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ABSTRACT 

 
This study proposes an artificial neural network for the selection of optimal lateral 

load-resisting system for multi-story steel frames. The lateral load-resisting systems 

include rigid frames, braced frames and braced frames with outrigger truss. The frame 

parameters include the number of bays, the number of stories, in addition to the lateral 

load-resisting system. The frame design is based on both stress and deformation 

criteria under the load combinations of dead, live, and wind loads. The analysis is 

performed using a finite-element program whereas the design is implemented using 

MATLAB programs for the optimal design of sections. Several cycles of analysis and 

design are performed to achieve an optimum design for individual elements.  

 
A neural network is then proposed in order to reduce the amount of computing 

time required in the numerous iterations involving structural analysis and design 

programs. A feed-forward backpropagation neural network is trained based on the 

results of the design of specific frame configurations. Input parameters for network 

define the frame configuration including number of bays, number of stories and the 

lateral load-resisting system, whereas the output parameters define the frame 

maximum lateral deformation and total weight. Different architectures of networks 

are studied to solve the problem. The accepted network is chosen based on the 

minimum value of the root-mean square error. 
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CHAPTER (1) 

INTRODUCTION 

1.1 PROBLEM STATEMENT 

Any project is first established by the architect in conceptual terms, identifying the 

overall shape of the building, approximate number of floors, and the size and 

location of service cores. The main task for the structural engineer at this stage is 

to explore the structural options and to recommend a system that is not only 

satisfying all disciplines but is also cost efficient. The structural cost of multi-

story steel buildings is the summation of the total tonnage of the steel used, and 

fabrication and erection costs. The steel fabrication and erection prices are mainly 

affected by the number and type of connections. It can be assumed that these costs 

remain the same for different structural steel schemes [1].  
 

The design of a multi-story steel building under lateral loads is usually 

governed by system performance criteria (overall stiffness) rather than by 

component performance criteria (strength) [2]. Design comprises selecting and 

proportioning member sizes in which the stresses do not exceed the permissible 

values under any combination of loads, and the deformations meet applicable 

serviceability criteria. It is a challenging task for the structural designer, because it 

involves a large number of possibilities to achieve a selection satisfying design 

criteria while maintaining the least possible weight. 
 

 The problem then is in the excessive time consumed in the trial and error 

procedures to achieve a satisfactory solution within a tight duration. 

1.2 THESIS OBJECTIVE AND METHODOLOGY 

This study explores the feasibility of exploiting one of the artificial intelligence 

(AI) techniques to map rapidly the relation between the lateral load-resisting 

systems for multi-story steel frames and their expected lateral drift and optimum 

weight. The artificial neural networks (ANNs) are implemented for the derivation 

of this relation. 
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An artificial neural network is a class of computing device that operates in a 

manner analogous to that of the biological nervous system. It is an interconnected 

network of processing elements that has the ability to be trained to map a given 

input into the desired output [3]. If the training data are the analytical results for 

several configurations of lateral load-resisting frames, then the neural network 

gives to the structural designer the expected maximum lateral drift and optimum 

weight without repetitive trial-and-error procedures. 
 

The methodology of this investigation is described as follows:  

• First, the analysis of several multi-story steel frames with different 

configurations, and lateral load-resisting systems are performed to evaluate the 

expected lateral drift and optimum weight. 

• Second, input and output data are prepared for training and testing the feed 

forward backpropagation neural network. 

• Finally, the prepared data are then implemented in modeling the optimum 

artificial neural network architecture. 

1.3 THESIS ORGANIZATION 

The thesis is divided into five chapters organized as follows: 

• Chapter one contains problem statement, thesis objective, methodology, and 

organization. 

• Chapter two contains the literature review of the study which defines the 

design criteria of multi-story steel frames, and an overview about artificial 

neural networks. 

• Chapter three introduces the chosen frame configurations, lateral systems, 

applied loads, design profiles, design codes and limitations for the multi-story 

frame analysis. It also presents the implemented analysis tools and the 

resulting lateral drifts and weights for the analyzed frames. 

• Chapter four introduces the neural network model design including 

identification method for input parameters, and the performance of different 

network architectures. 
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• Chapter five includes a brief summary, conclusion and recommendations for 

possible future work. 

• Annex (A) includes table of input and output data for training and testing the 

neural network. 
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CHAPTER (2) 

LITERATURE REVIEW 

2.1 OBJECTIVE 

An overview on the basic concepts and fundamentals of the structural analysis of 

the selected lateral load-resisting systems, and the artificial neural network is 

discussed in this chapter. 

2.2 DESIGN CRITERIA FOR LATERAL LOAD-RESISTING 
SYSTEMS 

Structural analysis is a mathematical process by which the engineer computes the 

stresses and deformations for all elements of the structure under various loading 

conditions. Design is an iterative process in which chosen cross-sections are 

checked to ensure that they conform to the design limits of applicable codes. In 

this research the Egyptian Code of Practice for Steel Construction and Bridges [4] 

is used as the code of reference, and all members are chosen to comply with 

strength and serviceability limits defined by this code.  

Strength Criteria 

According to the Egyptian specifications, the design is based on the allowable 

stress design and on the assumptions of linear elastic theory. We highlight 

only the basic aspects for the design. 
 
Girders: 

Almost all floor beams are wide-flange shapes possessing an axis of symmetry 

about the plane of bending, and are designed to bend about the major axis. 

Lateral supports for flexural members are required because the compression 

flange behaves in a manner similar to a column and tends to buckle in the 

absence of lateral supports. In the design of steel beams, we can assume the 

existence of adequate lateral bracing constituted from the metal decking 

welded to the top flange at sufficient intervals, and from the cross beams 

connections to the beam flange. 
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Columns: 

When a straight column is subjected to a combined bending and axial 

compressive stresses, the member behaves as a beam column. The Egyptian 

specifications give comprehensive rules for the elastic design of beam 

columns. The first step is to calculate the effective length of the column, 

which is expressed as K times the actual length. An “alignment chart” is 

provided to evaluate K when the elastic rotational restraints are known. For 

columns in frames which are free to sway, the designer is cautioned that the 

effective length can exceed twice the length of the column, and that the 

maximum slenderness ratio can’t exceed 180. 
 

The next step is to check the safety of the column by the use of interaction 

formulas. Moment magnification is negligible when axial load is small, a 

simple relation applicable only when fca/Fc < 0.15 is given. For bending in one 

plane, only this equation is of the form   
 

0.1≤+
bcx

bcx

c

ca

F
f

F
f

                                            (2.1) 

where fca ,and fbcx are the compressive axial and bending stresses, respectively 

at working loads; Fc is the allowable compressive axial stress, and Fbcx is the 

allowable compressive bending stress. When the axial stress is larger than 

0.15Fc, a more comprehensive interaction formula is used  
 

0.1. 1 ≤+ A
F
f

F
f

bcx

bcx

c

ca                                           (2.2) 

where 

)1(
1

Ex

ca

mx

F
f

c
A

−
=                                                 (2.3) 

 
where A1 is an amplification factor by which the bending stress is multiplied 

to account for the destabilizing effect of axial load; cm is a coefficient that 

allows for the variable location of the critical section in the length of the 
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column and sway condition, and FEx is the Euler stress divided by a factor of 

safety for buckling. The amplification factor is considered inappropriate for 

cases where the largest bending stress occurs at one end; the following 

additional check is required for such cases: 

 

0.1
58.0

≤+
bcx

bcx

y

ca

F
f

F
f

                                    (2.4) 

where Fy is the yield stress. 

Deflection Criteria 

According to the Egyptian specifications, the allowable live load vertical 

deflection for steel beams with plastered ceilings should not exceed 1/300 of 

the span, while for the allowable horizontal deflection at the top of a steel 

building with more than one storey; it should not exceed 1/500 of the total 

height of the building. 
 

The horizontal deflection at the top of a structure is dependent on factors 

such as its height-to-width ratio, and its lateral stiffness [1]. In cases where the 

horizontal deflection at top of structure governs the design, the designer has to 

be prudent in selecting the elements that are effective in reducing the lateral 

deflection. The approximate methods that derive the horizontal deflection at 

the top of several lateral load-resisting systems under the effect of lateral load 

can be utilized in highlighting the elements that improve the lateral stiffness of 

several schemes. 
 
Most methods that derive the horizontal deflection at the top of a lateral 

load-resisting frame are based on the following assumptions: The lateral load 

is uniformly distributed on the frame; the frame behaves linear elastically, 

allowing the principle of superposition to be applied; and the sectional 

properties of all structural elements do not change with height making a closed 

form solution possible. 



 - 7 - 

Deflection of Rigid Frames 

A rigid frame is shown in Fig.(2.1) together with its deflected shape 

resulting from lateral loading. Rigid frames generally consist of a 

rectangular grid of horizontal beams and vertical columns connected in the 

same plane by means of rigid joints. The lateral deflection components of 

a rigid frame can be thought of as being caused by two components similar 

to the bending and shear deflection components of a cantilever beam. One 

component is referred to as the cantilever bending or chord drift 

component, while the other is referred to as the shear racking component. 
 

w

   
 

H

  h

 

Figure (2.1):  Response of rigid frame to lateral loads 
 
Cantilever bending component: 

The lateral wind load acting on the vertical face of the frame causes an 

overturning moment, which reaches its maximum value at the base. In 

resisting this moment, the frame behaves as a vertical cantilever 

responding to bending through the axial deformation of columns. The 

columns lengthen on the windward face of the frame and shorten on the 

leeward face. This column length change causes the frame to rotate and 

results in the chord drift component of the lateral deflection. In the case of 

rigid frames, this mode of deformation accounts for about 20% of the total 

drift of the frame, and the remaining results from the frame racking [1]. 
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Shear racking component: 

The lateral load acting on the rigid frame causes horizontal and vertical 

shear forces acting on columns and girders respectively, which in turn 

causes the rotation of joints and bending of members of the frame. In 

normal proportioned rigid frame, the girder rotation contributes about 65% 

of the total lateral deflection. The column rotation, on the other hand, 

contributes about 15% of the lateral drift. This is because in most rigid 

frames the ratio between column stiffness to girder stiffness is very high, 

resulting in larger joint rotations. So generally when it is desired to reduce 

the deflection of rigid frames, we start with girders for adding stiffness [1]. 
 
Calculation of drift: 

The formula for horizontal deflection at the top of a rigid frame which 

represents the two modes of deformation is 

N
LEIEI

hVh
EI

wHy
beamcolt

framerigidtop .
)]/([

1
)(128

24

)(




















∑
+

∑
+=−             (2.5) 

where w is the uniformly distributed lateral load; H is the total height of 

the frame; V is the average cumulative shear value per floor; h is the 

identical story height; N is the number of floors, and EIt is an expression 

for the bending stiffness of the rigid frame which increases by increasing 

the cross sectional area of columns [1]. 

Deflection of Braced Frames 

A braced frame is shown in Fig.(2.2) together with its deflected shape 

resulting from lateral loading. A braced frame attempts to improve upon 

the efficiency of pure rigid frame action by virtually eliminating the 

column and girder bending factors. This is achieved by adding truss 

members such as diagonals between the floor systems. The shear is now 

absorbed by the diagonals and not by the girders. The diagonal carry the 

lateral forces directly in predominantly axial action, providing for nearly 

pure cantilever action.  
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The deflection characteristics of a braced frame are similar to those of 

a cantilever beam. Near the bottom the vertical truss is very stiff, and 

therefore the floor-to-floor deflections will be less than half the values near 

the top. Near the top the floor-to-floor deflections increase rapidly mainly 

due to the cumulative effect of chord drift. The column strains at the 

bottom of the frame produce a deflection at the top, and since this same 

effect occurs at every floor, the resulting drift at the top is cumulative. The 

chord drift problem encountered in practice is very difficult to control and 

normally requires structural steel quantities well in excess of those 

required for gravity needs. 

 

w
   

   

H

h

 
Figure (2.2):  Response of braced frame to lateral loads 

 

Calculation of drift: 

The formula for horizontal deflection at the top of a braced frame which 

represents the bending and racking shear deformations is 

tt
framebracedtop GA

wH
EI

wHy
28

24

)( +=−                                       (2.6) 

where w, and H, have the same meaning as in Eq.(2.5); EIt is an 

expression for the bending stiffness of the braced frame which increases 

by increasing the cross-sectional area of the braced frame columns, and 

GAt is an expression for the total racking shear stiffness of braced frame 

which increases by increasing the cross-sectional area of the X-bracings 

[5]. 
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 Deflection of Braced Frames with Outrigger Trusses 

A braced frame with outriggers is shown in Fig.(2.3) together with its 

deflected shape resulting from lateral loading. The structure comprises a 

centrally located braced frame with a particular bracing system which is 

connected to two equal-length outriggers. The outriggers are considered as 

storey height trusses. The assumed in-plane rigidity of the floor structures 

will cause identical rotations in the braced frame and façade columns at 

outrigger level. It is taken that the riggers are attached to the braced frame 

and exterior columns only, thereby allowing double curvature in the 

outriggers to take place. The forced double curvature will increase its 

flexural stiffness. 

 
Figure (2.3):  Response of braced frame with outrigger to lateral loads  

 
Calculation of drift: 

The formula for horizontal deflection at the top of a braced frame with 

outriggers is 

( )
tttt

outriggerwithframebracedtop GA
Mr

EI
xHMr

GA
wH

EI
wHy

α
−

−
−+=−−− 228

2224

)(         (2.7) 

where w, and H, have the same meaning as in Eq.(2.5); EIt and GAt are the 

bending and racking shear stiffness respectively  of the braced frame; x is 

the distance measured from the top to the mid height of outrigger; α is a 

dimensionless parameter equals to (l/b) which are clarified in Fig.(2.3), 

and Mr is the restraining moment [5].  
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In Eq.(2.7) the first two terms represent the ‘free’ horizontal 

deflections of the braced frame at the top due to bending and racking shear 

as a direct result of lateral loading. The third term is a combination of 

lateral deflection at outrigger level caused by reverse bending due to Mr 

and the additional deflection above the outrigger due to rotation at 

outrigger level. The last term represents a horizontal deflection in the 

braced frame over a single-storey height at outrigger level. 
 

The only unknown in Eq.(2.7) is the restraining moment Mr, which is 

developed from a compatibility equation for the rotation at the intersection 

of neutral lines of the vertical braced frame and the horizontal outrigger. 

The obtained expression for the restraining moment is 
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where w, H, x, α, EIt and GAt have the same meaning as in Eq.(2.7); h is 

the story height at outrigger level; EIo is an expression for the bending 

stiffness of the outrigger which increases by increasing the cross-sectional 

area of the top and bottom chords of the rigger; GAo is an expression for 

the total racking shear stiffness of the two outriggers which increases by 

increasing the cross-sectional area of the bracing of the outrigger, and EIc 

is an expression for an overall bending stiffness of the exterior columns 

which increases by increasing the cross-sectional area of the exterior 

columns [5]. 
 
Concluding remarks: 

It is interesting to find out that the deflection reduction of the braced frame 

is represented in the last two terms in Eq.(2.7), and it is significantly 

influenced by the location of outrigger. The reduction can be maximized 

by differentiating Eq.(2.7) with respect to x, setting it equal to zero, and 

solving for the optimum location of outrigger.  
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2.3 NEURAL NETWORK LITERATURE REVIEW 

2.3.1 Introduction to Neural Networks 

The brain’s powerful thinking, remembering, and problem solving capabilities 

have inspired many scientists to attempt computer modeling of its operations. 

Artificial neural networks (ANNs) are a type of information processing 

systems, modeled to simulate the biological processes of the brain. Neural 

networks are so named for their similarity to the way the human brains process 

information. 

2.3.2 Biological Neural System 

The brain consists of tens of billions of neurons which are densely 

interconnected. Each neuron is a micro-processing unit built up of three parts: 

the cell body, the dendrites, and the axon as shown in Fig.(2.4). The axon 

splits up and connects to dendrites of other neurons through a junction referred 

to as a synapse. A neuron receives and combines signals from other neurons 

through dendrites. If combined signal is strong enough, it causes the neuron to 

fire, producing an output signal. The output signal travels along the axons to 

other receiving neurons. 
 
  The function of the neuron is to integrate the input it receives through its 

synapses on its dendrites and either generates an action potential or not [6].  

 

Cell Body

Nucleus

Dendrites

Axon

Synapse

Dendrites

 

Figure (2.4): Biological Neural System 
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2.3.3 Neural Computation and Conventional Computation 

Neural computing is a rapidly expanding branch of computing concerned with 

the theory and application of neural networks. Its origins date back to the early 

1940s. It has been largely overshadowed since the 1960s by conventional 

computing, but experienced an upsurge in popularity in the late 1980s as a 

result of new developments in the field and general advances in computer 

hardware technology. 
 

The difference between conventional computing and neural computing is 

in their operating manner. Conventional computing is founded on underlying 

principles of logic and mathematics. The architecture used by most 

conventional computers comprises a single central processing unit connected 

to an area of memory. The memory contains a stored program which is 

executed in a sequential manner by the processor. Neural computing has 

another alternative approach, their architecture is like the human brain, 

consists of a large number of heavily interconnected processing elements 

which operate in parallel.  

2.3.4 Neural Networks 

Neural networks are composed of simple elements operating in parallel. As in 

nature, the network function is determined largely by the connections between 

elements. We can train a neural network to perform a particular function by 

adjusting the values of the connections (weights) between elements. 

Commonly neural networks are adjusted, or trained, so that a particular input 

leads to a specific target output. Such a situation is shown in Fig.(2.5). 

Neural Network including connections 
(weights) between neurons

Compare
Input Output

Adjust weights

Target

 
Figure (2.5):  Supervised Training Network 
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 The network is adjusted, based on a comparison of the output and the 

target, until the network output matches the target. Once the weights have 

been set, the network is able to produce answers for inputs which were not 

included in the training data [3]. 

Neural networks have been trained to perform complex functions in 

various fields of application including pattern recognition, identification, 

classification, speech, vision, and control systems. Today neural networks can 

be trained to solve problems that are difficult for conventional computers or 

human beings. 

2.3.5 Neuron Model 

2.3.5.1 Single Neuron 

A neuron with a single scalar input and no bias is shown on Fig.(2.6a). The 

scalar input P is transmitted through a connection that multiplies its 

strength by the scalar weight W, to form the scalar product Wp. Here the 

weighted input Wp is the only argument of the transfer function f, which 

produces the scalar output a.  

The scalar bias b can be considered as an additional input to the 

transfer function f, as shown on Fig.(2.6b). It is presented as simply being 

added to the product Wp by the summing junction or as shifting the 

function f to the left by an amount b. The bias is much like a weight, 

except that it has a constant input of one. Both W, and b are adjustable 

scalar parameters for the neuron. 

 

  
Figure (2.6a) Single neuron 

without bias 
Figure (2.6b) Single neuron with 

bias 
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The transfer function f is a step function or a sigmoid function, which 

takes the argument n and produces the output a. The selection of the 

transfer function is decided based on the neural network learning 

technique.  

2.3.5.2 Neuron with Vector Input 

A neuron with a single R-element input vector is shown on Fig.(2.7). Here 

the individual element inputs (P1, P2,... PR), are multiplied by weights 

(W1,1, W1,2, ... W1, R), and the weighted values are fed to the summing 

junction. Their sum is simply Wp, the dot product of the (single row) 

matrix W and the vector P. 

 

Figure (2.7): Neuron with Vector Input 

 
The neuron has a bias b, which is summed with the weighted inputs to 

form the net input n. This sum n, is the argument of the transfer function f. 

n = W1,1.P1 +  W1,2.P2 + ...  + W1,R.PR  + b 

2.3.6 Network Architectures 

The art of using neural networks revolve around the myriad of ways the 

individual neurons can be clustered together. This clustering occurs in the 

human mind in such a way that information can be processed in a dynamic, 

interactive and self-organizing way. Biologically, neural networks are 

constructed in a three-dimensional world from microscopic components.  
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Currently, neural networks are the simple clustering of the primitive 

artificial neurons. This clustering occurs by creating layers which are then 

connected to one another. How these layers connect is the art of engineering 

networks to resolve real world problems. 
 
Basically, all artificial neural networks have a similar structure or topology 

as shown in Fig.(2.8). In that structure some of the neurons interface to the 

real world to receive its inputs. Other neurons provide the real world with the 

network's outputs. All the rest of the neurons are hidden from view.  
 

Input Layer

Hidden Layer
(There may be several 

hidden layers)

Output Layer

 

Figure (2.8): Simple Neural Network Diagram  
 

2.3.6.1  Layer of Neurons 

A one-layer network with R input elements and S neuron is shown on 

Fig.(2.9a). In this network, each element of the input vector P is connected 

to each neuron input through the weight matrix W. The ith neuron has a 

summer that gathers its weighted inputs and bias to form its own scalar 

output n(i). The various n(i) taken together form an S-element net input 

vector n. Finally, the neuron layer outputs form a column vector a. The S 

neuron R input one-layer network also can be drawn in abbreviated 

notation as shown on Fig. (2.9b). 
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Figure (2.9a) Detailed one-layer 
Network 

Figure (2.9b) Abbreviated one-layer 
Network 

2.3.6.2 Multiple Layers of Neurons 

A network can have several layers. Each layer has a weight matrix W, a 

bias vector b, and an output vector a. The network shown on Fig.(2.10) 

has R inputs, S1 neurons in the first layer, S2 neurons in the second layer, 

etc. It is common for different layers to have different numbers of neurons. 

For each neuron there is a constant input one is fed to the biases. The 

network also has an input weight (IW) matrix connected to the input 

vector P, and other layer weight (LW) matrices.  
 

The outputs of each intermediate layer are the inputs to the following 

layer. Thus layer 2 can be analyzed as a one-layer network with S1 inputs, 

S2 neurons, and an S2xS1 weight matrix W2. The input to layer 2 is a1; 

the output is a2. This approach can be taken with any layer of the network. 

The layers of a multilayer network play different roles. The layer that 

receives network inputs is called an input layer, the layer that produces the 

network output is called an output layer, and all the other layers are called 

hidden layers. 
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Figure (2.10): Multiple layer Network 

2.3.6.3 Feed-Forward Architecture 

Feed-forward ANNs allow signals to travel one way only; from input to 

output. There is no feedback (loops) i.e. the output of any layer does not 

affect that same layer. Feed-forward ANNs tend to be straight forward 

networks that associate inputs with outputs. They are extensively used in 

pattern recognition and function approximation applications [3]. 

2.3.6.4 Feedback Architecture 

Feedback networks can have signals traveling in both directions by 

introducing loops in the network. Feedback networks are very powerful 

and can get extremely complicated. Feedback networks are dynamic; their 

state is changing continuously until they reach an equilibrium point. They 

remain at the equilibrium point until the input changes and a new 

equilibrium needs to be found. Feedback architectures are also referred to 

as interactive or recurrent, although the latter term is often used to denote 

feedback connections in single-layer organizations. 

2.3.7  The learning Process 

Every neural network possesses knowledge which is contained in the values of 

the weights. The process of modifying the knowledge stored in the network is 

known by the learning process. This process requires a learning rule or what 
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we refer to as a training algorithm. The learning rule is defined as a procedure 

for modifying the weights and biases of a network. Learning rules fall into two 

broad categories: supervised learning, and unsupervised learning. 
 
In supervised learning, the learning rule is provided with a set of 

examples (the training set). As the inputs are applied to the network, the 

network outputs are compared to the targets. The learning rule is then used to 

adjust the weights and biases of the network in order to move the network 

outputs closer to the targets.  
 
In unsupervised learning, the weights and biases are modified in response 

to network inputs only. There are no target outputs available. Most of these 

algorithms perform clustering operations. They categorize the input patterns 

into a finite number of classes. This is useful in some applications such as 

vector quantization. 

2.3.8 Training 

The training process requires a set of examples of proper network behavior 

(network inputs “P” and target outputs “t”). During training the weights and 

biases of the network are iteratively adjusted to minimize the network 

performance function. This function can be described by the mean square error 

(mse) function which defines the average squared error between the network 

outputs “a” and the target outputs “t”, or any other specified function.  

 
Several training algorithms use the gradient of the performance function to 

determine how to adjust the weights to minimize performance. The gradient is 

determined using a technique called back propagation. This technique involves 

performing computations backwards through the network, which are derived 

using the chain rule of calculus. 

2.3.9 Limitations and Cautions 

To develop a proper model design for a neural network, we should consider 

the following limitations and cautions: 
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• It is undesirable to train large networks with few training pairs. This 

will produce underdetermined neural networks, in which the number of 

training pairs are fewer than the number of underdetermined 

parameters (weights and biases) associated with the network. Such 

networks when trained will yield different approximations [7].  
 
• It is undesirable to use input vector whose length is much larger or 

smaller than the other input vectors.  An input vector with large 

elements can lead to changes in the weights and biases that take a long 

time for a much smaller input vector to overcome. Before training, it is 

often useful to scale the inputs and targets so that they always fall 

within a specified range. The normalized inputs and targets will 

decrease training time [3].  
 

• It is not preferable to produce a powerful network -with high number 

of neurons, iteration trials (epochs), and hidden layers – without 

checking its ability to generalize, as one of the problems that occurs 

during neural network training is known by over fitting. The error on 

the training set is driven to a very small value, but when new data is 

presented to the network the error is large. In this case the network has 

memorized the training examples, but it has not learned to generalize 

to new situations [3]. 
 

• It is essential to reinitialize the network and retrain it several times to 

guarantee the approach to an optimal solution. Although a multilayer 

backpropagation network with enough neurons can implement just 

about any function, but it will not always find the correct weights for 

the best solution.  The reason for this is that the error surface of a 

nonlinear network is more complex than the error surface of a linear 

network. To understand this complexity see Figs.(2.11a) and (2.11b), 

which show two different error surfaces for a multilayer network. The 

problem is that nonlinear transfer functions in multilayer networks 

introduce many local minima in the error surface. As gradient descent 
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is performed on the error surface it is possible for the network solution 

to become trapped in one of these local minima. This may happen 

depending on the initial starting conditions. Settling in a local 

minimum may be good or bad depending on how close the local 

minimum is to the global minimum and how low an error is required.  
 

  

Figure (2.11a): Simple Error 
Surface 

Figure (2.11b): Complex Error 
Surface 

 

2.3.10 Neural Networks Applications  

Within the last several years, researches have begun to investigate the 

potential of artificial neural networks (ANNs) as a tool for supporting the 

modeling of engineering systems. ANNs have been applied in many fields as 

in aerospace (in aircraft control systems, autopilot enhancements, aircraft 

component simulation, aircraft component fault detection), defense (in weapon 

steering, target tracking, object discrimination, facial recognition, sonar, radar 

and image signal processing including feature extraction and noise 

suppression, signal/image identification), electronics (in process control, 

machine vision, voice synthesis, nonlinear modeling), financial (in real estate 

appraisal, loan advisor, corporate bond rating, credit-line use analysis, 

portfolio trading program, corporate financial analysis, currency price 

prediction), industrial (in predicting  the output gasses of furnaces and other 

industrial processes), manufacturing (in product design and analysis, process 

and machine diagnosis, visual quality inspection systems, welding quality 

analysis, paper quality prediction, machine maintenance analysis, project 
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bidding, planning and management, dynamic modeling of chemical process 

system), and telecommunication (in image and data compression, automated 

information services, real-time translation of spoken language, customer 

payment processing systems ).  
 
  From the presented applications, it is clear that neural networks may play a 

role in addressing the tasks of, interpretation, prediction, modeling, 

classification, identification and estimation.  

2.3.10.1 Neural Networks in Civil Engineering 

Neural networks applications in civil engineering only go back to the late 

1980s , but already cover a range of topics as prediction of river flow [8], 

design of coastal sewage systems [9],  computing truck attributes (such as 

velocity, axle spacing, and axle loads) [10], stress strain modeling of soil 

[11], prediction of pile capacity [12], identification of natural modes[13], 

structural damage detection [14], decentralized control of cable-stayed 

bridge [15], prediction of cost for buildings [16],  estimating the 

productivity of concreting activities [17], and exploring concrete slump 

model [18].  

2.3.10.2 Neural Networks in Structural Engineering 

Neural networks have also been used widely in structural engineering 

applications, as in estimation of seismic response of buildings [19], 

prediction of buckling load of columns [20], optimization of cold-formed 

steel beams [21], modeling the capacity of pin-ended slender reinforced 

concrete columns [22], determining the shear strength of reinforced 

concrete deep beams [23], and classifying steel semi-rigid connections 

[24]. 
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CHAPTER (3) 

TOOLS AND ANALYSIS 

3.1 OBJECTIVE 

An important task is to derive the relation between the lateral load-resisting 

systems for multi-story steel frames and their expected lateral drift and optimum 

weight in order to prepare the input data for training and testing the artificial 

neural network. In this chapter, the design procedures for the three different types 

of lateral load-resisting frames are briefly explained. 
 

To perform the analysis, it is necessary to define the considered frames 

configurations and design loads, choose suitable cross-section profiles, and check 

steel design strength and serviceability. In this section, the assumptions upon 

which the analysis is based are presented. 
 

  The analysis in this task is performed using a finite-element program, and the 

design is implemented using a set of auxiliary programs specially developed to 

achieve the optimal design of sections. Design procedures and tools are described 

in this section. 

3.2 ASSUMPTIONS 

3.2.1 Frames Configurations 

The analysis addresses rigid frames, braced frames, and braced frames with 

single outrigger truss.  
 

The frames have constant bay width, height and spacing of 4.0 meters. The 

studied frames are subdivided into 4 groups which are 3-bay group with 12m 

wide, 4-bay group with 16m wide, 5-bay group with 20m wide and 6-bay 

group with 24m wide. The considered heights are 20, 40, 60, 80, 100, 120, 

140, 152, 160 meters. 
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The braced frames considered all possible cases for braced bays. The 

braced frames with outrigger truss are analyzed with only one braced bay, 

except for the 6-bay group it is analyzed using also two braced bays. 
 

Figures (3.1) to (3.4) present samples of the studied frame configurations 

of the 3-bay, 4-bay, 5-bay, and 6-bay groups, respectively.  
 

Generally in the presented illustrations rigid frames are denoted as 

“Rigid”, braced frames are denoted as “Br. (number of braced bays ‘B’)”, and 

braced frames with single outrigger truss are denoted as “OR. (number of 

braced bays ‘B’)”. 
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(a) (b) (c) 

Rigid Fr. 
“Rigid” 

One Braced Bay Fr. 
“Br. (1B)” 

Two Braced Bays Fr. 
“Br. (2B)” 

   

  
(d) (e) 

Three Braced Bays Fr. 
“Br. (3B)” 

One Braced Bay Fr. with Outrigger 
“OR. (1B)” 

Figure (3.1): Lateral Load-resisting Frames for 3-Bay Group with 15 Stories 
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(a) (b) (c) 

Rigid Fr. 
“Rigid” 

One Braced Bay Fr. 
“Br. (1B)” 

Two Braced Bays Fr. 
“Br. (2B)” 

   
(d) (e) (f) 

Three Braced  Bays Fr. 
“Br. (3B)” 

Four Braced  Bays Fr. 
“Br. (4B)” 

One Braced Bay  
Fr. with Outrigger 

“OR. (1B)” 

Figure (3.2): Lateral Load-resisting Frames for 4-Bay Group with 15 Stories 
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(a) (b) (c) 

Rigid Fr. 
“Rigid” 

One Braced Bay Fr. 
“Br. (1B)” 

Two Braced Bays Fr. 
“Br. (2B)” 

   
(d) (e) (f) 

Three Braced  Bays Fr. 
“Br. (3B)” 

Four Braced Bays Fr. 
“Br. (4B)” 

Five Braced Bays Fr. 
“Br. (5B)” 

Figure (3.3): Lateral Load-resisting Frames for 5-Bay Group with 15 Stories 
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(g) 

One Braced Bay Fr. with Outrigger 
“OR. (1B)” 

Figure (3.3) cont.: Lateral Load-resisting Frames for 5-Bay Group with 15 
Stories 

 

   

(a) (b) (c) 

Rigid Fr. 
“Rigid” 

One Braced Bay Fr. 
“Br. (1B)” 

Two Braced  Bays Fr. 
“Br. (2B)” 

Figure (3.4): Lateral Load-resisting Frames for 6-Bay Group with 15 Stories 
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(d) (e) (f) 

Three Braced Bays Fr. 
“Br. (3B)” 

Four Braced Bays Fr. 
“Br. (4B)” 

Five Braced Bays Fr. 
“Br. (5B)” 

   
(g) (h) (k) 

Six Braced Bays Fr. 
“Br. (6B)” 

One Braced Bay Fr. 
with Outrigger 

“OR. (1B)” 

Two Braced Bay Fr. 
with Outrigger 

“OR. (2B)” 

Figure (3.4) cont.: Lateral Load-resisting Frames for 6-Bay Group with 15 
Stories 
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3.2.2 Section Profiles 

Steel profiles used for sizing girders and columns of the analyzed frames are 

standard hot rolled wide-flange shapes possessing an axis of symmetry about 

the plane of bending, whereas for the bracing members circular hollow 

sections are used. To simplify the selection of profiles, standard rolled section 

tables are utilized in the design. 
 
 For girders sizing, it is necessary to consider that rigid frames girders 

require heavier profiles than those required for braced frames girders. The 

standard HEA rolled steel sections are used for rigid frame girders limited to 

HEA600, and the standard IPE sections are used for braced frame girders. 
 
 For columns sizing, the standard HEB rolled sections are used. In cases 

where the design requirements exceeded the largest available HEB section, 

welded cover plates are added to the flanges of the rolled section as shown in 

Fig.(3.5). The maximum plate’s width and thickness are 500 and 50 

millimeters, respectively. 
 

Bracing elements are sized with the standard pipes limited to 66.0 cm 

diameter. 

 

Figure (3.5): HEB 1000 with welded cover plates 
 

3.2.3 Design Considerations 

Specifications: 

The design is to conform with the Egyptian Code of Practice for Steel 

Constructions and Bridges [4] using high grade steel ST-52 with yield strength 

3.60 t/cm2 for thicknesses less than or equal to 40 mm, and 3.35 t/cm2 for 

thicknesses greater than 40 mm. The maximum lateral drift is limited to 1/500 

of the frame height. 
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Loads: 

The frames are analyzed under the effect of uniform dead loads of 2.2 t/m’, 

uniform live loads of 1.0 t/m’, and lateral wind loads distributed according to 

Egyptian Specifications for Loads with wind intensity equal to 0.08 t/m2. The 

analysis considered the critical load combinations of loads. 

 
Recommendations for Optimum lateral drift: 

The location of both the braced bay in braced frames and the outrigger truss in 

braced frames with outrigger truss have a significant influence on the 

maximum lateral drift exerted on the frame.  

 
The location of the braced bay in braced frames is preferable to be at 

centre or close to centre of frame. This will not induce additional lateral drift 

on frame under vertical load due to unsymmetrical vertical stiffness. 

 
The location of single outrigger truss for optimum lateral drift has been 

investigated based on J.C.D. Hoenderkamp and M.C.M. Bakker method [5] 

which has been mentioned in Chapter (2). The optimum location for the 

outrigger truss is selected after several trials of substitution in Eqs.(2.7) and 

(2.8) and comparison of results for the studied frames. It is often taken at a 

distance equal to 1/3 of the total height of frame measured from the top.  

 
Table (3.1) presents the selected locations of the outrigger truss for the 

studied 4 groups of frames. 

Table (3.1): Location of Outrigger Truss. 

Frame’s total number of stories 40 38 35 30 25 20 15 10 5 

The i th story level for outrigger 

truss 
27 26 24 21 17 14 10 7 3 
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3.2.4 Design Procedures and Tools  

Design is an iterative process. The sections used to run the original analysis 

are not typically the same sections that are chosen at the end of the design 

process. It is always wanted to ensure that the frame analysis is performed 

using the final frame section sizes and then a design check is implemented 

based on the forces obtained from that analysis. 

 
 Analysis is performed using SAP2000 [25] software program for the 

structural analysis and design of structures. The version used is 9.0.3. It allows 

the import and export of data in an excel spread sheet format, which is very 

useful in controlling the implementation of the iterative design process as will 

be described later. In addition to that, it allows for lateral displacement 

optimization, where it can predict which members should be increased in size 

to control the displacements based on the energy per unit volume in the 

members.  

 
 Design can not be completely implemented by SAP2000 [25] for two 

reasons. The first reason is that SAP2000 module design does not support 

Egyptian specifications. Second reason is that SAP2000 design can not 

guarantee that sizing of columns will decrease along their height.  

 
Three auxiliary programs are developed for the design of the three 

different types of lateral load-resisting frames. Running each program 

individually will start the design verifications for each member in the 

prescribed frame and returns new sections for the optimum design. The 

resulting sections will overcome the irregularity problem in sizing columns of 

frame, and will be organized in a spread sheet format that can be easily 

imported to the frame model for a new iteration of analysis.  

 
The following is the typical procedures for the design process: 

1. Create the frame model taking into consideration that labeling of 

members has be arranged in a sequential order for the manipulation of 

importing data to the auxiliary design programs, and exporting the new 
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sections design to the SAP frame model. Also size the elements with 

preliminary section profiles. 

2. Perform the analysis of the frame model using SAP2000 program. 

3. Export the SAP input and output data of the model to an excel file. 

4. Perform the design using one of the auxiliary design programs, 

according to the prescribed frame system. 

5. Exchange the current section profiles in the excel SAP input file with 

the new sections design created by the design program. 

6. Repeat steps 3 to 5 and then compare the maximum lateral drift with 

the constrained value.  

7. If the lateral drift is less than the constrained value then continue with 

the design iterations procedures by repeating steps 3 to 5 until the last 

used analysis section profiles for the frame elements are identical to 

the new design section profiles. 

8. If the lateral drift is greater than the constrained value then continue 

the iterations using SAP2000, by adjusting the model for lateral 

displacement optimization requirements, and activating the lateral 

displacement target option. 

 
Figure (3.6) presents a diagram for the typical procedures in the design 

process, starting with the creation of frame model and ending with listing data 

for the ANN modeling.   
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Create Model 
& Perform 

analysis

1st  Iteration

Design 
Section

Perform New 
Analysis

Check Drift
<  H/500

NoYes Increase Stiffness
Until Drift is 
Controlled

Continue Iterations Until 
Designed Sections are the 
same as Anayzed Sections

List Results for
ANN Modeling 

 

Figure (3.6): Diagram for Design Procedures 
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Auxiliary programs: 

In most frame cases when the strength governs the design, the design process 

is implemented with a set of auxiliary programs generated with MATLAB 

language for technical computation [26]. 

 
MATLAB is very useful in solving problems that include math 

calculations and algorithm development. Its basic data element is an array that 

does not require dimensioning. It is capable to read input data from an excel 

file and to write output data in an excel file. In the design process, the source 

of input data to run the generated programs is the sap output files exported 

with an excel format.  

 
Each lateral load-resisting system has its own design requirements that 

slightly differ than the others. For example: rigid frames design require the 

evaluation of buckling coefficient K for the columns based on end restraints 

offered by the girders, also braced frames design require the verification of 

bracing elements without considering wind load combinations as secondary 

load case.  

 
To simplify the design process each lateral load-resisting system has its 

design program as follows: the “RGFDES” program is created for the rigid 

frames design; “BRFDES” program is created for the braced frames design, 

and “ORFDES” is created for the braced frames with outrigger truss. The 

three programs require before operating the identification of SAP output file, 

and number of stories and bays of the frame. The “BRFDES” and “ORFDES” 

programs require in addition to that, the identification of number of braced 

bays.  

 
Figure (3.7) presents the screen of the “BRFDES” program while 

operating. It shows that the program is supplied with the identification items 

of 4-bay frame with 20 stories, and four braced bays. 
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Figure (3.7): “BRFDES” Program while Operating 
 

The output for the three design programs has the same organization. Figure 

(3.8) presents a screen for a design output excel file created for a 4-bay frame 

with 20 stories, and four braced bays.  

 
It can be seen that row “3” displays the frame’s total weight followed by 

the maximum lateral displacement exerted on the frame. Also, column “A” 

displays the labels of frame elements, followed by columns that display the 

relevant frame section properties. Column “AO” displays the critical unit of 

check for the normal stresses interaction formulas which where previously 

mentioned in clause (2.2.1). Column “AZ” displays the expected optimized 

sections, and column “AP” displays the expected unit of check for the 

optimized sections. Finally column “BJ” displays the new sections that will be 

utilized in the next iteration of analysis after filtering the sizes causing 

irregularity in columns.  
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Figure (3.8): Sample of Design Output Excel File   
 

 

Figure (3.8) cont.: Sample of Design Output Excel File 
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3.2.5 Mapping Resulting Relations 

The relations between frame height and resulting lateral drift and weight per 

unit area of the four groups are listed in Tables (3.2) to (3.9) and are illustrated 

in Figs (3.9) to (3.16). For each group, two tables are presented; the first table 

presents the values of the top displacement (lateral drift), and the second table 

presents the values of the weight per unit area of the plan. Values denoted in 

tables by N/A indicate that the studied case is not applicable. It occurs when 

the proposed standard sections could not provide sufficient stiffness to 

optimize lateral drift. 
 

First Group: 3-Bay Frames (12 m Wide): 

Table (3.2): Lateral Drift in (cm) for 3-Bay Frames (12 m Wide).  

Frame 
Height 

(m) 

Rigid 
Frames 

Braced Frames 

One Two Three 
with 

Outriggers 
140 N/A N/A N/A 28.6 N/A 
120 24.5 N/A N/A 24 N/A 
100 20 N/A 20 20 20 
80 16 N/A 16 16 16 
60 12 12 12 8 12 
40 8 8 6 3 5 
20 4 1 0.8 0.3 0.5 

 

Table (3.3): Weight in (ton/m2) for 3-Bay Frames (12 m Wide) 

Frame 
Height 

(m) 

Rigid 
Frames 

Braced Frames 

One Two Three 
with 

Outriggers 
140 N/A N/A N/A 8.46 N/A 
120 8.48 N/A N/A 2.88 N/A 
100 3.58 N/A 4.85 1.67 6.15 
80 2.31 N/A 1.54 0.83 2.96 
60 1.29 1.17 0.92 0.54 0.81 
40 0.77 0.38 0.31 0.29 0.31 
20 0.31 0.13 0.13 0.13 0.13 
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Figure (3.9) : Lateral Drift versus Height for 3-Bay Frames (12 m Wide) 
 
From the lateral drift results shown in Fig.(3.9), it can be seen that deflection 

controls the design of all rigid frame systems, while it controls the design of 

one-bay, two-bay, and three-bay braced frames starting from 40, 60, and 80 m 

height, respectively. Also, deflection controls the design of one-bay braced 

frames with outrigger truss starting from 60 m height.  

 
It can be seen also that the lateral drift behavior of one-bay braced frames 

with outrigger truss is almost identical to that with two-bay braced frames 

0 5 10 15 20 25 30 32
0  

20

40

60

80

100

120

140

160

Lateral Drift (cm)

H
ei

gh
t (

m
)

Rigid
Br. (1B)
Br. (2B)
Br. (3B)
OR (1B)



 - 40 - 

without outrigger truss, and that the lateral drift of braced frames without 

outrigger truss decreases when the number of braced bays increases. 
 

From the optimum weight results shown in Fig.(3.10), it can be seen that the 

weight of braced frame system without outrigger truss decreases when the 

number of braced bays increases. Also, rigid frames produce maximum 

weights at low heights, while braced frames with outrigger truss produce 

maximum weights starting from 80 m height. 
 

 

Figure (3.10) : Weight versus Height for 3-Bay Frames (12 m Wide) 
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Second Group: 4-Bay Frames (16 m Wide): 
 

Table (3.4): Lateral Drift in (cm) for 4-Bay Frames (16 m Wide).  

Frame 
Height 

(m) 

Rigid 
Frames 

Braced Frames 

One Two Three Four with Outriggers 

160 N/A N/A N/A N/A 32 N/A 
152 N/A N/A N/A N/A 30.4 N/A 
140 28 N/A N/A N/A 28 N/A 
120 24 N/A N/A 24 24 N/A 
100 20 N/A 20 20 17 20 
80 16 N/A 16 16 10 16 
60 12 12 12 10 5 12 
40 8 8 4 3.5 2 5 
20 4 1 0.5 0.5 0.3 0.5 

 

Table (3.5): Weight in (ton/m2) for 4-Bay Frames (16 m Wide)  

Frame 
Height 

(m) 

Rigid 
Frames 

Braced Frames 

One Two Three Four with Outriggers 

160 N/A N/A N/A N/A 4.61 N/A 
152 N/A N/A N/A N/A 3.75 N/A 
140 6.83 N/A N/A N/A 2.81 N/A 
120 3.97 N/A N/A 3.69 1.64 N/A 
100 2.78 N/A 2.75 1.92 1.16 5.08 
80 1.84 N/A 1.08 0.83 0.78 2.50 
60 1.13 0.97 0.52 0.50 0.50 0.73 
40 0.72 0.33 0.28 0.28 0.28 0.30 
20 0.31 0.12 0.13 0.13 0.13 0.13 

 

From the lateral drift results shown in Fig.(3.11), it can be seen that deflection 

controls the design of all rigid frame systems, while it controls the design of 

one-bay, two-bay, three-bay, and four-bay braced frames starting from 40, 60, 

80, and 120 m height, respectively. Also, deflection controls the design of one-



 - 42 - 

bay braced frames with outrigger truss starting from 60 m height. 

 
It can be seen also that the lateral drift behavior of one-bay braced frames 

with outrigger truss is almost identical to that with two-bay braced frames 

without outrigger truss, and that the lateral drift of braced frames without 

outrigger truss decreases when the number of braced bays increases. 

 

 

Figure (3.11) : Lateral Drift versus Height for 4-Bay Frames (16 m Wide) 
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From the optimum weight results shown in Fig.(3.12), it can be seen 

that the weight of braced frame system without outrigger truss decreases 

when the number of braced bays increases. Also, rigid frames produce 

maximum weights at low heights, while braced frames with outrigger truss 

produce maximum weights starting from 80 m height. 

 

 

Figure (3.12): Weight versus Height for 4-Bay Frames (16 m Wide) 
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Third Group: 5-Bay Frames (20 m Wide): 
 

Table (3.6): Lateral Drift in (cm) for 5-Bay Frames (20 m Wide).  

Frame 
Height 
(m) 

Rigid 
Frames 

Braced Frames 

One Two Three Four Five  with Outriggers 

160 32 N/A N/A N/A 32 32 N/A 
152 30.4 N/A N/A N/A 30.4 30.4 N/A 
140 28 N/A N/A 28.6 28 28 N/A 
120 24 N/A N/A 24 24 20 N/A 
100 20 N/A 20 20 19 16 20 
80 16 N/A 16 13 12 9 16 
60 12 12 12 7 6 4 12 
40 8 8 4 2 2.5 1.3 4.1 
20 4 1 0.5 0.3 0.5 0.3 0.5 

 

Table (3.7): Weight in (ton/m2) for 5-Bay Frames (20 m Wide)  

Frame 
Height 

(m) 

Rigid 
Frames 

Braced Frames 

One Two Three Four Five with Outriggers 

160 6.60 N/A N/A N/A 5.83 2.90 N/A 
152 5.73 N/A N/A N/A 4.98 2.48 N/A 
140 4.53 N/A N/A 5.46 3.73 1.85 N/A 
120 3.11 N/A N/A 2.03 2.58 1.40 N/A 
100 2.21 N/A 2.35 1.23 1.05 1.00 3.21 
80 1.51 N/A 0.98 0.75 0.73 0.71 1.78 
60 0.99 0.85 0.48 0.49 0.48 0.46 0.58 
40 0.64 0.30 0.28 0.28 0.28 0.28 0.29 
20 0.29 0.11 0.11 0.11 0.11 0.11 0.13 

 
From the lateral drift results shown in Fig.(3.13), it can be seen that deflection 

controls the design of all rigid frame systems, while it controls the design of 

one-bay, two-bay, three-bay, four-bay, and five-bay braced frames starting 

from 40, 60, 100, 120, and 140 m height, respectively. Also, deflection 
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controls the design of one-bay braced frames with outrigger truss starting from 

60 m height. 
 

It can be seen also that the lateral drift behavior of one-bay braced frames 

with outrigger truss is almost identical to that with two-bay braced frames 

without outrigger truss, and that the lateral drift of braced frames without 

outrigger truss decreases when the number of braced bays increases. 
 

 

Figure (3.13) : Lateral Drift versus Height for 5-Bay Frames (20 m Wide) 
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From the optimum weight results shown in Fig.(3.14), it can be seen 

that the weight of braced frame system without outrigger truss decreases 

when the number of braced bays increases. Also, rigid frames produce 

maximum weights at low heights, while braced frames with outrigger truss 

produce maximum weights starting from 80 m height. 

 

 

Figure (3.14) : Weight versus Height for 5-Bay Frames (20 m Wide) 
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Fourth Group: 6-Bay Frames (24 m Wide): 
 

Table (3.8): Lateral Drift in (cm) for 6-Bay Frames (24 m Wide).  

Frame 
Height 

(m) 

Rigid 
Frames 

Braced Frames 

One Two Three Four Five Six 
with Outriggers 
One Two 

160 32 N/A N/A N/A 32 32 27 N/A N/A 
152 30.4 N/A N/A N/A 30.4 30.4 23 N/A 30.4 
140 28 N/A N/A 28.6 28 28 19 N/A 28 
120 24 N/A N/A 24 22 21 12 N/A 24 
100 20 N/A 20 20 13 14 8 20 20 
80 16 N/A 16 13 8 9 5 16 11 
60 12 12 12 7 3 5 3 12 5 
40 8 8 4 2 1.5 2 1 4.3 1.6 
20 4 1 0.5 0.3 0.26 0.4 0.2 0.5 0.25 

 

Table (3.9): Weight in (ton/m2) for 6-Bay Frames (24 m Wide)  

Frame 
Height 
(m) 

Rigid 
Frames 

Braced Frames 

One Two Three Four Five Six 
 with Outriggers 

One Two 
160 4.69 N/A N/A N/A 3.44 3.33 2.25 N/A N/A  
152 4.20 N/A N/A N/A 2.88 2.85 2.10 N/A 8.06 
140 3.55 N/A N/A 4.76 2.19 2.01 1.82 N/A 4.58 
120 2.69 N/A N/A 1.85 1.44 1.38 1.43 N/A 2.43 
100 1.99 N/A 2.08 1.17 1.08 1.01 1.06 3.06 1.52 
80 1.34 N/A 0.91 0.72 0.74 0.71 0.74 1.85 0.77 
60 0.96 0.77 0.46 0.47 0.49 0.47 0.48 0.57 0.49 
40 0.51 0.29 0.27 0.26 0.27 0.27 0.27 0.26 0.28 
20 0.28 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.13 

 
From the lateral drift results shown in Fig.(3.15), it can be seen that deflection 

controls the design of all rigid frame systems, while it controls the design of 

one-bay, two-bay, three-bay, four-bay, and five-bay braced frames starting 

from 40, 60, 100, 140, and 140 m height, respectively. Also, deflection 
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controls the design of one-bay, and two-bay braced frames with outrigger truss 

starting from 60, and 100 m height, respectively. 

 
It can be seen also that the lateral drift behavior of one-bay braced frames 

with outrigger truss is almost identical to that with two-bay braced frames 

without outrigger truss, and two-bay braced frames with outrigger truss is 

almost identical to that with three-bay braced frames without outrigger truss. 

In addition to that, the lateral drift of braced frames without outrigger truss 

decreases when the number of braced bays increases. 

 

Figure (3.15) : Lateral Drift versus Height for 6-Bay Frames (24 m Wide) 
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From the optimum weight results shown in Fig.(3.16), it can be seen 

that the weight of braced frame system without outrigger truss decreases 

when the number of braced bays increases. Also, rigid frames produce 

maximum weights at low heights, while braced frames with outrigger truss 

produce maximum weights starting from 80 m height. 

 

 

Figure (3.16) : Weight versus Height for 6-Bay Frames (24 m Wide) 
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3.2.6 Concluding Remarks 

From the lateral drift results, it can be observed that deflection controls the 

design of all rigid frame systems. Deflection also controls the braced frames 

without outrigger truss when the ratio of the total frame height to the total 

width of braced bays approaches 7.5 as shown in Fig.(3.17). On the other 

hand, the strength controls the design of the six-bay braced frames without 

outrigger. 
 

 In addition to that the lateral drift behavior of frames with (n) braced bays 

with outrigger truss is almost identical to frames with (n+1) braced bays 

without outrigger truss, where (n) is the number of braced bays. 
 
The results for both lateral drift and weight of rigid frames are generally 

higher than braced frames systems with few exceptions.  
 

The results for both lateral drift and weight of braced frames without 

outrigger truss decrease when the number of braced bays increases. 
 
The weight of frames with (n) braced bays with outrigger is higher than 

that of frames with (n+1) braced bays without outrigger truss.  
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Figure (3.17) Variation of Frame Height Controlling Design with respect to Lateral 
Load-Resisting System 
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Figures (3.18) and (3.19) present two samples for the relation of relative 

weight per unit area versus the lateral load-resisting system at 60 and 80 m 

heights, respectively. It can be observed that the braced frame system without 

outrigger truss is the most cost-efficient lateral load resisting system, within 

the range of studied spans and heights. 
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Figure (3.18) Relative Weight / unit area versus Frame 
Lateral Load-Resisting System at 60 m Height 
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Figure (3.19) Relative Weight / unit area versus Frame  
Lateral Load-Resisting System at 100 m Height 
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CHAPTER (4) 

ARTIFICIAL NEURAL NETWORK MODEL 

The feed-forward backpropagation neural network is the commonly used network for 

pattern recognition (association or classification), and function approximation 

problems. Feed-forward networks often have one or more hidden layers of sigmoid 

neurons followed by an output layer of linear neurons. 

4.1 NETWORK SETUP 

The architecture of a multilayer network is not completely constrained by the 

problem to be solved. The number of inputs to the network is constrained by the 

problem, and the number of neurons in the output layer is constrained by the 

number of outputs required by the problem. However, the number of layers 

between network inputs and the output layer and the sizes of the layers are 

decided from the achieved performance of network. 

 
The number of inputs in the NN will define the frame’s dimensions and 

classify the lateral load-resisting system. There will be two neurons in the output 

layer to define the lateral drift and optimum weight of frames. 

4.1.1 Input and Output Parameters Identification 

Input Parameters:  

Since the neural network can deal with only numerical parameters, then all the 

non numerical input parameters has to be identified in a numerical basis. 

Vector P is considered the vector including input parameters of this problem.  

],,,,[ 54321 PPPPPP =  

where : 

1P  , defines the total width of the frame in meters, or the number of bays 

2P , defines the total height of the frame in meters, or the number of stories. 

3P , identifies the rigid frame systems, it is either zero for non rigid frames or 

one for rigid frames.    
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4P , identifies the braced frame systems, it is either zero for unbraced frames 

or another value from one to six to describe the number of braced bays. 

5P , identifies the braced frames with outrigger trusses. It is zero for both 

braced frames and rigid frames and one for braced frames with outrigger 

trusses. 

 
Figure (4.1) shows three samples of frames with their NN input vector P. 

 

   

(a) (b) (c) 

Rigid Frame 
 

Braced Frame Braced Frame with Out 
Rigger Truss 

[16m Wide-80m Height] [24m Wide-80m Height] [24m Wide-80m Height] 

P = [16,80,1,0,0] P = [24,80,0,6,0] P = [24,80,0,2,1] 

Figure (4.1): Applied Samples of NNs Input Vector P  
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Output Parameters:  

Vector T is considered the vector including output targets of this problem.  

],[ 21 TTT =  

where: 

1T , defines the lateral drift in cm 

2T , defines the optimum weight in tone per square meter. 

4.1.2 Preprocessing Input and Output data 

To enhance the training process of neural network, inputs and targets should 

be normalized as explained before in item [2.3.9] so that they always fall in a 

small range.  

MATLAB approach for normalizing network inputs and targets is 

implemented with preprocessing functions. The selected method for 

preprocessing data is to normalize the mean and standard deviation of the 

training or testing sets. It normalizes the inputs and targets so that they will 

have zero mean and unity standard deviation. It implements the following 

function. 

devstmeaninormali XXXX ./)( −=−                          (4.1) 

4.1.3 Learning Algorithm 

There are several different backpropagation training algorithms. They have a 

variety of different computation and storage requirements, and no one 

algorithm is best suited to all locations. It is very difficult to know which 

training algorithm will be the fastest for a given problem. It depends on many 

factors, including the complexity of the problem, the number of data points in 

the training sets, the number of weights and biases in the network, the error 

goal, and whether the network is being used for pattern recognition or function 

approximation. 

 
The Levenberg-Marquardt algorithm is applied in this problem, because it 

proved to be the fastest algorithm after several trials of comparison. 
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4.1.4 Transfer Function 

The differentiable sigmoid functions are useful for the neurons of the hidden 

layers in backpropagation networks. It allows the network to learn nonlinear 

and linear relationships between input and output vectors.  

The tan-sigmoid transfer function shown in Fig.(4.2) takes the input, 

which may have any value between plus and minus infinity, and squashes the 

output into the range [-1 to 1]. 

 
Figure (4.2): Tan-sigmoid Transfer Function 

4.1.5 Network Performance 

To achieve a proper design of a NN, two approaches will be followed. First, is 

to minimize the error between network outputs and desired targets. Second, is 

to ensure that the network is able to generalize, and it is not over fitting. 

 
To minimize the error between outputs and targets, we consider the non 

dimensional root-mean square error (RMSE) as a measure for the network 

performance. It is desirable that RMSE reaches to a small value.  
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                                 (4.2) 

where iA   is the ith NN output.; iT   is the target for the ith output; N  is the 

number of training or testing sets., and 
−

T   is the target mean value.  
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To ensure that the NN is able to generalize, we follow the early stopping 

method in MATLAB for improving generalization. The data is divided into 

training and testing subsets. The training and testing errors are plotted during 

the training progress and the training stops when the testing error is increased.  

 
A linear regression between the network outputs and the corresponding 

targets (training, and testing) is performed, and the correlation coefficient (R) 

between the network response (A) and the desired target (T) is evaluated. It is 

desirable that the correlation coefficient (R) approaches to one. 

4.1 NETWORK TRAINING AND TESTING PROCESS 

The network has been trained with 164 training sets chosen from the performed 

analysis, and it has been tested with 54 testing sets selected from the plotted 

charts. Refer to Table (A.1) in annex (A) which lists the training and testing data. 

 
Tables (4.1) and (4.2) summarize the results of training and testing several 

network architectures. Table (4.1) is for NNs with one hidden layer, while table 

(4.2) is for NNs with two hidden layers. Each entry in the tables represents not 

less than 30 different trials, where different random initial weights are used in 

each trial.  
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Table (4.1): Performance of NNs with One Hidden Layer 

No. of 
Neurons Number  Execution Correlation (RMSE %) 

1st  Of Time Coefficient ( R )  Drift Weight  
Layer Iterations (sec) Drift Weight Train Test Train Test 

5 33 0.562 0.9957 0.9863 6.74 5.84 17.82 19.29 
6 43 0.734 0.9953 0.9922 7.14 5.93 13.55 14.41 
7 45 0.750 0.9954 0.9951 7.09 5.79 10.72 12.03 
8 43 0.781 0.9960 0.9969 6.70 5.40 8.22 9.94 
9 75 1.266 0.9965 0.9980 6.32 4.74 6.86 7.23 
10 54 1.125 0.9967 0.9980 5.97 5.19 6.22 9.04 
11 54 1.156 0.9971 0.9981 5.72 4.17 5.89 9.17 
12 71 1.594 0.9978 0.9983 4.96 4.09 6.08 7.85 
13 74 1.75 0.9979 0.9986 4.82 3.98 5.40 6.81 
14 73 1.828 0.9983 0.9986 4.42 3.24 5.38 6.94 
15 57 1.656 0.9985 0.9981 3.98 3.45 6.11 8.77 

 
Figure (4.3) shows the relation obtained from Table (4.1) between the overall 

RMSE for the two output targets versus the number of neurons in NNs with one 

hidden layer. It is clear from the figure that the average RMSE for both training 

and testing values approached its minimum value (5.0%) at 14 neurons. Also the 

minimum RMSE of both training and testing sets are at the same number of 

neurons, which is the NN with maximum performance and execution time. 
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Figure (4.3): RMSE versus No. of Neurons in NNs with One Hidden Layer 
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Table (4.2): Performance of NNs with Two hidden Layers 

No. of 
Neurons 

No.  Execut. Correlation (RMSE %) 

1st  2nd Of Time Coefficient ( R )  Drift Weight  

Lay. Lay. Iterat. (sec) Drift Weight Train Test Train Test 

5 3 48 0.890 0.9959 0.9967 6.61 5.63 8.70 9.89 
5 4 60 1.015 0.9963 0.9966 6.34 5.25 8.84 9.59 
5 5 53 1.234 0.9974 0.9971 5.39 4.16 8.27 8.84 
5 6 118 1.937 0.9980 0.9971 4.82 3.43 6.88 12.10 
5 7 73 1.469 0.9987 0.9974 3.58 3.42 7.26 9.73 
5 8 95 1.875 0.9983 0.9984 4.29 3.81 5.55 8.12 
6 3 107 2.078 0.9976 0.9964 5.09 4.35 9.38 9.53 
6 4 97 1.640 0.9985 0.9979 3.85 3.70 6.67 9.05 
6 5 142 2.406 0.9980 0.9978 4.70 3.98 6.87 8.95 
6 6 74 1.625 0.9983 0.9983 4.25 3.81 5.76 7.93 
6 7 66 1.593 0.9985 0.9985 4.07 3.27 5.54 7.35 
6 8 80 1.922 0.9988 0.9986 3.40 3.41 5.00 8.00 
7 3 143 2.140 0.9973 0.9982 5.42 4.49 6.00 8.40 
7 4 82 1.407 0.9976 0.9978 5.02 4.54 6.71 9.12 
7 5 64 1.328 0.9981 0.9986 4.47 4.15 5.50 7.39 
7 6 80 1.656 0.9986 0.9986 3.81 3.60 5.66 6.15 
7 7 61 1.547 0.9982 0.9991 4.24 4.13 4.19 5.70 
7 8 74 2.250 0.9990 0.9988 3.24 3.14 4.33 8.19 
8 3 56 1.125 0.9979 0.9984 4.44 4.76 5.75 8.01 
8 4 50 1.125 0.9988 0.9982 3.33 3.64 4.77 10.56 
8 5 57 1.344 0.9989 0.9981 3.30 3.32 6.11 8.78 
8 6 68 2.013 0.9989 0.9988 3.41 2.99 4.65 7.50 
8 7 63 1.984 0.9993 0.9988 2.66 2.66 4.67 7.49 
8 8 45 1.485 0.9990 0.9990 3.43 2.67 4.01 7.19 
9 3 109 2.922 0.9989 0.9986 3.30 3.48 5.13 7.90 
9 4 75 2.109 0.9992 0.9986 2.89 2.91 5.29 7.56 
9 5 76 2.281 0.9992 0.9990 2.87 2.52 3.79 7.20 
9 6 75 2.578 0.9993 0.9989 2.66 2.88 3.87 8.10 
9 7 47 1.980 0.9990 0.9991 3.14 3.12 3.88 6.84 
9 8 47 1.953 0.9988 0.9990 3.63 2.99 3.91 7.31 
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Table (4.2) cont.: Performance of NNs with Two Hidden Layers 

No. of 
Neurons 

No. Execut. Correlation (RMSE %) 

1st  2nd Of Time Coefficient ( R )  Drift Weight  

Lay. Lay. Iterat.. (sec) Drift Weight Train Test Train Test 

10 3 76 1.938 0.9983 0.9990 4.05 4.30 4.61 6.32 
10 4 42 1.219 0.9987 0.9988 3.53 3.93 4.74 6.93 
10 5 73 2.203 0.9994 0.9991 2.59 2.24 4.14 6.31 
10 6 51 1.875 0.9991 0.9990 3.11 2.80 4.25 6.66 
10 7 61 2.329 0.9994 0.9991 2.51 2.63 3.46 7.36 
11 3 106 2.625 0.9985 0.9984 2.96 5.61 5.25 8.66 
11 4 54 1.468 0.9992 0.9989 2.71 3.17 4.52 7.06 
11 5 60 1.922 0.9993 0.9990 2.81 2.49 4.29 6.54 
11 6 78 3.063 0.9992 0.9992 2.79 2.75 3.83 6.11 
12 3 39 1.328 0.9990 0.9988 3.00 3.76 5.10 6.81 
12 4 52 1.704 0.9994 0.9991 2.56 2.48 3.76 6.97 
12 5 101 3.078 0.9993 0.9994 2.40 3.02 3.09 5.94 
13 3 40 1.500 0.9989 0.9990 3.25 3.24 4.21 6.88 
13 4 40 1.281 0.9993 0.9987 2.52 2.62 4.76 7.70 
13 5 80 3.438 0.99937 0.99911 2.334 2.872 2.667 8.351 

 

Figure (4.4) shows the relation obtained from Table (4.2) between the overall 

RMSE for the two output targets of training sets versus the number of neurons in 

NNs with two hidden layers. It can be seen from the figure that the minimum 

RMSE for training sets is 2.5% resulting from NN [5-13-5-2] with 13 neurons in 

the first hidden layer and 5 neurons in the second hidden layer. This network 

performs the training process in 3.44 seconds and 80 iterations. 

 
Figure (4.5) shows the relation obtained from Table (4.2) between the overall 

RMSE for the two output targets of testing sets versus the number of neurons in 

NNs with two hidden layers. It can be seen from the figure that the minimum 

RMSE for testing sets is 4.27% resulting from NN [5-10-5-2] with 10 neurons in 

the first hidden layer and 5 neurons in the second hidden layer. This network 

performs the training process in 2.20 seconds and 73 iterations. 
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Figure (4.4): RMSE of Training Sets versus No. of Neurons in NNs with Two 
Hidden Layers 
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Figure (4.5): RMSE of Testing Sets versus No. of Neurons in NNs with Two 
Hidden Layers 
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It is clear then that the minimum RMSE of both training and testing sets do 

not exist at the same NN. 

 
Figure (4.6) shows the relation obtained from Table (4.2) between the overall 

average RMSE for training and testing sets versus the number of neurons in NNs 

with two hidden layers. It can be seen from the figure that the minimum average 

RMSE is 3.61% resulting from NN [5-12-5-2] with 12 neurons in the first hidden 

layer and 5 neurons in the second hidden layer. This network performs the training 

process in 3.08 seconds and 101 iterations. 
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Figure (4.6): Average RMSE for Training and Testing Sets versus No. of 
Neurons in NNs with Two Hidden Layers 

 

A detailed examination is performed on the performance of the previously 

mentioned NNs to facilitate the selection of the accepted NN architecture. This is 

achieved by plotting the training progress and the linear regression of each 

network. 
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The training progress of network [5-13-5-2] presented in Fig.(4.7) shows that 

the RMSE of training and testing sets have not similar characteristics. The RMSE 

for the training set is driven to a small value with a high rate, while the RMSE of 

the testing set is not decreasing with the same rate. This indicates that the network 

is not able to generalize. 
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Figure (4.7): Training Plot for Network [5-13-5-2] 
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Figure (4.8): Linear Regression for network [5-13-5-2] 
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The training progress of network [5-10-5-2] presented in Fig.(4.9) shows that 

the RMSE of training and testing sets have similar characteristics and are close to 

each other. However Fig.(4.10) shows that the network’s correlation coefficients 

(R) for lateral drift and optimum weight are 0.9994 and 0.9991 respectively. This 

indicates that the network converges towards one output more than the other. 
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Figure (4.9): Training Plot for Network [5-10-5-2] 
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Figure (4.10): Linear Regression for network [5-10-5-2] 



 - 64 - 

The training progress of network [5-12-5-2] presented in Fig.(4.11) shows that 

the RMSE of training and testing sets have similar characteristics and it doesn’t 

appear that any significant over fitting has occurred. The linear regression 

presented in Fig.(4.12) shows that the network’s correlation coefficients (R) for 

lateral drift and optimum weight are 0.9993 and 0.9994 respectively. This 

indicates that the network has approximated the relation quite satisfactorily and it 

converges towards the two outputs equally. 
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Figure (4.11): Training Plot for Network [5-12-5-2] 
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Figure (4.12): Linear Regression for network [5-12-5-2] 
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4.2 SELECTED NETWORK ARCHITECTURE 

After examining the performance of different network architectures, we consider 

the best network architecture accepted in this investigation is [5-12-5-2]. It is 

with12 neurons in the first hidden layer and 5 neurons in the second hidden layer. 

The network proved its ability to track outputs reasonably. 

 
The error during training the network converges within the acceptable limits in 

3.08 seconds after 100 iterations. The RMSEs of the first output for training and 

testing sets are 2.40% and 3.02%, respectively, which is equivalent to an average 

lateral drift of 0.37 cm. The RMSEs of the second output for training and testing 

sets are 3.09% and 5.94%, respectively, which is equivalent to an average weight 

of 0.07 ton/sqm. 
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CHAPTER (5) 

CONCLUSIONS 

5.1 Summary 

The use of neural network for estimating the maximum lateral drift and optimum 

weight of different lateral load-resisting systems was investigated. The relation 

between the frames configurations and their expected lateral drift and weight was 

mapped by applying the multilayer feed-forward backpropagation artificial neural 

network. The study involved different configurations for multi-story steel frames 

under the load combinations of dead, live, and wind loads. The investigation 

included the optimum design of rigid frames, braced frames and braced frames 

with single outrigger truss. 

 
  Input parameters for network defined the frame configuration in a descriptive 

numerical form, whereas the output parameters defined the frame maximum 

lateral drift and expected optimum weight. Networks were trained with the output 

produced from structural analysis of frames based on finite-element models, and 

optimum design of elements based on stress and serviceability criteria. 

 
  Different architectures of networks were tried to solve the problem. The 

accepted network architecture was selected based on watching the correlation 

coefficient resulting from the performed linear regression between the network 

outputs and the corresponding targets, also based on the non dimensional root-

mean square error for both training and testing data. 

5.2 Conclusions 

Based on the demonstrated investigation, the following characteristics of the 

studied lateral load-resisting systems and the modeled neural network can be 

concluded: 

 
• The lateral drift behavior of frames with (n) braced bays with outrigger truss is 

almost identical to frames with (n+1) braced bays without outrigger truss. 
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Meanwhile the weight of frames with (n) braced bays with outrigger truss is 

higher than that of frames with (n+1) braced bays without outrigger truss. 

 
• The braced frame system without outrigger truss is the most cost-efficient 

lateral load-resisting system, within the range of studied spans and heights. 

 
• From the lateral drift results, it is clear that deflection controls the design of all 

rigid frame systems, and the braced frames without outrigger truss when the 

ratio of the total height to the total width of braced bays approaches to 7.5. 

 
• Specifying the parameters of frames under lateral load to a neural network is a 

time consuming device for the estimation of maximum lateral drift and 

optimum weight of frames. 

 
• Results of the training process for various architectures of networks with two 

hidden layers proved better performance than networks with one hidden layer. 

  
• Increasing number of neurons in networks with one hidden layer causes an 

increase in the execution time. It also improves network performance to a 

certain limit (up to fourteen neurons) after which the network is not able to 

generalize. This can be observed in the root mean square error (RMSE) results 

of testing data. 

  
• Increasing number of neurons in networks with two hidden layers has no 

specific relation to the execution time, while generally it improves network 

performance. 

 
• Comparing the (RMSE) results of networks with two hidden layers, we find 

that, network with twelve neurons in the first hidden layer, and five neurons in 

the second hidden layer has achieved the optimum performance for the two 

output targets, however it has the maximum execution time which makes it 

more expensive than the other networks.    
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5.3 Future Researches 

The research outlined in this thesis may be extended to cover: 

 

• Different ranges of spans and bays. 

• Other types of lateral load resisting systems. 

• Design governed by other load cases, such as seismic, blast, or differential 

settlement. 
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Annex (A) 

Table (A.1): Input and Output Training Data 

  Frame Configurations 
Lateral 

Drift 

(cm) 

Weight 

(Ton/sqm) 

No. Geometry Systems 

  
width 

(m) 

height 

(m) 
fixed 

braced 

bays 

out 

rigger 

1 12 120 1 0 0 24.5 8.48 

2 12 100 1 0 0 20 3.58 

3 12 80 1 0 0 16 2.31 

4 12 60 1 0 0 12 1.29 

5 12 40 1 0 0 8 0.77 

6 12 20 1 0 0 4 0.31 

7 12 60 0 1 0 12 1.17 

8 12 40 0 1 0 8 0.38 

9 12 20 0 1 0 1 0.13 

10 12 100 0 2 0 20 4.85 

11 12 80 0 2 0 16 1.54 

12 12 60 0 2 0 12 0.92 

13 12 40 0 2 0 6 0.31 

14 12 20 0 2 0 0.8 0.13 

15 12 140 0 3 0 28.6 8.46 

16 12 120 0 3 0 24 2.88 

17 12 100 0 3 0 20 1.67 

18 12 80 0 3 0 16 0.83 

19 12 60 0 3 0 8 0.54 

20 12 40 0 3 0 3 0.29 

21 12 20 0 3 0 0.3 0.13 

22 12 100 0 1 1 20 6.15 

23 12 80 0 1 1 16 2.96 

24 12 60 0 1 1 12 0.81 

25 12 40 0 1 1 5 0.31 

26 12 20 0 1 1 0.5 0.13 

27 16 140 1 0 0 28 6.83 

28 16 120 1 0 0 24 3.97 
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Table (A.1) cont.: Input and Output Training Data 

  Frame Configurations 
Lateral 

Drift 

(cm) 

Weight 

(Ton/sqm) 

No. Geometry Systems 

  
width 

(m) 

height 

(m) 
fixed 

braced 

bays 

out 

rigger 

29 16 100 1 0 0 20 2.78 

30 16 80 1 0 0 16 1.84 

31 16 60 1 0 0 12 1.13 

32 16 40 1 0 0 8 0.72 

33 16 20 1 0 0 4 0.31 

34 16 60 0 1 0 12 0.97 

35 16 40 0 1 0 8 0.33 

36 16 20 0 1 0 1 0.12 

37 16 100 0 2 0 20 2.75 

38 16 80 0 2 0 16 1.08 

39 16 60 0 2 0 12 0.52 

40 16 40 0 2 0 4 0.28 

41 16 20 0 2 0 0.5 0.13 

42 16 120 0 3 0 24 3.69 

43 16 100 0 3 0 20 1.92 

44 16 80 0 3 0 16 0.83 

45 16 60 0 3 0 10 0.50 

46 16 40 0 3 0 3.5 0.28 

47 16 20 0 3 0 0.5 0.13 

48 16 160 0 4 0 32 4.61 

49 16 140 0 4 0 28 2.81 

50 16 120 0 4 0 24 1.64 

51 16 100 0 4 0 17 1.16 

52 16 80 0 4 0 10 0.78 

53 16 60 0 4 0 5 0.50 

54 16 40 0 4 0 2 0.28 

55 16 20 0 4 0 0.3 0.13 

56 16 100 0 1 1 20 5.08 

57 16 80 0 1 1 16 2.50 

58 16 60 0 1 1 12 0.73 

59 16 40 0 1 1 5 0.30 
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Table (A.1) cont.: Input and Output Training Data 

  Frame Configurations 
Lateral 

Drift 

(cm) 

Weight 

(Ton/sqm) 

No. Geometry Systems 

  
width 

(m) 

height 

(m) 
fixed 

braced 

bays 

out 

rigger 

60 16 20 0 1 1 0.5 0.13 

61 20 160 1 0 0 32 6.60 

62 20 140 1 0 0 28 4.53 

63 20 120 1 0 0 24 3.11 

64 20 100 1 0 0 20 2.21 

65 20 80 1 0 0 16 1.51 

66 20 60 1 0 0 12 0.99 

67 20 40 1 0 0 8 0.64 

68 20 20 1 0 0 4 0.29 

69 20 60 0 1 0 12 0.85 

70 20 40 0 1 0 8 0.30 

71 20 20 0 1 0 1 0.11 

72 20 100 0 2 0 20 2.35 

73 20 80 0 2 0 16 0.98 

74 20 60 0 2 0 12 0.48 

75 20 40 0 2 0 4 0.28 

76 20 20 0 2 0 0.5 0.11 

77 20 140 0 3 0 28.6 5.46 

78 20 120 0 3 0 24 2.03 

79 20 100 0 3 0 20 1.23 

80 20 80 0 3 0 13 0.75 

81 20 60 0 3 0 7 0.49 

82 20 40 0 3 0 2 0.28 

83 20 20 0 3 0 0.3 0.11 

84 20 160 0 4 0 32 5.83 

85 20 140 0 4 0 28 3.73 

86 20 120 0 4 0 24 2.58 

87 20 100 0 4 0 19 1.05 

88 20 80 0 4 0 12 0.73 

89 20 60 0 4 0 6 0.48 

90 20 40 0 4 0 2.5 0.28 
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Table (A.1) cont.: Input and Output Training Data 

  Frame Configurations 
Lateral 

Drift 

(cm) 

Weight 

(Ton/sqm) 

No. Geometry Systems 

  
width 

(m) 

height 

(m) 
fixed 

braced 

bays 

out 

rigger 

91 20 20 0 4 0 0.5 0.11 

92 20 160 0 5 0 32 2.90 

93 20 140 0 5 0 28 1.85 

94 20 120 0 5 0 20 1.40 

95 20 100 0 5 0 16 1.00 

96 20 80 0 5 0 9 0.71 

97 20 60 0 5 0 4 0.46 

98 20 40 0 5 0 1.3 0.28 

99 20 20 0 5 0 0.3 0.11 

100 20 100 0 1 1 20 3.21 

101 20 80 0 1 1 16 1.78 

102 20 60 0 1 1 12 0.58 

103 20 40 0 1 1 4.1 0.29 

104 20 20 0 1 1 0.5 0.13 

105 24 160 1 0 0 32 4.69 

106 24 140 1 0 0 28 3.55 

107 24 120 1 0 0 24 2.69 

108 24 100 1 0 0 20 1.99 

109 24 80 1 0 0 16 1.34 

110 24 60 1 0 0 12 0.96 

111 24 40 1 0 0 8 0.51 

112 24 20 1 0 0 4 0.28 

113 24 60 0 1 0 12 0.77 

114 24 40 0 1 0 8 0.29 

115 24 20 0 1 0 1 0.10 

116 24 100 0 2 0 20 2.08 

117 24 80 0 2 0 16 0.91 

118 24 60 0 2 0 12 0.46 

119 24 40 0 2 0 4 0.27 

120 24 20 0 2 0 0.5 0.11 
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Table (A.1) cont.: Input and Output Training Data 

  Frame Configurations 
Lateral 

Drift 

(cm) 

Weight 

(Ton/sqm) 

No. Geometry Systems 

  
width 

(m) 

height 

(m) 
fixed 

braced 

bays 

out 

rigger 

121 24 140 0 3 0 28.6 4.76 

122 24 120 0 3 0 24 1.85 

123 24 100 0 3 0 20 1.17 

124 24 80 0 3 0 13 0.72 

125 24 60 0 3 0 7 0.47 

126 24 40 0 3 0 2 0.26 

127 24 20 0 3 0 0.3 0.11 

128 24 160 0 4 0 32 3.44 

129 24 140 0 4 0 28 2.19 

130 24 120 0 4 0 22 1.44 

131 24 100 0 4 0 13 1.08 

132 24 80 0 4 0 8 0.74 

133 24 60 0 4 0 3 0.49 

134 24 40 0 4 0 1.5 0.27 

135 24 20 0 4 0 0.26 0.11 

136 24 160 0 5 0 32 3.33 

137 24 140 0 5 0 28 2.01 

138 24 120 0 5 0 21 1.38 

139 24 100 0 5 0 14 1.01 

140 24 80 0 5 0 9 0.71 

141 24 60 0 5 0 5 0.47 

142 24 40 0 5 0 2 0.27 

143 24 20 0 5 0 0.4 0.11 

144 24 160 0 6 0 27 2.25 

145 24 140 0 6 0 19 1.82 

146 24 120 0 6 0 12 1.43 

147 24 100 0 6 0 8 1.06 

148 24 80 0 6 0 5 0.74 

149 24 60 0 6 0 3 0.48 

150 24 40 0 6 0 1 0.27 

151 24 20 0 6 0 0.2 0.11 
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Table (A.1) cont.: Input and Output Training Data 

  Frame Configurations 
Lateral 

Drift 

(cm) 

Weight 

(Ton/sqm) 

No. Geometry Systems 

  
width 

(m) 

height 

(m) 
fixed 

braced 

bays 

out 

rigger 

152 24 100 0 1 1 20 3.06 

153 24 80 0 1 1 16 1.85 

154 24 60 0 1 1 12 0.57 

155 24 40 0 1 1 4.3 0.26 

156 24 20 0 1 1 0.5 0.11 

157 24 152 0 2 1 30.4 8.06 

158 24 140 0 2 1 28 4.58 

159 24 120 0 2 1 24 2.43 

160 24 100 0 2 1 20 1.52 

161 24 80 0 2 1 11 0.77 

162 24 60 0 2 1 5 0.49 

163 24 40 0 2 1 1.6 0.28 

164 24 20 0 2 1 0.25 0.13 
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Table (A.2): Input and Output Testing Data 

  Frame Configurations 
Lateral 

Drift 

(cm) 

Weight 

(Ton/sqm) 

No. Geometry Systems 

  
width 

(m) 

height 

(m) 
fixed 

braced 

bays 

out 

rigger 

1 12 112 1 0 0 22.7 6.52 

2 12 52 1 0 0 10.4 1.08 

3 12 56 0 1 0 11.2 1.01 

4 12 36 0 1 0 6.6 0.33 

5 12 76 0 2 0 15.2 1.42 

6 12 36 0 2 0 4.96 0.28 

7 12 108 0 3 0 21.6 2.15 

8 12 68 0 3 0 11.2 0.66 

9 12 88 0 1 1 17.6 4.23 

10 12 48 0 1 1 7.8 0.51 

11 16 116 1 0 0 23.2 3.73 

12 16 56 1 0 0 11.2 1.04 

13 16 52 0 1 0 10.4 0.71 

14 16 32 0 1 0 5.2 0.24 

15 16 88 0 2 0 17.6 1.75 

16 16 48 0 2 0 7.2 0.38 

17 16 112 0 3 0 22.4 2.98 

18 16 52 0 3 0 7.4 0.41 

19 16 152 0 4 0 30.4 3.75 

20 16 72 0 4 0 8 0.67 

21 16 88 0 1 1 17.6 3.53 

22 16 48 0 1 1 7.8 0.47 

23 20 152 1 0 0 30.4 5.73 

24 20 72 1 0 0 14.4 1.30 

25 20 52 0 1 0 10.4 0.63 

26 20 28 0 1 0 3.8 0.19 

27 20 76 0 2 0 15.2 0.88 

28 20 44 0 2 0 5.6 0.32 

29 20 112 0 3 0 22.4 1.71 
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Table (A.2) cont.: Input and Output Testing Data 

  Frame Configurations 
Lateral 

Drift 

(cm) 

Weight 

(Ton/sqm) 

No. Geometry Systems 

  
width 

(m) 

height 

(m) 
fixed 

braced 

bays 

out 

rigger 

30 20 76 0 3 0 11.8 0.70 

31 20 152 0 4 0 30.4 4.98 

32 20 64 0 4 0 7.2 0.53 

33 20 152 0 5 0 30.4 2.48 

34 20 72 0 5 0 7 0.61 

35 20 88 0 1 1 17.6 2.35 

36 20 48 0 1 1 7.26 0.40 

37 24 152 1 0 0 30.4 4.20 

38 24 88 1 0 0 17.6 1.60 

39 24 52 0 1 0 10.4 0.58 

40 24 36 0 1 0 6.6 0.25 

41 24 68 0 2 0 13.6 0.64 

42 24 28 0 2 0 1.9 0.18 

43 24 104 0 3 0 20.8 1.30 

44 24 44 0 3 0 3 0.30 

45 24 152 0 4 0 30.4 2.88 

46 24 64 0 4 0 4 0.54 

47 24 152 0 5 0 30.4 2.85 

48 24 108 0 5 0 16.8 1.16 

49 24 152 0 6 0 23 2.10 

50 24 68 0 6 0 3.8 0.58 

51 24 68 0 1 1 13.6 1.09 

52 24 52 0 1 1 8.92 0.45 

53 24 112 0 2 1 22.4 2.06 

54 24 76 0 2 1 9.8 0.71 
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