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Chapter (1) 

INTRODUCTION 
1.1 General  
Determination of geoid has been one of the main research areas in science of 

Geodesy for decades. According to the wide spread use of GPS in geodetic 

applications, great attention is paid to the precise determination of local/regional 

geoid with an aim to replace the geometric leveling, which is very onerous 

measurement work, with GPS surveys. GPS technique provides the surveyor 

with three-dimensional coordinates including ellipsoidal heights (h) with respect 

to its reference ellipsoid "the geocentric WGS84 (World Geodetic System 

1984)". As in GPS measurements, geodesists have chosen an oblate ellipsoid of 

revolution, flattened at the poles, to approximate the geoid in order to simplify 

survey data reduction and mapping. However, most surveying measurements 

are made in relation to the geoid, which is the equipotential surface of the earth 

gravity field, not ellipsoid because the equipment is aligned with the local 

gravity vector, which is perpendicular to the geoid surface, usually through the 

use of a spirit bubble. 
 
Normally, "H" orthometric height is derived from leveling measurements, but 

these measurements are tiring applications. So, while having a geoid model in 

the region as the essential part of geodetic infrastructure, number of leveling 

measurements can be reduced using this procedure and by this way time and 

labor is saved. Geoid determination is modeling of the data in such a way that 

geoid height can be obtained digital or analog at a point whose horizontal 

position is known. Geoid models can be developed for local, regional or global 
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regions. Using satellite techniques, especially GPS, in geodetic measurements 

are increased importance of geoid. Because geoid is a natural tie between high 

precision geodetic coordinates and coordinates which obtained from satellites. 

There are several geoid determination methods according to used data and 

models. GPS/Leveling method, which is also known as geometric method, is 

one of these methods. This method is appropriate for local precise geoid 

determination in respectively small areas. In this search, it is going to be given 

information about GPS/Leveling geoid determination method and mathematical 

models, which are used in geoid determination with this method.  
 
1.2 Scope of the Thesis   
The current thesis contains six chapters including this chapter. In the following 

a brief description for the contents of each chapter: 

 Chapter (2) contains the global positioning system (GPS) observations, 

different observations techniques and their related errors. In addition, the 

common utilized techniques that one can apply to reduce these errors.  
 

 Chapter (3) contains the definition of the datum and the relation between 

the different datums. It also displays the different methods used to 

calculate the geoid undulation (practical and mathematical techniques), 

description of the theory of mathematical techniques (regression, least 

square collocation and minimum surface curvature). Finally, a review 

about computations of geoid in Egypt is outlined. 
 

 Chapter (4) presents the algorithms of the mathematical models of the 

different techniques that have been used in our developed programs.  
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 Chapter (5) demonstrates the computed results from these mathematical 

models as well as discussions for these results are made. In addition, a 

comparison between the results of the different techniques is done, where 

finally the best technique is derived. Therefore, we use this technique to 

calculate a geoidal undulation model for Egypt based upon the data what 

we have in our hand. Of course, the quality of the resulted model is 

strongly correlated to the quality and the distribution of the available data 

points.  
 

 Chapter (6) outlines the summary and conclusion of the thesis and the 

recommendations for future work in this field. 
 

 A list of the used reference in the research is introduced in Reference 

Chapter. In addition a list of appendices is outlined where Appendix (A) 

contains the table of geoid undulation for estimating the minimum surface 

curvature technique at the node of grid for the Egyptian map. Appendix 

(B) contains the table of geoid undulation for estimating the 2nd degree of 

regression technique at the node of grid for the Egyptian map. Appendix 

(C) contains the table of geoid undulation for estimating the least square 

collocation technique at the node of grid for the Egyptian map. Finally, 

Appendix (D) contains the different programs used in this research. 
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Chapter (2)  

PRECISE GPS POSITIONING  
2.1 Introduction   
The global positioning system (GPS) is a satellite based radio positioning 

system designed for accurate positioning information in three dimensions 

(Latitude, Longitude and Height), that is, vertical as well as horizontal 

information is provided. The satellites continuously send radio signals that can 

be received by suitable equipments. Computer programs are used to process the 

data and to determine the relative positions of points on the earth's surface. 

Positions can be determined to about a centimeter using GPS. Elevations 

determined by GPS observations differ from the elevations shown on 

topographic map. The topographic elevations, called orthometric heights, are 

determined by techniques that make use of a local horizontal surface. Most 

topographic elevations are refered to the height above mean sea level (MSL) 

determined by leveling but GPS elevations, called geometric heights, are 

referenced to the center of mass of the earth, not to sea level. An overview of 

GPS observation technique and its accuracy is introduced in this chapter.  
 
2.2 General description of the global positioning system  
 The global positioning system GPS is a system of 27 satellites that orbit at 

approximately 20000 km above the surface of the Earth. The satellites are 

launched into six orbital planes, 60 degrees apart at an inclination of 55 degrees 

with respect to the equator. The constellation of GPS satellites provides all-

weather, world-wide, and continuous measurements, providing line-of-sights to 

the satellites are available. These characteristics make GPS observations 
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advantageous for positioning and navigation, and remote sensing applications 

[V. Hoyle, 2005]. 
 
This system is composed of three segments, which are a space segment, a 

control segment and user segment. The space segment contains the satellites 

that broadcast the ranging signal. The control segment consists of the ground 

monitor stations that perform the satellite tracking, orbit determination and time 

synchronization. The user segment is made up of the GPS receivers that 

translate the satellite ranging signals into a point position solution [C.Liu, 1993] 

as shown in figure (2.1). 

 

 

 

 

 

 

 

 

 

 

Figure (2.1) GPS elements   

The primary task of GPS surveying is to measure the distances between 27 

satellites in known orbits at a height of 20,000 km above the earth. Once ranges 

have been measured, the coordinates of positions on the earth are calculated by 

triangulation [Bradford W. Parkinson,1996]. Distances are measured based on 
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the amount of time required for an electromagnetic GPS signal to travel from 

the satellites to ground-based antennas and receivers. Antennas collect the 

satellite signal and convert the electromagnetic waves into electric currents that 

can be recorded by the   receiver [Leick, A., 1990].  
 
There are two main GPS surveying methods, kinematics and static surveying. 

The type and accuracy of positioning in kinematics and static surveying is 

dependent on the number of receivers available. There are two types of 

positioning, single point and relative. Single-point positioning is the 

determination of a ground position using one receiver and observable from one 

or more satellites. Single-point positioning relies on the pseudorange 

observable. The accuracy of the single-point positioning increases with the 

number of satellites available. Relative positioning is the determination of a 

ground position using two or more receivers and two or more satellites. Relative 

positioning determines the precise vector (baseline) between receiver's 

positions. When the coordinates of one of the receiver positions is known, we 

referred to it as a base station in the known coordinates and baseline can be used 

to determine the precise coordinates of the unknown points [Van Sickle J., 

1996]. 

The GPS receiver records raw data on a 24-hour basis. The measurements are 

stored in the computer of the system and these are available to surveyors or 

other users, working with GPS in the area of observations. Then, they can use 

these GPS measurements for post-processing positioning computations. 
 
The GPS satellites continuously transmit signals on the frequencies; 

L1=1575.42 MHZ and L2=1227.60 MHZ. The associated wavelengths of the 
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L1 and L2 carriers are approximately19 cm and 24 cm, respectively.  GPS 

modernization   a third frequency L5 (1176.45 MHZ) add to GPS satellite 

[Z.Liu, 2004]. This will lead to more accurate dual-frequency measurements, so 

the ionospheric error can be determined more accurately [M.C.Olynik, 2002]. 

These carriers are modulated with two types of code, namely the Clear 

Acquisition (C / A) code and the Precise (P) code. The L1 carrier is modulated 

with the C / A and P code, and L2 carrier is modulated with P code only as 

shown in figure (2.2). For comparisons of code and carrier measurements, 

Carrier wavelengths are much shorter than the C/A code chip length and 

consequently can be measured more accurately and used to achieve much 

higher positional accuracies than code measurements. Indeed the best relative 

accuracies achieved using code measurements are usually a few meter and using 

carrier measurement are usually a few centimeters. Table (2.1) summarizes 

advantages and disadvantages of code and carrier observations after EMR 

(1995). 
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Figure (2.2) The C/A and P code 
 
Table (2.1) Key advantages and disadvantages of Code and Carrier 

observation 

   Code Carrier 

Advantages Non-ambiguous simple High accuracy potential 

Disadvantages Low accuracy More complex 
  
Two different kinds of codes with two different accuracies can be used. In this 

content two frequency signals can be used for the correction of ionospheric 

effects on GPS measurements. The concept of positioning with GPS is based on 

simultaneous ranging to at least four GPS satellite to determine the unknown 

coordinates of a point. From a geometric point of view, a unique solution can be 

obtained if the distances from three satellites with known coordinates are 

measured [C.Liu, 1993]. Because the GPS satellite clocks cannot be 

synchronized with the user clock, a fourth unknown (the clock bias) is 

introduced. Therefore, a minimum of four satellites is used to determine the 

three-dimensional position vector. The determination of point coordinates is 

affected by many errors discussed later in this chapter. The method of single 
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point positioning cannot generally meet precise positioning requirements. The 

differential GPS positioning method can, significantly reduce the above errors. 

Major types of possible positioning methods; as follow; 
 
Single point versus relative positioning, positioning with GPS may take the 

form of single point positioning or relative positioning. In single point 

positioning coordinates of a receiver at an "unknown" point are sought with 

respect to the earth's reference frame by using the "known" positions of the GPS 

Satellites being tracked. Single point positioning is also referred to as absolute 

positioning, and often just as point positioning [EMR, 1995]. In relative 

positioning, the coordinates of a receiver at an "unknown" point are sought with 

respect to a receiver at a "known" point. The concept of single point positioning 

is illustrated in figure (2.3). Using the broadcast ephemerides, the position of 

any satellite at any point in time may be computed. 

 

 

 

 

 

 

 

 

 

 
 

Figure (2.3) Single point positioning 

 



 
 

 (11)

The concept of relative positioning is illustrated in figure (2.4). Instead of 

determining the position of one point on the earth with respect to the satellites 

(as done in single point positioning), the position of one point on the earth is 

determined with respect to another "known" point. The advantage of using 

relative rather than single point positioning is that much higher accuracies are 

achieved because most GPS observation errors are common to the known and 

unknown site and are reduced in data processing [H.Abou-Halima, 2002]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.4) The Differential GPS 

Static versus Kinematic Positioning, GPS positioning may also be categorized 

as static or kinematic. In static positioning, a GPS receiver is required to be 

stationary whereas in kinematic positioning a receiver collects GPS data while 

moving. The concepts of static and kinematic positioning for both single point 

and relative positioning cases are illustrated in figure (2.5). Note that for 

unknown  station  Known  station  
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kinematic relative positioning one receiver, referred to as a monitor, is left 

stationary on a known point while a second receiver, referred to as a rover, is 

moved over the path to be positioned [H.Abou-Halima, 2002]. 

 

 

 

 

 

 

 

 

 

 

  (a) Static single point positioning                      (b) static relative positioning  

 

 

 

 

 

 

 

 

(c) Kinematic single point positioning            (d) kinematic relative positioning 

Figure (2.5) Static and kinematic 
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Real-Time versus Post-Mission, GPS positions may be attained through real-

time or post-mission processing as shown in figure (2.6). In real-time 

processing, positions are computed almost instantaneously, on site. In post-

mission processing, data is combined and reduced after all data collection has 

been completed. Real-time relative positioning requires a data link to transmit 

corrections from a monitor receiver at a known point to a rover receiver at an 

unknown point as shown in figure (2.6a). 

Post-mission processing for relative positioning requires physically bringing 

together the data from all receivers after an observation period as shown in 

figure (2.10d). Even with real-time point positioning, for many GPS 

applications it is still necessary to download data and enter it in a database 

specific to the user's application as shown in figure (2.6b). Very low accuracy 

code single point positioning is usually computed by GPS receivers in real-time, 

whereas very high accuracy carrier relative positioning is almost always 

dependent on post-mission processing. Real-time and post-mission processing 

options exist for methodologies which yield accuracies between these two 

extremes [EMR, 1995]. 
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 (a) Real-Time Point Positioning                     (b) Real-Time Relative 

Positioning 

 

 

 

 

 

         (c)  Data Management                                     (d) Post-Mission Processing 

          For Relative Positioning                                      For Point Positioning 

Figure (2.6) Real-Time and Post-Mission Processing 

2.3 GPS measurement models 
The following three types of measurements can be obtained from most GPS 

receivers [Mark G. Petovello, 2003]  : 

[A] Pseudorange (code) measurements 

 These are derived from the satellite codes and are therefore classified according 

to code and frequency as L1-C/A, L1-P and L2-P. 
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[B] Carrier phase measurements 

 By measuring the phase of the incoming carrier (L1 and/or L2), the range to a 

satellite can be measured with an ambiguous number of cycles. 

[C] Doppler measurements 

 The derivative of the carrier phase measurement is the Doppler shift caused by 

the relative receiver-satellite motion. The three types can be explained as 

following: 

2.3.1 Pseudorange observation 

This type is the time delay between the transmission time and the reception time 

of the satellite signals. The range between the receiver and satellite is obtained 

by multiplying the transit time by the speed of light [C.Liu, 1993]. The 

pseudorange observation equation can be written as: 

                P = ρ + dρ + c (dt-dT) + d ion + d trop + ∑(P)  ……….………(2.1) 

Where   

P 

ρ 

dρ 

c 

dt 

dT 

d ion 

d trop 

∑(P) 

is the Pseudorange observation (m) 

is the range between the receiver and the satellite (m) 

is the orbit error (m) 

is the speed of light in vacuum (m/sec.) 

is the satellite clock error ( sec.) 

is the receiver clock error ( sec.) 

is the ionospheric delay ( m) 

is the tropospheric delay ( m) 

is the measurement noise (m) 
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The code measurement noise ∑(P) contains code receiver noise ∑(Prx) and 

multipath ∑(Pmult.). It can be expressed as: 
 
               ∑(P) = f { ∑(Prx)  , ∑(Pmult.)  }                …………………..…….(2.2) 

Where: 

∑(Prx) 

∑(Pmult.) 

is the receiver pseudorange noise (m) 

is the multipath effect in pseudorange (m) 
  
2.3.2 Carrier phase observation 

This type is the difference between the phase of the incoming carrier signal 

from the satellite and the phase of a carrier signal generated by receiver 

oscillator. The difference, which is the beat frequency, is due to the Doppler 

effect caused by the relative motion between the satellite and observation point 

[C.Liu, 1993]. The carrier phase measurement equation is given as: 

     K = ρ + dρ + c (dt-dT) +Ai-d ion + d trop + ∑(K)  ……………………(2.3) 

Where: 

K 

A 

∑(K) 

i 

 

Is the Carrier phase observation (m) 

is the range Carrier phase wavelength (m/cycle) 

is the Carrier phase noise (m) 

is the Carrier phase integer ambiguity (cycles) 

  ρ,dρ,dt,dT,d ion,d trop     ……  are the same as in equation (2.1). 

Similar to code measurement noise, the carrier phase measurement noise ∑(K) 

is also a function of receiver noise ∑(Krx) and multipath ∑(Kmult.) , i.e.: 
 

∑(K) = f { ∑(Krx)  , ∑(Kmult.)  }                ………………………….……….(2.4) 
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Where: 

∑(Krx) 

∑(Kmult.) 

is the receiver carrier phase noise (m) 

is the multipath effect in carrier phase (m)      

 

From equations (2.1) and (2.3), it is seen that both pseudorange and carrier 

phase measurements are similar except for the ambiguity term Λn, the sign of 

the ionospheric correction term d ion, and the noise of ∑(P) and ∑(K). The two 

observations have different levels of accuracy. The carrier phase observation 

has a much lower receiver noise and multipath effect than the pseudorange 

observation and thus a higher accuracy, but the value of n cannot be known. It 

is not easy task to determine the ambiguity even in the case of static positioning 

[C.Liu, 1993].       

2.3.3 Doppler frequency  

It is simply the time derivative of the carrier phase. The Doppler frequency is 

measured on the pseudorange. The model for GPS the Doppler frequency 

measurement can be written as: 

             .      .     .            .   .      .           .                 .       

             K = ρ + dρ + c (dt-dT) -d ion + d trop + ∑(K)  …………..………(2.5) 

Where: 

          (  .  )       denotes a time derivative. 

As shown in equation (2.5), the Doppler frequency is not a function of the 

carrier phase ambiguity. Thus it is free from cycle slips and usually used for 

estimation of the receiver velocity. From the mathematical models of GPS 

observations as discussed before, it is noted that GPS measurements are 

subjected to a number of errors, which will be described in the following. 
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2.4 Error contributor and accuracy in GPS measurements 
The accuracy of GPS in case of relative positioning depends on the distribution 

(positional geometry) of the observed satellites and on the quality of the 

observations. The GPS observables are affected by systematic errors and 

random noise. The errors sources can be classified according to (M.Rabah, 

1998) into three groups as show figure (2.7) 

(1) Satellite related errors like: orbit errors, satellite clock biased, satellite 

antenna offsets and satellite antenna phase center variations. 

(2)Propagation medium related errors like: tropospheric and ionospheric 

refraction.  

(3) Receiver environment related errors like: receiver clock offsets, interchannel 

biases, antenna phase center variations and multipath. 

 

 

 

 

 

 

 

 

 

 
 

Figure (2.7) Common errors in GPS measurements 
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Some of the errors may have a systematic effect on the measured baselines 

producing significant scale errors and rotations. Due to the changeable 

geometrical distribution of the satellites and the resulting changeable systematic 

effects of the observation errors, repeated GPS surveys for the purpose of 

monitoring crustal deformations can also be significantly influenced (up to a 

few mm) [Van Sickle J., 1996]. In GPS, an array of antennae is positioned at 

selected points on the structure and on remote stable monuments as opposed to 

using reflectors and EDM. The baselines between the antennae are formulated 

to monitor differential movement. The relative precision of the measurements is 

on the order of +5 mm over distances averaging between 5 and 10 km. 

When looking at GPS error sources, two classes of biases are found: those 

mainly influencing the height and those influencing the scale of a baseline or a 

network, in terms of precision positioning. The effect on baseline length can 

occur due to a bias in the absolute tropospheric delay, to neglect the ionospheric 

delay, or to incorrect heights of fixed reference stations, etc[Y.Ahn, 2005].    

For example, if there is a bias in the absolute tropospheric delay, the baseline 

length can be affected by an amount of the same magnitude as shown in     

figure (2.8). For the signals transmitted on satellite A and satellite B satellite. 

Consequently, this error can be reflected in the baseline length. 
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Figure (2.8) Effect of GPS errors on baseline length 

The second class of GPS errors can affect the relative station heights. This can 

occur due to a different bias at each endpoint of a baseline. Such cases happen 

when there is a bias in the relative tropospheric delay, in the horizontal positions 

for fixed reference stations, in the satellite orbit, in the antenna phase center 

differences and in the multipath, etc. 

Similarly, if there is a bias in relative tropospheric delay, it can have an effect of 

the same magnitude, but in a different direction, on the signals transmitted on 

satellite A and satellite B. Consequently, this error can be reflected in the station 

height, as shown in Figure (2.9) [Y.Ahn, 2005].  
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Figure (2.9) Effect of GPS errors on station height 
 
The errors in GPS observation depend mainly on two factors: 

(1)The user equivalent range error (noise and systematic)  

(2) Geometry of the satellite used.  

The most of errors are due to the effect of hardware, environmental and 

atmospheric error sources.  

a) The satellite geometry: Satellite geometry has a direct effect on 

positioning accuracies. The best single point positioning accuracies are 

achieved when satellites have good spatial distribution in the sky (e.g. 

one satellite overhead and the others equally spread horizontally and at 

about 20 ° elevations). Sub-optimal geometry exists when satellites are 

clumped together in one quadrant of the sky. The geometry of satellites, 

as it contributes to positioning accuracy, is quantified by the geometrical  
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b) dilution of precision (GDOP). Satellite configurations exemplifying poor 

and good GDOP are illustrated in figure (2.10). 

 

 

 

 

 

 

             

 

 

     (a) Good geometric                                       (b) Poor geometric 

Figure (2.10) The geometric of satellite in observations 
 
b)The satellite error: these error could be divided to two part clock and orbits 

error  

1)The clock error, is the difference of satellite clock time with respect to true 

GPS time [M.C.Olynik, 2002]. The cause of these errors is primarily due to the   

satellite ephemeris and monitored clock. Tracking data for all observed 

satellites recorded at the GPS monitor stations is sent to the Master Control 

station which then uses this data to predict the parameters for the future. These 

predictions are then returned to the uplink stations where they are transmitted to 

the satellites. The latency of the tracking data and the prediction routines used at 

the Air Force Base therefore directly affect the satellite system errors [The GPS 
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Tutor]. When the difference from a satellite to two receivers is performed, the 

satellite clock error is removed [C.Liu, 1993]. 

2)The orbital error, this arises from the uncertainties of the predicted broadcast 

ephemerides and Selective Availability (SA) [C.Liu, 1993]. The broadcast 

ephemerides of the satellite are updated by GPS Control Segment. In order to 

generate the point position messages of the satellites, monitoring stations 

distributed around the world are required to continuously track all satellites in 

view. Then, this data is transmitted to the master station and processed to create 

up-to-date point position parameters. When two receivers are being positioned, 

both will be in error by nearly the same amount (the extent to which this is true 

is a function of the distance between the two receivers the closer they are, the 

more similar the error due to orbital bias).  The Relative positioning is therefore 

an effective strategy for minimizing the effect of this error [G.El-Fiky,2003]. 

Post-processed ephemerides, which come in several forms, are more accurate 

than predicted ephemerides, with demonstrated accuracies well below the meter 

level to several centimeters [X.Shen, 2002]. 

c)The receiver error, this error can be divided into three parts receiver noise, 

antenna phase center and hardware delay. 

1) Receiver noise, this depends on the signal to noise ratio of the satellite signal 

[G.El-Fiky, 2003]. Usually, manufacturers claim that the noise levels are 

respectively 1 m for C/A code pseudorange, 10 cm for p-code pseudorange and 

5 mm for carrier phase [M.L.El Gizawy, 2003]. 

2) Antenna phase center error, at the receiver level, the antenna phase center 

offsets are of great concern for accurate ellipsoidal height estimates. GPS 

measurements are actually made with respect to the point in the antenna known 
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as the phase center, not the survey mark. Corrections must be applied to reduce 

the measurement to the unknown point. It has been shown that the antenna 

phase center is not fixed and varies depending on the elevation of the satellite 

and also the frequency of the propagated signal. For the combined height 

networks used in this work, complications arise from the mixing of different 

antenna types, which may produce errors in the ellipsoidal heights of up to 10 

cm. Estimated tropospheric parameters are also highly correlated with antenna 

phase center patterns, which may be incorrectly interpreted in processing 

software, resulting in amplified errors, especially in the height component. 

Thus, it is important to use the same antenna and model for network surveys in 

order to reduce the errors caused by antenna phase center offsets. Although the 

mitigation of this error source seems simple compared to the complicated 

modeling of other error sources [G.Fotopoulos , 2003]. The phase center offsets 

and azimuthal phase dependencies can cause measurements variation of several 

cm. The receiver performance also depends on the technique used in retrieving 

the carrier phase. However, they are not significant and masked by other errors 

[G.El-Fiky,2003]. 

3) Hardware delay, since satellite signal travel along a different electronic path, 

multichannel receiver exhibit different signal propagation delays for each 

hardware channel. The instrument makers try to calibrate and to compensate 

these interchannel biases [G.El-Fiky,2003].  

d) The Propagation error, this error can be divided to three part ionospheric, 

tropospheric and multipath delay. 

1) Ionospheric error, the ionosphere is a layer of atmosphere, which is roughly 

50 to 1000 km above the earth's surface. It is composed of a sufficient 
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concentration of free electrons to affect electromagnetic waves significantly. 

GPS signals traveling through the ionosphere are affected by refraction and 

dispersion [C.Liu, 1993]. The refractive group index of the ionosphere is greater 

than 1, which means that the group velocity of radio waves is smaller than the 

speed of light in vacuum. The refractive phase index of ionosphere is smaller 

than 1, so the phase velocity of radio waves is greater than the speed of light in 

vacuum. These cause delay on the measured pseudorange and advance on the 

measured carrier phase. Therefore, the ionospheric corrections are the opposite 

sign on pseudorange and carrier phase observations, respectively [M.C.Olynik, 

2002]. The ionospheric effect is proportional to the Total Electron Content 

(TEC) along the propagation path and can be expressed mentioned by the 

equation B.Hofmann-Wellenhof, (1995):  
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 and                                                                 ……………………. (2.7)         

 

Where: 

f 

Z \ 

TVEC 

RE 

hm             

Z0 

 is the frequency  

is the zenith angle at the ionospheric point (IP) 

is the total vertical electron content in el m -2 . 

is the mean radius of the earth 

is the mean value for the height of the ionosphere 

is the zenith angle at the observing site (it can be calculated it 
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for a known satellite position and approximate coordinate of 

the observation location) as shown in figure (2.11) 
    

Differencing observations from one satellite between two stations can reduce 

ionospheric effect since the ionospheric delay is to same extent spatially 

correlated between the stations [Y.Ahn, 2005]. The technique is use the 

broadcast model for reducing the ionospheric about 50 % of this delay can be 

removed by application of above equation [C.Liu, 1993]. 

 

 

 

 

 

 

 

 

 

          

 

  

             

   

Figure (2.11) Geometry for the ionospheric path delay 

2) Tropospheric Delay, the tropospheric delay is caused by the refraction of a 

GPS signal in lower atmosphere. The magnitude of tropospheric delay is 
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affected by a number of parameters, such as, the temperature, humidity, 

pressure, the height of the user, and the type of terrain below the signal path. 

But most of them are affected by the mixture of a dry and wet component. The 

dry component contributes about 80 % to 90 % of the total tropospheric 

refraction and can be modeled with an accuracy of 1 % to 2 % at the zenith 

[C.Liu, 1993]. The wet component ranges from 10 % to 20 % of the total 

tropospheric refraction and cannot be estimated accurately due to variability of 

water vapor. Then the elevation angle of satellite are depended on the point 

accuracy and effective on the tropospheric delay, the angle don’t less than 10o, 

this is one major reason why satellites with elevation angles greater than 10o are 

used for precise static and kinematic GPS positioning. After these we can 

decrease of tropospheric delay by Black model as following: 

                       ∆S = ∆Sd + ∆Sw                                         ………………..(2.8) 

                      ∆Sd = 2.34 Pi * [ (T-4.12) / T ]*I ( h=hd,E) ……………….(2.9) 

                    ∆Sw = Kw * I ( h=hw,E)                                    …………….(2.10) 

I ( h=h,E) = { 1 – [(Cos E)/(1+(1-1c )h/rs )]2]-1/2 

hd = 148.98 ( T-4.12)        m   above the station 

hw = 13,000 m 

1c=0.85 

Kw=                        0.28   for summer in tropic or mid-latitudes  

0.20  or spring or fall in mid-latitudes 

   0.12   for winter in maritime mid-latitude 

          0.06   for winter in continental mid-latitudes 

                                   0.05   for polar regions 

rs  distance from the center of the earth to the station  
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Pi  surface pressure in standard atmospheres 

T  surface temperature 

3) Multipath, is the phenomena where the reception of signals is reflected by 

objects and surfaces in the environment around the antenna. Multipath error 

affects both pseudorange and carrier phase measurements. The amount of 

multipath error or code observation is much larger than carrier phase multipath 

error. Pseudorange multipath can reach up to one chip length of the Pseudo-

Random Noise (PRN) code, while carrier phase multipath is less than 25 % the 

carrier phase wavelength. The multipath is also proportional to the ratio of the 

direct signal power to the reflected signal power [C.Liu, 1993]. Multipath 

effects are also much pronounced for low elevation satellites [G.El-Fiky,2003]. 

In static case multipath is non-gaussian in nature and shows sinusoidal 

oscillations with periods of a few minutes [C.Liu, 1993]. Effective ways to 

reduce this effect include the use of specially designed antenna and careful 

antenna mounting. New receiver technology is being developed to effectively 

filter out multipath effects sign advanced signal processing [G.El-Fiky, 2003]. 

The magnitude of errors as they affect a single satellite-receiver range is 

summarized in    Table (2.2). All the errors are presented in Table (2.2), when 

combined using scientific laws of error propagation, forms the user equivalent 

range error. It is this value, which when multiplied by the DOP (dilution of 

precision), yields an estimate of achievable accuracies for single point 

positioning [EMR, 1995]. 
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Table (2.2) Magnitude of errors (EMR, 1995 – M.Rabah, 1998) 

Error  Magnitude  

Satellite clock 3.028m (assuming broadcast corrections used) 

orbital <± 0.005 ppm 

ionospheric 8.176 m (at zenith) 

tropospheric 1.813m (at zenith) 

receiver clock 9.084m (depends on type of receiver oscillator) 

multipath 

C/A code 

carrier 

 

 

50cm to 20m (depends on GPS equipment and site) 

up to a few cm (depends on GPS equipment and site) 

 

receiver noise 

C/A code 

carrier 

 

 

10cm to 2-3m    (depends on receiver type) 

0.5-5 m               (depends on receiver type) 

 

 

Positioning accuracies are determined by the mapping of these range accuracy 

measures into the position domain through a measure of satellite geometry 

called the Dilution of Precision (DOP). Equation 2.11 shows the form of how 

DOP relates to position error for single-point positioning [V.Hoyle, 2005].  

                  Position Error = DOP * range measurement error …………(2.11) 
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For differential carrier phase positioning, a relative dilution of precision or 

RDOP value can be derived for a period of processing time. This value can then 

be multiplied by the double-difference measurement error to obtain a relative 

position error for the solution. 
 
2.5 Differential GPS Technique      
The more accuracy we can obtain by the differential GPS (DGPS). The type of 

DGPS are static (a method of GPS surveying using long occupations (hours in 

some cases) to collect GPS raw data, then postprocessing to achieve sub-

centimeter precisions and FastStatic. A method of GPS surveying using 

occupations of up to 20 minutes to collect GPS raw data, then postprocessing to 

achieve sub-centimeter precisions. Typically the occupation times a variation is 

based on the number of satellites (SVs) in view:  

    4 SVs take 20 minutes*  

    5 SVs take 15 minutes*  

    6 or more SVs take 8 minutes*  

  (Collected at a 15 second epoch rate))[ Geometrics program].  

  Kinematic (a method of GPS surveying using short Stop and Go occupations, 

while maintaining lock on at least 4 satellites. Can be done in real-time or 

postprocessed to centimeter precisions)[ Geometrics program] but the static 

type more accurate, which the observation point we stopping in it more time, 

these given more accurate and remove more error. The static surveying method 

is most commonly used since the only basic requirement is a relatively 

unobstructed view of the sky for the occupied points. Conventional static 

surveys require observation periods depending on the baseline length, the 
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number of visible satellites, the geometric configuration, and the method used. 

The accuracy is correlated with the baseline length and amounts of 1and 0.1 

ppm for baselines up to some 100 km and even better for longer baselines 

[G.Fotopoulos, 2003]. DGPS observations (' between-satellite', or 'between-

receiver', and both 'between-receiver' and 'between-satellite') are used to 

eliminate or effectively reduce the common errors. The single 'between-receiver' 

difference as shown in figure 2.12 can be performed by differencing the GPS 

observations from two receivers to one satellite. The single difference equations 

for the pseudorange, carrier phase and Dopller frequency are :- 

                ∆P = ∆ρ + d∆ρ - c∆dT +∆d ion + ∆d trop + ∆∑(P) 

               ∆K =∆ρ + d∆ρ - c∆dT +Λ∆n-∆d ion + ∆d trop + ∆∑(K) 

                .        .       .             .        .              .                  .       

             ∆K = ∆ρ + ∆dρ + c∆ dT -∆d ion + ∆d trop +∆ ∑(K)   

Where: 

   ∆       denotes a single difference operator between receivers. 

 

 

 

 

 

 

    

       Figure (2.12) Single differencing between receivers  

In the single difference observable, the satellite clock error has been vanished 

and the residual orbital and atmospheric effects have been reduced and can be 
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neglected for stations separated less than 30 km under normal atmospheric 

conditions. The relative receiver clock error, however ,may be significant and 

must be estimated, along with the parameters of position, velocity and carrier 

phase ambiguity. To eliminate the receiver clock error ,double difference 

between receivers and between satellites ( show in figure(2.13)) can be 

employed. The equations are as follows [1]:- 

▼∆P = ▼∆ρ + d▼∆ρ +▼∆d ion + ▼∆d trop + ▼∆∑(P) 

▼∆K =▼∆ρ + d▼∆ρ + Λ▼∆n-▼∆d ion +▼∆d trop + ▼∆∑(K) 

          .          .            .           .                 .                       .       

  ▼∆K = ▼∆ρ + ▼∆dρ -▼∆d ion + ▼∆d trop +▼∆ ∑(K)   

Where  

 ▼∆  represents the double difference operator between two stations and two 

satellites. 

 

 

 

 

 

 

 

 

 

Figure (2.13) Double differencing between receivers and satellites 

From the above equations, the double differenced observables have cancelled 

out both the receiver and satellite clock errors and have further reduced the 
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orbital and propagation effects [C.Liu, 1993]. The most GPS applications using 

double DGPS positioning technique is considered as the best processing 

method. It is also noted that the double difference of carrier phase observation 

contains the double difference ambiguity term. In order to achieve high 

positioning accuracy, the integer ambiguity must be correctly resolved before 

the beginning of the mission and then fixed in kinematic survey. Table (2.3) 

summarizes; what are required to find the accurate ellipsoidal height. 

Table (2.3) Summary of carrier GPS positioning methods (EMR, 1995) 

Method Basic Concepts 

Min. 

# 

Rcvrs

Obs. 

Time 

Accuracy 

(3D rms) 
Comments 

Static 

 

simultaneous site 

occupation 
2 

= 1 h 

 

1 cm + 1 ppm 

to 10 ppm 

 

complexity varies

 

Kinematic 

(carrier 

based) 

 

moving rover 

positioned with 

respect to static 

monitor, need 

initial ambiguity 

resolution 

2 

 
-- 

10 cm to 1 m 

 

Logistically 

difficult since 

must maintain 

lock while 

moving 

 

Semi- 

Kinematic 

(also called 

Stop & Go) 

rover stopped 

temporarily on 

points to be 

positioned with 

2 

~1 

min. 

per 

point 

a few cm 

 

limited to 

baselines under 

~10 km, 

must maintain 
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 respect to  monitor 

 

 lock while 

moving between 

points 

 

Pseudo- 

Kinematic 

 

each rover site 

occupied twice, at 

least one hour 

apart, to exploit 

change in satellite 

geometry 

2 
1-3 

min. 

a few ppm 

 

double site 

occupation 

essential, 

logistically 

cumbersome 

 

Rapid Static 

 

uses  sophisticated 

techniques and 

extra Information  

to resolve 

ambiguities 

2 

3 to 5 

min. 

 

a few cm 

 

generally for 

baselines under 

10 km, need 

"extra" 

measurements 

 

2.6 Data processing 
Data processing as described first is followed by a description of final reporting. 

The complexity of data processing corresponds with the complexity of the GPS 

technique used. Single point positioning is the simplest, followed by differential 

positioning and then carrier techniques [EMR, 1995]. 

Most receiver purchases or rentals are accompanied by software for GPS 

processing. As well, several GPS processing packages are available 

commercially. Fortunately most of these packages are quite automated. 

Nevertheless, it is important for users to have a general idea of what is involved 
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in GPS processing. Most single point positioning solutions are computed within 

the receiver and display. The only post-processing activities which may be 

involved include downloading this data and combining it in a database or a 

geographically referenced information system. For differential solutions using 

code observations, the data from the monitor site and all the rover sites must be 

loaded onto one computer. At the start of the processing program, the known 

monitor receiver WGS84 coordinates should be entered. The program will then 

match the times of the code observations made at each remote site with those 

made at the monitor site. By using the satellite ephemeris data, the known 

receiver coordinates and the code measurements, the program will compute the 

coordinates for each remote site. Note that by using the differential method 

following a radial network configuration, there are no checks on the solution 

unless a rover site is occupied twice, and the differences in the solutions are 

compared. Processing for conventional static GPS surveys is more complex and 

may require combining several sessions of observations [V.Hoyle, 2005].  All 

data for one session must be loaded onto a computer. As well, the appropriate 

"known" three-dimensional WGS84 coordinates of the control points should be 

entered in the processing program. Most software will also require that 

approximate coordinates for all other sites occupied during the session be 

entered. Such approximate values may be read off the same receiver used in the 

field, or may be scaled from a map. For each session processed, most software 

will require one point be held fixed three dimensionally. Ideally this point will 

be a control point with know WGS84. If a control point is not included in a 

specific session, coordinates of a site in common with an adjoining session 

which was tied to a control point should be used. In the GPS processing 
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algorithm, models may be used to correct some of the biases in the 

observations. Then all the observations, the ephemeris data and the known 

coordinates will be combined together in an optimal way (know as an 

adjustment) to arrive at a solution. In this process, an attempt will be made to 

resolve all carrier phase integer ambiguities. If this can be correctly done, the 

resultant solution will be of higher accuracy. The solution will consist of 

coordinate differences between each station included in the session and the 

related accuracy information. Much of the orbital errors described in Section 

(2.4), including those introduced by selective availability, may be significantly 

reduced if a precise ephemeris is used instead of a broadcast ephemeris. The 

broadcast ephemerides are based on predictions of where a satellite is in the sky 

at a given time. More precise determinations of the satellite's position are 

attained by tracking the satellites at stations around the world, combining this 

data and computing the position of where the satellites were in the sky. Using 

post-computed precise ephemerides can significantly improve accuracies for 

precise surveys [EMR, 1995, V.Hoyle, 2005].  

Precise ephemerides are available from the Geodetic Survey Division and the 

U.S. National Geodetic Information Center. To combine several sessions of 

information together into one solution, a network adjustment should be carried 

out using software designed for this purpose. The network adjustment combines 

all the coordinate differences from all the sessions of observations in an optimal 

manner. A few GPS manufacturer software packages also provide network 

adjustment capabilities. As well, several independent packages which can adjust 

GPS networks are available commercially. Note that for a network adjustment 

to be effective, the survey design requirements spelled out for conventional 
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static GPS surveys in planning and preparation for the GPS working should be 

followed. The initial network adjustment carried out should be minimally 

constrained (i.e. only one three-dimensional control point should be held fixed) 

to enable examination of GPS results without the influence of existing control. 

The processing results of conventional static GPS may be checked by 

comparing redundant baselines, and through statistical tests in the adjustment 

process. Techniques for processing semi-kinematic and rapid static data are still 

evolving and have similarities with both differential processing and 

conventional static processing. Processing software has not been dealt with in 

any detail here as it is usually included with receiver rental or purchase and 

tends to be quite complicated [EMR, 1995].  
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Chapter (3) 

THE GEOID UNDULATION 
 

3.1 Introduction 
 
The geoid height (or geoidal undulation) can be defined as the separation of the 

reference ellipsoid with the geoid surface measured along the normal ellipsoid 

(figure (3.1)). The combined use of GPS, leveling, and geoid height information 

has been used as key procedure in various geodetic applications. Although these 

three types of height information are considerably different in terms of physical 

meaning, reference surface definition, observational methods, accuracy, etc., 

they should fulfill the simple geometrical relation-ship [C. Kotsakis, M. G. 

Sideris, 1999] 
 
                   N = h – H  …………………………………………………….(3.1) 
 
Where     N       is the geoid undulation  

              h         is the ellipsoidal height 

              H        is the orthometric height 
 
The GPS technique has benefits of high accuracy and simultaneous 3-D 

positioning in Geodetic aims, however, GPS derived ellipsoidal heights must be 

transformed to orthometric heights ( by using the relation in equation (3.1)) to 

have any physical meaning in a surveying or engineering applications. 
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Figure (3.1): Orthometric, geoid, ellipsoid height 

This chapter explains the datum define the earth, how compute it, comparison 

between the different methods and review the methods used to compute the 

geoid in Egypt. 

3.2 The geoid 
 
The geoid is an equipotential surface of the earth that coincides with the 

undisturbed mean sea level. Therefore one might say that it describes the actual 

shape of the earth. The geoid is also the reference surface for most height 

networks since leveling gives the heights above the geoid. In geodesy, these 

heights are called orthometric heights (H), but they are the ordinary heights 

above the sea level [Lars Harrie, 1993] as shown figure (3.2). 
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Figure (3.2): The shape of the geoid in the world 
 
The geoid is determined by using several techniques based on a wide variety of 

using one or more of the different data source such as: Gravimetric method 

using surface gravity data, Satellite positioning based on measuring both 

ellipsoidal heights for stations with known orthometric heights, Geopotential 

models using spherical harmonic coefficients determined from the analysis of 

satellite orbits, Satellite altimetry using satellite-borne altimetric measurements 

over the ocean, Astrogeodetic method using stations with measured 

astronomical and geodetic coordinates, and Oceanographic leveling methods 

used mainly by the oceanographers to map the geopotential elevation of the 

H

P
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mean surface of the ocean relative to a standard level surface [A.A.Saad, 2002]. 

The global goidal modals are explained as the following 
 
3.2.1 EGM96 and OSU91A global geopotential models 
       
The Earth Geopotential Model (EGM96) and the Ohio State University 

(OSU91A) are examples of the recent global geopotential models representing 

the earth gravitational potential as spherical harmonic coefficients. Both models 

are complete to degree and order 360. Therefore, the shortest wavelength of 

these models is one degree, and their resolution is one-half degree (about 50 

km). the calculated geoid over Egypt was calculated by EGM96 model (figure 

3.3), while the geoid over the whole world is shown in figure (3.4). 

 

 

 

 

 

 
 
 
  

Figure (3.3) The geoid undulation of EGM96, over Egypt   
 contour values in meters  
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Figure (3.4) The contour map of geoid over the world  
Smith and Milbert [1997a] stated that there is an error in the order of one meter 

in geoid undulation determination using OSU91A model and Geodetic 

Reference System (GRS80) as the chosen reference field. This effect is due to 

the difference between the normal potential of GRS80 and the potential of the 

geoid, and in the case of OSU91A model, it is due to the fact that it is 

implemented value for the gravitation-mass constant does not equal the 

corresponding value of the GRS80. In the case of EGM96-based geoid 

undulations computed by NIMA, a constant bias of 0.41 m was taken into 

account [Smith and Milbert, 1997b]. 
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3.3 The ellipsoid 
 
The ellipsoid is the mathematical figure generated by the revolution of an 

ellipse about one of its axes. The ellipsoid is dividing into two types; local and 

international ellipsoid according to the study and the country as shown figure 

(3.5).The World Geodetic System 1984 (WGS84), which is used in this study, is 

designed to be a geocentric coordinate reference system. The center of the 

ellipsoid is at the center of mass of the earth. Its minor axis aligned with the 

mean axis of rotation of the earth. Furthermore, the origin of longitude is at the 

conventional zero meridian (Greenwich). The semimajor axis (a) and the 

flatting (f) of WGS84 are: 

 a = 6378137 meter                             f = 1/298.257223563 

 In Egypt, the Helmert 1906 ellipsoid (a = 6378200 meter, 1/f = 297.3) is used 

to define the local (non-geocentric) geodetic datum [E.Farag, 2000]  
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Local 
Ellipsoid 

Internal 
Ellipsoid 

 

 

 

 

 

 

 

 

 

 

 
  
  

Figure (3.5): The shape of ellipsoidal reference system  
The Global Positioning System (GPS) is used to observe the three-dimensional 

system above the ellipsoidal model. But, the heights obtained from GPS are 

typically heights above an ellipsoidal model of the earth. These GPS ellipsoidal 

heights are not consistent with leveled heights above mean sea level, often 

known as orthometric height. The conversion from ellipsoid to orthometric 

height requires a geoid height model. Through the use of careful GPS survey 

procedures coupled with high-resolution geoid models, surveyors have obtained 

orthometric heights with accuracy commensurate with that of leveling. 
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3.4 The relation between the geoid and ellipsoid 
 
The geoid defines the astronomic coordinate system while the reference 

ellipsoid defines the geodetic coordinate system. The relationship between these 

two systems is relative and can be fully described at any point in space by 

specifying the magnitude of the linear separation and the angular deviation 

between the two systems at the same point [E.Farag, 2000]. The separation 

denoted by N, is known as goidal undulation, separation or geoid height 

(positive or negative depending on the relation in equation (3.1)). The deflection 

of the vertical component in the prime vertical plane is usually denoted by η and 

the deflection of vertical component in the meridian plane is usually denoted by 

ζ. The mathematical expression for ζ, η, N is: 
 
η = (Λ - λ) Cosφ 

ζ = φ - Ф 

N = h – H 
 

Where (φ, λ, h) are the geodetic latitude, longitude and ellipsoidal height and 

(Ф, Λ, H) are the astronomic latitude, longitude and orthometric height at the 

same point.  Figure (3.6) illustrates the relation between the two systems. 
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Figure (3.6): The relation between the geoid and ellipsoid 
3.5 The geoid computation methods 
 
Two types of observations can be used for the determination of the geoid: 

• Geometric method (GPS/leveling) 
 

 The simplest method is to use GPS/leveling points, where both the geodetic and 

orthometric heights are given. From these data, the point geoid height can be 

calculated with a simple subtraction according to equation (3.1). Orthometric 

heights can be derived from a surveying technique called “precise leveling” or 

"Trigonometric leveling" or by both. Precise leveling represents the highest 

development of the methods of ordinary leveling; precaution is being taken in 

The geoid The ellipsoid 

The geoid undulation 



 
 

 (47)

Gravity 
Attraction F 

Geoid  
Centrifugal F 

the construction of the instruments and in the field work to reduce errors to 

minimum. In Trigonometric leveling, differences of elevation are computed 

from vertical angles and horizontal distances. The precise leveling is much more 

precise than trigonometrically leveling. But this solution can not provide high-

resolution geoid, due to the distribution of the GPS/leveling points. 

• Gravimetric solution 
 
Gravity is defined as the force acting on a body at rest on the earth's surface. It 

is the resultant of gravitational (attraction) force and the centrifugal force of the 

earth's rotation [Heiknan and Moritz, 1967]. The relationship (attraction, 

centrifugal force and gravity) forces are shown in figure (3.7). 

 

 

 

 

 

 

 

 

Figure (3.7): Relation between the geoid, attraction centrifugal force and 

gravity 

The gravity vector is normal to the equipotential surface (geoid) passing 

through the same point. The magnitude (g) of the gravity vector is called 

gravity, it is physical dimensions are given in Gal or mGals. The numerical 
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value of gravity varies on the earth's surface from about 978 Gal at the equator 

to about 983 Gal at the poles [D.Sobhy, 1986].  

According to K.Prijatna (1998) precise geoid computation in the any region is 

influenced by the following facts: 

1- Physical terrain or bathymetry. 

2- Establishment of a high resolution mean of free air gravity anomaly data 

covering the entire area and  its surroundings. 

3- Needs for a Digital Terrain Model (DTM) in order to correct for the train 

effect. 

4- Unified national vertical datum, such a reference does not exist. 

5- Insight into the oceanographic and tidal setting in the region. 

But the gravimetric observations require expensive and sensitive instruments 

and time consuming observation procedures like the leap-frog method. In 

addition the observations must cover a large area for reliable geoid modeling to 

obtain high accuracy in the region.  
 
3.6 Formulas for geoid computation 
Geoid determination is one of the most fundamental problems in geodesy. In the 

precise geoid determination studies, GPS/leveling data is used to measure the 

quality of gravimetric or astrogeodetic geoid, and to combine with one of them. 

Therefore, it is an important data set[A. Ustun1, 2002].The precise model of the 

geoid not only enable us to transform satellite-derived heights to physically 

meaningful heights, based on the earth’s gravity field, but also plays an 

important role in geophysics and oceanography [S. A. Benahmed Daho,2001].  

3.6.1 Practical methods 
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3.6.1.1 Gravity method 
 
The classical Gauss-Listing definition of the geoid is given as an equipotential 

surface of the earth's gravity field that coincides with the mean sea level. Today, 

it is well known that this is not a strictly correct definition as mean sea level 

departs from the equipotential surface by amount up to two meters due to 

various oceanographic phenomena, such as variable temperature, salinity and 

instantaneous sea surface topography (G. Fotopoulos ,2003). Recently, many 

methods have been developed for determining the geoid, including astronomical 

leveling, gravimetric geoid determination using Stokes' or Molodensky's 

approach, and optimal operational schemes for combining heterogeneous data 

such as least-squares collocation. The focus of this section is to provide a 

general overview of the main errors affecting the determination of the geoid 

heights in practice. Fotopoulos (2003) discussed formulations and techniques 

for precise geoid determination in details. One practical procedure for regional 

geoid determination, which provides insight into the main errors inhibiting the 

accuracy of the computed geoidal height values (N) or relative geoidal heights 

(∆N), is the classic "remove-compute-restore" technique (G. Fotopoulos, C. 

Kotsakis, and M.G. Sideris, 1999).  

The procedure is summarized as follows:- 

1) Remove a long-wavelength gravity anomaly field (determined by a global 

spherical harmonic model) from terrain-reduced gravity anomalies that are 

computed from local surface gravity measurements and digital elevation data. 
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2) Compute "residual co-geoid undulations" N∆g .This can be done by a 

spherical Fourier representation of Stokes' convolution integral using the 

residual gravity anomalies. 

3) Restore a long-wavelength geoid undulation field NGM(determined by a 

global spherical harmonic model) to the residual co-geoid undulations, and add 

a topographic indirect effect term NH (computed from digital elevation data) to 

form the final geoidal undulations. 

The above three steps can be combined in a single formula as follows: 

                   N = NGM + N∆g + NH  ………………………….......................(3.2) 

The computation of the long-wavelength geoid component NGM is usually made 

on a grid, within the appropriate geographical boundaries for the region of 

interest. Currently, the most widely used global geopotential model is EGM96 

(Lemoine et al., 1998), complete to degree and order 360. The coefficients of 

the global geopotential models are determined from measurements of satellite 

orbits, satellite altimetry and gravity anomalies (K.Prijatna, 1998). In spherical 

approximation, its contribution is computed according to the following formula 

(Heiskanen and Moritz, 1967): 
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  ……. (3.3) 

Where 

 Pnm are fully normalized Legendre functions, Cnm and Snm are the fully 

normalized unit less coefficients of the geopotential model, and R is the mean 

radius of the earth.  
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The medium-wavelength contributions to the total geoid heights can be 

computed from the available local gravity anomaly data according to Stokes' 

formula (Heiskanen and Moritz, 1967) 

∫ ∫ ⋅⋅∆= Π∆
λ φ

γ λφφψλφλφ
Q

QQqPQQQ
R

PPg ddCosSgN ..)(),(),( 4     …………………(3.4) 

Where  

S (ψPQ) is the Stokes' function, ψPQ is the spherical distance between the 

computation point (P) and the running point (Q), γ is normal gravity, and ∆g is 

the local gravity anomaly data. ∆g are residual Faye anomalies which, when 

Helmert's second condensation method is used for the terrain effects, are 

obtained from the following equation: 
 

∆g =  ∆gFA + C - ∆gGM …………………………………………..(3.5) 

Where 

 ∆gFA are the free-air anomalies, C is the classic terrain correction term 

(Heiskanen and Moritz, 1967; Mainville et al., 1994), and ∆gGM is the removed 

long-wavelength contribution of the global geopotential model, which is 

computed from the expression: 
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The shorter wavelength information for the regional geoid model is usually 

obtained from the computation of the indirect effect term NH, induced by using 

Helmert's second condensation method for the gravity data reduction on the 

geoid surface. There are numerous ways of modeling the effects of the 

topography. 
  



 
 

 (52)

The geoid undulation may be computed by another method using the following 

spherical harmonic expansion [A.A.Saad, 2002]: 
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Where 
 

n 

m 

γ 

r 

 

G 

M 

A 

Φ 

λ 

The maximum degree of the model. 

The maximum order of the model. 

The normal gravity of the reference ellipsoid. 

The geocentric radial distance of the computation point projected 

on the ellipsoid. 

The Newtonian gravitational constant. 

The mass of the Earth. 

The semi-major axis. 

The geocentric latitude. 

The geocentric longitude. 

Finally, it is obvious that this method given the accurate geoid since it is taken 

the most variables that affected on the geoid. But the errors in the observations, 

the cost and the time must be taken when the geoid for wide area is computed. 

 3.6.1.2 GPS method 
 
The GPS observations methods and the errors explained in chapter (2), must be 

taken when the geoid by GPS method is compute. According to figure (3.6) the 

geoid undulation is determined by knowing the following parameters [M.EL-

Tokhey, 1986]:- 

1- The height of the satellite above the instantaneous sea surface (L). 
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2- The relationship between the instantaneous sea surface and the geoid. 

3- The height of the satellite position related to the geodetic datum. 
 
The geoid undulation with taken the above knowledge is: 

               N = h – L – δh  …………………………………………………..(3.8) 

Where  

 L: is the distance measured by the satellite altimetry technique. And these 

observations must be adjusted from the errors. 

h: is the ellipsoidal height referred to the chosen geocentric ellipsoid. 

δh: is the deviation between the instantaneous sea level and the mean sea level 

(MSL)  is considered as the separation between the geoid and the instantaneous 

sea level as Shown in figure (3.8). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.8) Altimeter Geometry 
 

Instantaneous sea  
surface

Geoid 

Ellipsoid 

Satellite 

L 

δ h 
h 



 
 

 (54)

3.6.1.3 Precise method 
 
The precise leveling is known to be the most accurate method to use for relative 

height determination (M-El-Mowafy, 1983). Although leveling measurements 

are very precise (i.e., at the mm-level depending on the order or class of 

leveling), it is often the regional or national network adjustments of vertical 

control points that leads to the greatest source of systematic error (G. 

Fotopoulos, 2003).The precise leveling technique is used to supply the precise 

value for any method to compute orthometric height (H). Using the precise 

level    shown in figure (3.9) and Invar rods in leveling routes, and when we 

used the first order to computed the orthometric height, these very high accurate 

to determine it. From the value of both the geodetic and orthometric heights can 

be computed them the geoid undulation and geoid model based on GPS 

(E.Farag, 2000).  

But the errors in this method is greater than other methods, these errors are 

explained in (M-El-Mowafy, 1983), there for, another methods must be 

searched to compute the geoid given the orthometric height by highly accurate 

and less errors. 
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Figure (3.9) The precise level 
 
3.6.2 The mathematical techniques 
 
Among the geoid modeling techniques, fitting a surface, which is based on the 

reference points that have been chosen in the most critical locations for 

representing of the geoid, is one of the most common method. Representing 

geoid heights as an analytical surface and deriving the geoid undulation values 

in new points, which are measured with GPS technique, according to the 

mathematical formulation of this surface constitutes the basic idea of this 

technique. However, in Egypt, determined geoid model with surface fitting just 

works in the coverage area of the reference points properly. The model doesn’t 

give reliable results for the extrapolation points. Researches show that this 

method gives better results where the geoid have a regular trend and well 

distributed reference points. There are different kinds of interpolation 

techniques used for modeling the geoid heights. In some part of these 

techniques, the a-priori heights derived from measurements assumed as if they 
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are exact values, in another part of the techniques, an adjustment procedure is 

carried out and random errors are filtered before using the mathematical 

expressions for interpolation [Erol and Celik, 2004]. 

The mathematical techniques are solving the most problems in the practical 

methods to compute the geoid and estimated the value of the geoid for low 

observed data available as notes in Egypt.  

From available data in Egypt which are very low as shown the (S.Powell, 1997 

report) we can compute the geoid undulation in Egypt. As the mathematical 

techniques are the best solution to compute the empirically or adjusted value of 

the geoid undulation suppose the few data available. The mathematical methods 

use the least square techniques to solve the mathematical equations and to 

obtaine from it the parameters of the mathematical equations and the standard 

deviation. These mathematical techniques are applied to compute the geoid 

undulation or other, which are;  

1- Multiple regression equation   

2- Least square collocation 

3- Minimum curvature surface 

The first and second techniques are using to compute the geoid undulation but 

the third technique is used to compute other problems but doesn't used to 

compute the geoid undulation, special in Egypt.  

According to Erol and Celik, (2004) the important factors that affecting the 

accuracy of GPS/leveling geoid model are:- 

- Distribution and number of reference stations (GPS/leveling stations). These 

points must be distributed homogeneously to the coverage area of the model and 

have to be chosen to figure out the changes of geoid surface. 
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- The accuracy of GPS derived ellipsoidal heights (h) and the heights derived 

from leveling measurements (H). 

- Characteristic of the geoid surface area. 

- Used method while modeling the geoid 
 
 Researches showed that there is not unique model works properly for realizing 

the geoid surface of different areas. 

3.6.2.1 Multiple regression equation 
 
The multiple regression equation (MRE) is the mathematical technique used in 

solution some problems in all branches of science. This traditional technique 

only accommodates coordinate transformations relating to two datum's. In many 

instances, particularly for many classical local datum's there are known datum 

and change it to realized unknown datum. For example the ellipsoidal datum is 

known datum and the geoid datum is unknown datum. 

Various methods have been proposed to address this problem, and one of the 

most popular is the multiple regression formula. In this branch, the best 

technique used are the polynomial techniques, that given best solution in some 

searches in this problem and another. In simple terms they are polynomial 

functions, which represent the variations, as a function of position, of the 

difference of latitude, longitude and height (or X, Y and Z coordinates) [H.EL-

Shmbaky, 2004]. 

Depending on the degree of variability in the distributions, approximation may 

be carried out using 2nd, 3rd , higher degree polynomials. In the case of geoid 

undulation used any degree that limitation from the less distortion in the check 
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points. For example in Turkey, the fifth degree is given the best solution as 

shown in (Erol and Celik, 2004). 

Polynomial approximation functions themselves are subjected to variations, as 

different approximation characteristics may be achieved by different polynomial 

functions. The simplest of all polynomials is the general polynomial function 

[EUG,1998].  

The polynomial technique can be classified into two models, the first is a real 

number polynomial model and the second is a complex number polynomial 

model.  

The first model is the general model, the formula is: 
 
N=A0+A1U+A2V+A3U2+A4UV+A5V2+…………………….AnnUnVn  …….(3.9) 
 
Where 

A0,….,Ann           the coefficients 

N                        the unknown (in this search the geoid undulation) 

U,V                     the available data (in this search the coordinates of points) 
 
This model is using in most research with mean value which used U and V 

relative to central evaluation points. 

The second model is fewer coefficients in the same degree of the first model. It 

is taken low data with higher degree of polynomial. The general formula is: 
 
N=(A1+i.A2)(U+i.V)+(A3+i.A4)(U+i.V)2+(A5+A6)(U+i.V)3……………….(3.10) 
 
The polynomial models are the simplest beside other models. Which models 

from the above give best solution? Those to define by the distortion at check 

points.    
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3.6.2.2 Least square collocation 
 
The adoption of the least square collocation (LSC) technique for geoid 

determination requires the solution of a set of linear equations with dimension 

equal to the number of observations (Moritz, 1978). In its simplest form least 

square collocation can be considered as a direct extension of least square 

prediction. In this technique can be determine the quantities at the computation 

points are not generally the same as those being measured at the data points. 

Furthermore, the general collocation model is also able to take into account 

measurement errors at the data points and the possible requirement to compute 

certain parameters during the prediction process (P.A.Cross, 1983). 

But at the first it must be known how data can be prepared from old 

observations especially if the precision of this data was not known. So, the 

process has two steps, the first step is to make the collocation adjustment. 

First step: The covariance matrix 

Let there are old observations at points 1, 2, 3,……., n points, and the 

covariance matrix between these measurements relative to the distance between 

these points (dij) will be calculated. Dividing all the distances between every 

pair of points to equal distance (rk). So, for the distance (r1) the covariance 

between every pair of points can be calculated according to the following 

equation: 

                                  ∑= JiUU
n

C
1

1
1 ……………………………………..(3.11) 

Where  
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C1 

n1 

Ui,Uj 

The covariance between i,j 

The total number of pairs which satisfy the distance ri,j 

The measurements at points i,j 
 

For the general case for every distance rk the general equation is as follows: 

                           ∑= Ji
k

k UU
n

C 1 …………………………………………(3.12) 

After that, a histogram can be drawn showing the relation between the distance 

and the covariance between points as shown in figure (3.10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.10): The relation between the distance and covariance 
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The curve function can be expressed as 

                             Ci,j = ae (-br
ij

)………………………………………..…..(3.13) 

Using least square method to calculate parameters a, b. after that the covariance 

matrix can be written as follows 
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It can be expressed as  

                            ⎥
⎦

⎤
⎢
⎣

⎡

221

121

ss

ss

CC
CC ……………………………………….…….(3.15) 

Where  

Cs1 

Cs2 

Cs21,Cs12 

The covariance matrix of the original data 

The covariance matrix of the computational points 

The covariance matrix between data points and the 

computational points. 

 

From the above process it can be noticed that the covariance between points like 

Q, L and M at which there is no any observations, can be expected 

[P.A.Cross,1983]. 

Second steps: General case of least square collocation 

In order to calculate the equation for the least square collocation, first the 

observation equation which contains parameters and observations will be 

linearised by Toylor's series is as follows 

                        B (l + v) + A ∆ = b ………………………………………(3.16) 

With C is the original covariance matrix of the original observations 
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Where 

B 

l 

v 

A 

∆ 

b 

The coefficient matrix of observations. 

The observations at data points 

The vector of errors 

The design matrix of parameters. 

The vector of unknown parameters 

The vector of constants. 
 
Let a new set observations le may be written as  

                     le + ve = (-Bl + b)+ Bv …………………………….……….(3.17) 

Where  

le = (-Bl + b) 

ve = (Bv) 

So using equation (3.15) and substituting in equation (3.14) and rearrange the 

equation. A special case can be appeared (observation equation) in the least 

square technique as following 

                     ve + A∆ = le …………………………………………………(3.18) 

And the equation of the covariance matrix for the equivalent observation as 

follows  

                      Cle = (BCBT)………………………………………….……(3.19) 

The above equation can be obtained from the low of error propagation [Mikhail 

E.M., 1976]. 

So, every equation in the main system can be written as follow 

                   A∆ - le + GS + n = 0 …………………………………..…… (3.20) 

Where  
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                           ve = GS + n …………………………..…………………(3.21) 

And 

S 

n 

S1 

S2 

G 

The signal of original data and the computation data = [ ]21 | SS  

The noise in the observations 

Signals for original data points 

Signals for computation points 

The coefficient matrix for signals = [ ]0/I  
 
So, the parameters can be calculated as follows 

                   ∆\ = [AT(Cn+Cs1)-1A]-1 AT(Cn+Cs1)-1 le……………….……….(3.22) 

But we can notice that  

                        Cle =(Cn+Cs1)… ……………………….………………….(3.23) 

Vector of signals (S) 

                        S\ = Cs GT(Cn+Cs1)-1(le - A∆\ )………………….…………(3.24) 

Vector of noise (n) 

                         n\ = Cn(Cn+Cs1)-1(le - A∆\ )……………………..…………(3.25) 

Covariance matrix for signals 

Cs\ =Cs GT(Cn+Cs1)-1 G Cs- Cs GT(Cn+Cs1)-1A[AT(Cn+Cs1)-1A]-1AT(Cn+Cs1)-1 G Cs 

                                                              ………………………………....(3.26) 

Covariance matrix for noise 

Cn\ =Cn(Cn+Cs1)-1Cn - Cn(Cn+Cs1)-1A[AT(Cn+Cs1)-1A]-1AT(Cn+Cs1)-1Cn …..(3.27) 

[P.A.Cross, 1983]. 
 
3.6.2.3 Minimum curvature surface 
 
The method of minimum curvature surface (MCS) is an old and over-popular 

approach for constructing smooth surface from irregularly spaced data. The 
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surface of minimum curvature corresponding to the minimum of the Laplacian 

power or, in alternative formulation, satisfies the biharmonic differential 

equation. Physically, it is model the behavior of an elastic plate. In the one 

dimensional case, the minimum curvature loads to the natural cubic spline 

interpolation. In the two-dimensional case, a surface can be interpolated with 

biharmonic splines or gridded with an iterative finite difference scheme. 

In most of the practical cases, the minimum-curvatur technique produces a 

visually pleasing smooth surface. However, in case of large changes in the 

surface gradient, the method can create strong artificial oscillations in the 

unconstrained regions. Switching to lower-order methods, such minimizing the 

power of the gradient, solves the problem of extraneous inflections. On the 

other side, it also removes the smoothness constraint and leads to gradient 

discontinuities [H.EL-Shmbaky, 2004]. 

The mathematical formula for (MCS) is seeking for a two-dimensional surface 

f(x,y) in region D, which corresponding to the minimum of the Laplacian power: 

             ∫ ∫ ∇
D

dxdyyxf
22 ),( ……………………………….………….(3.28) 

Where  2∇  denotes the Laplacian operator  2

2

2

2
2

yx ∂
∂

+
∂
∂

=∇  

Alternatively, seeking f(x,y) as the solution of the biharmonic differential 

equation : 

                     0),()( 22 =∇ yxf …………………………...…………….(3.29) 

Equation (3.27) corresponding to the normal system of equations in the least 

square optimization problem, [Nikos Drakos, 1997]. 
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Poisson equation can be expressed as follows: 

                         ),(),()( 22 yxfyxf =∇ …………………..…………..(3.30) 

The solution of this differential equation can be solved as follows: 

If y=f(x) is a function of one variable, then by Taylor theorem: 
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                                                                      y3                 y0                 y1 

                                                                     
                                                                      Figure (3.11): The grid arms 

As shown in figure (3.11). 

By adding the two equations and neglecting the higher orders one can get  
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Similarly for a function of two variables as shown in figure (3.12) 

 

 
                                                     ……………………..……………….. (3.31) 

                         

Where φ0 is the value of the function f(x,y) at the point (x0 , y0). It is needed to 

solve numerically the following partial differential equations: 

h h 
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Figure (3.12): The grid for two variables 

1- Laplace's equation :   0..,0 2
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Inside any closed boundary. 

2-Poisson's equation   ),(..),,( 2
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ϕϕϕ ……..(3.33) 

inside any closed boundary. 

Replacing 2
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yx ∂

∂
∂
∂ ϕϕ

 by their equivalent expression from (3.32), (3.33) we 

get the following difference equations: 

** For Laplace's equation : 

                   04 04321 =−+++ ϕϕϕϕϕ     ……………….…………..(3.34) 

** For Poisson's equation : 

                    ),(4 00
2

04321 yxfh=−+++ ϕϕϕϕϕ ...........................(3.35) 

Now dividing the area inside the boundaries into a network or lattice of squares 

of side (h). The corners of these squares are called nodes of the network. A 
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difference equations must be written (3.32), (3.33) according to the considered 

problem for each node. These linear equations can then be solved by any 

method. It must be known the values of φ(x,y) at the boundaries to solve the 

considered problem [A.Sedeek,1992]. 

3.7 Review of some previous trials to determine the geoid in Egypt 
 
Some previous trials for orthometric height determination have been conducted, 

for small areas in Egypt, by many researchers, depending on utilizing local 

geoid models, or global geopotential model. In the first test, conducted by 

Baraka & Eman in [1991], the field surveys were performed in 1991 by 

Egyptian Survey Authority (ESA) and Survey Research Institute (SRI).28 GPS 

stations were observed, from which a subset of 14 stations were known to be 

first order vertical control GPS stations, and cover an area of 72 x 72 km. All 

such GPS stations have both orthometric and ellipsoidal heights. The used geoid 

is the geopotential model developed by the National Geodetic Survey (NGS) of 

order 360, with relative accuracy of 2-3 PPM, for points separated by 10 km. 

the results of this test notified that error in orthometric height from about 12 cm 

to 37 cm was reached, on absolute basis [M.M.Nassar, 2002]. Concerning the 

second test, conducted by Shaker et al., in [1996], two test areas were chosen. 

The first one was in Helwan (12 stations), and the second one was in Al-Abour 

city (7 stations). In areas, spirit leveling and GPS measurements were 

conducted. The geoid was determined by two different ways, the first one was 

through geometric satellite technique, while the other one is gravimetric geoid. 

The results, in terms of accuracy, declared that the leveling still yields better 

results and the GPS-geoid method supplied an accuracy of orthometric heights, 
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in absolute sense, from 0.891 m to 0.899 m. these results were improved when 

using the relative height difference approach, 1.3 cm to 1.2 cm, when one 

station with known ellipsoidal, orthometric height and geoidal undulation, was 

employed as a reference [M.M.Nassar, 2002]. 

The third test, performed by El-Tokhey and El-Maghraby in [1995] was 

conducted over a network covering a triangle of 60 km side length with 23 

stations, from which (5) stations were known in the Egyptian datum. These 

stations were observed by GPS, and most of them were connected to each other 

and to national benchmarks by spirit leveling. The method of least squares 

collocation with the remove-restore technique was used to obtain geoid 

undulations where the data were reduced to the OSU91A global geopotential 

model. The researchers achieved an accuracy of 6 PPM for baseline of about 20 

km in length, depending on the reference station as a base station for every new 

station to be determined. Using the local geoid to determine the orthometric 

height differences, without referring every new station to the reference station, 

the accuracy of the estimated orthometric height differences is about 15 PPM 

for baseline length of about 15 Km. 

The last test was performed by Nassar et al in [2000a], three different GPS-

leveling networks, covering different areas and locations within the Egyptian 

territory, where used in this test. The first network is New Cairo city data set 

(containing the first, third, and fifth new communities), comprises 99 third order 

GPS stations with known spirit leveling elevations, established in 1995 by the 

Survey Group of Ain Shams University, with base lines ranging in lengths 

between 1 Km and 11 Km. the second network is the Great Cairo network 

(known as Cairo Engineering network data set), composed of 23 first order GPS 
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stations with known orthometric heights, established by Cairo Engineering 

Company in 1993, with base line length ranging between 5 Km and 10 Km. the 

third network is Finnmap GPS first order data set (located basically along the 

Nile valley and the eastern desert), composed of 31 first order GPS stations with 

known orthometric heights, established by ESA-Finnmap joint project of 

1:50000 topographic maps for the eastern desert in 1989, with base line lengths 

ranging between 60 Km to 900 Km. the used geoid model in this test, is the 

EGM96 global geopotential model of order 360, which was proved to be the 

best global model fitting the gravity field of Egypt [Nassar el. al,1999]. The 

obtained results of this test on relative bases indicated that, the GPS-EGM96 

can provide orthometric height differences with accuracies satisfying the 

ordinary spirit leveling specifications over Egypt, for short base lines up to 10 

Km [M.M.Nassar, 2002]. 

The accuracy improvement of the determined orthometric height differences, 

using the ASU-GEOID2000 new local geoidal model for Egypt, reached about 

100 % from the corresponding results obtained from the geoidal model based on 

the ASU93 geoid data and using the remove-restore technique, and also 100 % 

as compared to the corresponding obtained results when using the EGM96 

global geopotential model representing the gravity field in Egypt nowadays, for 

base lines of about 30 Km on the average [M.M.Nassar, 2002]. 

The EGM96 global model represents the most precise geopotential model to be 

used for geoid determination in Egypt [A.A.Saad, 2002]. 

A.A.Saad and G.M.Dawood used 240 gravity stations to estimation the geoid of 

Egypt. The data used consists of the 150 ENGSN97 stations, 67 stations of the 

National Gravity Standard Base Network of 1977 (NGSBN77), and some 
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gravity stations observed by the Survey Research Institute (SRI). All point 

gravity measurements have been corrected first to the terrain effect before 

generating the 5' x 5' free-air gravity anomaly grid. A total of 95 precise GPS 

stations with known orthometric heights, have been collected. They include the 

Egyptian National High Accuracy Reference Network (HARN) observed by the 

Egyptian Survey Authority to form the New Egyptian Datum 1995 (NED-95). 

From the above data he obtained SRI2000B geoid model as showing figure 

(3.13) is the most precise geoid model for Egypt [A.A.Saad, 2002]. 

 

 

 

 

 

 

 

 

 
 

Figure (3.13) The geoid undulation in meters of SRI2000B 
GEOID 

 
  E.Farage study the geoid undulation by gravity observation over the area 

between longitude 300 and 330 E and latitude 28.50 and 31.50 N. And the geoid 

undulation computed by following equation  

                           NGrV = NGM + Ng    ……………………………………..(3.36) 

Where  
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NGM     represents the contribution of the adopted geopotential model as a global 

trend (long wavelength feature of the geoid). 

Ng        represents the contribution of the smoothed gravity anomalies as a 

regional trend (short wavelength feature of the geoid). 

Two software programs were used to calculate the above two parts. The first 

program evaluates the long wavelength feature of the geoid undulation NGM at 

the required points using the adopted model EGM-96. The second program 

calculates the short wavelength feature of the geoid undulation at the required 

points using the Stokes' formula. The statistical values for the developed 

gravimetric geoid of study area for Egypt are given in table (3.1) 

[E.Farag,2000]. 

Table (3.1) Statistics of gravimetric geoid undulation NGrV at study area 

Statistic The geoid undulation NGrV for gravimetric method (m) 

Minimum 

Maximum 

Average 

RMS 

13.75 

18.77 

15.9 

1.05 

A.H.EL-SHazly computes the leveling of the points by using the GPS 

observations only in the some region in Egypt as showing figure (3.14). most of 

the areas are located in the western desert. The areas are in EL-Wadi El-Gadid, 

Aswan, and Al-Fayom Governorates. The Cairo-Alexandria desert road also 

indicates gentle geoid slope. Also the area north of Cairo and the area at the 

eastern boundaries are with nearly flat geoid. Accordingly, the concept of using 

GPS leveling without geoid can be applied at these areas depends on the 

accuracy required and the available leveling information. In other words, one 
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has to collect all the information about the new projects and decides the method 

of obtaining orthometric heights based on the required accuracy [A.H.EL-

SHazly, 2005]. He applied the no geoid model on Borgg El-Arab City, using 48 

points are observed by GPS and the results of this case study as shown table 

(3.2). 

Table (3.2) Comparison of errors in orthometric heights determined by 

GPS leveling based on global models and leveling orthometric heights for 

48 points at Borg El-Arab City. 

 

Geoid Model 

Min.(cm) Max.(cm) Mean (cm) STD (cm) 

No Geoid -11.2 8.6 2.2 5.4 

GRACE -11.7 8.6 -0.1 5 

EGM96 -7.4 17.6 4.7 5.9 

GPM98A -10.7 3.6 -4.7 3.9 
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Figure (3.14) Areas with gentle geoid slope in Egypt,  
contour interval 2 cm  

M.Amin, S.M.Elfatary, and R.M.Hasouna are using the gravity data to compute 

a gravimetric geoid for the newly developed Toshka sector in South Egypt. The 

Least-Squares collocation solution utilized scattered heterogeneous data types 

as input, using the remove-Restore technique. The input data included gravity 

anomalies, gravity disturbances and vertical deflection components, while the 

available GPS/Leveling. geoidal height data were devoted for the evaluation of 

the gravimetric geoid accuracy. The dominant data type was the gravity 

disturbances, and hence, this data was used to predict the empirical covariance 
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function. The RTM topographic effect was accounted for, using an appropriate 

DTM for the area under investigation. The long wavelength contribution was 

properly accounted for, using the locally fitted geopotential model 

EGM96EGCT. The results show that the mean collocation standard error is 

about 5 cm, while the comparison at the independent GPS/Leveling. Check 

points gives an external accuracy of about 16 cm [M.Amin, 2005]. The results 

as shown figure (3.14). 

 

 

 

 

 

 

 

 

 

 
Figure (3.15) Contour map for the 5'x5' Toshka geoid (Interval: 

0.25 m) 
G.M.Dawod and S.S.Esmail are using A precise GPS control network have 

been established on both banks along the forth reach of the Nile, that is from 

Delta barrage to Assiut barrage extending about 408 km. Consists of 168 

control points, of them 130 stations have observed orthometric heights, which 

station separation ranges from 0.2 km to 9.2 km with an average equals 5.7 km. 

The network has been observed and processed in the optimum way to insure the 
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quality of precise geodetic control networks, i.e., at least 1 ppm level of 

precision. It has been tied to the HARN and NACN national networks through 

20 tie stations. The distances from GPS stations to NACN points range from 4.5 

km to 34.2 km with an average equals 19.7 km. As previously stated, those 

stations have no observed orthometric heights. From that, they estimated precise 

orthometric heights of national GPS geodetic control networks based on 

utilizing the recent national geoid models and the GPS network currently being 

established along the Nile. It has been concluded that the accuracy of the 

estimated orthometric heights ranges from 0.06 meter and 0.42 meter with an 

average of 0.18 meter, which is seven times more-accurate than the OSU91A-

based heights published by ESA right now [G.M.Dawod, 2005]. 

Saad and Dawod (2002) have developed two precise geoid models for the entire 

Egyptian territory. The first geoid, called SRI2001A, is a gravimetric geoid 

model utilizing the most recent and accurate first-order gravity measurements, 

and is based on the GRS80 reference datum. The EGM96 global geopotential 

spherical harmonic model is used to provide the long wavelength of the Earth 

gravitational field, along with a local DEM in the remove-compute-restore FFT 

processing technique. The obtained geoid undulations range from 5.42 m to 

22.40 m with a mean value of 14.54 m and RMS equals 2.96 m. A 

GPS/Levelling data set of 195 precise stations has been used to generate a 

geometric-satellite geoid model. A second-order polynomial, as a function of 

the distance from the network origin, is found to be the best fitting function to 

integrate gravimetric undulations and GPS/Leveling undulations. Therefore, a 

combined GPS/Gravity geoid for Egypt, SRI2001B, has been generated. This 

geoid model, depicted in Figure (3.16), has a minimum undulation value of 
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9.437 m and a maximum value of 21.39 m with an average of 13.62 m and 

RMS of 2.62 m. The values of the estimated undulations from the SRI2001B 

model have been compared against the pure GPS undulation of some 

independent GPS/Leveling stations. The differences range between –0.01 m and 

–0.28 m, with an average equals –0.10 m, and RMS of 0.49 m [G.M.Dawod, 

2005].  

 

 

 

 

 

 

 

 

 

 
 

Figure (3.16) SRI2001 geoid model of Egypt 
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Chapter (4) 

THE MATHEMATICAL MODELS  

AND DEVELOPED PROGRAM MODULES 
 

4.1 Introduction 
Normally one refers to the height as the height above the national vertical 

datum, normally Mean Sea Level at particular coastal point measured over a 

particular period. Levels have been normally derived by conventional surveying 

methods and their values are related to the geoid surface. Hence, in order to 

derive heights above the geoid by GPS, it is necessary to know the height of the 

ellipsoid above the geoid where over wide areas of the world this relation is not 

known with a great precision. Nowadays, various mathematical models of the 

geoid determination are existed. Most of them have been derived for individual 

countries or parts of the world or the entire world based upon satellite and 

terrestrial gravity data. Others are derived based on astronomical and 

geometrical observations and others utilized a combination of all type of the 

available data. In this chapter, the used algorithms of the mathematical models 

are outlined as well as the methodology that we utilize them in developing the 

programs. In this time most surveyor are using the GPS technique since its 

available and less time and cost beside another observations technique.  
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4.2 Polynomial Technique Program 
4.2.1 Real polynomial technique 

The mathematical formula of the polynomial model for general case is outlined 

in equation (4.1) [Erol and Celik, 2004]:  

∑ ∑
=

=
−=

n

i

i

j
jji

ijAN
0

0
** φλ                    (4.1) 

And an example for two degrees polynomial model is expressed in equation 

(4.2): 

N= A00+A10λ+A11Φ+A20 λ2+A21 λ Φ+A22 Φ2         (4.2) 

Where: 

N the geoid undulation 

Aij the parameter 

Φ geodetic latitude 

λ geodetic longitude 

n the degree of polynomial model. 

 

By considering the coordinates (Φ,λ,h) as an observation equation for every data 

point, so a system of equations can be written for every point and hence we will 

have n equations for n points where the parameters (A00, A10, A11, A20, A21, A22, 

A30,………Ann) are the unknown. Thus by using the Least Square Technique to 

solve this system of equations, where the above system can be reconstructed in 

a matrix form as follows [ H.EL-Shmbaky, 2004]. 

: 

                      A(n,n)V(n,1)+B(n,m)∆(m,1)=F(n,1)                        (4.3) 
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Where  

A 

V 

B 

∆ 

F 

n 

m 

The coefficients matrix of residuals 

Vector of residuals 

Design matrix of parameters 

Vector of parameters 

Vector of constants 

Number of observations = Number of equations  

Number of parameters = Number of unknowns 

 

The degree of freedom "r" can be calculated by  

                                            r = n-m                          (4.4) 

Matrix "A" which represents the differentiation of equations for n observations 

point has the following form: 
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In this method the A matrix equally the unity matrix as follow 

                                       A (n,n) =- [I]                        (4.6) 

Matrix "B" which represents the differentiation of unknown parameters for n 

points can be taken the B matrix as following form 
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The matrix "F" for n observations points can be take the follow 
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Matrix "∆" for n observations points can be taken the following: 
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And the "V" matrix for n observations points can be take the follow 
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For example, the solution of the first degree by the LSA method is outlined in 

the following equation form derived from the general polynomial method, given 

in equation (4.1) as:  

              N= A00+A10λ+A11Φ  

Assume the number of the observations is n observations then 

N1= A00+A10λ1+A11Φ1 

N2= A00+A10λ2+A11Φ2 

N3= A00+A10λ3+A11Φ3 
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 ……………………… 

Nn= A00+A10λn+A11Φn 

The number of parameters is three parameters, namely (A00, A10, A11).   

Then the Degree of Freedom   r = n-3 

Then the equations to general least square can written as follow: 

 f1 = A00+A10λ1+A11Φ1- (N1+V1) 

 f2 = A00+A10λ2+A11Φ2 - (N2+V2) 

 f3 = A00+A10λ3+A11Φ3 - (N3+V3) 

 ……………………………….. 

 fn = A00+A10λn+A11Φn - (Nn+Vn) 

 

However, A matrix is the unit matrix as mention in equation (4.6), and the B 

matrix is given as follow: 
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And the parameters ∆ matrix is taken as in the following: 
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The constant vector matrix (F) can be calculated by using the following 

equations: 

F1=N1-A00-A10λ1-A11Φ1 

F2= N2-A00-A10λ2-A11Φ2 

F3= N3-A00-A10λ3-A11Φ3 

…………………………. 

Fn= Nn-A00-A10λn-A11Φn 

Then the F and V matrix is depicted in equation (4.8) and (4.10) respectively. 

The aforementioned algorithm is used by MATLABB to find the required 

solution of the above system of equation by LSA. In addition, the developed 

program will compute the distortion between the check points (known point 

from the S.Powell report) and the value output from the program. The steps of 

program as follow:  

1- Inputting the known data (Φ, λ, N) from the S.Powell report where the 

coordinates of points are WGS84 geodetic coordinate. 

2- Building A matrix according to eq. (4.5)  

3- Calculating B matrix according to eq. (4.7) 

4- Calculating F matrix according to eq. (4.8) 

5- Building Covariance matrix and calculating the equivalent weight matrix 

(We).  

6- Calculating least square matrices operations using general least square 

algorithm. 

7- Running the Fisher test at 98% confidence interval. 

8- Inputting the check points from the S.Powell report. 
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9- Calculating the geoid undulation by the polynomial method as well as the 

distortion between known geoid undulation and the calculate geoid 

undulation. 

 

In the above program module, two trials are made; the first trial with using the 

coordinates of points as outlined above, while the second with using the average 

of the coordinates of points according to the following equation:  
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Where  

Φo 

λo 

The mean of the geodetic Latitude for known points 

The mean of the geodetic longitude for known points 
 

In the second trials, the only difference between it and the first trials that: the 

input known data are (Φ, λ, N) from the S.Powell report where the coordinates 

of points are WGS84 geodetic coordinate, then mean values of the ellipsoidal 

coordinates are calculated, and the rest of the program as indicated in the first 

trials. 

Alternative solution can also be made by using the Cartesian coordinates 

according to the next form of equation: 

∑ ∑
=

=
−=

n

i

i

j
jji

ij YXAN
0

0
**                 (4.12) 

Where: the (X, Y) is the Cartesian coordinates for the known points which is 

obtained by converting the geodetic coordinates to Cartesian coordinates if they 

are not available in the Cartesian format. 
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By solving it by the same program module as follows: 

1- Inputting the known data (X, Y, N) from the S.Powell report after 

converting the geodetic coordinates of points to Cartesian coordinates.  

2- Building A matrix according to eq. (4.5)  

3- Calculating B matrix according to eq. (4.7) 

4- Calculating F matrix according to eq. (4.8) 

5- Building Covariance matrix and calculating the equivalent weight matrix 

(We).  

6- Calculating least square matrices operations using general least square 

algorithm. 

7- Running the Fisher test at 98% confidence interval. 

8- Inputting the check points from the S.Powell report. 

9- Calculating the geoid undulation by the polynomial method as well as the 

distortion between known geoid undulation and the calculate geoid 

undulation. 

As alternative solution, the mean value of the Cartesian coordinates can be used 

according to the following equation: 
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Where: the (X0,Y0) is the mean of the Cartesian coordinates for known points 

and the most solution steps are still the same only the following steps are 

updated: 

1- Inputting the known data (Φ, λ, N) from the S.Powell report where the 

coordinates of points are WGS84 geodetic coordinate. 

2- Converting the geodetic to Cartesian coordinates. 
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3- Calculating the mean of the Cartesian coordinates. 
 
4.2.2 Complex Polynomial technique  

Another form of the polynomial can be used; it is called the complex method. 

The advantage of the complex polynomial technique is that the dependence 

between the coefficients for geodetic coordinates is taken into account in the 

formula, resulting in fewer coefficients for the same order polynomial [EUG, 

1998]. Equation (4.13) gives a general least square format for the complex 

polynomial [EUG, 1998]. 

 

N = (A1+iA2) (Φ+iλ) + (A3+iA4) (Φ+iλ) 2            {to 2nd order}       

  +(A5+iA6) (Φ+iλ) 3                                        {to 3rd order}        (4-13) 

   +(A7+iA8) (Φ+iλ) 4                                                              {4th order}  
 

The same above steps of the program module were design to compute the 

solution of the complex polynomial technique.  
 
4.3 Least Square Collocation Program 
The purpose of using the Least-Square Interpolation Technique in the geoid 

undulation determination is to supplement the GPS/Leveling observations, 

which are made at only a relatively few points, by dense points which their 

values of geoid undulation are estimated across a surface covering a specific 

region. 
 
A trial was made to compute the geoid undulation in Egypt by using least 

square collocation technique as in the following: 
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 In the first step of the program module, the Egypt map is divided to grids 

0.50' x 0.50' as shown figure (4.1).  

 The second step: the covariance matrix between the data points and the 

computation points are designed. Then the distances between data points 

and the geoid undulation are computed (or difference between the 

orthometric and ellipsoidal heights); the equations which describe this 

relationship are explained in the following steps: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.1): The Grid of Egypt 
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⇒ The difference between the ellipsoid and Orthometric height at any 

station is described in the following equation (as shown in figure (4.2)):  

                            N = h – H                                      (4.14) 

⇒ The covariance between each pair of stations under the condition of 

distance (r) is:  

                             Cij = Σ Ni Nj / 2                           (4.15) 

⇒ Solving the following equation using general least square technique: 

                             Cij = ae -br
ij                                     (4.16) 

 

 

Figure (4.2): The relation between geodetic and orthometric heights  
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Where: a, b are unknown parameters and Cij are observations of geoid 

undulation. 

Then the covariance equation will equal 

                        Cij = 1.00000000008583 e  - 0.99999999983886 r
ij     (4.17) 

The illustration of Equation (4.17) is depicted in figure (4.3). From this 

equation, the covariance matrix between data and computation points can be 

determined by the following matrix: 

 

                                                                                        (4.18) 

 

Where: 

CS11 

 

CS12 , CS21 

 

 

CS22 

Is a covariance matrix of data points, it’s a square matrix of 

(n,n) dimension where n the number of data points.  

Are the covariance matrix between data and computation 

points, CS21 = (CS12)T. CS12 is not square matrix but (n,q) 

dimension where q is the number of computation points. 

Is covariance matrix of computation points and has (q,q) 

dimension. 
 

After that, rearrange the equation in this form                          

BS + N = b                                      (4.19) 

Where: 

B=[I|0] the unit matrix has a (n,n) dimension, and the null matrix 

has a (n,q) dimension. 

S=[S11|S22]T S11 is the data vector (n,1) dimension, and S22 is the 
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computation vector (q,1) dimension. 

b is the vector of constants (n,1) dimension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.3): The (Distance – Covariance) relationship 
 

Then the computation value of geoid undulation at the grid nodes can be 

obtained from the following equations as a special case of least square 

collocation where the system is modeled by the signal S and noise n. 

S\ = Cs BT(Cn+Cs11)-1b 

Cs\ =Cs BT(Cn+Cs11)-1 B Cs                                             (4.20) 

n\ = Cn(Cn+Cs11)-1b 
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Cn\ =Cn(Cn+Cs11)-1Cn  

Where: Cn is the covariance matrix of observations. 

Based upon the above algorithm, the LSC program is developed and its 

execution steps can be described in the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.4): Flow chart of LSC technique 

 

1- Input the available coordinates of data and grid points. 

Input the geoid undulation for the known 
points 

Calculating the covariance equation using 
least square method 

Calculating the covariance matrix between 
data points and computation points 

Rearrange the difference equation in form 
BS + N = b 

Calculating the estimated computation points and the 
adjusted data points according to the following equations  

s\ = Cs BT(Cn+Cs11)-1b 
Cs\ =Cs BT(Cn+Cs11)-1 B Cs 

n\ = Cn(Cn+Cs11)-1b 

Cn\ =Cn(Cn+Cs11)-1Cn 
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2- Calculate the Cartesian coordinates for the data and grid points. 

3- Input the geoid undulation at the data points. 

4- Calculate the distances between stations and covariance. 

5- Calculate value of constant parameters in the equation (4.16) by least 

square technique. 

6- Calculate the covariance matrices between different points (data & 

computation). 

7- Build the general covariance matrix as equation (4.18). 

8- Output the Solution of collocation without parameters and printing the 

results. 

4.4 Minimum Curvature Surface (MCS) 
Shmbaky, 2004 introduced some obstacles to realize the conversion process of 

the system of Laplace and Possion equations to be in a programmable algorithm 

by using least square method. 

In this chapter, an explanation for how one can convert the system of Laplace 

and Possion equations to a programmable by MATLAB program is 

demonstrated; details are presented in appendix (D). By using the same divided 

grids in the LSC program: 
 
• The four arms about the nodes may be not completed. So, equation (4.21) 

can be rearranged as follows to be suitable in our special case such as: 
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(4.21) 

Where: 

K1, K2 , l1, l2 are the ratio from the complete grid arm (h) shown in figure 

(4.3), and f0  is a function of unknown value φ0 . 

 

 

 

 

 

 

 

 

                                                                                                               

Figure (4.5): The case of uncompleted of grid arms 

It can be noticed from this formula that, the position effect of stations on the 

neighbor nodes. 

• When using the grid and there are no information about true difference at the 

boundaries of the grid to be used in the solution. But unified least square 

technique will overcome this obstacle and the boundaries difference will be 

predicted and adjusted according to the available data. 

• The number of node, this obstacle can be solution it by built a program using 

MATLAP program asking the user about the number of unknown nodes 

before started solution. unified least square can be applied to equations with 

Laplace equation as equation (4.22). 

                   A(n,m) V(m,1)=F(n,1)                           (4.22) 

l  

h  
K  

b  

c  

4  

2  

1  3 
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Where:  

n 

m 

F 

V 

The number of equations 

The number of unknown and known station 

The constant vector equal to observation difference 

The vector of residual 

Which V = no. of unknown nods / no. of difference coordinates for known 

stations. 

After we known that, can be design the MCS program as follow 

1- Collecting geographical coordinates data 

2- Entering the number of grid nodes 

3- Collecting the data matrix for original grid which contains the length of node 

arms, number of neighbors nodes on the grid and the value of distortion. 

4- Calculating the number of equations  

5- Calculating the degree of freedom 

6- Constructing A matrix as in equation (4.22) 

7- Beginning the iteration process 

8- Calculating equivalent weight matrix (We) 

9- Constructing F matrix as equation (4.22) 

10- Calculating least square operation 

11- Calculation the posterior covariance 

12- Running the Fisher test at 99 % confidence interval for posterior variance 
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Figure (4.6): Flow chart of MCS technique 

4.5 Circulation for secondary programs 
Besides above programs, secondary soft were we used like EXCELL and 

SURFER programs. Rearrangement of raw data made by EXCELL program 

and contour maps for data made by SURFER program are description in the 

following flow chart. 
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Input the known data 

Input the geoid undulation for the known points 
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Rearrange the difference equation to the form 
                   A(n,m) V(m,1)=F(n,1)                    

Statistical 
test for σ2 

Getting the geoid undulation at the node of grid 
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Figure (4.7) Flow chart for analysis process 

 

 

 

 

 

 

 

Input data 

Collecting input data by EXCELL program 

LSC Regression MCS 

Collecting results using 
EXCELL program 

Drawing contour maps 
with SURFER program 
and tables, charts using 

EXCELL program 
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Chapter (5) 

RESULTS AND DISCUSSION 
5.1 Introduction  
 
The determination of the geoid has been one of the prime objectives of geodesy. 

The knowledge of the geoid with respect to some reference ellipsoid, either on a 

global or local scale is valuable to geodesy, surveying and geophysics for a 

number of purposes such as the reduction of measured distances to a reference 

surface and the processing of satellite observations. The geoid heights are 

essential for verification of global datums and transformation of local datums to 

the world datum. Also the combination of an accurate geoid model with GPS 

co-ordinates plays a dominant role in achieving high accuracy leveling results. 

Spirit leveling is tedious, time consuming and costly in conventional surveying 

exercise. The knowledge of the geoid is also essential in geophysical 

explorations (reconnaissance survey), in control surveys, in large scale 

mapping, in engineering surveys, in height control and in understanding of the 

Earth’s crustal structure.  

In this chapter a trail to compute the geoid undulations from the GPS data, and 

by using mathematical models, including the Linear regression model, the Least 

Squares Collocation (LSC) and the minimum curvature surface (MCS) 

techniques, as shown in figure (5.1). Comparisons between the best models with 

world geoid models are also discussed. 
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Figure (5.1): The used mathematical techniques  
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5.2 Results of regression models 
 
The regression model is considered as the most common method which are used 

to determine the geoid undulation. The next part is devoted to illustrate the 

applicable regression models which estimate the geoid undulation parameters 

for the studying area (Egypt). Regression models can be classified into two 

main parts: first regression model is in two dimensions and the second 

regression model is in three dimensions. In the first and second regression 

models, Cartesian and the Geodetic coordinates are applied. Using the mean 

value of the data available and, point O1 (Φ = 29.85936392, λ = 31.34369133, h 

= 135.2113) on the WGS84 datum, to be the mean value of observations for 

Egypt, which were applied in the two regressions models. The value of 

coefficients can be estimated by using four linear regressions models (first, 

second, third and fourth) using the common points at WGS84 datum.  

The used common points and check points are extracted from HARN network 

which mentioned in the final report of the new adjusted national geodetic 

network [S.Powell, 1997] as shown in tables (5.1) and  (5.3). 

On the other hand, the geoid undulation extracted from the report of (S.Powell, 

1997), the common points shown in table (5.2), and check points shown in table 

(5.4). 

Table (5.1) The coordinates of the used common points 

Geodetic coordinate Cartesian coordinate 

LATITUDE LONGITUDE Ellips. 
The GPS ST.=  

OED-30 

DEG MIN SEC DEG MIN SEC Height 
X Y Z 

OZ2=O5 22 25 19.94361 31 33 45.26781 284.817 5026419.368 3087749.752 2417804.549 

OZ7=A5 24 2 28.8962 32 49 58.0757 207.162 4897242.393 3160026.557 2582552.079 

OZ8=B19 23 56 26.73463 35 23 50.53294 84.248 4754542.731 3378549.223 2572322.154 
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OZ9=B20 26 1 2.76559 34 19 16.33949 23.977 4736887.785 3233855.35 2780808.426 

OZ10=M3 25 57 20.06853 32 9 24.25427 323.067 4858414.656 3054386.166 2774778.836 

OZ11=I15 25 32 37.05482 29 24 10.53256 569.843 5017018.378 2827282.105 2733777.627 

OZ12=NEW 28 30 26.01266 29 5 48.59469 284.916 4901454.426 2727759.562 3026156.542 

OZ13=T2 27 16 3.09019 30 46 46.61555 223.345 4874398.459 2903374.688 2904698.744 

OZ14=B11 27 52 48.6669 33 21 42.36244 63.896 4712281.068 3102667.275 2964805.144 

OZ15=NEW 29 21 0.09509 34 46 20.60622 61.948 4570387.221 3173236.76 3107806.047 

OZ16=B10ecc 31 7 9.786 34 10 55.44349 123.81 4521178.351 3070521.502 3277296.095 

OZ17=A6 30 7 9.51771 32 36 22.44138 55.917 4651428.937 2975426.008 3181848.934 

OZ18=NEW 31 35 45.40286 31 4 49.12642 32.061 4657082.606 2807149.786 3322369.803 

OZ19=E7 29 50 2.97004 30 36 4.07107 230.875 4766411.552 2818974.913 3154554.543 

OZ20=D8 30 50 32.5935 28 56 7.10237 42.806 4796794.204 2651830.557 3250924.75 

OZ21=X8 31 19 39.01417 27 4 19.02623 138.281 4855829.779 2481854.818 3297036.49 

OZ22=Z9 31 26 16.24367 25 23 55.08191 47.549 4920405.862 2336236.709 3307433.859 

Table (5.2) The geoid undulation of the used common points 
POINT N 

OZ2 9.779 
OZ7 11.049 
OZ8 10.668 
OZ9 12.741 

OZ10 12.158 
OZ11 13.172 
OZ12 14.219 
OZ13 12.751 
OZ14 14.644 
OZ15 17 
OZ16 17.026 
OZ17 16.206 
OZ18 17.826 
OZ19 14.945 
OZ20 15.067 
OZ21 17.242 
OZ22 19.33 

 

Table (5.3) The coordinate of the used check points 

 Geodetic coordinate Cartesian coordinate 

The GPS 
ST.= LATITUDE LONITUDE ELLIPS. 

OED-30 DEG MIN SEC DEG MIN SEC height(m) 
X Y Z 

OY27=N7 30 13 55.83453 29 50 25.27295 175.148 4784223.394 2744427.104 3192725.343 

OY35=L5 22 45 7.89148 31 50 55.47227 406.916 4999107.594 3105468.866 2451592.35 
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OY36=R5 22 6 28.09885 31 33 7.9739 347.744 5038268.669 3093774.252 2385607.703 

OY41=Y5 22 12 21.6148 31 33 17.57785 199.982 5034513.233 3091791.019 2395623.225 

OZ32=P4 24 9 18.43374 32 58 5.39005 250.727 4885479.958 3168809.756 2594072.206 

OZ44=A4 25 38 53.34491 32 41 36.07212 114.34 4841913.266 3107659.942 2744024.506 

OZ52=E5 23 25 45.99662 32 49 36.22685 288.768 4920563.856 3174336.931 2520542.932 

OZ66=B3 27 19 30.83725 31 11 18.94993 89.172 4850939.254 2936513.888 2910319.771 

OZ68=S2 27 24 42.98709 30 32 36.21647 275.318 4880037.043 2879542.056 2918938.221 

OZ70=A2 29 1 5.12772 31 9 34.73588 110.696 4776646.582 2888244.114 3075708.475 

OZ74=L2 28 11 4.59862 30 48 16.62154 209.738 4832508.896 2881281.294 2994652.825 

OZ97=F1 30 1 43.45961 31 16 39.63006 219.776 4723587.068 2869465.636 3173242.278 

 
Table (5.4) The geoid undulation of the used check points 

POINT N 
OY27=N7 15.088 
OY35=L5 11.156 
OY36=R5 9.974 
OY41=Y5 10.092 
OZ32=P4 11.397 
OZ44=A4 12.02 
OZ52=E5 10.098 
OZ66=B3 12.842 
OZ68=S2 13.488 
OZ70=A2 15.216 
OZ74=L2 13.738 
OZ97=F1 15.268 

 

The model was accomplished using 30 points of HARN and 33 points of OED-

30 in total without any inconsistent point, because probable inconsistent points 

have been removed during the modeling studies as shown in figure (5.2). 

seventeen of these points were taken as modeling pins (common points) with 

known geoid undulation these points are distributed as shown in figure (5.3), 

and the rest 12 points were chosen for testing the model (check points) as shown 

in figure (5.4). While choosing these test points, the homogenous distribution 

and topogragraphic properties were considered and the availability of the data. 



 
 

 (102)

The geographic coordinates including heights (h) are identified in WGS84 

datum and the practical heights (H) are identified from geometric leveling in the 

datum of Egypt, OED-30 datum. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.2): Recent precise GPS geodetic control networks in Egypt 

(G.M.Dawod, 2005) 
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Figure (5.3) The used common points  
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Figure (5.4) The used check points  
 
In general the solution divided into two trials, the first trial used a technique to 

determine the geoid undulation by a linear multiple regression model in two 

dimensions for the geodetic coordinates of the points, and the second is to 
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determine it by Cartesian coordinates. To obtain the Cartesian coordinates we 

should convert the geodetic coordinates of points to the Cartesian coordinates 

because all available data are geodetic coordinates. The second trials use the 

mean value of known data and point (O1) as an average point of Egypt. 

5.2.1 Tow Dimensional polynomial technique 

5.2.1.1 Tow Dimensional polynomial technique with plane geodetic 

coordinates 

The used polynomial model in the regression solution is as follow:  

                      ∑ ∑
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=
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0
** φλ         ………………….(5.1)  

Trial uses the geodetic coordinate in two dimensions (Φ,λ) only and uses it in  

the polynomial model (first, second, third and fourth) degree. In the second trial, 

it uses the mean value of longitude and latitude in the same equation of 

polynomial as follow; 
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Then, uses the point O1 equally the mean value of above equation as follow  

 

                                                                                                         …….(5.3) 

The results of the used polynomial model with least square method are shown in 

table (5.5). 

Table (5.5) Comparison of various  polynomial degrees (Φ,λ). Unit (m) 

Degree Test Max.dist. Min.dist. S.D.dist. Average dist. 
Φ,λ only 1.265862723 0.067587077 0.356054367 0.620689001 First 

Degree With mean 1.265862723 0.067587077 0.356054367 0.620689001 
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With O1 1.265862723 0.067587077 0.356054367 0.620689001 
Φ,λ only 0.706943399 0.058985627 0.232491278 0.303259486 

With mean 0.850853984 0.066258689 0.266230491 0.300319663 
Sec. 

Degree 
 With O1 0.850853984 0.066258689 0.266230491 0.300319663 

Φ,λ only 0.788438563 0.066823542 0.249446916 0.328392631 
With mean 0.784895727 0.071875784 0.247107709 0.327490099 Third 

Degree With O1 0.784895727 0.071875784 0.247107709 0.327490099 
Φ,λ only 261.9146256 5.591150034 95.85310137 136.1270782 

With mean 1.076674039 0.058514803 0.345641922 0.393025862 Fourth 
Degree With O1 1.076674039 0.058514803 0.345641922 0.393025862 
 
From table (5.5), it is obvious that:- 

• The first degree: all trials (Φ,λ only, With mean and With O1) have the 

same  maximum, minimum, average distortion and standard deviation of 

distortion. 

•  The second degree of solution: the (Φ,λ only) is the best solution because 

, it is less than distortion and standard deviation for other. 

•  In the third degree the method of using (with mean, with O1) showed the 

best solution in comparison with first and second and the same results 

were obtained for fourth degree. 

• The results clearly show that by using the points O1, for the mean of 

Egypt, gave the same values of distortion when using the mean value of 

data point.  

The comparison between the distortions values of the test point obtained at the 

best solution of the different degrees is illustrated in figure (5.5). The average of 

distortions of the best models is illustrated in figure (5.6) and the standard 

deviation of the best model is illustrated figure (5.7). 
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Figure (5.5) The distortion at check points by (Φ,λ) polynomial technique 

 

 

 

 

 

 

 

 

Figure (5.6) The average distortion at check points by(Φ,λ)  polynomial 

technique 
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Figure (5.7) The standard deviation at check points by(Φ,λ)  polynomial 

technique 

From the obtained figures, the second degree ( Φ,λ only ) of polynomial method 

is the best solution, because it c gives the minimum distortion and high accuracy 

as compared with the other degrees of solutions, and gives the best value of 

geoid undulation in Egypt. 

5.2.1.2 Tow Dimensional polynomial technique with plane Cartesian 

coordinates 

As the same in section (5.2.1.1), but using Cartesian coordinates with applying 

(X,Y) coordinate of common and check points.  

Using  the polynomial regression model as follow:             
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The Cartesian coordinate in two dimensions ((X,Y) only) are used in the 

polynomial model (first, second, third and fourth) degree as a first trial. In the 

second trial, the mean value of X and Y were used in the same equation of 

polynomial method. 
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Also using the point O1 equally the mean value of above trial in this equation  

j
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                                            ……………………………………………..…(5.6) 

The results of the used polynomial model with least square method are shown in 

table (5.6). 
 
Table (5.6) Comparison of various polynomial degrees (X,Y). Unit (m) 

 

Degree Test Max.dist. Min.dist. S.D.dist. Average dist. 
X,Y only 1.14455652 0.131294442 0.304268744 0.501109626 

With mean 1.144558887 0.13129207 0.304269444 0.501110257 
First 

Degree 
With O1 1.144558885 0.131292072 0.304269444 0.501110257 
X,Y only 62779.25117 61131.77078 607.4655653 61851.74435 

With mean 0.730779035 0.04860083 0.241029352 0.314165262 
Sec. 

Degree 
 With O1 0.727119393 0.051335838 0.239679409 0.313903869 

X,Y only 3.10474E+14 2.41321E+14 2.82861E+13 2.79302E+14 
With mean 324.8422101 7.748025958 116.1481204 199.1617382 Third 

Degree 
With O1 229636.0693 28105.22274 62383.28222 98816.53039 
X,Y only 9.50612E+26 8.73293E+26 2.449E+25 9.08179E+26 

With mean 25425688403 78284568.22 9544919304 7327853892 Fourth 
Degree 

With O1 3.4132E+14 9.25973E+12 1.42421E+14 1.37026E+14 
 

From table (5.6), it is obvious that:  

• The first degree in (X,Y only) trial is the best solution than the other 

trials. 

• The second degree in(X,Y with mean and with O1)are best solution.  

The comparison between the distortions values of the test points by using the 

best solution of the results obtained is illustrated in figure (5.8). The average of 

distortions of the best models is illustrated in figure (5.9) and the standard 

deviation of the best models is illustrated figure (5.10). In these figures, the 
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third and fourth degrees are neglected, because the distortion of it is greater than 

other method. 
 
 

 

 

 

 

 

 

 

 

 

Figure (5.8) The distortion at check points by (X,Y)polynomial technique 
 

 

 

 

 

 

 

 

 

 

Figure (5.9) The average distortion at check points by(X,Y) polynomial 

technique 
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Figure (5.10) The standard deviation at check points by(X,Y) polynomial 

technique 

From the obtained figures, the second degree with mean point O1 is the best 

solution of this method, because it can give the minimum distortion and high 

accuracy than the other degrees. 

5.2.2 The three dimensions polynomial technique  

The second trial uses the three dimensions with polynomial and least square 

technique. The geodetic and Cartesian coordinates are used to compute the 

geoid undulation by regression methods (first, second and third degree). This 

trial used the coordinates directly, the coordinates with mean values and the 

coordinates with the mean of O1 point. 

5.2.2.1 The three dimensions polynomial with geodetic coordinates 

Firstly, this trial uses the geodetic coordinate (longitude, latitude and height 

(Φ,λ,h)), the trial in three dimension is shown in table (5.7) 
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Table (5.7) Comparison of various  polynomial degrees (Φ,λ,h). Unit (m) 
  
Degree Test Max.dist. Min.dist. S.D.dist. Average dist.

Φ,λ,h 1.239877476 
 

0.085553861 
 

0.347158068 
 

0.609358325 
 

With mean 1.239877476 
 

0.085553861 
 

0.347158068 
 

0.609358325 
 

First 
Degree 

With O1 1.239877476 
 

0.085553861 
 

0.347158068 
 

0.609358325 
 

Φ,λ,h 1.57578104 
 

0.006143095 
 

0.4572741 
 

0.583250581 
 

With mean 13.34195755 
 

4.01786462 
 

3.140453117 
 

9.030476256 
 

Sec. 
Degree 

 
With O1 20.48246684 

 
0.037137874 

 
6.283818387 

 
9.565787764 

 

Φ,λ,h 3.743712393 
 

0.091645784 
 

1.074923142 
 

1.376493093 
 

With mean 35.68848576 
 

5.49819287 
 

8.232383758 
 

18.52844301 
 

Third 
Degree 

With O1 106.7974514 
 

6.010384086 
 

30.64462477 
 

30.2072299 
 

 
From table (5.5), it is obvious that: 

• The first degree in all trials is the same. 

•  The second trial in case of (Φ,λ,h) is the best solution. 

• The third trial in case of (Φ,λ,h) is the best solution. 

The comparison between the best solutions obtained from the three degrees, the 

distortion at the check points is shown in figure (5.11). The average of this 

distortion is shown in figure (5.12) and the standard deviation of distortion is 

shown in figure (5.13).  
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Figure (5.11) The distortion at check points by(Φ,λ,h) polynomial 

technique 

 

 

 

 

 

 

 

Figure (5.12) The average distortion at check points by(Φ,λ,h) polynomial 

technique 
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Figure (5.13) The standard deviation at check points(Φ,λ,h) by polynomial 

technique 
 
Table (5.5) and figures (5.11), (5.12) and (5.13) clearly show that: 

• The second degree with three dimensions is the best solution. 

• In general the ellipsoidal height (h) in this models, gives high distortion 

due to the errors in the vertical coordinate high.  

5.2.1.2 The three dimensions polynomial with Cartesian coordinates 

As the same trial uses the Cartesian coordinates (X,Y,Z) that converted from 

known geodetic coordinate  by MATLABE program as shown in Appendix (D). 

This trial applied the Cartesian coordinates directly, the coordinates with the 

mean values and the coordinates with the mean of O1 point. 
 
The distortion of the check points and comparison between all trials is shown in 

table (5.8).  

Table (5.8) Comparison of various polynomial degrees (X,Y,Z). Unit (m) 

 
 
Degree Test Max.dist. Min.dist. S.D.dist. Average dist. 

X,Y,Z 0.964349712
 

0.041007874
 

0.265122123 
 

0.359561363
 

First 
Degree 

With 0.964349712 0.041007873 0.265122123 0.359561363
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mean     

With O1 0.964349712
 

0.041007873
 

0.265122123 
 

0.359561363
 

X,Y,Z 1.69799E+44
 

1.60377E+43
 

5.68184E+43 
 

8.66883E+43
 

With 
mean 

3.78035E+13
 

6.89996E+12
 

9.96675E+12 
 

1.70061E+13
 

Sec. 
Degree 

 
With O1 97031.41213

 
1505.989477

 
36306.81223 

 
34248.84386

 

X,Y,Z 5.77194E+12
 

3.21063E+12
 

9.35712E+11 
 

4.52942E+12
 

With 
mean 

70.50620623
 

2.707902668
 

24.98034281 
 

32.98028722
 

Third 
Degree 

With O1 686889546.5
 

180944882.8
 

174690271.2 
 

422151401.2
 

 
The results in the above table show that; 

• The first degrees in three cases are the same and give the best solution as 

compared with the other. 

From tables (5.5 to 5.8) and figures (5.5 to 5.13) it is concluded that: 

Comparing the best solutions obtained from the all degrees, the distortion at the 

check points is shown in figure (5.14). The average of distortion is shown in 

figure (5.15) and the standard deviation of distortion is shown in figure (5.16).  
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Figure (5.14) The distortion at check points by polynomial techniques 

 

 

 

 

 

 

 

 

 

 

Figure (5.15) The average distortion at check points by polynomial 

technique 
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Figure (5.16) The standard deviation at check points by polynomial 

technique 

The best solution in this cases, is the second degree in the plane coordinate with 

geodetic coordinate with (Φ,λ only).  

This best model is represented by the equation (5.7)  

      N= A00+A10λ+A11Φ+A20 λ2+A21 λ Φ+A22 Φ2……………………………(5.7) 

And the  parameters of this equation is illustrated in table (5.9)  
 
Table (5.9) the parameter of two dimension equation (5.7) 

 
The geoid undulation of Egypt by using the best model with HARN points is 

represented in figure (5.17). Is show that the results are different in the western 

part of Egypt because the available data in this region are smaller and less than 

that for other regions.  The geoid undulation at the Egyptian grids given in the 

Appendix (B). 
 

 

 

parameter A00 A10 A11 A20 A21 A22 

value 205.3798832 
 

-9.98915691 
 

-3.26361544 
 

0.116691334 
 

0.094886366 
 

0.018998481 
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Figure (5.17) The geoid undulation by using second degree polynomial 

model in two direction (geodetic coordinates) in the HARN data 

 

5.2.3 The polynomial technique with complex numbers 

A Polynomial technique with complex numbers, as shown in equation (5.8), 

was used in first and second degrees.  

            N= (A1+iA2) (Φ+iλ) + (A3+iA4) (Φ+iλ) 2……………………………(5.8) 

The result of the distortion of the geoid undulation is shown in table (5.10).  
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Table (5.10) The distortion at check points using complex numbers of 

polynomial technique 

Point First degree Sec. degree 
N7 10.16827708 20.44608771
R5 0.959092248 61.99786122
Y5 0.051057533 248.6241365
P4 0.667322158 399.5121706
A4 1.305132623 541.8299258
E5 0.855130282 805.633836 
B3 0.713632378 802.5323206
S2 3.126881101 872.2112358
A2 3.452463694 1049.579868
L2 5.017521293 1360.056544
F1 3.663683378 1433.622184

Max.distortion 
(m) 10.16827708 1433.622184

Min.distortion 
(m) 0.051057533 20.44608771

Average 
distortion (m) 2.725472161 690.5496518

STDEV.(m) 2.937521674 483.1479126
 

 

From table (5.10): 

• The first degree solution is better than second degree but it is not better 

than solution of real polynomial method. 

5.3 Results of Least Square Collocation (LSC) model 
The least square collocation technique is a grid transformation technique. This 

technique need to divide the area of study to a grid as shown figure (4.1), shifts 

between geoid and ellipsoid models are calculated for common points.   
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The calculation of this technique can be summarized as the following: 

 The difference between the geoid and ellipsoidal models are computed. 

 The priory covariance matrix can be formed using the following relation 

Cij = Σ Ni Nj /  2       

 Solving the relation between distance and covariance of common points 

using least square theory to get the general equation Cij = ae -br
ij   

 Calculating the covariance matrix between data points and the 

computation points. 

 Rearranging the original equations of differences in the form BS + N = b. 

 Solving the system using least square theory with the following equations 

for collocation method. 

  S\ = Cs BT(Cn+Cs11)-1b 

  Cs\ =Cs BT(Cn+Cs11)-1 B Cs 

  n\ = Cn(Cn+Cs11)-1b 

  Cn\ =Cn(Cn+Cs11)-1Cn 

From the above steps, using the available data, shown in table (5.1), with the 

program (LSC) is shown in Appendix (D). Obtain the results shown bellow: 

The difference at the common points is shown in table (5.11) and the distortion 

at the test points shown in table (5.12). 

Table (5.11) The different at common points by the LSC program 
Point Distortion (m) 

OZ02 -1.19757779484043 

OZ07    -0.52094371371138 

OZ08    -0.05660273646831 

OZ09    0.47114006372585 

OZ10    -0.48653752000845 
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OZ11    0.55086737344387 

OZ12    0.34836684489816 

OZ13    -0.61335214085733 

OZ14    1.07652153037670 

OZ15    3.51917899386560 

OZ16    3.02252828789112 

OZ17    1.71635483275438 

OZ18    3.04842550261280 

OZ19    0.50382540414394 

OZ20    0.62011052129405 

OZ21    2.90544378688164 

OZ22    5.6497170775597 

Table (5.12) The distortion at check points by the LSC program 

Point Distortion (m) 
N7 2.075872636 
R5 1.463509299 
Y5 1.419522602 
P4 0.476191869 
A4 0.176301473 
E5 0.807534034 
B3 0.847459177 
S2 0.852855942 
A2 1.60187933 
L2 1.211368401 
F1 2.05926112 

Max.distortion 2.075872636 
Min.distortion 0.176301473 

Average 1.181068717 
S.D. 0.61249361 

Range 1.899571163 
 

The results of this method are given in Appendix (C). 
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The contour map of the geoid undulation for the Egyptian grids by using LSC 

model is shown in figure (5.18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.18) The geoid undulation by using LSC model in two direction 

(geodetic coordinates)  
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5.4 Results of minimum curvature surface (MCS) model 
MCS technique was a grid transformation technique as LSC technique. But in 

this technique was not depended on a priori variance covariance matrix. After 

construction the grids above the area of study, as shown in figure (4.1), can be 

summarized the steps of solution as following: 

 The differences between two models are computed. 

 The observation equations can be formed according to laplace model                             

 

 

 

 Forming the reduced condition equation of the laplace model and 

applying least square theory with unified technique give the posterior variance. 

 The variance of used common points is obtained and trials are stooped 

according to covariance of variance. 

 Computing the geoid undulation at unknown grids and drawing the 

contour map. 
   
From above steps, using the available data shown in section (5.2), with the 

program (MCS) is shown in Appendix (D). Calculating the distortion at 

common points, and from that we neglected the points (OZ13, OZ15, OZ19, 

OZ20, and OZ22) as shown in table (5.13) 
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Table (5.13) The distortion at common points by the MCS program 

 

Point Distortion (m) 

OZ02 0.07721684810177 

OZ07 0.00347249793973 

OZ08 -0.22918189336117 

OZ09 0.05266968934737 

OZ10 -0.60297546581746 

OZ11 0.77287428229446 

OZ12 -0.7017543695959443 

OZ13 -1.0794388009004 

OZ14 0.3525176513764 

OZ15 1.49303195651246 

OZ16 0.00570559336130 

OZ17 -0.00291306256056 

OZ18 0.32937727462008 

OZ19 -1.06750166631848 

OZ20 -1.83890599444540 

OZ21 -0.11787994573827 

OZ22 1.083846763956781 

  

The distortion at check points is shown in table (5.14) 
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Table (5.14) The distortion at check points by the MCS program 

 

Point Distortion (m) 
N7 0.030532957
R5 0.008740674
Y5 0.008160271
P4 0.009515733
A4 0.016913142
E5 0.004675824
B3 0.01980998
S2 0.017392122
A2 0.029476479
L2 0.023046078
F1 0.035859744

Max.distortion 0.035859744
Min.distortion 0.004675824

Average 0.018556637
STDEV 0.010328157
Range 0.03118392

 

The results of this method are given in Appendix (A). 

The contour map of the geoid undulation for Egyptian grids by using MCS 

model is shown in figure (5.19). 
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Figure (5.19) The geoid undulation by using MCS model in two direction 

(geodetic coordinates)  

5.5 The comparison between the used mathematical models 
In this section the comparison between the regression, LSC and MCS models, 

was done to choose the best technique that can be used in Egypt. 

For comparing between those mathematical models, the distortion at check 

points, calculated in the previous sections, are used to obtain the following 

figures. Distortion at check points is shown in figure (5.20), average distortion 
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is shown in figure (5.21) and the standard deviation of the distortion is shown in 

figure (5.22). The value of distortion at check points by Regression is shown in 

table (5.6), LSC technique is shown in table (5.12) and by MCS technique is 

shown in table (5.14). 

 

  

  

 

 

 

 

 

 

 

 

Figure (5.20) The distortion at check points by different mathematical 

models 
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Figure (5.21) The average distortion by different mathematical models 

 

 

 

 

 

 

 

 

 

Figure (5.22) The standard deviation of the distortion by different 

mathematical models 

From the previous tables and figures it is obvious that the MCS model has the 

minimum distortion with high accuracy. This means that the MCS is a best 

model to compute the geoid undulation in Egypt. 
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5.6 Comparisons between EGM96, OSU91A and MCS techniques 

in Egypt 
The known best geoid models in the world are EGM96, as shown in figure 

(3.4), and OSU91A. In this section, comparison between these models and the 

MCS model was done: 

The value of distortion at check points, maximum and minimum distortion, 

average distortion and the standard deviation of distortion by using different 

geoid models are shown in table (5.15). 

Determination the value of distortions at check points as follow: 

- The value of geoid undulation on OSU-91A and the distortion it from the 

actual geoid undulation is shown in (S.Powell, 1997). 

- Calculated the value of the geoid undulation on the EGM96 at check 

points uses the Geomatics program, determining the distortion between it 

and the actual geoid undulation from S.Powell report. 

- Calculated the distortion at check points uses the MCS program as shown 

in Appendix (D). 

Table (5.15) The comparison between different geoid model at check points 

 point OSU-91A EGM-96 MCS 
N7 2.21 0.827 0.030532957 
R5 0.549 0.376 0.008740674 
Y5 0.669 0.561 0.008160271 
P4 0.708 0.928 0.009515733 
A4 0.387 0.581 0.016913142 
E5 0.701 0.149 0.004675824 
B3 0.453 0.05 0.01980998 
S2 0.226 0.322 0.017392122 
A2 0.456 0.024 0.029476479 
L2 0.835 0.278 0.023046078 
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F1 1.068 0.163 0.035859744 
max 2.21 0.928 0.035859744 
min 0.226 0.024 0.004675824 
S.D. 0.535915377 0.3037 0.010328157 

average 0.751090909 0.3872 0.018556637 
 

The distortion at the check points as shown in figure (5.23), the average 

distortion as shown in figure (5.24) and the standard deviation of the distortion 

as shown in figure (5.25). 

 

 

 

 

 

 

 

 

 

 

Figure (5.23) The distortion at check points by different geoid models 
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Figure (5.24) The average distortion by different geoid models 

 

 

 

 

 

 

 

 

 

Figure (5.25) The standard deviation of the distortion by different geoid 

models 

From table (5.15) and those figures, it is obvious that, the MCS technique is the 

best model for Egypt and gives the geoid undulation by high accurate and less 

time and costs.  

5.7 Case study by using MCS model  
A case study of" Naser lack". To verify the MCS model was chosen. The data of 

this region is shown in table (5.16), and available from the NRI, with a 
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comparison of the observed geoid undulation (Nobs) and calculated geoid 

undulation by the MCS technique (NMCS). 

Table (5.16) The comparison between the geoid undulation ( Nobs and NMCS.) 

 

 
As shown table (5.17) the different in the geoid undulation at this zone varied 

between maximum different (0.833 cm) and minimum different (0.798 cm). The 

contour maps of the observed value and calculated value by MCS for the geoid 

undulation and the different between two geoid values are shown in figure 

(5.26). These are drawing by SURFER program with kriging gridding method. 

 Table (5.17) The different at points of case study 

point Distortion 
(m) 

dam13 0.008332526
dam12 0.00830545 
dam11 0.00826787 
dam10 0.008224402

point latitu. longitu. h H Nobs (m) NMCS (m) 
dam13 24.032368 32.863689 131.84 121.2986 10.5414 10.54973253
dam12 24.030022 32.860706 153.51 142.9274 10.5826 10.59090545
dam11 24.025503 32.858181 151.8 141.204 10.596 10.60426787
dam10 24.018234 32.857872 178.13 167.5824 10.5476 10.5558244
dam09  24.014378 32.853733 184.23 173.6234 10.6066 10.61478336
dam08 24.004421 32.852749 186.38 175.8943 10.4857 10.49382128
dam07 23.994453 32.854034 192.19 181.6111 10.5789 10.5869694
dam06 23.989676 32.853607 196.69 186.1762 10.5138 10.52183982
dam04 23.981094 32.853863 200.32 189.8198 10.5002 10.50819131
dam03 23.978214 32.855679 196.4 185.91 10.49 10.49798286
dam02 23.977167 32.860516 197.81 187.2999 10.5101 10.51809869
dam01 23.976591 32.864426 202.73 191.9123 10.8177 10.82571305
dam00 23.970802 32.868248 200.76 190.209 10.551 10.55899684
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dam07 0.0080694 
dam06 0.008039821
dam04 0.007991311
dam03 0.00798286 
dam02 0.007998689
dam01 0.008013049
dam00 0.007996841

Max. dist. 0.008332526
Min. dist. 0.00798286 
average 0.00811745 

S.D. 0.000129723
 

From figure (5.27), it is obvious that, there is a high correlation between geoid 

undulation (Nobs) and (NMCS) where R2=1.00. 
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Figure (5.26) A) a contour map of observed geoid, B) a contour map of MCS 

geoid and C) the difference between A and B.  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure (5.27) The correlation between the observed (Nobs) and the 

calculated (NMCS) geoid undulation 
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Chapter (6) 

CONCLUSIONS AND RECOMMENDATIONS 
6.1 Conclusions 
 
Based on the previous analysis and numerical results obtained in this research, 

the following conclusions can be summarized as follows: 
 
1- The first degree polynomial technique is giving same solution with all trials 

in distortion and standard deviations. 
 
2- The second degree polynomial with geodetic coordinate solution gives a best 

solution. 

3- Distribution obtained using both O1 (predetermined control point in Egypt) 

and the average data points are similar. O1 might be used at the average control 

point for Egypt. 
 
4- Due to higher errors in the vertical coordinates of the ellipsoidal, the 

distortion values were inconsistent. Three dimensions models proved higher 

distortion then two dimension model. So, the two dimension model may be 

more appropriate to be used in distortion evaluation.   
 
5- Among available data and techniques, GPS/Leveling with MCS technique 

might be the most appropriate combination for geoid model precise outputs in 

Egypt.  

6- Geoid undulation average distortion difference between engineering method 

and MCS technique was 1.86 cm (acceptable range: 0.50 – 3.60 cm) with      

1.033 cm standard deviation. 
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7-The LSC technique gives less geoid accurate. Recommend to used MCS or 

polynomial techniques. 
 
8-The MCS technique gives a best geoid undulation beside the EGM96 and 

OSU91 geoid models in Egypt. Recommend to use MCS technique to compute 

the geoid undulation in Egypt. 
 
9-The value of geoid undulation ranges between 10 to 17 m from south to north 

of Egypt. The value of geoid undulation is increase from south to north. 
 
 6.2 Recommendations 
Based on the previous conclusions, some recommendations may be suggested:- 
 
1-The accuracy of the geoid determination in Egypt can be significantly 

improved by making addition geodetic measurements in void area, especially 

the south-west part of the western desert. 
 
2- Other mathematical methods can be used to calculate the geoid. 
 
3- It is highly recommended that the GPS/leveling networks being incorporated 

with gravimetric network and solved by MCS technique, that is give high 

accurate geoid in Egypt and over the world. 
 
4- Modern GPS observations should cover all Egypt area. And new digital maps 

based on new geodetic stations observed by GPS must be achieved, to face the 

disadvantages of geoid determination. 
 
5- To recommend to use the minimum curvature surface model when calculated 

the geoid at any region because it's giving minimum distortion beside other 

models. 
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Latitude Longitude Geoid 
Undulation STDEV 

32 25 1.79775980E+01 4.69861960E-28 
32 25.5 1.79662230E+01 4.69862060E-28 
32 26 1.79548560E+01 4.69862120E-28 
32 26.5 1.79434930E+01 4.69862160E-28 
32 27 1.79321340E+01 4.69862190E-28 
32 27.5 1.79207770E+01 4.69862210E-28 
32 28 1.79094220E+01 4.69862230E-28 
32 28.5 1.78980680E+01 4.69862240E-28 
32 29 1.78867160E+01 4.69862250E-28 
32 29.5 1.78753650E+01 4.69862250E-28 
32 30 1.78640140E+01 4.69862260E-28 
32 30.5 1.78526640E+01 4.69862260E-28 
32 31 1.78413160E+01 4.69862260E-28 
32 31.5 1.78299680E+01 4.69862260E-28 
32 32 1.78186200E+01 4.69862260E-28 
32 32.5 1.78072740E+01 4.69862250E-28 
32 33 1.77959290E+01 4.69862250E-28 
32 33.5 1.77845840E+01 4.69862240E-28 
32 34 1.77732410E+01 4.69862230E-28 
32 34.5 1.77619000E+01 4.69862210E-28 
32 35 1.77505600E+01 4.69862190E-28 
32 35.5 1.77392220E+01 4.69862160E-28 
32 36 1.77278870E+01 4.69862120E-28 
32 36.5 1.77165570E+01 4.69862060E-28 
32 37 1.77052350E+01 4.69861960E-28 

31.5 25 1.75533310E+01 4.69862060E-28 
31.5 25.5 1.75419670E+01 9.39723850E-25 
31.5 26 1.75306030E+01 9.39723860E-25 
31.5 26.5 1.75192410E+01 9.39723860E-25 

31.5 27 1.75078800E+01 9.39723860E-25 
31.5 27.5 1.74965200E+01 9.39723860E-25 
31.5 28 1.74851610E+01 9.39723860E-25 
31.5 28.5 1.74738040E+01 9.39723860E-25 
31.5 29 1.74624470E+01 9.39723860E-25 
31.5 29.5 1.74510910E+01 9.39723860E-25 
31.5 30 1.74397360E+01 9.39723860E-25 
31.5 30.5 1.74283820E+01 9.39723860E-25 
31.5 31 1.74170300E+01 9.39723860E-25 
31.5 31.5 1.74056780E+01 9.39723860E-25 
31.5 32 1.73943280E+01 9.39723860E-25 
31.5 32.5 1.73829790E+01 9.39723860E-25 
31.5 33 1.73716330E+01 9.39723860E-25 
31.5 33.5 1.73602890E+01 9.39723860E-25 
31.5 34 1.73489490E+01 9.39723860E-25 
31.5 34.5 1.73376110E+01 9.39723860E-25 
31.5 35 1.73262770E+01 9.39723860E-25 
31.5 35.5 1.73149460E+01 9.39723860E-25 
31.5 36 1.73036180E+01 9.39723860E-25 
31.5 36.5 1.72922930E+01 9.39723850E-25 
31.5 37 1.72809690E+01 4.69862060E-28 
31 25 1.71290730E+01 4.69862120E-28 
31 25.5 1.71177120E+01 9.39723860E-25 
31 26 1.71063490E+01 9.39723890E-25 
31 26.5 1.70949860E+01 9.39723890E-25 
31 27 1.70836230E+01 9.39723890E-25 
31 27.5 1.70722610E+01 9.39723890E-25 
31 28 1.70608990E+01 9.39723890E-25 
31 28.5 1.70495380E+01 9.39723890E-25 
31 29 1.70381770E+01 9.39723890E-25 
31 29.5 1.70268170E+01 9.39723890E-25 
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31 30 1.70154580E+01 9.39723890E-25 
31 30.5 1.70040990E+01 9.39723890E-25 
31 31 1.69927420E+01 9.39723890E-25 
31 31.5 1.69813870E+01 9.39723890E-25 
31 32 1.69700330E+01 9.39723890E-25 
31 32.5 1.69586820E+01 9.39723890E-25 
31 33 1.69473350E+01 9.39723890E-25 
31 33.5 1.69359920E+01 9.39723890E-25 
31 34 1.69246530E+01 9.39723890E-25 
31 34.5 1.69133190E+01 9.39723890E-25 
31 35 1.69019900E+01 9.39723890E-25 
31 35.5 1.68906660E+01 9.39723890E-25 
31 36 1.68793460E+01 9.39723890E-25 
31 36.5 1.68680280E+01 9.39723860E-25 
31 37 1.68567100E+01 4.69862120E-28 

30.5 25 1.67048190E+01 4.69862160E-28 
30.5 25.5 1.66934580E+01 9.39723860E-25 
30.5 26 1.66820960E+01 9.39723890E-25 
30.5 26.5 1.66707310E+01 9.39723900E-25 
30.5 27 1.66593670E+01 9.39723900E-25 
30.5 27.5 1.66480020E+01 9.39723900E-25 
30.5 28 1.66366370E+01 9.39723900E-25 
30.5 28.5 1.66252720E+01 9.39723900E-25 
30.5 29 1.66139070E+01 9.39723900E-25 
30.5 29.5 1.66025430E+01 9.39723900E-25 
30.5 30 1.65911780E+01 9.39723900E-25 
30.5 30.5 1.65798150E+01 9.39723900E-25 
30.5 31 1.65684530E+01 9.39723900E-25 
30.5 31.5 1.65570930E+01 9.39723900E-25 
30.5 32 1.65457360E+01 9.39723900E-25 
30.5 32.5 1.65343820E+01 9.39723900E-25 

30.5 33 1.65230330E+01 9.39723900E-25 
30.5 33.5 1.65116890E+01 9.39723900E-25 
30.5 34 1.65003520E+01 9.39723900E-25 
30.5 34.5 1.64890220E+01 9.39723900E-25 
30.5 35 1.64776990E+01 9.39723900E-25 
30.5 35.5 1.64663830E+01 9.39723900E-25 
30.5 36 1.64550720E+01 9.39723890E-25 
30.5 36.5 1.64437640E+01 9.39723860E-25 
30.5 37 1.64324570E+01 4.69862160E-28 
30 25 1.62805690E+01 4.69862190E-28 
30 25.5 1.62692070E+01 9.39723860E-25 
30 26 1.62578430E+01 9.39723890E-25 
30 26.5 1.62464770E+01 9.39723900E-25 
30 27 1.62351100E+01 9.39723900E-25 
30 27.5 1.62237430E+01 9.39723910E-25 
30 28 1.62123750E+01 9.39723910E-25 
30 28.5 1.62010060E+01 9.39723910E-25 
30 29 1.61896370E+01 9.39723910E-25 
30 29.5 1.61782670E+01 9.39723910E-25 
30 30 1.61668980E+01 9.39723910E-25 
30 30.5 1.61555300E+01 9.39723910E-25 
30 31 1.61441620E+01 9.39723910E-25 
30 31.5 1.61327970E+01 9.39723910E-25 
30 32 1.61214350E+01 9.39723910E-25 
30 32.5 1.61100770E+01 9.39723910E-25 
30 33 1.60987250E+01 9.39723910E-25 
30 33.5 1.60873810E+01 9.39723910E-25 
30 34 1.60760450E+01 9.39723910E-25 
30 34.5 1.60647180E+01 9.39723910E-25 
30 35 1.60534010E+01 9.39723900E-25 
30 35.5 1.60420940E+01 9.39723900E-25 
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30 36 1.60307950E+01 9.39723890E-25 
30 36.5 1.60195000E+01 9.39723860E-25 
30 37 1.60082070E+01 4.69862190E-28 

29.5 25 1.58563220E+01 4.69862210E-28 
29.5 25.5 1.58449580E+01 9.39723860E-25 
29.5 26 1.58335920E+01 9.39723890E-25 
29.5 26.5 1.58222240E+01 9.39723900E-25 
29.5 27 1.58108550E+01 9.39723910E-25 
29.5 27.5 1.57994840E+01 9.39723910E-25 
29.5 28 1.57881130E+01 9.39723910E-25 
29.5 28.5 1.57767400E+01 9.39723910E-25 
29.5 29 1.57653660E+01 9.39723910E-25 
29.5 29.5 1.57539920E+01 9.39723910E-25 
29.5 30 1.57426170E+01 9.39723910E-25 
29.5 30.5 1.57312430E+01 9.39723910E-25 
29.5 31 1.57198690E+01 9.39723910E-25 
29.5 31.5 1.57084970E+01 9.39723910E-25 
29.5 32 1.56971290E+01 9.39723910E-25 
29.5 32.5 1.56857660E+01 9.39723910E-25 
29.5 33 1.56744100E+01 9.39723910E-25 
29.5 33.5 1.56630630E+01 9.39723910E-25 
29.5 34 1.56517270E+01 9.39723910E-25 
29.5 34.5 1.56404040E+01 9.39723910E-25 
29.5 35 1.56290940E+01 9.39723910E-25 
29.5 35.5 1.56177980E+01 9.39723900E-25 
29.5 36 1.56065120E+01 9.39723890E-25 
29.5 36.5 1.55952340E+01 9.39723860E-25 
29.5 37 1.55839600E+01 4.69862210E-28 
29 25 1.54320770E+01 4.69862230E-28 
29 25.5 1.54207110E+01 9.39723860E-25 
29 26 1.54093420E+01 9.39723890E-25 

29 26.5 1.53979720E+01 9.39723900E-25 
29 27 1.53866010E+01 9.39723910E-25 
29 27.5 1.53752270E+01 9.39723910E-25 
29 28 1.53638520E+01 9.39723910E-25 
29 28.5 1.53524750E+01 9.39723910E-25 
29 29 1.53410970E+01 9.39723910E-25 
29 29.5 1.53297170E+01 9.39723910E-25 
29 30 1.53183360E+01 9.39723910E-25 
29 30.5 1.53069550E+01 9.39723910E-25 
29 31 1.52955740E+01 9.39723910E-25 
29 31.5 1.52841950E+01 9.39723910E-25 
29 32 1.52728190E+01 9.39723910E-25 
29 32.5 1.52614480E+01 9.39723910E-25 
29 33 1.52500860E+01 9.39723910E-25 
29 33.5 1.52387350E+01 9.39723910E-25 
29 34 1.52273970E+01 9.39723910E-25 
29 34.5 1.52160770E+01 9.39723910E-25 
29 35 1.52047740E+01 9.39723910E-25 
29 35.5 1.51934900E+01 9.39723900E-25 
29 36 1.51822220E+01 9.39723890E-25 
29 36.5 1.51709660E+01 9.39723860E-25 
29 37 1.51597150E+01 4.69862230E-28 

28.5 25 1.50078340E+01 4.69862240E-28 
28.5 25.5 1.49964650E+01 9.39723860E-25 
28.5 26 1.49850950E+01 9.39723890E-25 
28.5 26.5 1.49737220E+01 9.39723900E-25 
28.5 27 1.49623480E+01 9.39723910E-25 
28.5 27.5 1.49509720E+01 9.39723910E-25 
28.5 28 1.49395930E+01 9.39723910E-25 
28.5 28.5 1.49282120E+01 9.39723910E-25 
28.5 29 1.49168290E+01 9.39723910E-25 
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28.5 29.5 1.49054430E+01 9.39723910E-25 
28.5 30 1.48940560E+01 9.39723910E-25 
28.5 30.5 1.48826670E+01 9.39723910E-25 
28.5 31 1.48712770E+01 9.39723910E-25 
28.5 31.5 1.48598880E+01 9.39723910E-25 
28.5 32 1.48485030E+01 9.39723910E-25 
28.5 32.5 1.48371220E+01 9.39723910E-25 
28.5 33 1.48257510E+01 9.39723910E-25 
28.5 33.5 1.48143920E+01 9.39723910E-25 
28.5 34 1.48030510E+01 9.39723910E-25 
28.5 34.5 1.47917310E+01 9.39723910E-25 
28.5 35 1.47804360E+01 9.39723910E-25 
28.5 35.5 1.47691660E+01 9.39723900E-25 
28.5 36 1.47579190E+01 9.39723890E-25 
28.5 36.5 1.47466910E+01 9.39723860E-25 
28.5 37 1.47354720E+01 4.69862240E-28 
28 25 1.45835920E+01 4.69862240E-28 
28 25.5 1.45722210E+01 9.39723860E-25 
28 26 1.45608490E+01 9.39723890E-25 
28 26.5 1.45494740E+01 9.39723900E-25 
28 27 1.45380970E+01 9.39723910E-25 
28 27.5 1.45267180E+01 9.39723910E-25 
28 28 1.45153360E+01 9.39723910E-25 
28 28.5 1.45039510E+01 9.39723910E-25 
28 29 1.44925630E+01 9.39723910E-25 
28 29.5 1.44811710E+01 9.39723910E-25 
28 30 1.44697770E+01 9.39723910E-25 
28 30.5 1.44583790E+01 9.39723910E-25 
28 31 1.44469790E+01 9.39723910E-25 
28 31.5 1.44355790E+01 9.39723910E-25 
28 32 1.44241810E+01 9.39723910E-25 

28 32.5 1.44127870E+01 9.39723910E-25 
28 33 1.44014030E+01 9.39723910E-25 
28 33.5 1.43900330E+01 9.39723910E-25 
28 34 1.43786830E+01 9.39723910E-25 
28 34.5 1.43673610E+01 9.39723910E-25 
28 35 1.43560720E+01 9.39723910E-25 
28 35.5 1.43448180E+01 9.39723900E-25 
28 36 1.43335990E+01 9.39723890E-25 
28 36.5 1.43224070E+01 9.39723860E-25 
28 37 1.43112300E+01 4.69862240E-28 

27.5 25 1.41593520E+01 4.69862250E-28 
27.5 25.5 1.41479790E+01 9.39723860E-25 
27.5 26 1.41366050E+01 9.39723890E-25 
27.5 26.5 1.41252280E+01 9.39723900E-25 
27.5 27 1.41138490E+01 9.39723910E-25 
27.5 27.5 1.41024680E+01 9.39723910E-25 
27.5 28 1.40910820E+01 9.39723910E-25 
27.5 28.5 1.40796930E+01 9.39723910E-25 
27.5 29 1.40683000E+01 9.39723910E-25 
27.5 29.5 1.40569030E+01 9.39723910E-25 
27.5 30 1.40455000E+01 9.39723910E-25 
27.5 30.5 1.40340930E+01 9.39723910E-25 
27.5 31 1.40226820E+01 9.39723910E-25 
27.5 31.5 1.40112690E+01 9.39723910E-25 
27.5 32 1.39998550E+01 9.39723910E-25 
27.5 32.5 1.39884430E+01 9.39723910E-25 
27.5 33 1.39770400E+01 9.39723910E-25 
27.5 33.5 1.39656520E+01 9.39723910E-25 
27.5 34 1.39542880E+01 9.39723910E-25 
27.5 34.5 1.39429580E+01 9.39723910E-25 
27.5 35 1.39316720E+01 9.39723910E-25 
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27.5 35.5 1.39204360E+01 9.39723900E-25 
27.5 36 1.39092510E+01 9.39723890E-25 
27.5 36.5 1.38981090E+01 9.39723860E-25 
27.5 37 1.38869900E+01 4.69862250E-28 
27 25 1.37351130E+01 4.69862250E-28 
27 25.5 1.37237390E+01 9.39723860E-25 
27 26 1.37123630E+01 9.39723890E-25 
27 26.5 1.37009850E+01 9.39723900E-25 
27 27 1.36896040E+01 9.39723910E-25 
27 27.5 1.36782200E+01 9.39723910E-25 
27 28 1.36668320E+01 9.39723910E-25 
27 28.5 1.36554400E+01 9.39723910E-25 
27 29 1.36440420E+01 9.39723910E-25 
27 29.5 1.36326390E+01 9.39723910E-25 
27 30 1.36212280E+01 9.39723910E-25 
27 30.5 1.36098120E+01 9.39723910E-25 
27 31 1.35983880E+01 9.39723910E-25 
27 31.5 1.35869590E+01 9.39723910E-25 
27 32 1.35755250E+01 9.39723910E-25 
27 32.5 1.35640910E+01 9.39723910E-25 
27 33 1.35526630E+01 9.39723910E-25 
27 33.5 1.35412480E+01 9.39723910E-25 
27 34 1.35298590E+01 9.39723910E-25 
27 34.5 1.35185120E+01 9.39723910E-25 
27 35 1.35072220E+01 9.39723910E-25 
27 35.5 1.34960030E+01 9.39723900E-25 
27 36 1.34848610E+01 9.39723890E-25 
27 36.5 1.34737860E+01 9.39723860E-25 
27 37 1.34627500E+01 4.69862250E-28 

26.5 25 1.33108750E+01 4.69862250E-28 
26.5 25.5 1.32995000E+01 9.39723860E-25 

26.5 26 1.32881230E+01 9.39723890E-25 
26.5 26.5 1.32767440E+01 9.39723900E-25 
26.5 27 1.32653630E+01 9.39723910E-25 
26.5 27.5 1.32539770E+01 9.39723910E-25 
26.5 28 1.32425870E+01 9.39723910E-25 
26.5 28.5 1.32311920E+01 9.39723910E-25 
26.5 29 1.32197900E+01 9.39723910E-25 
26.5 29.5 1.32083810E+01 9.39723910E-25 
26.5 30 1.31969630E+01 9.39723910E-25 
26.5 30.5 1.31855370E+01 9.39723910E-25 
26.5 31 1.31741000E+01 9.39723910E-25 
26.5 31.5 1.31626530E+01 9.39723910E-25 
26.5 32 1.31511960E+01 9.39723910E-25 
26.5 32.5 1.31397340E+01 9.39723910E-25 
26.5 33 1.31282710E+01 9.39723910E-25 
26.5 33.5 1.31168170E+01 9.39723910E-25 
26.5 34 1.31053890E+01 9.39723910E-25 
26.5 34.5 1.30940080E+01 9.39723910E-25 
26.5 35 1.30827010E+01 9.39723910E-25 
26.5 35.5 1.30714940E+01 9.39723900E-25 
26.5 36 1.30604040E+01 9.39723890E-25 
26.5 36.5 1.30494240E+01 9.39723860E-25 
26.5 37 1.30385120E+01 4.69862250E-28 
26 25 1.28866380E+01 4.69862240E-28 
26 25.5 1.28752630E+01 9.39723860E-25 
26 26 1.28638860E+01 9.39723890E-25 
26 26.5 1.28525070E+01 9.39723900E-25 
26 27 1.28411250E+01 9.39723910E-25 
26 27.5 1.28297380E+01 9.39723910E-25 
26 28 1.28183470E+01 9.39723910E-25 
26 28.5 1.28069500E+01 9.39723910E-25 
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26 29 1.27955450E+01 9.39723910E-25 
26 29.5 1.27841320E+01 9.39723910E-25 
26 30 1.27727080E+01 9.39723910E-25 
26 30.5 1.27612720E+01 9.39723910E-25 
26 31 1.27498210E+01 9.39723910E-25 
26 31.5 1.27383560E+01 9.39723910E-25 
26 32 1.27268740E+01 9.39723910E-25 
26 32.5 1.27153770E+01 9.39723910E-25 
26 33 1.27038700E+01 9.39723910E-25 
26 33.5 1.26923620E+01 9.39723910E-25 
26 34 1.26808720E+01 9.39723910E-25 
26 34.5 1.26694310E+01 9.39723910E-25 
26 35 1.26580790E+01 9.39723910E-25 
26 35.5 1.26468670E+01 9.39723900E-25 
26 36 1.26358370E+01 9.39723890E-25 
26 36.5 1.26249940E+01 9.39723860E-25 
26 37 1.26142760E+01 4.69862240E-28 

25.5 25 1.24624020E+01 4.69862240E-28 
25.5 25.5 1.24510270E+01 9.39723860E-25 
25.5 26 1.24396510E+01 9.39723890E-25 
25.5 26.5 1.24282720E+01 9.39723900E-25 
25.5 27 1.24168900E+01 9.39723910E-25 
25.5 27.5 1.24055040E+01 9.39723910E-25 
25.5 28 1.23941130E+01 9.39723910E-25 
25.5 28.5 1.23827150E+01 9.39723910E-25 
25.5 29 1.23713090E+01 9.39723910E-25 
25.5 29.5 1.23598930E+01 9.39723910E-25 
25.5 30 1.23484650E+01 9.39723910E-25 
25.5 30.5 1.23370210E+01 9.39723910E-25 
25.5 31 1.23255590E+01 9.39723910E-25 
25.5 31.5 1.23140750E+01 9.39723910E-25 

25.5 32 1.23025660E+01 9.39723910E-25 
25.5 32.5 1.22910300E+01 9.39723910E-25 
25.5 33 1.22794690E+01 9.39723910E-25 
25.5 33.5 1.22678880E+01 9.39723910E-25 
25.5 34 1.22563070E+01 9.39723910E-25 
25.5 34.5 1.22447630E+01 9.39723910E-25 
25.5 35 1.22333170E+01 9.39723910E-25 
25.5 35.5 1.22220590E+01 9.39723900E-25 
25.5 36 1.22110840E+01 9.39723890E-25 
25.5 36.5 1.22004390E+01 9.39723860E-25 
25.5 37 1.21900400E+01 4.69862240E-28 
25 25 1.20381670E+01 4.69862230E-28 
25 25.5 1.20267940E+01 9.39723860E-25 
25 26 1.20154190E+01 9.39723890E-25 
25 26.5 1.20040410E+01 9.39723900E-25 
25 27 1.19926600E+01 9.39723910E-25 
25 27.5 1.19812760E+01 9.39723910E-25 
25 28 1.19698850E+01 9.39723910E-25 
25 28.5 1.19584890E+01 9.39723910E-25 
25 29 1.19470830E+01 9.39723910E-25 
25 29.5 1.19356670E+01 9.39723910E-25 
25 30 1.19242360E+01 9.39723910E-25 
25 30.5 1.19127880E+01 9.39723910E-25 
25 31 1.19013180E+01 9.39723910E-25 
25 31.5 1.18898190E+01 9.39723910E-25 
25 32 1.18782850E+01 9.39723910E-25 
25 32.5 1.18667100E+01 9.39723910E-25 
25 33 1.18550870E+01 9.39723910E-25 
25 33.5 1.18434150E+01 9.39723910E-25 
25 34 1.18317050E+01 9.39723910E-25 
25 34.5 1.18199960E+01 9.39723910E-25 



 
 

 (149)

25 35 1.18083680E+01 9.39723910E-25 
25 35.5 1.17969680E+01 9.39723900E-25 
25 36 1.17860000E+01 9.39723890E-25 
25 36.5 1.17756390E+01 9.39723860E-25 
25 37 1.17658050E+01 4.69862230E-28 

24.5 25 1.16139340E+01 4.69862210E-28 
24.5 25.5 1.16025620E+01 9.39723860E-25 
24.5 26 1.15911890E+01 9.39723890E-25 
24.5 26.5 1.15798130E+01 9.39723900E-25 
24.5 27 1.15684350E+01 9.39723910E-25 
24.5 27.5 1.15570520E+01 9.39723910E-25 
24.5 28 1.15456650E+01 9.39723910E-25 
24.5 28.5 1.15342710E+01 9.39723910E-25 
24.5 29 1.15228680E+01 9.39723910E-25 
24.5 29.5 1.15114540E+01 9.39723910E-25 
24.5 30 1.15000260E+01 9.39723910E-25 
24.5 30.5 1.14885780E+01 9.39723910E-25 
24.5 31 1.14771050E+01 9.39723910E-25 
24.5 31.5 1.14655980E+01 9.39723910E-25 
24.5 32 1.14540470E+01 9.39723910E-25 
24.5 32.5 1.14424370E+01 9.39723910E-25 
24.5 33 1.14307530E+01 9.39723910E-25 
24.5 33.5 1.14189780E+01 9.39723910E-25 
24.5 34 1.14071040E+01 9.39723910E-25 
24.5 34.5 1.13951480E+01 9.39723910E-25 
24.5 35 1.13831910E+01 9.39723910E-25 
24.5 35.5 1.13714450E+01 9.39723900E-25 
24.5 36 1.13603100E+01 9.39723890E-25 
24.5 36.5 1.13503100E+01 9.39723860E-25 
24.5 37 1.13415710E+01 4.69862210E-28 
24 25 1.11897010E+01 4.69862190E-28 

24 25.5 1.11783320E+01 9.39723860E-25 
24 26 1.11669610E+01 9.39723890E-25 
24 26.5 1.11555880E+01 9.39723900E-25 
24 27 1.11442130E+01 9.39723900E-25 
24 27.5 1.11328340E+01 9.39723910E-25 
24 28 1.11214510E+01 9.39723910E-25 
24 28.5 1.11100610E+01 9.39723910E-25 
24 29 1.10986640E+01 9.39723910E-25 
24 29.5 1.10872570E+01 9.39723910E-25 
24 30 1.10758350E+01 9.39723910E-25 
24 30.5 1.10643940E+01 9.39723910E-25 
24 31 1.10529260E+01 9.39723910E-25 
24 31.5 1.10414220E+01 9.39723910E-25 
24 32 1.10298660E+01 9.39723910E-25 
24 32.5 1.10182390E+01 9.39723910E-25 
24 33 1.10065100E+01 9.39723910E-25 
24 33.5 1.09946410E+01 9.39723910E-25 
24 34 1.09825850E+01 9.39723910E-25 
24 34.5 1.09703000E+01 9.39723910E-25 
24 35 1.09578050E+01 9.39723900E-25 
24 35.5 1.09453100E+01 9.39723900E-25 
24 36 1.09334840E+01 9.39723890E-25 
24 36.5 1.09237210E+01 9.39723860E-25 
24 37 1.09173390E+01 4.69862190E-28 

23.5 25 1.07654700E+01 4.69862160E-28 
23.5 25.5 1.07541040E+01 9.39723860E-25 
23.5 26 1.07427360E+01 9.39723890E-25 
23.5 26.5 1.07313660E+01 9.39723900E-25 
23.5 27 1.07199940E+01 9.39723900E-25 
23.5 27.5 1.07086200E+01 9.39723900E-25 
23.5 28 1.06972420E+01 9.39723900E-25 



 
 

 (150)

23.5 28.5 1.06858600E+01 9.39723900E-25 
23.5 29 1.06744710E+01 9.39723900E-25 
23.5 29.5 1.06630730E+01 9.39723900E-25 
23.5 30 1.06516630E+01 9.39723900E-25 
23.5 30.5 1.06402360E+01 9.39723900E-25 
23.5 31 1.06287840E+01 9.39723900E-25 
23.5 31.5 1.06172970E+01 9.39723900E-25 
23.5 32 1.06057580E+01 9.39723900E-25 
23.5 32.5 1.05941420E+01 9.39723900E-25 
23.5 33 1.05824080E+01 9.39723900E-25 
23.5 33.5 1.05704920E+01 9.39723900E-25 
23.5 34 1.05582930E+01 9.39723900E-25 
23.5 34.5 1.05456620E+01 9.39723900E-25 
23.5 35 1.05324190E+01 9.39723900E-25 
23.5 35.5 1.05185070E+01 9.39723900E-25 
23.5 36 1.05045950E+01 9.39723890E-25 
23.5 36.5 1.04937500E+01 9.39723860E-25 
23.5 37 1.04931080E+01 4.69862160E-28 
23 25 1.03412420E+01 4.69862120E-28 
23 25.5 1.03298770E+01 9.39723860E-25 
23 26 1.03185120E+01 9.39723890E-25 
23 26.5 1.03071450E+01 9.39723890E-25 
23 27 1.02957780E+01 9.39723890E-25 
23 27.5 1.02844090E+01 9.39723890E-25 
23 28 1.02730390E+01 9.39723890E-25 
23 28.5 1.02616650E+01 9.39723890E-25 
23 29 1.02502870E+01 9.39723890E-25 
23 29.5 1.02389020E+01 9.39723890E-25 
23 30 1.02275090E+01 9.39723890E-25 
23 30.5 1.02161020E+01 9.39723890E-25 
23 31 1.02046770E+01 9.39723890E-25 

23 31.5 1.01932230E+01 9.39723890E-25 
23 32 1.01817260E+01 9.39723890E-25 
23 32.5 1.01701620E+01 9.39723890E-25 
23 33 1.01584880E+01 9.39723890E-25 
23 33.5 1.01466260E+01 9.39723890E-25 
23 34 1.01344340E+01 9.39723890E-25 
23 34.5 1.01216350E+01 9.39723890E-25 
23 35 1.01077010E+01 9.39723890E-25 
23 35.5 1.00917030E+01 9.39723890E-25 
23 36 1.00726390E+01 9.39723890E-25 
23 36.5 1.00535750E+01 9.39723860E-25 
23 37 1.00688790E+01 4.69862120E-28 

22.5 25 9.91701530E+00 4.69862060E-28 
22.5 25.5 9.90565190E+00 9.39723850E-25 
22.5 26 9.89428840E+00 9.39723860E-25 
22.5 26.5 9.88292550E+00 9.39723860E-25 
22.5 27 9.87156320E+00 9.39723860E-25 
22.5 27.5 9.86020090E+00 9.39723860E-25 
22.5 28 9.84883820E+00 9.39723860E-25 
22.5 28.5 9.83747440E+00 9.39723860E-25 
22.5 29 9.82610880E+00 9.39723860E-25 
22.5 29.5 9.81474030E+00 9.39723860E-25 
22.5 30 9.80336720E+00 9.39723860E-25 
22.5 30.5 9.79198750E+00 9.39723860E-25 
22.5 31 9.78059770E+00 9.39723860E-25 
22.5 31.5 9.76919240E+00 9.39723860E-25 
22.5 32 9.75776270E+00 9.39723860E-25 
22.5 32.5 9.74629300E+00 9.39723860E-25 
22.5 33 9.73475460E+00 9.39723860E-25 
22.5 33.5 9.72309120E+00 9.39723860E-25 
22.5 34 9.71118200E+00 9.39723860E-25 



 
 

 (151)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22.5 34.5 9.69874480E+00 9.39723860E-25 
22.5 35 9.68504650E+00 9.39723860E-25 
22.5 35.5 9.66796680E+00 9.39723860E-25 
22.5 36 9.64068350E+00 9.39723860E-25 
22.5 36.5 9.57903200E+00 9.39723850E-25 
22.5 37 9.39010850E+00 4.69862060E-28 
22 25 9.49279330E+00 4.69861960E-28 
22 25.5 9.48142660E+00 4.69862060E-28 
22 26 9.47006450E+00 4.69862120E-28 
22 26.5 9.45870540E+00 4.69862160E-28 
22 27 9.44734830E+00 4.69862190E-28 
22 27.5 9.43599280E+00 4.69862210E-28 
22 28 9.42463870E+00 4.69862230E-28 
22 28.5 9.41328580E+00 4.69862240E-28 
22 29 9.40193380E+00 4.69862250E-28 
22 29.5 9.39058270E+00 4.69862250E-28 
22 30 9.37923250E+00 4.69862260E-28 
22 30.5 9.36788300E+00 4.69862260E-28 
22 31 9.35653420E+00 4.69862260E-28 
22 31.5 9.34518620E+00 4.69862260E-28 
22 32 9.33383890E+00 4.69862260E-28 
22 32.5 9.32249230E+00 4.69862250E-28 
22 33 9.31114660E+00 4.69862250E-28 
22 33.5 9.29980170E+00 4.69862240E-28 
22 34 9.28845780E+00 4.69862230E-28 
22 34.5 9.27711510E+00 4.69862210E-28 
22 35 9.26577360E+00 4.69862190E-28 
22 35.5 9.25443370E+00 4.69862160E-28 
22 36 9.24309590E+00 4.69862120E-28 
22 36.5 9.23176090E+00 4.69862060E-28 
22 37 9.22043030E+00 4.69861960E-28 



 
 

 (152)

Latitude Longitude Geoid 
Undulation 

32 25 19.51088754
32 25.5 18.98094712
32 26 18.50935236
32 26.5 18.09610327
32 27 17.74119984
32 27.5 17.44464209
32 28 17.20643 
32 28.5 17.02656357
32 29 16.90504282
32 29.5 16.84186773
32 30 16.8370383 
32 30.5 16.89055455
32 31 17.00241646
32 31.5 17.17262403
32 32 17.40117728
32 32.5 17.68807619
32 33 18.03332077
32 33.5 18.43691101
32 34 18.89884692
32 34.5 19.4191285 
32 35 19.99775575
32 35.5 20.63472866
32 36 21.33004724
32 36.5 22.08371148
32 37 22.89572139

31.5 25 19.3534139 
31.5 25.5 18.79975189
31.5 26 18.30443554
31.5 26.5 17.86746486



 
 

 (153)

31.5 27 17.48883984
31.5 27.5 17.16856049
31.5 28 16.90662681
31.5 28.5 16.70303879
31.5 29 16.55779645
31.5 29.5 16.47089976
31.5 30 16.44234875
31.5 30.5 16.4721434 
31.5 31 16.56028372
31.5 31.5 16.70676971
31.5 32 16.91160136
31.5 32.5 17.17477868
31.5 33 17.49630166
31.5 33.5 17.87617032
31.5 34 18.31438464
31.5 34.5 18.81094462
31.5 35 19.36585028
31.5 35.5 19.9791016 
31.5 36 20.65069858
31.5 36.5 21.38064124
31.5 37 22.16892956
31 25 19.20543951
31 25.5 18.6280559 
31 26 18.10901796
31 26.5 17.64832568
31 27 17.24597908
31 27.5 16.90197814
31 28 16.61632286
31 28.5 16.38901326
31 29 16.22004932
31 29.5 16.10943104



 
 

 (154)

31 30 16.05715844
31 30.5 16.0632315 
31 31 16.12765022
31 31.5 16.25041462
31 32 16.43152468
31 32.5 16.67098041
31 33 16.9687818 
31 33.5 17.32492886
31 34 17.73942159
31 34.5 18.21225999
31 35 18.74344405
31 35.5 19.33297378
31 36 19.98084917
31 36.5 20.68707024
31 37 21.45163697

30.5 25 19.06696435
30.5 25.5 18.46585915
30.5 26 17.92309962
30.5 26.5 17.43868575
30.5 27 17.01261755
30.5 27.5 16.64489502
30.5 28 16.33551816
30.5 28.5 16.08448696
30.5 29 15.89180143
30.5 29.5 15.75746156
30.5 30 15.68146736
30.5 30.5 15.66381883
30.5 31 15.70451597
30.5 31.5 15.80355877
30.5 32 15.96094724
30.5 32.5 16.17668138



 
 

 (155)

30.5 33 16.45076118
30.5 33.5 16.78318665
30.5 34 17.17395779
30.5 34.5 17.62307459
30.5 35 18.13053706
30.5 35.5 18.6963452 
30.5 36 19.320499 
30.5 36.5 20.00299847
30.5 37 20.74384361
30 25 18.93798843
30 25.5 18.31316164
30 26 17.74668052
30 26.5 17.23854506
30 27 16.78875527
30 27.5 16.39731115
30 28 16.06421269
30 28.5 15.7894599 
30 29 15.57305278
30 29.5 15.41499132
30 30 15.31527553
30 30.5 15.27390541
30 31 15.29088095
30 31.5 15.36620217
30 32 15.49986904
30 32.5 15.69188159
30 33 15.9422398 
30 33.5 16.25094368
30 34 16.61799322
30 34.5 17.04338844
30 35 17.52712931
30 35.5 18.06921586



 
 

 (156)

30 36 18.66964807
30 36.5 19.32842595
30 37 20.0455495 

29.5 25 18.81851176
29.5 25.5 18.16996338
29.5 26 17.57976066
29.5 26.5 17.04790361
29.5 27 16.57439223
29.5 27.5 16.15922651
29.5 28 15.80240647
29.5 28.5 15.50393208
29.5 29 15.26380337
29.5 29.5 15.08202032
29.5 30 14.95858294
29.5 30.5 14.89349123
29.5 31 14.88674518
29.5 31.5 14.9383448 
29.5 32 15.04829009
29.5 32.5 15.21658104
29.5 33 15.44321766
29.5 33.5 15.72819995
29.5 34 16.0715279 
29.5 34.5 16.47320152
29.5 35 16.93322081
29.5 35.5 17.45158576
29.5 36 18.02829638
29.5 36.5 18.66335267
29.5 37 19.35675463
29 25 18.70853432
29 25.5 18.03626435
29 26 17.42234004



 
 

 (157)

29 26.5 16.8667614 
29 27 16.36952843
29 27.5 15.93064112
29 28 15.55009948
29 28.5 15.22790351
29 29 14.9640532 
29 29.5 14.75854856
29 30 14.61138959
29 30.5 14.52257629
29 31 14.49210865
29 31.5 14.51998668
29 32 14.60621037
29 32.5 14.75077973
29 33 14.95369476
29 33.5 15.21495546
29 34 15.53456182
29 34.5 15.91251385
29 35 16.34881154
29 35.5 16.84345491
29 36 17.39644394
29 36.5 18.00777863
29 37 18.67745899

28.5 25 18.60805613
28.5 25.5 17.91206456
28.5 26 17.27441866
28.5 26.5 16.69511843
28.5 27 16.17416387
28.5 27.5 15.71155497
28.5 28 15.30729174
28.5 28.5 14.96137417
28.5 29 14.67380228



 
 

 (158)

28.5 29.5 14.44457605
28.5 30 14.27369548
28.5 30.5 14.16116058
28.5 31 14.10697135
28.5 31.5 14.11112779
28.5 32 14.17362989
28.5 32.5 14.29447766
28.5 33 14.4736711 
28.5 33.5 14.71121021
28.5 34 15.00709498
28.5 34.5 15.36132541
28.5 35 15.77390152
28.5 35.5 16.24482329
28.5 36 16.77409073
28.5 36.5 17.36170383
28.5 37 18.0076626 
28 25 18.51707717
28 25.5 17.79736402
28 26 17.13599653
28 26.5 16.5329747 
28 27 15.98829855
28 27.5 15.50196806
28 28 15.07398324
28 28.5 14.70434408
28 29 14.39305059
28 29.5 14.14010277
28 30 13.94550061
28 30.5 13.80924412
28 31 13.7313333 
28 31.5 13.71176815
28 32 13.75054866



 
 

 (159)

28 32.5 13.84767484
28 33 14.00314668
28 33.5 14.2169642 
28 34 14.48912738
28 34.5 14.81963622
28 35 15.20849073
28 35.5 15.65569091
28 36 16.16123676
28 36.5 16.72512827
28 37 17.34736545

27.5 25 18.43559746
27.5 25.5 17.69216271
27.5 26 17.00707363
27.5 26.5 16.38033022
27.5 27 15.81193247
27.5 27.5 15.30188039
27.5 28 14.85017397
27.5 28.5 14.45681323
27.5 29 14.12179815
27.5 29.5 13.84512873
27.5 30 13.62680498
27.5 30.5 13.4668269 
27.5 31 13.36519449
27.5 31.5 13.32190774
27.5 32 13.33696667
27.5 32.5 13.41037125
27.5 33 13.54212151
27.5 33.5 13.73221743
27.5 34 13.98065902
27.5 34.5 14.28744627
27.5 35 14.65257919



 
 

 (160)

27.5 35.5 15.07605778
27.5 36 15.55788203
27.5 36.5 16.09805196
27.5 37 16.69656754
27 25 18.36361699
27 25.5 17.59646065
27 26 16.88764998
27 26.5 16.23718497
27 27 15.64506563
27 27.5 15.11129196
27 28 14.63586395
27 28.5 14.21878161
27 29 13.86004494
27 29.5 13.55965394
27 30 13.3176086 
27 30.5 13.13390893
27 31 13.00855492
27 31.5 12.94154658
27 32 12.93288391
27 32.5 12.98256691
27 33 13.09059557
27 33.5 13.2569699 
27 34 13.4816899 
27 34.5 13.76475556
27 35 14.10616689
27 35.5 14.50592388
27 36 14.96402655
27 36.5 15.48047488
27 37 16.05526888

26.5 25 18.30113576
26.5 25.5 17.51025783



 
 

 (161)

26.5 26 16.77772556
26.5 26.5 16.10353896
26.5 27 15.48769803
26.5 27.5 14.93020277
26.5 28 14.43105317
26.5 28.5 13.99024924
26.5 29 13.60779098
26.5 29.5 13.28367838
26.5 30 13.01791145
26.5 30.5 12.81049019
26.5 31 12.66141459
26.5 31.5 12.57068466
26.5 32 12.5383004 
26.5 32.5 12.5642618 
26.5 33 12.64856887
26.5 33.5 12.79122161
26.5 34 12.99222002
26.5 34.5 13.25156409
26.5 35 13.56925383
26.5 35.5 13.94528923
26.5 36 14.3796703 
26.5 36.5 14.87239704
26.5 37 15.42346945
26 25 18.24815377
26 25.5 17.43355424
26 26 16.67730039
26 26.5 15.9793922 
26 27 15.33982968
26 27.5 14.75861282
26 28 14.23574163
26 28.5 13.77121611



 
 

 (162)

26 29 13.36503625
26 29.5 13.01720207
26 30 12.72771354
26 30.5 12.49657069
26 31 12.3237735 
26 31.5 12.20932198
26 32 12.15321613
26 32.5 12.15545594
26 33 12.21604142
26 33.5 12.33497256
26 34 12.51224938
26 34.5 12.74787186
26 35 13.04184 
26 35.5 13.39415382
26 36 13.8048133 
26 36.5 14.27381845
26 37 14.80116926

25.5 25 18.20467102
25.5 25.5 17.3663499 
25.5 26 16.58637445
25.5 26.5 15.86474467
25.5 27 15.20146056
25.5 27.5 14.59652211
25.5 28 14.04992933
25.5 28.5 13.56168222
25.5 29 13.13178077
25.5 29.5 12.76022499
25.5 30 12.44701488
25.5 30.5 12.19215043
25.5 31 11.99563165
25.5 31.5 11.85745854



 
 

 (163)

25.5 32 11.77763109
25.5 32.5 11.75614932
25.5 33 11.7930132 
25.5 33.5 11.88822276
25.5 34 12.04177798
25.5 34.5 12.25367887
25.5 35 12.52392542
25.5 35.5 12.85251765
25.5 36 13.23945553
25.5 36.5 13.68473909
25.5 37 14.18836831
25 25 18.17068751
25 25.5 17.3086448 
25 26 16.50494776
25 26.5 15.75959639
25 27 15.07259068
25 27.5 14.44393064
25 28 13.87361627
25 28.5 13.36164757
25 29 12.90802453
25 29.5 12.51274716
25 30 12.17581545
25 30.5 11.89722942
25 31 11.67698905
25 31.5 11.51509434
25 32 11.4115453 
25 32.5 11.36634193
25 33 11.37948423
25 33.5 11.45097219
25 34 11.58080582
25 34.5 11.76898512



 
 

 (164)

25 35 12.01551008
25 35.5 12.32038071
25 36 12.68359701
25 36.5 13.10515898
25 37 13.58506661

24.5 25 18.14620324
24.5 25.5 17.26043894
24.5 26 16.43302031
24.5 26.5 15.66394735
24.5 27 14.95322005
24.5 27.5 14.30083842
24.5 28 13.70680245
24.5 28.5 13.17111216
24.5 29 12.69376753
24.5 29.5 12.27476857
24.5 30 11.91411527
24.5 30.5 11.61180764
24.5 31 11.36784568
24.5 31.5 11.18222938
24.5 32 11.05495875
24.5 32.5 10.98603379
24.5 33 10.9754545 
24.5 33.5 11.02322087
24.5 34 11.12933291
24.5 34.5 11.29379061
24.5 35 11.51659398
24.5 35.5 11.79774302
24.5 36 12.13723773
24.5 36.5 12.5350781 
24.5 37 12.99126414
24 25 18.13121821



 
 

 (165)

24 25.5 17.22173232
24 26 16.3705921 
24 26.5 15.57779754
24 27 14.84334865
24 27.5 14.16724543
24 28 13.54948788
24 28.5 12.99007599
24 29 12.48900977
24 29.5 12.04628921
24 30 11.66191433
24 30.5 11.33588511
24 31 11.06820155
24 31.5 10.85886366
24 32 10.70787144
24 32.5 10.61522489
24 33 10.580924 
24 33.5 10.60496878
24 34 10.68735923
24 34.5 10.82809534
24 35 11.02717713
24 35.5 11.28460457
24 36 11.60037769
24 36.5 11.97449647
24 37 12.40696092

23.5 25 18.12573242
23.5 25.5 17.19252494
23.5 26 16.31766313
23.5 26.5 15.50114698
23.5 27 14.7429765 
23.5 27.5 14.04315169
23.5 28 13.40167254



 
 

 (166)

23.5 28.5 12.81853906
23.5 29 12.29375125
23.5 29.5 11.8273091 
23.5 30 11.41921262
23.5 30.5 11.06946181
23.5 31 10.77805667
23.5 31.5 10.54499719
23.5 32 10.37028338
23.5 32.5 10.25391523
23.5 33 10.19589275
23.5 33.5 10.19621594
23.5 34 10.2548848 
23.5 34.5 10.37189932
23.5 35 10.54725951
23.5 35.5 10.78096536
23.5 36 11.07301689
23.5 36.5 11.42341408
23.5 37 11.83215693
23 25 18.12974587
23 25.5 17.1728168 
23 26 16.2742334 
23 26.5 15.43399566
23 27 14.65210359
23 27.5 13.92855718
23 28 13.26335644
23 28.5 12.65650137
23 29 12.10799197
23 29.5 11.61782823
23 30 11.18601016
23 30.5 10.81253776
23 31 10.49741102



 
 

 (167)

23 31.5 10.24062995
23 32 10.04219455
23 32.5 9.90210481 
23 33 9.820360741
23 33.5 9.796962338
23 34 9.831909602
23 34.5 9.925202532
23 35 10.07684113
23 35.5 10.28682539
23 36 10.55515533
23 36.5 10.88183092
23 37 11.26685219

22.5 25 18.14325857
22.5 25.5 17.1626079 
22.5 26 16.24030291
22.5 26.5 15.37634358
22.5 27 14.57072991
22.5 27.5 13.82346192
22.5 28 13.13453959
22.5 28.5 12.50396293
22.5 29 11.93173193
22.5 29.5 11.4178466 
22.5 30 10.96230694
22.5 30.5 10.56511294
22.5 31 10.22626462
22.5 31.5 9.945761954
22.5 32 9.723604959
22.5 32.5 9.559793631
22.5 33 9.45432797 
22.5 33.5 9.407207976
22.5 34 9.418433648



 
 

 (168)

22.5 34.5 9.488004987
22.5 35 9.615921993
22.5 35.5 9.802184666
22.5 36 10.04679301
22.5 36.5 10.34974701
22.5 37 10.71104669
22 25 18.1662705 
22 25.5 17.16189825
22 26 16.21587166
22 26.5 15.32819074
22 27 14.49885548
22 27.5 13.7278659 
22 28 13.01522197
22 28.5 12.36092372
22 29 11.76497113
22 29.5 11.22736421
22 30 10.74810296
22 30.5 10.32718737
22 31 9.964617452
22 31.5 9.660393199
22 32 9.414514612
22 32.5 9.226981693
22 33 9.09779444 
22 33.5 9.026952854
22 34 9.014456935
22 34.5 9.060306683
22 35 9.164502097
22 35.5 9.327043179
22 36 9.547929927
22 36.5 9.827162342
22 37 10.16474042



 
 

 (169)

 
 

 

 

 

 

Latitude Longitude Geoid 
Undulation STDEV 

32 25 1.3199939E+01 7.8055652E-01 
32 25.5 1.3666757E+01 8.0531750E-01 
32 26 1.3898240E+01 8.1527293E-01 
32 26.5 1.4084669E+01 8.2580443E-01 
32 27 1.4247314E+01 8.3698441E-01 
32 27.5 1.4311905E+01 8.4018870E-01 
32 28 1.4337421E+01 8.4205864E-01 
32 28.5 1.4373659E+01 8.4682529E-01 
32 29 1.4421748E+01 8.5149594E-01 
32 29.5 1.4477806E+01 8.5358743E-01 
32 30 1.4549147E+01 8.5625593E-01 
32 30.5 1.4638276E+01 8.6136390E-01 
32 31 1.4719068E+01 8.6705118E-01 
32 31.5 1.4651825E+01 8.6180161E-01 
32 32 1.4532241E+01 8.5466471E-01 
32 32.5 1.4407741E+01 8.4989604E-01 
32 33 1.4267207E+01 8.4631099E-01 
32 33.5 1.4101544E+01 8.4346779E-01 
32 34 1.3886068E+01 8.3963449E-01 
32 34.5 1.3552048E+01 8.2775364E-01 
32 35 1.3109157E+01 8.0750674E-01 
32 35.5 1.2616411E+01 7.8355343E-01 



 
 

 (170)

32 36 1.2102845E+01 7.5765157E-01 
32 36.5 1.1586236E+01 7.3076507E-01 
32 37 1.1077491E+01 7.0353454E-01 

31.5 25 1.3268494E+01 7.8732478E-01 
31.5 25.5 1.3806384E+01 8.1712077E-01 
31.5 26 1.3960810E+01 8.2185896E-01 
31.5 26.5 1.4143310E+01 8.3312698E-01 
31.5 27 1.4346011E+01 8.4957259E-01 
31.5 27.5 1.4372724E+01 8.4965181E-01 
31.5 28 1.4381318E+01 8.5130989E-01 
31.5 28.5 1.4416631E+01 8.5830008E-01 
31.5 29 1.4467617E+01 8.6513958E-01 
31.5 29.5 1.4520353E+01 8.6576924E-01 
31.5 30 1.4592989E+01 8.6779465E-01 
31.5 30.5 1.4691204E+01 8.7315578E-01 
31.5 31 1.4810140E+01 8.8101553E-01 
31.5 31.5 1.4724598E+01 8.7353565E-01 
31.5 32 1.4611654E+01 8.6663546E-01 
31.5 32.5 1.4503244E+01 8.6298841E-01 
31.5 33 1.4375947E+01 8.5987525E-01 
31.5 33.5 1.4228243E+01 8.5777401E-01 
31.5 34 1.4052948E+01 8.5721279E-01 
31.5 34.5 1.3710859E+01 8.4479586E-01 
31.5 35 1.3233926E+01 8.2200654E-01 
31.5 35.5 1.2714285E+01 7.9636312E-01 
31.5 36 1.2177206E+01 7.6892915E-01 
31.5 36.5 1.1641698E+01 7.4069754E-01 
31.5 37 1.1118437E+01 7.1231519E-01 
31 25 1.3216613E+01 7.8557784E-01 
31 25.5 1.3704196E+01 8.1214746E-01 
31 26 1.3921503E+01 8.2189507E-01 



 
 

 (171)

31 26.5 1.4114494E+01 8.3430173E-01 
31 27 1.4307748E+01 8.5007615E-01 
31 27.5 1.4352192E+01 8.5299495E-01 
31 28 1.4368755E+01 8.5683090E-01 
31 28.5 1.4411190E+01 8.6667248E-01 
31 29 1.4472278E+01 8.7791026E-01 
31 29.5 1.4515604E+01 8.7530534E-01 
31 30 1.4584451E+01 8.7697058E-01 
31 30.5 1.4674778E+01 8.8191230E-01 
31 31 1.4749780E+01 8.8516403E-01 
31 31.5 1.4712078E+01 8.8062892E-01 
31 32 1.4633453E+01 8.7615265E-01 
31 32.5 1.4553500E+01 8.7479111E-01 
31 33 1.4437017E+01 8.7167448E-01 
31 33.5 1.4297482E+01 8.6904714E-01 
31 34 1.4150855E+01 8.7008178E-01 
31 34.5 1.3810559E+01 8.5772054E-01 
31 35 1.3319937E+01 8.3434562E-01 
31 35.5 1.2779845E+01 8.0760491E-01 
31 36 1.2222565E+01 7.7883750E-01 
31 36.5 1.1671632E+01 7.4942763E-01 
31 37 1.1137236E+01 7.2004516E-01 

30.5 25 1.3082981E+01 7.7831151E-01 
30.5 25.5 1.3525999E+01 8.0241045E-01 
30.5 26 1.3799858E+01 8.1676629E-01 
30.5 26.5 1.4008701E+01 8.3026617E-01 
30.5 27 1.4179181E+01 8.4369399E-01 
30.5 27.5 1.4260435E+01 8.5128082E-01 
30.5 28 1.4302649E+01 8.5870923E-01 
30.5 28.5 1.4355136E+01 8.7036251E-01 
30.5 29 1.4416764E+01 8.8147398E-01 



 
 

 (172)

30.5 29.5 1.4462981E+01 8.8138364E-01 
30.5 30 1.4526739E+01 8.8385403E-01 
30.5 30.5 1.4604083E+01 8.8922639E-01 
30.5 31 1.4652544E+01 8.8931885E-01 
30.5 31.5 1.4638249E+01 8.8522203E-01 
30.5 32 1.4597573E+01 8.8323686E-01 
30.5 32.5 1.4558716E+01 8.8556744E-01 
30.5 33 1.4444352E+01 8.8134335E-01 
30.5 33.5 1.4301037E+01 8.7703466E-01 
30.5 34 1.4135944E+01 8.7514819E-01 
30.5 34.5 1.3831787E+01 8.6541873E-01 
30.5 35 1.3364895E+01 8.4467278E-01 
30.5 35.5 1.2809577E+01 8.1717994E-01 
30.5 36 1.2236267E+01 7.8725458E-01 
30.5 36.5 1.1674659E+01 7.5688592E-01 
30.5 37 1.1133341E+01 7.2669150E-01 
30 25 1.2915850E+01 7.6913191E-01 
30 25.5 1.3332870E+01 7.9216898E-01 
30 26 1.3630525E+01 8.0882921E-01 
30 26.5 1.3853040E+01 8.2335111E-01 
30 27 1.4021702E+01 8.3667078E-01 
30 27.5 1.4125818E+01 8.4722805E-01 
30 28 1.4192619E+01 8.5783575E-01 
30 28.5 1.4255336E+01 8.7064728E-01 
30 29 1.4316441E+01 8.8126065E-01 
30 29.5 1.4367678E+01 8.8478334E-01 
30 30 1.4425430E+01 8.8842750E-01 
30 30.5 1.4493608E+01 8.9604565E-01 
30 31 1.4523286E+01 8.9292574E-01 
30 31.5 1.4519406E+01 8.8832907E-01 
30 32 1.4504472E+01 8.8767295E-01 



 
 

 (173)

30 32.5 1.4498993E+01 8.9267052E-01 
30 33 1.4387582E+01 8.8768966E-01 
30 33.5 1.4244275E+01 8.8255723E-01 
30 34 1.4072783E+01 8.7899915E-01 
30 34.5 1.3810102E+01 8.7184101E-01 
30 35 1.3373125E+01 8.5373849E-01 
30 35.5 1.2799580E+01 8.2494456E-01 
30 36 1.2216190E+01 7.9408216E-01 
30 36.5 1.1650132E+01 7.6304566E-01 
30 37 1.1106799E+01 7.3225471E-01 

29.5 25 1.2732923E+01 7.5927839E-01 
29.5 25.5 1.3130360E+01 7.8171716E-01 
29.5 26 1.3435710E+01 7.9957971E-01 
29.5 26.5 1.3667847E+01 8.1507972E-01 
29.5 27 1.3842371E+01 8.2920863E-01 
29.5 27.5 1.3963255E+01 8.4201997E-01 
29.5 28 1.4049270E+01 8.5520699E-01 
29.5 28.5 1.4122512E+01 8.6970822E-01 
29.5 29 1.4187243E+01 8.8192571E-01 
29.5 29.5 1.4237961E+01 8.8692079E-01 
29.5 30 1.4286353E+01 8.9060002E-01 
29.5 30.5 1.4337866E+01 8.9689231E-01 
29.5 31 1.4359765E+01 8.9430650E-01 
29.5 31.5 1.4362113E+01 8.9016655E-01 
29.5 32 1.4359108E+01 8.8975829E-01 
29.5 32.5 1.4346816E+01 8.9250043E-01 
29.5 33 1.4266520E+01 8.9068772E-01 
29.5 33.5 1.4136758E+01 8.8664285E-01 
29.5 34 1.3968058E+01 8.8234671E-01 
29.5 34.5 1.3745747E+01 8.7733719E-01 
29.5 35 1.3336475E+01 8.6111816E-01 



 
 

 (174)

29.5 35.5 1.2744048E+01 8.3052504E-01 
29.5 36 1.2161316E+01 7.9927602E-01 
29.5 36.5 1.1598409E+01 7.6793770E-01 
29.5 37 1.1058336E+01 7.3677131E-01 
29 25 1.2541117E+01 7.4917574E-01 
29 25.5 1.2921745E+01 7.7120694E-01 
29 26 1.3227143E+01 7.8977540E-01 
29 26.5 1.3465123E+01 8.0618969E-01 
29 27 1.3646836E+01 8.2141264E-01 
29 27.5 1.3780613E+01 8.3607914E-01 
29 28 1.3881069E+01 8.5140822E-01 
29 28.5 1.3964052E+01 8.6805921E-01 
29 29 1.4034639E+01 8.8360832E-01 
29 29.5 1.4080755E+01 8.8830231E-01 
29 30 1.4116708E+01 8.9095480E-01 
29 30.5 1.4148847E+01 8.9497874E-01 
29 31 1.4166043E+01 8.9418558E-01 
29 31.5 1.4172463E+01 8.9116819E-01 
29 32 1.4173787E+01 8.9066072E-01 
29 32.5 1.4160497E+01 8.9239996E-01 
29 33 1.4102040E+01 8.9275459E-01 
29 33.5 1.3988448E+01 8.9024168E-01 
29 34 1.3818975E+01 8.8488306E-01 
29 34.5 1.3596579E+01 8.7874818E-01 
29 35 1.3203437E+01 8.6277203E-01 
29 35.5 1.2639808E+01 8.3369160E-01 
29 36 1.2072868E+01 8.0293382E-01 
29 36.5 1.1521064E+01 7.7166243E-01 
29 37 1.0989373E+01 7.4031095E-01 

28.5 25 1.2344094E+01 7.3901199E-01 
28.5 25.5 1.2709525E+01 7.6074107E-01 



 
 

 (175)

28.5 26 1.3011215E+01 7.7978407E-01 
28.5 26.5 1.3251983E+01 7.9702569E-01 
28.5 27 1.3439752E+01 8.1335689E-01 
28.5 27.5 1.3583238E+01 8.2957500E-01 
28.5 28 1.3694254E+01 8.4663759E-01 
28.5 28.5 1.3784760E+01 8.6512180E-01 
28.5 29 1.3861637E+01 8.8489052E-01 
28.5 29.5 1.3900583E+01 8.8808915E-01 
28.5 30 1.3924179E+01 8.9028245E-01 
28.5 30.5 1.3939640E+01 8.9403746E-01 
28.5 31 1.3949557E+01 8.9431959E-01 
28.5 31.5 1.3957359E+01 8.9188490E-01 
28.5 32 1.3959806E+01 8.9130934E-01 
28.5 32.5 1.3948902E+01 8.9284143E-01 
28.5 33 1.3907906E+01 8.9501244E-01 
28.5 33.5 1.3809111E+01 8.9406656E-01 
28.5 34 1.3630527E+01 8.8664375E-01 
28.5 34.5 1.3386038E+01 8.7768692E-01 
28.5 35 1.3005058E+01 8.6119571E-01 
28.5 35.5 1.2494264E+01 8.3502116E-01 
28.5 36 1.1954913E+01 8.0534079E-01 
28.5 36.5 1.1420842E+01 7.7438106E-01 
28.5 37 1.0901935E+01 7.4296557E-01 
28 25 1.2144229E+01 7.2888645E-01 
28 25.5 1.2495626E+01 7.5038279E-01 
28 26 1.2791678E+01 7.6977929E-01 
28 26.5 1.3032871E+01 7.8774709E-01 
28 27 1.3224817E+01 8.0508886E-01 
28 27.5 1.3375230E+01 8.2259024E-01 
28 28 1.3493625E+01 8.4097970E-01 
28 28.5 1.3588775E+01 8.6042441E-01 



 
 

 (176)

28 29 1.3662839E+01 8.7865123E-01 
28 29.5 1.3701451E+01 8.8534573E-01 
28 30 1.3715467E+01 8.8888817E-01 
28 30.5 1.3714999E+01 8.9396913E-01 
28 31 1.3715946E+01 8.9525127E-01 
28 31.5 1.3723601E+01 8.9255391E-01 
28 32 1.3724748E+01 8.9208979E-01 
28 32.5 1.3715483E+01 8.9355890E-01 
28 33 1.3687138E+01 8.9681664E-01 
28 33.5 1.3603955E+01 8.9780191E-01 
28 34 1.3412273E+01 8.8771050E-01 
28 34.5 1.3155547E+01 8.7691183E-01 
28 35 1.2788896E+01 8.5993781E-01 
28 35.5 1.2321005E+01 8.3549617E-01 
28 36 1.1813403E+01 8.0688016E-01 
28 36.5 1.1301281E+01 7.7628019E-01 
28 37 1.0798457E+01 7.4483160E-01 

27.5 25 1.1943228E+01 7.1885540E-01 
27.5 25.5 1.2281529E+01 7.4016565E-01 
27.5 26 1.2570910E+01 7.5983815E-01 
27.5 26.5 1.2810732E+01 7.7842464E-01 
27.5 27 1.3004933E+01 7.9663768E-01 
27.5 27.5 1.3159873E+01 8.1518491E-01 
27.5 28 1.3283113E+01 8.3458240E-01 
27.5 28.5 1.3380872E+01 8.5452572E-01 
27.5 29 1.3452829E+01 8.7202003E-01 
27.5 29.5 1.3490256E+01 8.8145212E-01 
27.5 30 1.3496572E+01 8.8677676E-01 
27.5 30.5 1.3480867E+01 8.9386868E-01 
27.5 31 1.3471423E+01 8.9635664E-01 
27.5 31.5 1.3477567E+01 8.9294932E-01 



 
 

 (177)

27.5 32 1.3474121E+01 8.9312339E-01 
27.5 32.5 1.3463673E+01 8.9433344E-01 
27.5 33 1.3437727E+01 8.9662690E-01 
27.5 33.5 1.3355807E+01 8.9668922E-01 
27.5 34 1.3172735E+01 8.8807185E-01 
27.5 34.5 1.2916594E+01 8.7694295E-01 
27.5 35 1.2565333E+01 8.5945165E-01 
27.5 35.5 1.2131026E+01 8.3577224E-01 
27.5 36 1.1654464E+01 8.0788856E-01 
27.5 36.5 1.1166182E+01 7.7752583E-01 
27.5 37 1.0681564E+01 7.4599027E-01 
27 25 1.1742384E+01 7.0895063E-01 
27 25.5 1.2068383E+01 7.3010360E-01 
27 26 1.2350529E+01 7.4999038E-01 
27 26.5 1.2587623E+01 7.6908683E-01 
27 27 1.2782375E+01 7.8802119E-01 
27 27.5 1.2939829E+01 8.0741000E-01 
27 28 1.3065948E+01 8.2761972E-01 
27 28.5 1.3165298E+01 8.4815968E-01 
27 29 1.3236996E+01 8.6636257E-01 
27 29.5 1.3272930E+01 8.7776941E-01 
27 30 1.3272349E+01 8.8387190E-01 
27 30.5 1.3246993E+01 8.9121460E-01 
27 31 1.3228034E+01 8.9450788E-01 
27 31.5 1.3224823E+01 8.9262089E-01 
27 32 1.3212466E+01 8.9448140E-01 
27 32.5 1.3198236E+01 8.9517625E-01 
27 33 1.3169026E+01 8.9509033E-01 
27 33.5 1.3086046E+01 8.9362931E-01 
27 34 1.2920414E+01 8.8805852E-01 
27 34.5 1.2673786E+01 8.7782989E-01 



 
 

 (178)

27 35 1.2337792E+01 8.5953469E-01 
27 35.5 1.1931137E+01 8.3608704E-01 
27 36 1.1483309E+01 8.0857807E-01 
27 36.5 1.1019167E+01 7.7822784E-01 
27 37 1.0553857E+01 7.4649155E-01 

26.5 25 1.1542703E+01 6.9918933E-01 
26.5 25.5 1.1857090E+01 7.2019916E-01 
26.5 26 1.2131704E+01 7.4024347E-01 
26.5 26.5 1.2365059E+01 7.5974299E-01 
26.5 27 1.2558939E+01 7.7925029E-01 
26.5 27.5 1.2717246E+01 7.9930069E-01 
26.5 28 1.2844685E+01 8.2019098E-01 
26.5 28.5 1.2944930E+01 8.4154166E-01 
26.5 29 1.3017693E+01 8.6145968E-01 
26.5 29.5 1.3053085E+01 8.7480082E-01 
26.5 30 1.3045435E+01 8.8016558E-01 
26.5 30.5 1.3015332E+01 8.8590645E-01 
26.5 31 1.2988057E+01 8.8966351E-01 
26.5 31.5 1.2969344E+01 8.9129304E-01 
26.5 32 1.2943887E+01 8.9617149E-01 
26.5 32.5 1.2925077E+01 8.9602384E-01 
26.5 33 1.2893256E+01 8.9335619E-01 
26.5 33.5 1.2812542E+01 8.9083880E-01 
26.5 34 1.2662504E+01 8.8780671E-01 
26.5 34.5 1.2430018E+01 8.7934185E-01 
26.5 35 1.2107966E+01 8.5968560E-01 
26.5 35.5 1.1725471E+01 8.3644016E-01 
26.5 36 1.1304013E+01 8.0903604E-01 
26.5 36.5 1.0863438E+01 7.7842199E-01 
26.5 37 1.0417770E+01 7.4634501E-01 
26 25 1.1344981E+01 6.8958004E-01 
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26 25.5 1.1648369E+01 7.1044929E-01 
26 26 1.1915319E+01 7.3059578E-01 
26 26.5 1.2144189E+01 7.5039520E-01 
26 27 1.2336058E+01 7.7033250E-01 
26 27.5 1.2493864E+01 7.9087454E-01 
26 28 1.2621309E+01 8.1229841E-01 
26 28.5 1.2721561E+01 8.3446333E-01 
26 29 1.2795766E+01 8.5656817E-01 
26 29.5 1.2832812E+01 8.7264250E-01 
26 30 1.2816331E+01 8.7554670E-01 
26 30.5 1.2781599E+01 8.7988925E-01 
26 31 1.2746060E+01 8.8437285E-01 
26 31.5 1.2713810E+01 8.8885647E-01 
26 32 1.2674372E+01 8.9710519E-01 
26 32.5 1.2651185E+01 8.9600221E-01 
26 33 1.2616913E+01 8.9153877E-01 
26 33.5 1.2539368E+01 8.8792242E-01 
26 34 1.2401708E+01 8.8605897E-01 
26 34.5 1.2184408E+01 8.7945897E-01 
26 35 1.1876854E+01 8.5924755E-01 
26 35.5 1.1516780E+01 8.3677147E-01 
26 36 1.1119700E+01 8.0924927E-01 
26 36.5 1.0701711E+01 7.7806350E-01 
26 37 1.0275489E+01 7.4551889E-01 

25.5 25 1.1149854E+01 6.8012657E-01 
25.5 25.5 1.1442797E+01 7.0084919E-01 
25.5 26 1.1702062E+01 7.2104344E-01 
25.5 26.5 1.1925915E+01 7.4104483E-01 
25.5 27 1.2114885E+01 7.6127625E-01 
25.5 27.5 1.2271101E+01 7.8214179E-01 
25.5 28 1.2397411E+01 8.0390069E-01 
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25.5 28.5 1.2496453E+01 8.2657133E-01 
25.5 29 1.2570130E+01 8.5006114E-01 
25.5 29.5 1.2609575E+01 8.6927553E-01 
25.5 30 1.2584663E+01 8.6956587E-01 
25.5 30.5 1.2545685E+01 8.7357861E-01 
25.5 31 1.2502548E+01 8.7904008E-01 
25.5 31.5 1.2460058E+01 8.8534118E-01 
25.5 32 1.2415306E+01 8.9344346E-01 
25.5 32.5 1.2382858E+01 8.9393936E-01 
25.5 33 1.2343530E+01 8.8953026E-01 
25.5 33.5 1.2269186E+01 8.8443657E-01 
25.5 34 1.2138979E+01 8.8130514E-01 
25.5 34.5 1.1932748E+01 8.7443634E-01 
25.5 35 1.1645737E+01 8.5784049E-01 
25.5 35.5 1.1307175E+01 8.3708743E-01 
25.5 36 1.0932812E+01 8.0910112E-01 
25.5 36.5 1.0536249E+01 7.7702531E-01 
25.5 37 1.0128924E+01 7.4394738E-01 
25 25 1.0957835E+01 6.7083047E-01 
25 25.5 1.1240842E+01 6.9139450E-01 
25 26 1.1492479E+01 7.1158387E-01 
25 26.5 1.1710955E+01 7.3169605E-01 
25 27 1.1896358E+01 7.5209495E-01 
25 27.5 1.2050133E+01 7.7312001E-01 
25 28 1.2174352E+01 7.9498238E-01 
25 28.5 1.2270909E+01 8.1767333E-01 
25 29 1.2340477E+01 8.4072519E-01 
25 29.5 1.2372184E+01 8.5797336E-01 
25 30 1.2351017E+01 8.6193624E-01 
25 30.5 1.2309075E+01 8.6692659E-01 
25 31 1.2259127E+01 8.7366777E-01 
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25 31.5 1.2208837E+01 8.8113110E-01 
25 32 1.2161666E+01 8.8829241E-01 
25 32.5 1.2120565E+01 8.9074940E-01 
25 33 1.2075170E+01 8.8739097E-01 
25 33.5 1.2004649E+01 8.8014924E-01 
25 34 1.1879799E+01 8.7479432E-01 
25 34.5 1.1683968E+01 8.6773949E-01 
25 35 1.1416696E+01 8.5554941E-01 
25 35.5 1.1098451E+01 8.3748739E-01 
25 36 1.0745318E+01 8.0830631E-01 
25 36.5 1.0368920E+01 7.7510583E-01 
25 37 9.9797099E+00 7.4154701E-01 

24.5 25 1.0769336E+01 6.6169258E-01 
24.5 25.5 1.1042884E+01 6.8208256E-01 
24.5 26 1.1287010E+01 7.0221736E-01 
24.5 26.5 1.1499886E+01 7.2235742E-01 
24.5 27 1.1681242E+01 7.4280941E-01 
24.5 27.5 1.1831942E+01 7.6384359E-01 
24.5 28 1.1953348E+01 7.8559022E-01 
24.5 28.5 1.2046497E+01 8.0788096E-01 
24.5 29 1.2110451E+01 8.2961099E-01 
24.5 29.5 1.2136177E+01 8.4566090E-01 
24.5 30 1.2117737E+01 8.5305426E-01 
24.5 30.5 1.2073716E+01 8.5989353E-01 
24.5 31 1.2017433E+01 8.6825647E-01 
24.5 31.5 1.1960411E+01 8.7674035E-01 
24.5 32 1.1911513E+01 8.8326120E-01 
24.5 32.5 1.1864604E+01 8.8715669E-01 
24.5 33 1.1813637E+01 8.8509396E-01 
24.5 33.5 1.1748417E+01 8.7483897E-01 
24.5 34 1.1628382E+01 8.6752263E-01 
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24.5 34.5 1.1442415E+01 8.6059299E-01 
24.5 35 1.1191918E+01 8.5227242E-01 
24.5 35.5 1.0892156E+01 8.3802698E-01 
24.5 36 1.0558847E+01 8.0629479E-01 
24.5 36.5 1.0201259E+01 7.7206498E-01 
24.5 37 9.8292253E+00 7.3824154E-01 
24 25 1.0584688E+01 6.5271388E-01 
24 25.5 1.0849228E+01 6.7291279E-01 
24 26 1.1086007E+01 6.9294742E-01 
24 26.5 1.1293172E+01 7.1304208E-01 
24 27 1.1470162E+01 7.3344794E-01 
24 27.5 1.1617351E+01 7.5436402E-01 
24 28 1.1735475E+01 7.7582480E-01 
24 28.5 1.1824801E+01 7.9748590E-01 
24 29 1.1883514E+01 8.1796090E-01 
24 29.5 1.1905206E+01 8.3366042E-01 
24 30 1.1887524E+01 8.4351124E-01 
24 30.5 1.1841677E+01 8.5247561E-01 
24 31 1.1779175E+01 8.6278106E-01 
24 31.5 1.1715215E+01 8.7252883E-01 
24 32 1.1666606E+01 8.7819471E-01 
24 32.5 1.1618788E+01 8.8211921E-01 
24 33 1.1564215E+01 8.8086528E-01 
24 33.5 1.1502708E+01 8.6817324E-01 
24 34 1.1386462E+01 8.5957883E-01 
24 34.5 1.1209275E+01 8.5274890E-01 
24 35 1.0973124E+01 8.4696929E-01 
24 35.5 1.0689771E+01 8.3734871E-01 
24 36 1.0374743E+01 8.0224623E-01 
24 36.5 1.0034500E+01 7.6770493E-01 
24 37 9.6786147E+00 7.3398995E-01 
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23.5 25 1.0404158E+01 6.4389597E-01 
23.5 25.5 1.0660119E+01 6.6388671E-01 
23.5 26 1.0889751E+01 6.8378059E-01 
23.5 26.5 1.1091184E+01 7.0376695E-01 
23.5 27 1.1263623E+01 7.2404441E-01 
23.5 27.5 1.1407036E+01 7.4474357E-01 
23.5 28 1.1521642E+01 7.6580924E-01 
23.5 28.5 1.1607132E+01 7.8677717E-01 
23.5 29 1.1661449E+01 8.0629530E-01 
23.5 29.5 1.1680195E+01 8.2199614E-01 
23.5 30 1.1662388E+01 8.3365432E-01 
23.5 30.5 1.1614932E+01 8.4463937E-01 
23.5 31 1.1546378E+01 8.5708911E-01 
23.5 31.5 1.1473840E+01 8.6870717E-01 
23.5 32 1.1428968E+01 8.7277122E-01 
23.5 32.5 1.1386557E+01 8.7446428E-01 
23.5 33 1.1334182E+01 8.7157128E-01 
23.5 33.5 1.1268567E+01 8.5998764E-01 
23.5 34 1.1154643E+01 8.5087748E-01 
23.5 34.5 1.0984999E+01 8.4394352E-01 
23.5 35 1.0761401E+01 8.3847623E-01 
23.5 35.5 1.0493513E+01 8.2746783E-01 
23.5 36 1.0194018E+01 7.9566051E-01 
23.5 36.5 9.8696164E+00 7.6196833E-01 
23.5 37 9.5288139E+00 7.2880752E-01 
23 25 1.0227953E+01 6.3524109E-01 
23 25.5 1.0475747E+01 6.5500763E-01 
23 26 1.0698459E+01 6.7472570E-01 
23 26.5 1.0894212E+01 6.9455151E-01 
23 27 1.1062023E+01 7.1463539E-01 
23 27.5 1.1201537E+01 7.3504707E-01 
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23 28 1.1312568E+01 7.5566107E-01 
23 28.5 1.1394437E+01 7.7596359E-01 
23 29 1.1445174E+01 7.9478599E-01 
23 29.5 1.1461729E+01 8.1060951E-01 
23 30 1.1443646E+01 8.2360970E-01 
23 30.5 1.1395189E+01 8.3629426E-01 
23 31 1.1321677E+01 8.5078382E-01 
23 31.5 1.1236981E+01 8.6539013E-01 
23 32 1.1201059E+01 8.6657090E-01 
23 32.5 1.1166382E+01 8.6507069E-01 
23 33 1.1116005E+01 8.6055606E-01 
23 33.5 1.1045662E+01 8.5051814E-01 
23 34 1.0932926E+01 8.4141279E-01 
23 34.5 1.0769659E+01 8.3416707E-01 
23 35 1.0557047E+01 8.2758235E-01 
23 35.5 1.0302925E+01 8.1458793E-01 
23 36 1.0017311E+01 7.8693207E-01 
23 36.5 9.7073482E+00 7.5497944E-01 
23 37 9.3805769E+00 7.2277003E-01 

22.5 25 1.0056235E+01 6.2675218E-01 
22.5 25.5 1.0296260E+01 6.4628026E-01 
22.5 26 1.0512299E+01 6.6579315E-01 
22.5 26.5 1.0702478E+01 6.8541636E-01 
22.5 27 1.0865670E+01 7.0525738E-01 
22.5 27.5 1.1001270E+01 7.2533536E-01 
22.5 28 1.1108794E+01 7.4547800E-01 
22.5 28.5 1.1187359E+01 7.6517610E-01 
22.5 29 1.1235208E+01 7.8348141E-01 
22.5 29.5 1.1250190E+01 7.9943714E-01 
22.5 30 1.1232098E+01 8.1340101E-01 
22.5 30.5 1.1183688E+01 8.2733248E-01 
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22.5 31 1.1108121E+01 8.4322714E-01 
22.5 31.5 1.1007819E+01 8.6201623E-01 
22.5 32 1.0986500E+01 8.5882658E-01 
22.5 32.5 1.0956780E+01 8.5477720E-01 
22.5 33 1.0906783E+01 8.4920925E-01 
22.5 33.5 1.0833069E+01 8.4017861E-01 
22.5 34 1.0720976E+01 8.3128459E-01 
22.5 34.5 1.0563092E+01 8.2361883E-01 
22.5 35 1.0360006E+01 8.1568462E-01 
22.5 35.5 1.0117918E+01 8.0171475E-01 
22.5 36 9.8450089E+00 7.7690263E-01 
22.5 36.5 9.5482481E+00 7.4699167E-01 
22.5 37 9.2345034E+00 7.1600034E-01 
22 25 9.8891248E+00 6.1843265E-01 
22 25.5 1.0121762E+01 6.3771024E-01 
22 26 1.0331390E+01 6.5699412E-01 
22 26.5 1.0516143E+01 6.7638202E-01 
22 27 1.0674790E+01 6.9594463E-01 
22 27.5 1.0806538E+01 7.1566165E-01 
22 28 1.0910701E+01 7.3533499E-01 
22 28.5 1.0986305E+01 7.5449208E-01 
22 29 1.1031843E+01 7.7238828E-01 
22 29.5 1.1045791E+01 7.8842882E-01 
22 30 1.1028146E+01 8.0302770E-01 
22 30.5 1.0981028E+01 8.1770306E-01 
22 31 1.0907485E+01 8.3395783E-01 
22 31.5 1.0817972E+01 8.5051692E-01 
22 32 1.0787855E+01 8.4885012E-01 
22 32.5 1.0757317E+01 8.4381312E-01 
22 33 1.0706163E+01 8.3770335E-01 
22 33.5 1.0629941E+01 8.2930850E-01 
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22 34 1.0518310E+01 8.2065038E-01 
22 34.5 1.0365016E+01 8.1256015E-01 
22 35 1.0170187E+01 8.0350687E-01 
22 35.5 9.9387012E+00 7.8908654E-01 
22 36 9.6773784E+00 7.6624318E-01 
22 36.5 9.3927247E+00 7.3829433E-01 
22 37 9.0910651E+00 7.0864534E-01 

 

The 2nd degree Regression program 
data=[ 
22.42220656 31.56257439 9.779 
24.04136006 32.83279881 11.049 
23.94075962 35.39737026 10.668 
26.01743489 34.32120541 12.741 
25.95557459 32.1567373 12.158 
25.54362634 29.40292571 13.172 
28.50722574 29.09683186 14.219 
27.26752505 30.77961543 12.751 
27.88018525 33.36176734 14.644 
29.35002641 34.77239062 17 
31.119385 34.18206764 17.026 
30.11931048 32.60623372 16.206 
31.59594524 31.08031289 17.826 
29.83415834 30.60113085 14.945 
30.84238708 28.93530621 15.067 
31.32750394 27.07195173 17.242 
31.43784546 25.39863386 19.33 
]; 
%==================================================== 
%            initial parameters 
%            ================= 
par=[1;1;1;1;1;1]; 
%=================================================== 
%       getting the size of data 
%       ======================== 
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[n,m]=size(data); 
%=================================================== 
%          Deree of fredom 
%          =============== 
r=n-6; 
%================================================== 
%          least squre solution 
%          ==================== 
%==============coef.matrix========================= 
A=-eye(n); 
%=============matrix of parameter================== 
for i=1:n 
   B(i,1)=1; 
   B(i,2)=data(i,2); 
   B(i,3)=data(i,1); 
   B(i,4)=(data(i,2))^2; 
   B(i,5)=data(i,1)*data(i,2); 
   B(i,6)=(data(i,1))^2; 
end 
%=========== vector of constant=================== 
for i=1:n 
   F(i,1)=data(i,3)-par(1,1)-par(2,1)*data(i,2)-par(3,1)*data(i,1)-
par(4,1)*(data(i,2))^2-par(5,1)*data(i,1)*data(i,2)-par(6,1)*(data(i,1))^2; 
end 
%================================================== 
%              THE ITTERATION 
%              ============= 
for k=1:3 
   itteration=k 
%================================================== 
%        constructing the F matrix 
%        ========================= 
for i=1:n 
   F(i,1)=data(i,3)-par(1,1)-par(2,1)*data(i,2)-par(3,1)*data(i,1)-
par(4,1)*(data(i,2))^2-par(5,1)*data(i,1)*data(i,2)-par(6,1)*(data(i,1))^2; 
end 
%================================================= 
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covar=eye(n); 
%================================================= 
%           ==weight matrix== 
W=inv(covar); 
WE=inv(A*covar*A'); 
%======THE STEPS OF SOLUTION===== 
N=B'*WE*B; 
T=B'*WE*F; 
delta=inv(N)*T; 
par=par+delta 
covp=inv(N); 
STP=sqrt(diag(covp)) 
V=covar*A'*WE*(-B*delta+F) 
VV=covar*A'*WE*A*covar-covar*A'*WE*B*covp*B'*WE*A*covar; 
covar=covar+VV; 
standobs=sqrt(diag(covar)); 
%====================================================== 
%       calculate of the adjusted undulation 
%====================================================== 
%      ===================================== 
for i=1:n 
   data(i,3)=data(i,3)+V(i,1); 
end 
%===================================================== 
%              the posterir covariance 
%              ======================= 
S=(V'*W*V/r)^0.50 
S^2 
%====================================================% 
% RUNING THE FISHER TEST AT 98% CONF.INTERVAL 
% =========================================== 
if S>1 
   if S^2>2.25 
      covar=(S^2)*covar; 
      standobs=sqrt(diag(covar)); 
      STP=(S)*(sqrt(diag(covp))); 
      VVV=(S^2)*VV; 
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      'TRUE1' 
   end 
end 
if S<1 
   if 1/S^2>3.6 
      covar=(S^2)*covar; 
      standobs=sqrt(diag(covar)); 
      STP=(S)*(sqrt(diag(covp))); 
      VVV=(S^2)*VV; 
      'TRUE2' 
   end 
end 
%==================================================== 
%          TESTING ON PARAMETER 
%             BY T-DIST. 
%  WITH CONFEEDENCE INTERVAL 99% 
%  ================================================= 
for m=1:6 
   T(m,1)=par(m,1)/(S*STP(m,1)); 
   if T(m,1)>3.106|T(m,1)<-3.106 
      m 
      T(m,1) 
      'a uesful prdiction' 
   else 
      m 
      T(m,1) 
      'a negligble prediction' 
   end 
    
end 
par 
end 
%       THE DISTORTION  
%       ========================= 
olddata=[ 
30.23217626 29.8403536 15.088 
22.75219208 31.8487423 11.156 
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22.10780524 31.55221497 9.974 
22.20600411 31.55488274 10.092 
24.15512048 32.9681639 11.397 
25.64815136 32.69335337 12.02 
23.42944351 32.82672968 10.098 
27.32523257 31.1885972 12.842 
27.41194086 30.54339346 13.488 
29.01809103 31.15964886 15.216 
28.18461073 30.80461709 13.738 
30.02873878 31.27767502 15.268 
]; 
[n,m]=size(olddata); 
for i=1:n 
newdata(i,1)=par(1,1)+par(2,1)*olddata(i,2)+par(3,1)*olddata(i,1)+par(4,1)*(ol
ddata(i,2))^2+par(5,1)*olddata(i,1)*olddata(i,2)+par(6,1)*(olddata(i,1))^2; 
end 
newdata 
for i=1:n 
   dist(i,1)=newdata(i,1)-olddata(i,3); 
end 
dist 
end 

The LSC program 
data=[ 
22.42220656 31.56257439 284.817 09.779 
24.04136006 32.83279881 207.162 11.049 
23.94075962 35.39737026 084.248 10.668 
26.01743489 34.32120541 023.977 12.741 
25.95557459 32.15673730 323.067 12.158 
25.54362634 29.40292571 569.843 13.172 
28.50722574 29.09683186 284.916 14.219 
27.26752505 30.77961543 223.345 12.751 
27.88018525 33.36176734 063.896 14.644 
29.35002641 34.77239062 061.948 17.000 
31.11938500 34.18206764 123.810 17.026 
30.11931048 32.60623372 055.917 16.206 
31.59594524 31.08031289 032.061 17.826 
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29.83415834 30.60113085 230.875 14.945 
30.84238708 28.93530621 042.806 15.067 
31.32750394 27.07195173 138.281 17.242 
31.43784546 25.39863386 047.549 19.330 
]; 
%------------------------------------------------- 
%Collecting the geographical cordinates of the grid 
%-------------------------------------------------- 
gride=[ 
25.5 25 0 
25.5 25.5 0 
25.5 26 0 
25.5 26.5 0 
]; 
%------------------------------------------------- 
% input the number of points 
%------------------------------------------------- 
[n,m]=size(data); 
[n11,m11]=size(gride); 
Dg =n^2-2; 
%------------------------------------------------- 
%converting the angles to radians 
%------------------------------------------------- 
   data(1:n,1)=data(1:n,1)*pi/180; 
   data(1:n,2)=data(1:n,2)*pi/180; 
   gride(1:n11,1)=gride(1:n11,1)*pi/180; 
   gride(1:n11,2)=gride(1:n11,2)*pi/180; 
%--------------------------------------------------- 
%collecting the ellipsoid constants 
%---------------------------------------------------- 
wec=[6378137,0,0.00335281,0,0]; 
%----------------------------------------------------- 
%calculating the ellipse constants 
%----------------------------------------------------- 
wec(1,2)=wec(1,1)-wec(1,1)*wec(1,3); 
wec(1,4)=1/0.00335281; 
wec(1,5)=2*wec(1,3)-(wec(1,3))^2; 
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%------------------------------------------------------ 
%converting from geodetic to cartesian coordintes 
%------------------------------------------------------- 
%first  calculating the v vector 
for m=1:n 
wv(m,1)=(wec(1,1)/(sqrt(1-wec(1,5)*(sin(data(m,1)))^2))); 
end 
 
for m=1:n11 
gv(m,1)=(wec(1,1)/(sqrt(1-wec(1,5)*(sin(gride(m,1)))^2))); 
end 
%Second  calculating the cartesian cooordinates 
for m=1:n 
   wca(1,m)=(wv(m,1)+data(m,3))*cos(data(m,1))*cos(data(m,2)); 
   wca(2,m)=(wv(m,1)+data(m,3))*cos(data(m,1))*sin(data(m,2)); 
   wca(3,m)=((1-wec(1,5))*wv(m,1)+data(m,3))*sin(data(m,1)); 
end 
for m=1:n11 
   gca(1,m)=(gv(m,1)+gride(m,3))*cos(gride(m,1))*cos(gride(m,2)); 
   gca(2,m)=(gv(m,1)+gride(m,3))*cos(gride(m,1))*sin(gride(m,2)); 
   gca(3,m)=((1-wec(1,5))*gv(m,1)+gride(m,3))*sin(gride(m,1)); 
 end 
wca=wca'; 
gca=gca'; 
Owca=wca; 
Ogca=gca; 
Owca; 
Ogca; 
%-------------------------------------------------------------------------- 
for i=1:n 
   def(i,1)=0; 
   def(i,2)=0; 
   def(i,3)=0.000001*data(i,4); 
end 
def; 
%---------------------------------------------------------------------- 
k=1; 
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for i=1:n 
   for j=i:n 
   C(k,1)=0.000001*(sqrt((wca(i,1)-wca(j,1))^2+(wca(i,2)-wca(j,2))^2)); 
   C(k,2)=(def(i,1)*def(j,1))/2; 
   C(k,3)=(def(i,2)*def(j,2))/2; 
   C(k,4)=(def(i,3)*def(j,3))/2; 
   C(k,5)=(def(i,1))^2+(def(j,1))^2; 
   C(k,6)=(def(i,2))^2+(def(j,2))^2; 
   C(k,7)=(def(i,3))^2+(def(j,3))^2; 
   k=k+1; 
   end 
k=k; 
end 
k=1; 
for i=1:n 
   for j=1:n11 
      C1(k,1)=0.000001*(sqrt((wca(i,1)-gca(j,1))^2+(wca(i,2)-gca(j,2))^2)); 
      k=k+1; 
   end 
   k=k; 
end 
k=1; 
for i=1:n11 
   for j=i:n11 
      C2(k,1)=0.000001*(sqrt((gca(i,1)-gca(j,1))^2+(gca(i,2)-gca(j,2))^2)); 
      k=k+1; 
   end 
   k=k; 
end 
[n,m]=size(C); 
%----------------------------------------------------------------------------- 
% Initial value of a & b in equation   c = a*e^-br 
%------------------------------------------------------------------------------ 
factor=[ 
   1 
   1 
]; 
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%------------------------------------------------------------------------------ 
for i=1:n 
   COVA(i,i)=C(i,g+3); 
end 
%------------------------------------------------------------------------ 
% apirior variance s 
%------------------------------------------------------------------------- 
s=1; 
%----------------------------------------------------------------- 
COVAR = s^2*COVA; 
 %--------------------------------------------------------------------------- 
 for b= 1:1   
   itteration=b 
%------------------------------------------------------------------------------- 
for i=1:n 
   B(i,1)=exp(-factor(2,1)*C(i,1)); 
   B(i,2)=-factor(1,1)*C(i,1)*exp(-factor(2,1)*C(i,1)); 
end 
%--------------------------------------------------------------------------------- 
for i=1:n 
   F(i,1)=C(i,g); 
end 
%------------------------------------------------------------------------------ 
W=inv(COVAR); 
COVA=(1/s^2)*COVAR; 
%--------------------------------------------------------------------------- 
N=B'*W*B; 
T=B'*W*F; 
delta=inv(N)*T; 
factor=factor+delta; 
covp=inv(N); 
stp=sqrt(diag(covp)); 
V=F-B*factor; 
VV=COVA-B*covp*B'; 
COVA=COVA+VV; 
%-------------------------------------------------------------------------- 
for i=1:n 
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   C(i,g)=C(i,g)-V(i,1); 
end 
%------------------------------------------------------------------------ 
s=(V'*W*V/Dg)^0.5 
s^2 
%---------------------------------------------------------------------- 
% Runing the Fisher Test at 99% confedance interval for posterior varaiance 
%---------------------------------------------------------------------- 
if s > 1 
   if s^2 > 1 
      COVAR=(s^2)*COVA; 
      stp=sqrt((s^2)*diag(covp)); 
      VVV=(s^2)*VV; 
   end 
            'true1'; 
end 
if s < 1     if 1/s^2 > 1 
      COVAR=(s^2)*COVA; 
      stp=sqrt((s^2)*diag(covp));  
      VVV=(s^2)*VV; 
   end 
      'true2'; 
end 
stp;  
factor 
end   
%------------------------------------------------------------------- 
for i=1:n 
   C(i,8)=factor(1,1)*exp(-factor(2,1)*C(i,1)); 
end 
[n11,m11]=size(C1); 
 
for i=1:n11 
   C1(i,2)=factor(1,1)*exp(-factor(2,1)*C1(i,1)); 
end 
[n11,m11]=size(C2); 
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for i=1:n11 
   C2(i,2)=factor(1,1)*exp(-factor(2,1)*C2(i,1)); 
end 
C3=[C(:,1) C(:,8) 
   C1 
   C2 
   ]; 
%------------------------------------------------------------------------------ 
% graph and list the results 
%------------------------------------------------------------------------------ 
plot(1000000*C3(:,1),C3(:,2),'+') 
title('Distance-Variance Relationship') 
xlabel('Distance (m)') 
ylabel('Variance') 
grid 
%------------------------------------------------------------------------------- 
[n1,m1]=size(data); 
k=1; 
for i=1:n 
   for j=i:n1 
      Cs1(i,j)=C(k,8); 
      Cs1(j,i)=Cs1(i,j); 
      k=k+1; 
   end 
   k=k; 
end 
%--------------------------------------------------------------------------------- 
[n11,m11]=size(gride); 
[n,m]=size(C2); 
k=1; 
for i=1:n11 
   for j=i:n11 
      C22(i,j)=C2(k,2); 
      C22(j,i)=C22(i,j); 
      k=k+1; 
   end 
   k=k; 
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end 
%------------------------------------------------------------------------------------- 
[n11,m11]=size(gride); 
[n1,m1]=size(data); 
k=1; 
for i=1:n1 
   for j=1:n11 
      Cs12(i,j)= C1(k,2); 
      k=k+1; 
   end 
   k=k; 
end 
Cs21=Cs12'; 
%-------------------------------------------------------------------------------------- 
[n,m]=size(data); 
Cn=eye(n,n); 
%------------------------------------------------------------------------------------- 
Cs=[ 
   Cs1 Cs12 
   Cs21 C22 
   ]; 
%-------------------------------------------------------------------------------------- 
D=[eye(n,n) zeros(n,n11)]; 
%----------------------------------------------------------------------------------- 
COL1=Cn+Cs1; 
COL2=inv(COL1); 
COL3=1000000*(Cs*D'*COL2*def(:,g-1)); 
[n,m]=size(COL3); 
for i=1:n-15 
   COL33(i,1)=COL3(15+i,1); 
end 
COL33; 
COL4=Cs*D'*COL2*D*Cs; 
[n,m]=size(COL4); 
for i=1:n-15 
      COL44(i,1)=sqrt(COL4(15+i,15+i)); 
end 
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COL44; 
COL5=(Cn*COL2*def(:,g-1)); 
COL6=Cn*COL2*Cn; 
COL66=sqrt(diag(COL6)) 
%----------------------------------------------------------------------------%  
% saving data 
%----------------------------------------------------------------------------- 
save c:\COL33.dat COL33 /ascii; 
save c:\COL44.dat COL44 /ascii; 
save c:\COL5.dat COL5 /ascii; 
save c:\COL66.dat COL66 /ascii; 
%----------------------------------------------------------------------------- 
%Calculation of posterior variance 
%S=(COL33'*COL66*COL33)/437; 
%s=sqrt(S); 
%------------------------------------------------------------------------------ 
end 

 
The MCS program 

data=[ 
22.42220656 31.56257439 284.817 09.779 
24.04136006 32.83279881 207.162 11.049 
23.94075962 35.39737026 084.248 10.668 
26.01743489 34.32120541 023.977 12.741 
25.95557459 32.15673730 323.067 12.158 
25.54362634 29.40292571 569.843 13.172 
28.50722574 29.09683186 284.916 14.219 
27.26752505 30.77961543 223.345 12.751 
27.88018525 33.36176734 063.896 14.644 
29.35002641 34.77239062 061.948 17.000 
31.11938500 34.18206764 123.810 17.026 
30.11931048 32.60623372 055.917 16.206 
31.59594524 31.08031289 032.061 17.826 
29.83415834 30.60113085 230.875 14.945 
30.84238708 28.93530621 042.806 15.067 
31.32750394 27.07195173 138.281 17.242 
31.43784546 25.39863386 047.549 19.330 
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]; 
[n,m]=size(data); 
%---------------------------------------------------------------------------- 
%calculating the degree of fredom 
%---------------------------------------------------------------------------- 
dg=n-3; 
%-------------------------------Beging the regression step --------------------- 
%entring the solutin number 
%---------------------------------------------------------------------------- 
% getting the initial value of parameeters 
%------------------------------------------------------------------------------ 
a=1; b=1; c=1; 
%---------------------------------------------------------------------------- 
for i=1:n 
Z(i,1)=data(i,4); 
end 
OZ=Z; 
%---------------------------------------------------------------------------------- 
A=eye(n); 
%-------------------------------------------------------------------------------- 
% initial value of matrix F 
%-------------------------------------------------------------------------------- 
F=eye(n,1); 
%------------------------------------------------------------------------------- 
covar=eye(n); 
%------------------------------------------------------------------------------ 
for i=1:n 
   B(i,1)=data(i,1); 
   B(i,2)=data(i,2); 
   B(i,3)=1; 
end 
%----------------------------------------------------------------------------------- 
%begining the itteration 
%---------------------------------------------------------------------------------- 
for k=1:2 
   itteration=k 
%------------------------------------------------------------------------------------ 
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for i=1:n 
   F(i,1)=Z(i,1)-a*data(i,1)-b*data(i,2)-c; 
end 
F; 
%------------------------------------------------------------------------- 
W=inv(covar); 
We=inv(A*covar*A'); 
%------------------------------------------------------------------------ 
N=B'*We*B; 
T=B'*We*F; 
delta=inv(N)*T; 
a=a+delta(1,1); 
b=b+delta(2,1); 
c=c+delta(3,1); 
covp=inv(N); 
stp=sqrt(diag(covp)); 
V=covar*A'*We*(-B*delta+F); 
VV=covar*A'*We*A*covar-covar*A'*We*B*covp*B'*We*A*covar; 
covar=covar+VV; 
%------------------------------------------------------------------------------- 
Z=Z(:,1)-V; 
%----------------------------------------------------------------------------------- 
s=(V'*W*V/dg)^0.5; 
%---------------------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
% Runing the Fisher Test at 98% confedance interval 
%---------------------------------------------------------------------- 
if s > 1 
  if s^2 > 2.08  
     covar=(s^2)*covar; 
      stand=sqrt(diag(covar)); 
      stp=(s)*(sqrt(diag(covp))); 
      VVV=(s^2)*VV; 
      'true1' 
   end 
end 
if s < 1  
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   if 1/s^2 > 3.00 
      covar=(s^2)*covar; 
      stand=sqrt(diag(covar)); 
      stp=(s)*(sqrt(diag(covp))); 
      VVV=(s^2)*VV; 
      'true2' 
   end 
end 
stp; 
end 
%---------------------------------------------------------- 
for i=1:n 
   dif(i,1)=OZ(i,1)-(a*data(i,1)+b*data(i,2)+c); 
end 
dif 
%----------------------------------------------------------- 
a1=1; b1=1; c1=1; 
%----------------------------------------------------------- 
A=eye(n); 
%---------------------------------------------------------------- 
F=eye(n,1); 
%----------------------------------------------------------------- 
covar=eye(n); 
%------------------------------------------------------------------ 
for i=1:n 
   B(i,1)=data(i,1); 
   B(i,2)=data(i,2); 
   B(i,3)=1; 
end 
%--------------------------------------------------------------------------------- 
%begining the itterartions 
%---------------------------------------------------------------------------------- 
for k=1:2 
   itteration=k 
%------------------------------------------------------------------------ 
for i=1:n 
   F(i,1)=dif(i,1)-a1*data(i,1)-b1*data(i,2)-c1; 
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end 
F; 
%------------------------------------------------------------------ 
W=inv(covar); 
We=inv(A*covar*A'); 
%---------------------------------------------------------------------- 
N=B'*We*B; 
T=B'*We*F; 
delta=inv(N)*T; 
a1=a1+delta(1,1); 
b1=b1+delta(2,1); 
c1=c1+delta(3,1); 
covp=inv(N); 
stp=sqrt(diag(covp)); 
V=covar*A'*We*(-B*delta+F); 
VV=covar*A'*We*A*covar-covar*A'*We*B*covp*B'*We*A*covar; 
covar=covar+VV; 
%------------------------------------------------------------ 
dif=dif(:,1)-V; 
%----------------------------------------------------------- 
s=(V'*W*V/dg)^0.5; 
%---------------------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
% Runing the Fisher Test at 98% confedance interval 
%---------------------------------------------------------------------- 
if s > 1 
  if s^2 > 2.08 
     covar=(s^2)*covar; 
      stand=sqrt(diag(covar)); 
      stp=(s)*(sqrt(diag(covp))); 
      VVV=(s^2)*VV; 
      'true1' 
   end 
end 
if s < 1  
   if 1/s^2 > 3 
      covar=(s^2)*covar; 
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      stand=sqrt(diag(covar)); 
      stp=(s)*(sqrt(diag(covp))); 
      VVV=(s^2)*VV; 
      'true2' 
   end 
end 
stp; 
end 
%--------------------------------------------------------------------- 
Z=Z+dif 
%------------------------ Begiging the MCS solution-------------------------------- 
Dg=353; 
%---------------------------------------------------------------------------------- 
k=1; m=27; 
for i=1:19 
   for j=1:23 
      U(k,m)=-4; 
      U(k,m-1)=1; 
      U(k,m-25)=1; 
      U(k,m+1)=1; 
      U(k,m+25)=1; 
      k=k+1; 
      m=m+1; 
   end 
   m=m+2; 
end 
U(437,525)=0; 
%---------------------------------------------------------------------------------- 
for i=1:525 
   X(i,1)=1; 
   cova(i,i)=1000000; 
end 
%----------------------------------------------------------------------------- 
data1=[ 
32 25   22 25 
32 25.5 22 25.5 
32 34   22 34 
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]; 
data11=[ 
   22   25 22   37 
   22.5 25 22.2 37 
   28.5 25 28.5 37 
]; 
[n1,m1]=size(data1); 
[n2,m2]=size(data11); 
k=1 
for i=1:n1 
   X(k,1)=a*data1(i,1)+b*data1(i,2)+c+a1*data1(i,1)+b1*data1(i,2)+c1; 
   cova(k,k)=1; 
   k=k+1; 
end 
k=501 
for i=1:n1 
   X(k,1)=a*data1(i,3)+b*data1(i,4)+c+a1*data1(i,3)+b1*data1(i,4)+c1; 
   cova(k,k)=1; 
   k=k+1; 
end 
k=501 
for i=1:n2 
   X(k,1)=a*data11(i,1)+b*data11(i,2)+c+a1*data11(i,1)+b1*data11(i,2)+c1; 
   cova(k,k)=1; 
   k=k-25; 
end 
k=525 
for i=1:n2 
   X(k,1)=a*data11(i,3)+b*data11(i,4)+c+a1*data11(i,3)+b1*data11(i,4)+c1; 
   cova(k,k)=1; 
   k=k-25; 
end 
%------------------------------------ 
for i=1:2 
   tteration = i 
%----------------------------------------------------------------------------- 
w=inv(cova); 
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we=inv(U*cova*U'); 
%---------------------------------------------------------------------------- 
f=-U*X; 
%------------------------------------------------------------------ 
K=we*f; 
v=cova*U'*K; 
X=X+v; 
vv=cova*U'*we*U*cova; 
cova=cova+vv; 
sta=sqrt(diag(cova)); 
%---------------------------------------------------------------------------- 
S=(v'*w*v/Dg)^0.5 
S^2 
%---------------------------------------------------------------------- 
% Runing the Fisher Test at 99% confedance interval for posterior varaiance 
%---------------------------------------------------------------------- 
if S > 1 
   if S^2 > 1 
      cova=(S^2)*cova; 
       sta=(S)*sqrt(diag(cova)); 
 
      vvv=(S^2)*vv; 
   end 
            'true1' 
end 
if S < 1 
   if 1/S^2 > 1 
      cova=(S^2)*cova; 
      sta=(S)*sqrt(diag(cova)); 
      vvv=(S^2)*vv; 
   end 
      'true2' 
end 
end 
 
 
%---------------------------------------------------------------------------- 
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% saving the output data 
%----------------------------------------------------------------------------- 
save c:\proje.dat X /ascii; 
save c:\proje1.dat stand /ascii; 
save c:\f.dat f /ascii; 
save c:\sta.dat sta /ascii; 
%------------------------------------------------------------------------------------- 
end 
 
 

 

 

 


