=ifd+1 
     kobs(ifd)=obs(i) 
     kfrom(ifd)=ifrom(i) 
     kto(ifd)=ito(i) 
    endif 
610   continue 
  do 614 i=1,18 
  do 614 j=1,npar 
614  a(i,j)=0.d0 
  do 630 i=1,ifd 
   kk=2*i+i-2 
   jj=2*kfrom(i)+kfrom(i)-2 
   jjj=2*kto(i)+kto(i)-2 
   do 620 l=1,3 
    a(l+kk-1,l+jj-1)=-1.d0 
    a(l+kk-1,l+jj-1)=-1.d0 
620   continue 
630  continue 
  do 634 i=1,18 
  do 634 j=1,18 
634  anat(i,j)=0.d0 
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  do 650 i=1,ifd*3 
  do 650 k=1,npar 
   dummy(k)=0.d0 
   do 635 l=1,npar 
635    dummy(k)=dummy(k)+a(i,j)*atpai(l,k) 
  do 650 j=i,ifd*3 
   anat(i,j)=0.d0 
   do 640 l=1,npar 
640   anat(i,j)=anat(i,j)+dummy(l)*a(j,l) 
650  anat(j,i)=anat(i,j) 
  if(ifd.ne.1) then 
   do 655 ii=2,ifd 
    if(kobs(ii).ne.obs(ii)) then 
         do 654 i3=ii+1,obsn 
     if(kobs(ii).eq.obs(i3)) then 
        jj=2*ii+ii-2 
        kk=2*i3+i3-2 
        do 653 i=1,3 
        do 653 j=1,3 
           p2(i+jj-1,j+jj-1)=p2(i+kk-1,j+kk-1) 
653        continue 
     endif 
654    continue 
    endif 
655   continue 
  endif 
  if(ifd.ne.1) then 
   do 670 ii=1,ifd-1 
    jm=2*ii+ii-2 
    jm1=2*ii+ii+1 
    do 660 i=1,jm+2 
    do 660 j=jm1,3*ifd 
     cc=dsqrt(p2(i,i)) 
     dd=dsqrt(p2(j,j)) 
     p2(i,j)=0.2d0*cc*dd 
     p2(j,i)=p2(i,j) 
660    continue 
670   continue 
  endif 
  do 680 i=1,npar 
680  dummy(i)=0.d0 
  im=ifd*3-1 
  do 685 k=1,ifd*3 
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  do 682 j=1,im 
   dummy(j)=p2(i,j+1)/p2(1,1) 
682  continue 
  dummy(ifd*3)=1./p2(1,1) 
  do 684 l=1,im 
   do 683 j=1,im 
    p2(l,j)=p2(l+1,j+1)-p2(l+1,1)*dummy(j) 
683   continue 
   p2(l,ifd*3)=-p2(l+1,1)*dummy(ifd*3) 
684  continue 
  do 685 j=1,ifd*3 
   p2(ifd*3,j)=dummy(j) 
685  continue 
  do 690 l=1,ifd*3 
  do 690 m=1,ifd*3 
   anatp(l,m)=0.d0 
  do 690 n=1,ifd*3 
690  anatp(l,m)=anatp(l,m)+anat(l,n)*p2(n,m) 
  do 696 i=1,ifd*3 
  do 696 j=1,ifd*3 
   if(i.eq.j) anatp(i,j)=1.d0-anatp(i,j) 
   if(i.ne.j) anatp(i,j)=-anatp(i,j) 
696  continue 
  do 700 i=1,3 
700  b(i,j)=-1.d0 
  if(ifd.ne.1) then 
   if=1 
   do 730 ji=2,ifd 
    if(ifrom(ji).eq.itest) then 
     if=if+1 
     km=2*if+if-2 
     b(km,1)=1.d0 
     b(km+1,1)=1.d0 
     b(km+2,1)=1.d0 
    elseif(ito(ji).eq.itest) then 
     if=if+1 
     km=2*if+if-2 
     b(km,1)=-1.d0 
     b(km+1,1)=-1.d0 
     b(km+2,1)=-1.d0 
    endif 
730   continue 
  endif 
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  do 740 l=1,ifd*3 
  do 740 m=1,3 
   pris(l,m)=0.d0 
  do 740 n=1,ifd*3 
740  pris(l,m)=pris(l,m)+anatp(l,n)*b(n,m) 
  noch1=0 
  do 750 i=1,ifd*3 
  do 750 j=1,3 
   if(abs(pris(i,j)).lt.1.d-12) pris(i,j)=0.d0 
   if(pris(i,j).eq.0.d0) noch1=noch1+1 
750  continue 
   if(noch.eq.0.and.noch1.eq.0) write(3,905) ses,obs(l),ifrom(l),ito(l) 
   if(noch.eq.0.and.noch1.eq.0) write(3,904) ses,obs(l),ifrom(l),ito(l) 
   if(noch.eq.0.and.noch1.eq.0) write(3,903) ses,obs(l),ifrom(l),ito(l) 
   if(noch.eq.0.and.noch1.eq.0) write(3,902) ses,obs(l),ifrom(l),ito(l) 
   kgomaa=kgomaa+1 
   if(kgomaa.le.obsn) then 
  do 805 i=1,6 
   kobs(i)=0 
   kfrom(i)=0 
805  kto(i)=0 
  do 809 i=1,18 
   do 806 kk=1,3 
    pris(i,kk)=0.d0 
806   b(i,kk)=0.d0 
   do 807 k=1,npar 
807   a(i,k)=0.d0 
   do 808 j=1,18 
    anatp(i,j)=0.d0 
808    anat(i,k)=0.d0 
809  continue 
   do 810 i=1,npar 
810   dummy(i)=0.d0 
  if(obsn.ne.1) then 
   jj=obs(l) 
   kk=ifrom(l) 
   ll=ito(l) 
   do 820 i=1,obsn-1 
    obs(i)=obs(i+1) 
    ifrom(i)=ifrom(i+1) 
    ito(i)=ito(i+1) 
820   continue 
   obs(obsn)=jj 
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   ifrom(obsn)=kk 
   ito(obsn)=ll 
  endif 
  if(obsn.ne.1) then 
   do 830 i=1,npar 
830    dummy(i)=0.d0 
   im=iff*3-1 
   do 835 k=1,iff*3 
    do 832 j=1,im 
     dummy(j)=p(i,j+1)/p(1,1) 
832    continue 
    dummy(iff*3)=1./p(1,1) 
    do 834 l=1,im 
     do 833 j=1,im 
         p(l,j)=p(l+1,j+1)-p(l+1,1)*dummy(j) 
833     continue 
     p(l,iff*3)=-p(l+1,1)*dummy(iff*3) 
834    continue 
   do 835 j=1,iff*3 
    p(iff*3,j)=dummy(j) 
835   continue 
   do 840 i=1,npar 
840   dummy(i)=0.d0 
   im=ifd*3-1 
   do 845 k=1,ifd*3 
    do 842 j=1,im 
    dummy(j)=p2(i,j+1)/p2(l,l) 
842    continue 
    dummy(ifd*3)=1./p2(l,l) 
    do 844 l=1,im 
    do 843 j=1,im 
       do 843 j=1,im 
          p2(l,j)=p2(l+1,j+1)-p2(l+1,1)*dummy(j) 
843       continue 
       p2(l,iff*3)=-p2(l+1,1)*dummy(iff*3) 
844    continue 
   do 845 j=1,iff*3 
    p2(iff*3,j)=dummy(j) 
845   continue 
   do 860 ii=1,obsn-1 
    jm=2*ii+ii-2 
    jm1=2*ii+ii+1 
    do 855 i=1,jm+2 
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    do 855 j=jm1,3*obsn 
     p(i,j)=0.d0 
     p2(i,j)=0.d0 
     p(j,i)=0.d0 
     p2(j,i)=0.d0 
855    continue 
860   continue 
   do 870 i=1,3 
   do 870 j=1,3 
870   temp1(i,j)=p(i,j) 
   do 880 ii=1,obsn-1 
   jj=2*ii+ii-2 
   kk=2*ii+ii+1 
   do 872 i=1,3 
   do 872 j=1,3 
872   p(i+jj-1,j+jj-1)=p(i+kk-1,j+kk-1) 
   mm=2*obsn+obsn-2 
   do 882 i=1,3 
   do 882 j=1,3 
882   p(i+mm-1,j+mm-1)=temp1(i,j) 
   do 883 i=1,3 
   do 883 j=1,3 
883   temp2(i,j)=p2(i,j) 
   do 890 ii=1,obsn-1 
    jj=2*ii+ii-2 
    kk=2*ii+ii+1 
    do 886 i=1,3 
    do 866 j=1,3 
886    p2(i+jj-1,j+jj-1)=p2(i+kk-1,j+kk-1) 
890   continue 
   mm=2*obsn+obsn-2 
   do 892 i=1,3 
   do 892 j=1,3 
892   p2(i+mm-1,j+mm-1)=temp2(i,j) 
  endif 
  go to 1002 
 endif 
c 
c 
 ses=ses+1 
 rewind 1 
 rewind 2 
 if(ses.le.nses) go to 1 
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 write(3,999) 
c 
c 
901 format(//,12x,'results of detecting no-check observations',///, 
        +  'Session  Baseline   From (status) To (status) Final',/, 
        + ' No                                                                   Results',/) 
902 format(5x,i2,7x,i2,7x,i2,5x,\(n.c)',4x,i2,2x,'(n.c)',4x, 
        +  'No Check')  
903 format(5x,i2,7x,i2,7x,i2,5x,\(n.c)',4x,i2,2x,'(o.k)',4x, 
        +  'No Check')  
904 format(5x,i2,7x,i2,7x,i2,5x,\(n.c)',4x,i2,2x,'(n.c)',4x, 
        +  'No Check')  
905 format(5x,i2,7x,i2,7x,i2,5x,\(n.c)',4x,i2,2x,'(o.k)',4x, 
        +  'Good')  
999 format(4x,'------------------------------------------',///, 
        +   'N.C = no-check station') 
c 
c 
 Return 
C 
C 
 END 
C 
C 
 Subroutine chdec(n,a,ut,nsing,ising) 
C 
C This subroutine computes the Cholesky factor, ut(n,n) of a matric 
C a(n,n). 'nsing' is the number of singularities may be happened 
C in the factorization, while the vector 'ising' will contain the locations 
C of these singularities. 
c 
c 
 implicit double precision (a-h,o-z) 
 dimension a(n,n),ut(n,n),ising(6) 
$large:a,ut 
 do 1 i=1,n 
 do 1 j=1,n 
  ut(i,j)=0.d0 
1 continue 
 nsing=0 
 do 2 j=1,n 
  ising(i)=0 
2 continue 
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 ut(1,1)=dsqrt(a(1,1)) 
 do 9 j=2,n 
  ut(i,j)=a(i,j)/ut(i,i) 
9 continue 
 do 6 i=2,n 
  sum1=0.d0 
  do 3 k=1,i-1 
   sum1=sum1+ut(k,i)**2 
3  continue 
  ut(i,i)=dsqrt(a(i,i)-sum1) 
  if(ut(i,i).eq.0.d0) then 
   ut(i,i)=10d6 
   nsing=nsing+1 
   ising(nsing)=i 
   do 8 jj=1,i-1 
    ut(jj,i)=0.d0 
8   continue 
  endif 
  do 5 j=i+1,n 
   sum2=0.d0 
   do 4 k=1,i-1 
    sum2=sum2+ut(k,i)*ut(k,h) 
4   continue 
   ut(i,j)=(a(i,j)-sum2/ut(i,i)) 
5  continue 
6 continue 
 do 10 i=1,n 
 do 10 j=i+1,n 
  ut(j,i)=ut(i,j) 
10 ut(i,j)=0.d0 
 returne 
 end 
c 
c 
 Subroutine togeod(a,finv,x,y,z,dlat,dlon,h) 
C 
C Subroutine to calculate geodetic coordinates latitude, longitude, 
C height given Cartesian coordinates x,y,z and reference ellipsoid 
C values: semi-major axis (a) and the inverse of flatiining (finv). 
C 
 implicit double precision (a-h,o-z) 
 double precision n 
 data maxit/10/ 



 69

 data tolsq/1.d-10/ 
 pi=4.d0*datan(1.d0) 
 rtd=180.d0/pi 
 flat=1.d0/finv 
 esq=(2.d0-flat)*flat 
 oneesq=1.d0-esq 
 dlon=datan2(y,x)*rtd 
 if(dlon.lt.0.d0) dlon=dlon+360.d0 
 psq=x*x+y*y 

p=dsqrt(psq) 
r=dsqrt(psq+z*z) 
sinlat=z/r 
dlat=dasin(sinlat) 
h=r-a*(1.d0-flat*sinlat*sinlat) 
do 190 iter=1,maxit 
 sinlat=dsin(dlat) 
 coslat=dcos(dlat) 
 n=a/dsqrt(1.d0-esq*sinlat*sinlat) 
 dp=p-(n+h)*coslat 
 dz=z-(n*oneesq+h)*sinlat 
 h=h+(sinlat*dz+coslat*dp) 
 dlat=dlat+(coslat*dz-sinlat*dp)/(n+h) 
 if (dp*dp+dz*dz.lt.tolsq) then 
  dlat=dlat+rtd 
  retune 
 endif 

100 continue 
 write(*,101) maxit 
101 format('problem in togeod, did not converge in',i2, 
        +  ' iterations') 
 dlat=dlat*rtd 
 returne 
 end 
c 
c 
 Subroutine frgeod(a,finv,x,y,z,dlat,dlon,h) 
C 
C Subroutine to calculate Cartesian coordinates x,y,z  
C given geodetic coordinates latitude, longitude, height and 
C reference ellipsoid 
C values: semi-major axis (a) and the inverse of flatiining (finv). 
C 
c 
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 implicit double precision (a-h,o-z) 
 double precision n 
 pi=4.d0*datan(1.d0) 
 ro=pi/180,d0 
 flat=1.d0/finv 
 esq=(2.d0-flat)*flat 
 sinlat=dsin(dlat*ro) 
 n=a/dsqrt(1.d0-esq*sinlat*sinlat) 
 p=(n+h)*dcos(dlat*ro) 
 z=(n*(1.d0-esq)+h)*sinlat 
 x=p*dcos(dlon*ro) 
 y=p*dsin(dlon*ro) 
 retune 
 end 
c 
c 
c 
 Subroutine dmstod(m,n,s,ang) 
C 
C Convert deg,min,sec to degree 
C 
 Implicit double precision (a-h,o-z) 
 If(m.lt.0) ang=-(abs(m)+(n/60.d0)+(s/3600.d0)) 
 If(m.gt.0) ang=(m+(n/60.d0)+(s/3600.d0)) 
 Returne 
 End 
C 
C 
 Subroutine dtodms(ang,d,m,s) 
C Convert degree to deg,min,sec  
C 
 Implicit double precision (a-h,o-z) 
 If(ang.gt.180.d0) ang=(360.d0-ang)*(-1.d0) 
 Id=ang 
 Rm=(ang-id)*60.d0 
 M1=rm 
 M=abs(rm) 
 S=(rm-m)*60.d0 
 S=abs(s) 
 Returne 
 End 
C 
C 
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 Subroutine abat(a,b,r,w,m,n) 
C subroutine to form matrix product: 
C  r = a . b . at 
C Array dimension: a(m,n), b(n,n), r(m,m) 
C Scratch vector: w(n) 
C 
 Implicit double precision (a-h,o-z) 
 Dimension a(m,n),b(n,n),r(m,m),w(n) 
$large:a,b,r,w 
C 
 Do 15 i=1,m 
 Do 15 k=1,n 
  W(k)=0 
  Do 5 l=1,n 
5  w(k)=w(k)+a(I,.l)*b(l,k) 
 Do 15 j=1,m 
  R(I,j)=0 
  Do 10 l=1,n 
10  r(I,j)=r(I,j)+w(l)*a(j,l) 
15 r(j,i)=r(I,j) 
 Returne 
 End 
C 
C 
 Subroutine ab(a,b,c,I,j,k) 
C subroutine to form matrix product: 
C  c = a . b 
C Array dimension: a(I,j), b(j,k), c(I,k) 
C 
 Implicit double precision (a-h,o-z) 
 Dimension a(I,j),b(j,k),c(I,k) 
$large:a,b,c 
C 
 Do 10 l=1,i 
 Do 10 m=1,k 
  c(l,m)=0.d0 
 Do 10 n=1,j 
10  c(l,m)=c(l,m)+a(l,n)*b(n,m) 
 Returne 
 End 
C 
C 
c 
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 Subroutine atrans(a,at,l,m) 
C subroutine to transpose a matrix 
C Array dimension: a(l,m), at(m,l) 
C 
 Implicit double precision (a-h,o-z) 
 Dimension a(l,m),at(m,l) 
$large:a,at 
C 
 Do 20 j=1,m 
 Do 20 i=1,l 
20  at(j,i)=a(I,j) 
 Returne 
 End 
C 
C 
 Subroutine ainv(a,b,I) 
C subroutine to inverse a matrix: 
C  a = a-inverse 
C Array dimension: a(I,i) 
C  scratch vector: b(i) 
C 
 implicit double precision (a-h,o-z) 
 dimension a(i,i),b(i) 
$large:a,b 
c 
 if(i.eq.1) go to 10 
 im=i-1 
 do 5 k=1,i 
  do 2 j=1,im 
2  b(j)=a(i,j+1)/a(1,1) 
  b(i)=1./a(1,1) 
  do 4 l=1,im 
   do 3 j=1,im 
3   a(l,j)=a(l+1,j+1)-a(l+1,1)*b(j) 
4  a(l,i)=-a(l+1,1)*b(l) 
  do 5 j=1,i 
5 a(i,j)=b(j) 
 returne 
10 a(l,l)=1./a(l,l) 
 Returne 
 End 
C 
C 
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 Subroutine atra(a,ata,n,m) 
C subroutine to form matrix product: 
C  ata = at . a 
C Array dimension: a(n,m), ata(m,m) 
C 
 Implicit double precision (a-h,o-z) 
 Dimension a(n,m),ata(m,m) 
$large:a,ata 
c 
 do 5 i=1,m 
 do 5 j=1,m 
  ata(i,j)=0.d0 
 do 5 k=1,n 
5  ata(i,j)=ata(i,j)+a(k,i)*a(k,j) 
 Returne 
 End 
C 
 Subroutine atba(a,b,r,w,m,n) 
C subroutine to form matrix product: 
C  r = at . b . a 
C Array dimension: a(m,n), b(m,m), r(n,n) 
C scratch vector: w(m) 
C 
 Implicit double precision (a-h,o-z) 
 Dimension a(m,n),b(m,m),r(n,n),w(m) 
$large:a,b,r,w 
C 
 do 15 i=1,n 
 do 15 k=1,m 
  w(k)=0.d0 
  do 5 l=1,m 
5  w(k)=w(k)+a(l,i)*b(l,k) 
 do 15 j=1,n 
  r(i,j)=0 
  do 10 k=1,m 
10  r(i,j)=r(i,j)+w(k)*a(k,j) 
15 r(j,i)=r(i,j) 
 returne 
 end 
c 
c 
c ------------------------- END --------------------------------------   
 




