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FORM GENERATION IN ARCHITECTURE 
USING TOOLS BASED ON EVOLUTIONARY AND MATHEMATICAL 

FUNCTIONS 
 

 
ABSTRACT 

       Form finding process is developed with the reciprocity 
between advances in mathematics and IT. This elaborates new 
mathematical design tools with higher mathematical and 
evolutionary basis, using algebraic, topological, trigonometric, 
chaotic and evolutionary functions. These tools changed the 
theoretical and mathematical perceptual natures of architectural 
form, from platonic Euclidean geometry to unpredictable new 
geometries. 
  
       The thesis juxtaposes seven tools, classified into three 
mathematical generative systems, aiming to point to and identify 
new methodologies or tools that can generate unpredicted novel 
forms, to trigger inspiration and empower inventiveness during 
the form seeking dilemma in the architectural design process. This 
will be done through describing how mathematics had been 
shifted from being an organizing tool into a creative tool then a 
generative medium, and describing the conventional mathematical 
generative systems and listing its architectural potentials, then 
explaining how mathematical elements in the world of chaos and 
random functions and evolutionary process in natural systems can 
be simulated artificially and interpreted into elements with 
architectural potentials. 
  
       Deducing the characteristics and promises of these generative 
systems, with listing some applications in architecture and 
analytically comparing the efficiency of each generative tool in 
different applications in the architectural design process, will be 
shown in the discussion. Finally, results and recommendations 
will be presented at the end of the thesis. 
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INTRODUCTION 

 
        Mathematics had always played a significant role in the 
process of form finding in art and architecture through history.  
The reliance was on classical mathematics and Euclidean 
geometry for ages. This reliance continued in the beginning of 
the 20th century due to the inability to perform complex 
mathematical calculations to create complex forms and the lack 
of the tool to visualize these complex forms. 
 
In the last decade of the 20th century, classical mathematics and 
Euclidean geometry which is the most intuitive and solid 
became no longer an adequate basis for architectural design and 
form seeking process, due to the insufficiency of the traditional 
classical mathematics with regard to the ever increasing 
complexity of the world shaped by man. In consequence, the 
reliance on other branches of mathematics solving this dilemma 
became a priority. 
 
       In particular, the developed calculus during the 18th 
century had provided mathematicians with tools to develop 
branches of higher mathematics. These branches incorporated 
with IT revolution to introduce CAD into architecture design. 
Then advances in CAD introduce new geometrical potentials 
breaking away from the canon of the Euclidean geometry and 
aid the process of form creation. CAD becomes a creative 
partner with human in the process of form finding. 
  
       The reciprocity between developments in mathematics and 
IT continued. This elaborates new mathematical tools with 
different activity, rather than creating variants of functional 
solutions, drafting, modeling and presenting, but also 
generating forms. This approach is known now by 'Generative 
Design'. Several generative design paradigms have been 
proposed, well known tools such as shape grammars, 
parametric variations and algorithmic generation, and recent 
tools for searching of form in the world of chaos or random 
functions like Fractals and Spirolaterals, and evolutionary tools 
based on the genetic engineering process like Genetic 
Algorithms and Cellular Automata. 
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• Motivation  
 
       Current computer modeling applications are satisfying. 
However, they need to offer additional options that give designers 
more form generating capabilities other than the rather tedious 
current approach.  
 
       Though these tools can do everything from generating new 
forms, ideas and concepts in design, Generative design is still ill 
defined as a new established research area.  
 
 

• Hypothesis  
 
       The study hypothesizes using these tools in generating full 
three dimensional sculptures or designs that begin to suggest 
architectural forms. From the preliminary investigations of the 
resulting forms, there seem to exist great varieties that have that 
potential.  
 

• Fields of Study 
 
- Studying the developments of mathematics in architecture 

from ancient culture to the twentieth century. 
 
- Studying the enlightenment of generativity in architecture. 

 
- Studying the conventional mathematical generative 

systems. 
 

- Studying the generative systems in the world of chaos and 
random functions. 

 
- Studying the evolutionary based generative systems. 

 
- Studying some applications of these generative systems in 

architecture. 
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• Aim (Goal) 
 

Pointing to and identifying new methodologies or tools that can 
generate unpredicted novel forms, to trigger inspiration and 
empower inventiveness during the form seeking dilemma in the 
architectural design process. 
 

• Research Objectives 
 
The main goal is subdivided into the following objectives: 
 

• Objective 1: 
 
Describing how Mathematics had been shifted from being a 
supporting and regulating tool into a creative tool then a 
generative medium. 
 

• Objective 2: 
 

Describing the conventional mathematical generative systems and 
listing its architectural potentials. 
 

• Objective 3: 
 

Explaining how mathematical elements in the world of Chaos and 
random functions can be interpreted into architectural elements. 
 

• Objective 4: 
 
Explaining how evolutionary processes in natural systems can be 
simulated artificially and interpreted into architectural elements. 
 

• Objective 5: 
 
Deducing the characteristics and promises of these generative 
systems and analytically comparing the efficiency of each 
generative tool in different applications in the design process. 
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• Methodology          

   The methodology of the study follows: 
 

A. Historical review for the mathematical utilities in design in 
ancient cultures until IT evolution in the twentieth century. 

 
B. Analytical study for the conventional mathematical 

Generative Systems. 
 

C. Analytical study for the advanced chaotic and evolutionary 
based mathematical generative systems. 

 
D. Deductive study for the characteristics and promises of 

these generative systems and the difference between the 
traditional design approach and the generative design 
approach. 

 
E. Comparative analytical study for the efficiency of each 

generative tool in different applications in the architectural 
design process. 

 
 

• Thesis Structure 
 
The thesis consists mainly of five Chapters, as follows: 
 
Chapter 1:  Mathematics and Form Development. 

 
Chapter 2:  Conventional Mathematical Generative Systems. 

 
Chapter 3:  Chaos Based Mathematical Generative Systems. 

 
Chapter 4:  Evolutionary Based Mathematical Generative Systems. 

 
Chapter 5:  Discussions, Results and Recommendations. 
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Chapter 1:  Mathematics and Form Development 
 
In most ancient cultures, until the contemporaneous movements, 
mathematics has been especially relevant in many processes of 
artistic creation. And many people believe that mathematical 
thought is an essential element of creativity. Classical 
mathematics had been the trigger for the geometry of most forms.  
 
In the past, several prominent architects and design thinkers have 
focused on the issue of the relationship between mathematics and 
design. The rational forms of Plato and the rules of geometry have 
formed the basis of antique Greek art, sculpture and architecture 
and have influenced art and design throughout history in varying 
degrees. It is common knowledge that ancient Greek and Roman 
architecture have been based on strong proportioning systems.  
 
These efforts obviously reflect a time when digital technology was 
not available as a widely used tool and designers did not have the 
benefit of using such tools. With the increase in computer usage, a 
greater interest in the relationship of mathematics to art and 
architecture emerged.  
 
Mathematics and especially geometry have found increasing 
application in the computer-based design environment of our day. 
The computer has become the central tool in the modern design 
environment, replacing the brush, the paints, the pens, the pencils, 
the compass and the rulers of the artist. 
 
CAD evolution aided the break away from the canon of the 
orthogonal right angled geometry "Euclidean geometry" and 
developed ways and tools to handle non-linear complex free forms 
based on "Non-Euclidean geometry". 
 
Then generative paradigms have been proposed using advanced 
mathematical principles with the advances IT introduced. And this 
emerged a new trend of using mathematics in art and architecture 
which is "Generative art" or "Generative design". 
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1-1 Mathematics and Form in Ancient Cultures 
 
1-1-1 Nature of Form 
 
The Greek philosopher Plato (427-348 B.C.) asserted that 
aesthetical forms are based on logical and mathematical rules. 
Plato had noticed that geometrical forms were “forms of beauty”, 
he had stressed that the use of geometrical forms such as lines, 
circles, planes, cubes in a composition would aid to form 
aesthetical forms1. 
 
Plato described the five regular solids in his Timaeus, and he also 
illustrated and explained the construction of the five regular solids 
based on the “most beautiful of all many triangles”. 
 
Platonic solids are the three-dimensional bodies whose surfaces 
consist of identical, regular polygons (e.g., equilateral triangles, 
squares, and pentagons) which meet in equal angles at the corners. 
There are five Platonic solids: the Tetrahedron, the Octahedron, 
the Hexahedron (Cube), the Icosahedron and the Dodecahedron2 
(Fig. 1.1). 
 

 
 

Fig. 1.1: The Platonic solids. 

                                           
1 Fowler, D.: The Mathematics of Plato's' Academy. Clarendon Press, Oxford, 1999. 
2 Cromwell, P.R.: Polyhedra. Cambridge University Press, 1997. 
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The Greek philosopher found an importance between the Platonic 
solids and the Empedocles’ Four Elements: the fire, the earth, the 
air, and the water (and the universe).  
 
This association has influenced the philosophers, the artists, and 
the mathematicians of the Renaissance period. Plato constructed 
the five solids using simple rules and simple polygons as follows: 
 
 “The first will be the simplest” the tetrahedron “which is the 
original element and seed of fire”.  
 
 “The second species of solid is formed out of the same triangles”. 
The octahedron “let assign the element which was next in the 
order of generation to air”.  
 
“The third to water” The icosahedron.  
 
“The fourth to earth let us assign the cubical form…to earth is the 
most immovable of the four” The cube. 
 
“There was yet a fifth combination which God used in the 
delineation of the Universe” The dodecahedron1. 
 
The Platonic Correspondences are the following: 
 

Tetrahedron → Fire. 
Octahedron→Air. 
Icosahedron →Water. 
Cube→ Earth. 
Dodecahedron → The Quinta Essentia (the “Universe”) 

 
 
 
 
 
 
                                           
1 Plato: Timaeus. In the Great Books of the Western World. Encyclopedia Britannica, 
London, Vol.  7, p. 442-477, 1052. 
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1-1-2 Geometry of Form  
 

- Euclidean Geometry 
 
Euclidean geometry is a geometry based on five postulates, the 
first four postulates are considered as the postulates of the 
absolute geometry.  
 
For example, postulate one states that; "a straight line segment can 
be drawn joining any two points"  
 
In particular the famous, the fifth postulate of "parallelism". States 
that;" if two lines are drawn which intersect a third in such a way 
that the sum of the inner angles on one side is less than two right 
angles, then the two lines must inevitably intersect each other on 
that side if extended far enough". 
 
Euclid's most famous work is The Elements. It contains thirteen 
books. Book one contains the definitions and concepts used in his 
work. Here are some of the definitions1: 
 
Definition 1: A point is what has no parts. 
Definition 2: A line (curve) is length without width. 
Definition 3: The ends of a line segment are points. 
Definition 4: A straight line is one that lies equally with respect to its points. 
Definition 5: A plane has only length and width. 
Definition 6: The ends of a plane segment are lines. 
 
Euclid's elements and postulates made a deep impact on the 
psyche of the western world. Originally viewed as both a tool and 
a model. For thousands of years, Euclidean geometry, the objects 
it defined, its postulates, axioms and theorems, were the "truth" in 
the world of art and architecture, and formed the basis in many 
forming mathematical elements that appear through the 
proportions, scale and ordering principles of the form created. 
 
                                           
1 Michele, E.: Mathland, from Flatland to Hypersurfaces. Birkhauser-Publishers for 
Architecture, 2004. 
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1-1-3 Mathematical Principles and Form1 
 
Creating a form in the previous ages depended mainly on many 
mathematical rules, which the architect used in his designs.  These 
mathematical rules appear through the following: 
 
1-1-3-1 Proportions 
 
Proportioning systems go beyond the functional and technical 
determinants of architectural form and space to provide an 
aesthetic rational for their dimensions.  
 
These proportions can usually unify the multiplicity of elements in 
an architectural design by having all of the design parts belong to 
the same system of proportions.  
 
Proportions can establish relationships between the exterior and 
interior elements of a building. The notion of devising a system 
for design and communicating its means is common to all periods 
in history. Although the actual system varies from time to time, 
the principles involved and their value to the designer remain the 
same. 
 
The most important theories of proportions through ages are: 

 
• The Golden Section 
 

Mathematical systems of proportions originate from the 
Pythagorean concept of "all is number" and the idea that certain 
numerical relationships manifest the harmonic structure of the 
universe. The Greeks recognized the dominating role the golden 
section played in the proportioning of the human body. Believing 
that both man and his temple should belong to higher universal 
order, these same proportions were reflected in their temple 
structures.  
                                           
1 Ching, F.D.K.: Architecture Form, Space and Order. Van Nostrand Riendold, 1979. 
 
 



                                                                        Chapter 1: Mathematics and Form Development 
 

 11

The golden section "can be defined geometrically as a line that is 
divided such that the lesser portion is to the greater as the greater 
is to the whole, it can be expressed algebraically by the equation 
of two ratios: a/b= b/(a+b)"1 (Fig. 1.2, 1.3). 
 

 
Fig. 1.2: The Golden section.  

                                           
1 Ibid. p.300. 
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Fig. 1.3: Two graphic analyses illustrate the use of Golden section in the 
proportioning of the Parthenon façade (Athens, 447-432 B.C). 

It is interesting to note that while both analyses begin fitting the 
façade into a Golden Rectangle, each analysis then varies from the 
other in its approach to proving the existence of the Golden 
section and its effect on the facades' dimensions and distribution 
of elements.  

• The Orders 
 

The orders of the Greeks and Romans represented the perfect 
proportions, which fulfill the expression of beauty and harmony. 
The basic unit of dimension was the diameter of the column. By 
using the column diameter as the main unit of module the 
architects design the capital, the pedestal below, the entablature 
above, and any other detail in the order. The span between the 
columns was also based on the diameter of the columns. 
 
Since the size of columns varied according to the size of a 
building, the orders were not based on a fixed unit of 
measurement, but were used to ensure that any part of a certain 
building was proportioned and in harmony the other one.  
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1-1-3-2 Scale 
 

While proportion refers to the mathematical relationships among 
the real dimensions of a form or space, scale refers to how people 
recognize the size of a building element or space relative to the 
other forms. In visually measuring the size of an element, people 
tend to use other elements of known-size in their context as 
measuring devices. These elements are known as scale giving 
element, and fall into two general categories: building elements 
whose size and characteristics are familiar to us through 
experience, and the human figure. In architecture, therefore, there 
are two types of scale: 
 
Generic scale: The size of building element relative to other 
forms in its context. 

 
Human scale: The size of a building element or space relative to 
the dimensions and proportions of the human body.  
 
The designer from a range of choices may predetermine his 
building elements. Nevertheless, the size of each element is 
perceived relative to the sizes of other elements around it. For 
example, the size and proportion of windows in a building façade 
are usually related to one another, as well as to the spaces 
between them and the overall dimensions of the façade. If the 
windows are all of the same size and shape, they establish a scale 
relative to the size of the façade.  
 
Many building elements have sizes that are familiar to us, and 
can, therefore, be used to help us gauge the sizes of other 
elements around them. Such elements as residential window units 
and doorways can give us an idea of how large a building is, and 
how many stories it has. Stairs and handrails can help us measure 
the scale of a space. Because of their familiarity, these elements 
can also be used to deliberately alter our perception of the size of 
a building form or space. 
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1-1-3-3 Ordering Principles 
 

• Axis 
 
The axis is the most elementary means of organizing forms and 
spaces in architecture. Axis is a line established by two points in 
space and about which forms and spaces can be arranged in a 
regular or irregular manner. Although an axis is imaginary and not 
visible, it is a powerful, dominating, and regulating device. 
Although it implies symmetry, it demands balance. The specific 
disposition of elements about an axis will determine whether the 
visual force of an axial organization is subtle or overpowering, 
loosely structured of formal, picturesque or monotonous1(Fig. 
1.4). 
 
Since, an axis is essentially a linear condition; it has qualities of 
length and direction, and induces movement and views along its 
path.  
 
For its definition, an axis must 
be terminated at both of its 
ends.  
 
 
The notion of an axis can be 
reinforced by defining edges 
along its length. These edges 
can be simply lines on the 
ground plan, or vertical planes 
that define a linear space  
 
 
An axis can also be established 
by a symmetrical arrangement 
of forms                   

                                                                      Fig. 1.4: The axis ordering.  

                                           
1 Ibid. p.332. 



                                                                        Chapter 1: Mathematics and Form Development 
 

 15

• Symmetry 
 

While axial forms can exist 
without a symmetrical 
condition, a symmetrical 
condition cannot exist 
without implying the 
existence of an axis or center 
about which it is structured. 
A symmetry condition 
requires the balanced 
arrangement    of   equivalent  
Patterns   of  form and  space Fig. 1.5: A symmetry cannot without implying  
About a  common  line  (axis)                 the existence of an axis.                                
or points-center (Fig. 1.5).                      
 
There are basically two types of symmetry (Fig. 1.6); 
Bilateral symmetry refers 
to the balanced arrangement 
of equivalent elements about 
a common axis. 
Radial symmetry consists 
of equivalent elements 
balanced about two or more 
axes that  intersect at  a    Fig. 1.6: A symmetry could be either              
central point.                                          a Bilateral or a Radial symmetry.  
 
An architectural composition can utilize symmetry to organize its 
forms and spaces in two ways. An entire building organization can 
be made symmetrical. Or a symmetrical condition can occur in 
only a portion of the building, and organize an irregular pattern of 
forms and spaces about itself. This latter case allows a building to 
respond to exceptional conditions of its site or program. The 
regular, symmetrical condition itself can be reserved for 
significant or important spaces in the organization1.  
 

                                           
1 Ibid. 
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• Hierarchy 
 

The principle of hierarchy implies that in most, if not all, 
architectural compositions, real differences exist among their 
forms and spaces. These differences reflect, in a sense, the degree 
of importance of these forms and spaces, and the functional, 
formal, and symbolic roles they play in their organization. The 
value system by which their relative importance is measured will, 
of course, depend on the specific situation, the needs and desires 
of the users, and the decisions of the designer. The values 
expressed maybe individual or collective, personal or cultural. In 
any case, the manner in which these symbolic differences among 
elements of a building are revealed is critical to the establishment 
of a visible, hierarchical order among its form and spaces. 

 
For a form or space to be articulated as being important or 
significant to an organization, it must be visibly unique. This can 
be achieved by endowing a form or shape with:  
 

       - Exceptional size.             
       - A unique shape. 

                     - A strategic location. 
 

A form or a space may dominate an 
architectural composition by being 
significantly different in size than 
all the other elements of the 
composition. Normally this 
dominance is made visible by the 
variation of size of an element. In 
some cases, an element can also 
dominate by being significantly 
smaller than the other elements of 
the organization, and placed in a 
well defined setting1 (Fig. 1.7).          Fig. 1.7: An element dominates by                         
                                                                              making it smaller than the other objects.  

                                           
1 Ibid. 
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Forms and spaces can be made 
visually dominant, and thus 
important, by clearly 
differentiating their shape from 
that of the other elements in the 
composition. A discernible 
contrast in shape is critical, 
whether the differentiation is 
based on a change in geometry 
or regularity. Of course, it is 
also important that the shape 
selected for the hierarchically   
important element be 
compatible with its function and 
Use (Fig.1.8).                                 Fig. 1.8: Objects are dominant by shape.                          
 
 
Forms and spaces maybe 
strategically placed to call 
attention, themselves as being 
the important elements in a 
composition. Hierarchically 
important locations for a form 
or space include (Fig. 1.9). 
 
-The termination of a linear 
sequence  or axial organization. 
-The      centerpiece           of                 
symmetrical      organization. 
-The focus of   a   centralized    
 Or radial organization offset, 
 above,  below    or    in    the       
 foreground   a   composition1.   
                                                                       
                                                                 Fig. 1.9: Objects are dominant by displacement.     

 
 

                                           
1 Ibid. p.339. 
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• Rhythm\Repetition 
 

Rhythm refers to the regular or harmonious repetition of lines, 
shapes, forms, or colors. It integrates the fundamental notion of 
repetition as a device to organize forms and spaces in architecture. 
Beams and columns repeat themselves to form repetitive structural 
bays and modules of space. Windows and doors repeatedly 
puncture a buildings' surface to allow light, air, views, and people 
to enter their interiors. Spaces are repeated to accommodate 
similar or repetitive functional requirements in the building 
program. This section discusses the patterns of repetition that can 
be utilized to organize a series of recurring elements, and the 
resultant visual rhythms these patterns create. Elements are 
grouped in a random composition1 (Fig. 1.10).  
 

1. Their closeness or proximity to one another. 
2. The visual characteristics they share in common. 

 

 
 

Fig. 1.10: Elements are grouped in a random composition. 
                                                 
The principle of repetition utilizes both of these concepts of 
perception to order recurring elements in a composition. 
 
The simplest form of repetition is a linear pattern of redundant 
elements. Elements need not be perfect identical, however, to be 
grouped in repetitive fashion. They may merely share a common  
trait, a common denominator, allowing each element to be 
individually unique, yet belong to same family (Fig. 1.11). 
                                           
1 Ibid. 
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Fig. 1.11: A linear pattern of redundant elements. 
 

 
Physical traits (Fig. 
1.12)  by which 
architectural forms 
and spaces can be 
organized in a 
repetitive fashion are: 
 
-Size 
-Shape 
-Detail characteristics         Fig. 1.12: An object is dominant by displacement.  

 
 
• Datum 
 

 A datum refers to a line, plane or volume of reference to which 
other elements in a composition can relate. It organizes a random 
pattern of elements through its regularity, continuity, and constant 
presence. For example, the lines of a musical staff serve a datum 
in providing the visual basis for reading notes and the relative 
pitons of their tones. The regularity of their spacing and their 
continuity organizes, clarifies, and accentuated the differences 
between the series of notes in a musical composition.  
 
In a preceding section, the ability of an axis to organize a series of 
elements along its length was illustrated. The axis was serving, as 
a datum. A datum, however, need not to be a straight line. It can 
also be planar or volumetric in form. 
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To be an effective ordering device, a datum line must have 
sufficient visual continuity to cut through or by-pass all of the 
elements being organized. If planar or volumetric in form, a datum 
must have sufficient size, closure, and regularity to be seen as a 
figure that can embrace or gather together the elements being 
organized within its field.  
 
Given a random organization of dissimilar elements, a datum can 
organize these elements in the following ways (Fig. 1.13, 1.14, 
1.15). 
 

 
 
 
Fig. 1.13: A Line can cut through or form a common edge for the pattern; a grid of 

lines can form a neutral, unifying field for the pattern. 
 
 

  
 

Fig. 1.14: A plane can gather the pattern of elements beneath it. Or serve as a 
background and in frame the elements in its fields. 
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Fig. 1.15: A volume can collect the pattern within its boundaries, or organize them 

along its perimeter. 
 
• Transformation 
 

The study of architecture, as in other disciplines, should 
legitimately involve the study of its past, of prior experience, of 
endeavors and accomplishments from which much can be learned 
and emulated. The principle of transformation accepts this notion1.  

 

 
 

Fig. 1.16: Plan development of North Indian Cella. 
 

The principle of transformation allows a designer to select a 
prototypical architectural model whose formal structure and 
ordering of elements might be appropriate and reasonable, and to 
transform it through a series of discrete manipulations to respond 
to the specific conditions and context of the design task at hand. 
Transformation requires first that the ordering system of the prior 
or prototypical model be perceived and understood so that, 
through a series of finite changes and permutations, the original 
design concept can be clarified, strengthened, and built upon, 
rather than destroyed (Fig. 1.16).  

                                           
1 Ibid. 
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1-2 Mathematics and Form in the 20th Century 
 
1-2-1 Nature of Form 
 
The reliance on classical mathematics and geometry, continued in 
the beginning of the century due to the inability to perform 
complex mathematical calculations to create complex forms and 
the lack of the tool to visualize these complex forms. These 
factors acted as constraints on the use of higher mathematics and 
the complex curved forms they described in conceptual 
architectural design1. 
 
As a result, conventional box-like, horizontal-vertical, flat-plate 
architectural forms had been very common in the beginning of the 
century until modern movements (Fig. 1.17). 
 

 
 

Fig. 1.17: Conventional box-like, horizontal-vertical, flat-plate forms. 
 
On the other hand, philosophy was the key for some freely-formed 
buildings breaking away from the canon of the traditional classical 
mathematics without the use of higher mathematics. These 
achievements have been regarded as more unique and uncommon 
architectural examples and some of those have even been 
developed into iconic landmark buildings, either over time such as 
Sagrada Familia in Barcelona by Gaudi or Ronchamp Chapel by 
Le Corbusier or the TWA airport terminal in New York by 
Saarinen. (Fig. 1.18). 
                                           
1 Manoa, D.: Computer Generated Complex Curved Surfaces as an Architectural Design 
Tool. A paper presented to the Third International Symposium on Asia Pacific Architecture, 
1999. 
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Fig. 1.18: Freely formed building before the era of CAD. 
 

The possibility to create free building forms, have been based on 
physical models or geometrical construction principles. These 
forms have in most cases been created with the aid of compasses, 
curved plastic aids (French curves), pens-ties-to-ropes and clay. 
 

• Evolution of Computer Aided Design1 
 
In the last decade of the 20th century, classical mathematics and 
geometry became no longer an adequate basis for architectural 
design and form searching. Due to the insufficiency of the 
traditional classical mathematics with regard to the ever increasing 
complexity of the world shaped by man. 
 
In the beginning of the 1960’s, developments in mathematics 
combined with developments in computer science, and computer 
hardware and software, advents the concept of computer aided 
design (CAD). Computer-aided design (CAD) with all of its 
aspects has been in an evolution-like changing process since the 
advent of the concept. This evolution has mainly been based on 
technology leaps and new innovations in computing and software 
technology. During the 1980's - the "enlightenment" of 
computerized design - CAD started to appear more in architectural 
practice and it also became an acceptable design tool. Finally 
CAD strengthened its position to be the inevitable architectural 
tool in design practice during the 1990's. 

                                           
1 Pentilla, H.: Describing the Changes in Architectural Information Technology to 
Understand Design Complexity and Free-Form Architectural Expression. Helsinki 
University of Technology HUT, Department of Architecture, Finland, 2006. 
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1-2-2 Geometry of Form  
                              
The earliest spatial 3D-design 
with computers in the 1960s had 
to be simulated with box-like 
parallel-piped due to limited 
computing capability. In the 
1970s it was possible to model 
also mathematically defined 3D 
curved forms with CAD 
(Fig.1.19), though the geometry 
of forms didn't break away from 
the canon of the orthogonal 
straight lines and traditional 
curved surfaces1.                           
 
Fig. 1.19: The main hall of Helsinki opera house  (architects Hyvämäki - Karhunen 

–Parkkinen) modelled with Proj-program by Tapio Takala. 1978-84.An early 
example of free architectural forms expressed with CAD.  

 
Straight and curved lines could be modeled spatially in 3D, 
though yet without volume modeling. 
                                                                                                     
The description and, consequently, the construction of compound, 
complex curves were accomplished through concatenating tangent 
circular arcs and straight-line segments (Fig. 1.20).  
 

 
 

Fig. 1.20: Ordinary method of identifying a curve.q 
                                           
1 Ibid. p.398. 
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Starting from the 1980s and finally during the last decade, The 
graphic and mathematical functional abilities of the majority of 
recently used CAD-systems, have developed until now, to handle 
also non-linear free forms, such as curves and curved surfaces. 
Current systems balance the needs within architectural design 
practice, between the Euclidean orthogonal geometry that have 
been available since the 1960s, and the Non-Euclidean geometry 
that match the needs of recent architectural expression (Fig. 1.21). 
              

   
 

Fig. 1.21: (left). Projects from Greg Lynn Form and Kivi Sotamaa/Ocean-North 
(Right), Showing the development of forms created in recent CAD systems. 

 
1-2-3 New Geometrical Potentials 
 
Many curve generation techniques have disadvantages when 
incorporated into an interactive CAD program. Specifically many 
curve techniques do not give a strong intuitive feel of how to 
change or control the shape of a curve. Changing the shape of 
certain curves by moving one or more of the points may produce 
unexpected, or undesirable, results, both locally and global.  
 
The advent of B-spline curves and then NURBS-surfaces (non-
uniform rational B-splines) in CAD-systems has in fact solved this 
problem and finally released our contemporary forms from the 
leash of perpendicular axial 3D-shapes1. This developed new 
geometrical potentials for the process of creation of architectural 
forms. 

                                           
1 Chiarella, M.: Geometry and Architecture: NURBS, Design and Construction. Proceedings 
of the Fourth International Conference of Mathematics and Design, special edition of the 
journal of Mathematics & Design, volume 4, no.1, pp.135-139, 2004. 
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“Bezier representations of curves and surfaces used in computer 
graphics were independently discovered by Pierre Bézier an 
engineer for Renault, and Paul de Casteljau, an engineer for 
Citroën. Both working for automobile companies in 1970’s 
France, these engineers initially developed a curve representation 
scheme that is geometrical in construction, and based upon 
polynomial functions. They extended it to a surface patch 
methodology that has become the de-facto standard for surface 
generation in computer graphics”1. 
 
1-2-3-1 Bezier Curves2 
                 
It is much easier and 
appropriate for designers if a 
curve’s shape can be controlled 
in a predictable way by 
changing only a few simple 
parameters. Bezier's curve 
partially satisfies this need for 
control. 
 
A Bezier curve in its most 
common form is a simple cubic 
equation. Four points define a 
cubic Bezier curve. Two are 
endpoints. (x0,y0) is the origin 
endpoint. (x3,y3) is the 
destination endpoint. The 
points (x1, y1) and (x2,y2) are 
control points. These points, 
end and control, define what is 
termed a characteristic polygon  
(Fig. 1.22).                  Fig. 1.22: Bezier curves and their          
                                                                               Characteristic polyhedrons.    

                                           
1 Mortenson, M.E.: Geometric Modeling. John Wiley and sons, 1985. 
2 Manoa, D.: Computer Generated Complex Curved Surfaces as an Architectural Design 
Tool. A paper presented to the Third International Symposium on Asia Pacific Architecture, 
1999, op.cit. 
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Fig. 1.23: (a) Effects of moving a point on a Bezier Curve and (b) of having 

coicident points on curves of higher degree. 
 

(Fig. 1.23) shows two examples of cubic Bezier curves, in (Fig. 
1.23 a), the placement of the points generates a smooth, 
uninflected curve, while in (Fig. 1.23 b), the placement of the 
points generates an inflected curve. There is a facility to modify a 
curve and the effect can be weaker or stronger depending on the 
distance or direction the point is moved. 
 
1-2-3-2   Bezier Surfaces (Patch)1 
 
Just as the Bezier curve has a characteristic polygon, the Bezier 
surface has a characteristic polyhedron. Points on a Bezier surface 
are given by a simple extension of the general equation for points 
on a Bezier curve (Fig. 1.24). 
 

 
Fig. 1.24: Bezier Patch with modified characteristic polyhedron/net of control 

points. 

                                           
1 Ibid. 



                                                                                        Chapter 1: Mathematics and Form Development 
 

 28

The Bezier surface is completely defined by a net of design points 
describing two families of Bezier curves on the surface. Each 
curve is defined by a polygon of four points or vertices. (A greater 
number of points could be used, resulting in a higher degree 
polynomial). 
 
1-2-3-3   NURBS  
 
The NURBS are mathematical representations of geometry in 3D 
able to describe any form accurately, from simple lines in 2D, 
circles, arches, or curves until the most complex solids or organic 
surfaces in a free way in 3D. Non-Uniform Rational B-splines. 
NURBS are described as follows: 
 

i. NURBS are a digital equivalent of drafting splines used to 
draw the complex curves. 

 
ii. NURBS make the heterogeneous, yet coherent, complex 

forms of the digital architectures computationally possible. 
NURBS make the construction of these forms attainable by 
means of computer numerically controlled (CNC) 
machinery. 

 
iii. The widespread of NURBS is due to its ability to construct 

a broad range of geometric forms, from straight lines and 
platonic solids to highly complex sculptured surfaces. 

 
iv. From a computational method point of view, NURBS 

provide an efficient data representation of geometric forms, 
using the minimum amount of data for shape computation. 
For this reason, most of today's digital modeling programs 
rely on NURBS as a computational method for constructing 
complex surface models. 

 
The NURBS curves can be changed by manipulating its control 
points and associated weights and knots, as well as the degree of 
the curve itself.  
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The NURBS curves are shaped primarily by changing the location 
of control points, which do not have to lie on the curve itself, 
except for the endpoints. Each control point has an associated 
weight, which determines the extent of its influence over the 
curve. Increasing the weight of a control point pulls the 
corresponding curve or surface toward that control point and vice 
versa (Fig. 1.25, 1.26). 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.25: A curve modified by the forces exerted on each control point. (second 
dark red circles). 

 
When a spline is constructed, the line is not drawn by itself 
(curved line in image), but rather by the control points (grey 
circles) that influence the spline.  

 

 
Fig. 1.26: The control lattice for a NURBS surface. 
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1-3 Mathematics and Generative Design Evolution 
 

The relationship between mathematics, art and design has shifted 
throughout the last years, Due to developments in mathematics 
that combined with developments in computer science, hardware 
and software. These relationships aroused new tools aiding the 
design process.  
 
Reported attempts to automate the process of layout allocation and 
space generation started over 40 years ago. Researchers have used 
several problem representations and solution techniques to 
describe and generate solutions for the design problem. Several 
generative paradigms have been proposed using advanced 
mathematical principles. Generative systems are relevant to 
contemporary design practice and their integration into the design 
process allows the development of predicted and unpredicted two 
and three dimensional design solutions, labor intensive and time 
consuming to achieve via other methods. 
 
 
1-3-2 Space Planning Paradigms 
 
1-3-1-1 Graph Theory 
 
The first confirmation existence of generation in design was done 
by 'Levin' in 19641. Who used an analytical tool box available for 
the study of complex systems that is rooted in a powerful subfield 
of mathematics, called "graph theory", which originated in the 
eighteenth century work of 'Euler'.  
 
The system of elements that interact or regulate each other (a 
network) can be represented by a mathematical object called a 
graph. A graph is a collection of nodes and edges: the interacting 
components of the system are reduced to a set of nodes, and the 
interactions among the components are represented by edges.  
                                           
1 Levin, P. H.: Use of Graphs to Decide the Optimum Layout of Buildings. Architect, 14, p.p 
809–815, 1964. 
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Graph can represent any kind of relationship, and architecture is 
certain kind of relationship, thus, could be explained suitably by 
graph. Since then, graph theory has been implemented using 
computer programs in architectural space planning to analyze 
potentials of individual spaces that compose together a wider 
system of space1. 
 
The next figure and table describe basic concept of graph and its 
geometry. Including 'minimum distance' and 'optimal passage' 
(Fig. 1.27, Table 1.1). 
 

 
Fig. 1.27: Linear graph diagram. 

  

 
Tab. 1.1: Geometric measures of node in minimum-path graph2. 

                                           
1 Kalay, E.Y.: Modeling Objects and Environment, John Wiley & sons, 1987. 
2 Nophaket N.: The Graph Geometry for Architectural Planning. Journal of Asian 
Architecture and Building Engineering, May 2004. 
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More attempts made by 'Grason' in 1970 and 'Steadman' in 1976 
to explore the potential for portraying relationships as links within 
a graph representation. These researchers suggested that the 
application of this formalism would permit established graph 
theory algorithms to be implemented within layout generation 
systems. 
 
(Fig. 1.28) illustrates this representation scheme. In this 
illustration, a set of adjacency requirements is initially provided 
by the user (Fig. 1.28 a).  Based on these requirements, a graph is 
constructed where the spaces are represented as nodes and the 
adjacency requirements are represented as links between the nodes 
(Fig. 1.28b). 
  

 
 

Fig. 1.28: Generating a relationship graph from a relationship matrix. 

 
The graph contains no intersecting links, given this condition. 
Graph theories prove that all relationships can be accommodated 
in a 2-dimensional plane. Given the planar requirements graph, a 
series of potential layouts may be generated which satisfy the 
spatial requirements (Fig. 1.29a).  
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Finally, a second graph representation, referred to as a dual graph, 
characterizes the layout adjacencies and common walls by 
distinguishing the north-south adjacency links from the east-west 
adjacency links (Fig. 1.29b)1. 
 

 
 

Fig. 1.29: Layout alternatives and a dual graph representation generated from the 
relationship graph in figure 1.28. 

Research efforts founded on this theory have resulted in several 
layout generation system implementations. Notable among these, 
are implementations by Grason (Grason 1970), Baybars and 
Eastman (Baybars and Eastman 1980), hashimshony 
(Hashimshony and roth 1986), and Rinsma (Rinsma 1988). 
 
Another presented approach was to start with an old solution to a 
similar space design problem and adapt it to the needs and 
circumstances of the new problem that differs from the other one. 
These methods are known as "Case-Based methods". 
 
A third subcategory for automated space planning, capture the 
knowledge and experience of past designers directly in the form of 
design rules. These methods are known by "Knowledge-based 
systems"2 . 
                                           
1 Chinowsky, P. S.: The CADDIE Project: Applying Knowledge-Based Paradigms to 
Architectural Layout Generation. Ph.D. thesis, department of civil engineering, Stanford 
University, May 1991. 
2 Kalay, E.Y.: Architecture's New Media. Principles, Theories, and Methods of Computer-
Aided Design. The MIT Press, Cambridge, Massachusetts, 2004. 
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1-3-1-2 Generative Expert Systems 
 
"Expert systems" are subset of Artificial Intelligence (AI) tools. In 
these systems, design knowledge is represented within the 
condition-action formalism of rules. The rules capture the specific 
conditions under which designers reach decisions for a limited 
design domain, together with the actions a designer takes when 
these conditions are present. For example, the following rules 
capture a design focusing on the placement of two spaces with a 
required adjacency1: 
 

 
 
This use of previous design information includes the adaptation of 
design concepts, design methodologies, forms, and goals. As 
designers gain more experience in a given area, successful 
solutions to previous design problems become prototypes for 
future problems. Once these prototypes are developed, a designer 
rarely develops new prototypes due to the extensive knowledge 
which exists in previous prototypes (Fig. 1.30)2. 
 

 
Fig. 1.30: Prototypes refinement rules select appropriate prototypes based on layout 

conditions. 

                                           
1 Chinowsky, P. S.: The CADDIE Project: Applying Knowledge-Based Paradigms to 
Architectural Layout Generation. Ph.D. thesis, department of civil engineering, Stanford 
University, May 1991. op.cit. 
2 Ibid. 
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1-3-2 Form Generation Paradigms 
 
Although the previous efforts comprise different methodologies to 
generate layout alternatives for space planning, no tools were yet 
developed for the generation of forms in 3-dimensional until the 
1970's. Researchers recognized the familial nature of the case-
based systems and the kit-of-parts nature of the expert systems as 
kinds of "languages" and formalized them into systems of rule-
based geometrical constructions for designing shapes and forms 
based on strict compositional rules. This approach came to be 
known as the "shape grammars" methods.  
 
Advances brought to computational design using higher 
mathematics and programming languages evolved other tools like: 
"Parametric variations" and "Algorithmic form generative 
systems". 
 
Not only conventional mathematics that had been used in 
developing generative systems, but also chaotic mathematical 
processes developed new tools like: "Fractals", "Strange 
attractors1" and "Spirolaterals".  
 
The advent of evolutionary design as a result for the reciprocity 
between evolutionary computations and design, provided 
researchers with new methods and tools in their quest to 
rationalize the form generation process. "Genetic Algorithms", 
"Cellular Automata" and "Artificial Neural Networks" are three 
tools belonging to evolutionary systems, which are able to 
generate unexpected novel forms.  
 
The next chapters will summarize and discuss some of these 
generative systems in detail. 
 
 
 

                                           
1 P.S: Some researches classify Fractals and Strange attractors as two generative systems, 
while other researches grouped them together. In this thesis Strange attractors will be studied 
as a type of Fractals according to the second opinion. 
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Summary of chapter one: 
 
       Chapter one discussed how the rely on classical geometry -as 
a branch of mathematics which is the most intuitive and solid in 
ancient cultures till the beginnings of the 20th century- had been 
shifted and upgraded into higher branches of mathematics, like the 
calculus that had been developed in the 18th century. Mathematics 
development reciprocated with IT and this advents CAD into the 
architectural design process. CAD developed new geometrical 
potentials that transformed mathematics from being a supporting 
and regulating tool that appear only through the proportioning and 
ordering of the forms produced into a creative tool aided the 
process of form creation. Researches continued on using other 
branches of mathematics in architectural design process, 
particularly in the sixtieth of the 20th century, when graph theory -
as another branch of mathematics- had been used in space 
planning and layout allocation. And this was the enlightenment of 
the generative design approach in architectural design process. 
 
 



 
 
 
 
 

Chapter 2 
Conventional Mathematical 

Generative Systems 
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Chapter 2: Conventional Mathematical Generative 
Systems 

 
Developing   the  process   of  form   finding   demands   a  shift  
in  the  use  of mathematics in design  and  elaboration  of  new  
mathematical   uses  differs  from the intuitive use of classical 
mathematics and geometry. 
 
Mathematical form generation can be used to generate orthogonal 
conventional forms using basic shape algebra and formal logic or 
complex three-dimensional curves  and   folding   surfaces   using    
trigonometric  parameterized  functions  or  using  macro  
facilities  and  scripting languages or full fledged programming 
languages to direct manipulate 2D and 3D forms. 
 
Mathematical form generative systems are well-established 
themes in computer aided architectural design, including 
approaches like shape Grammar, parametric variations and 
algorithmic form generation. 
 
 
2-1 Shape Grammars 
 
2-1-1 Description  
  
Shape grammars were first introduced by Gips and Stiny in 1972, 
as an idea to describe visual shape compositions1. A shape 
grammar is a set of rules to specify how one shape or part of a 
shape can be replaced by another. This simple substitution process 
can be used to describe a certain design style or generate new 
ones2. 

                                           
1Stiny, G.: Computing with Form and Meaning in Architecture. Journal of Architectural 
Education, 39(1): 7-19, 1985. 
2Knight, T.W.: Shape Grammars in Education and Practice: History and Prospects. Online 
paper, Department of Architecture, MIT, 2000. 
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In other words, a shape grammar defines a design style in the form 
of algorithms that manipulate the design components. Several 
computer systems have demonstrated shape grammars to generate 
shapes with a certain graphic or architectural style. Much work in 
shape grammar has analyzed an instance of design style with a set 
of rules and showed how the rules can be used to generate new 
designs1.  

• Types of Shape Grammars2: 

i-  Standard (Non-Parametric, Basic) Shape Grammars 

Standard shape grammar has a set of rules (Fig. 2.1a). In each 
rule, shape on the left side of the arrow determines which part of 
the shape will be replaced when the rule is applied. The shape on 
the right side of the arrow indicates the state after the 
transformation. An initial shape can be applied by a sequence of 
rules. (Fig. 2.1b) shows how applying the same simple rule (#2) 
repeatedly generates a complex pattern. Variation of how many 
iterations of applying the rule to the initial shape can generate an 
interesting drawing (Fig. 2.1c). 

 

Fig. 2.1: (a) Rules for a Standard Shape Grammar (b) A derivation of the rules (c) A 
result generated by applying the rules repeatedly. Source: Stiny, 1985. 

                                           
1 ibid. 
2Stiny, G.: Computing with Form and Meaning in Architecture. Journal of Architectural 
Education, 39(1): 7-19, 1985, op.cit. 
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ii-  Parametric Shape Grammars 

A parametric shape grammar also has a set of rules that specify 
how shapes replace sub-shapes of a composition (Fig. 2.2a). 
However, it uses parameters for shape manipulation. Shapes have 
proportion parameters, and the values of the parameters can be 
changed. This parametric shape grammar creates shapes with 
more variation than the standard shape grammar. (Fig. 2.2c) 
shows the result of a parametric version of the shape grammar 
shown in (Fig. 2.1b). 

 
Fig. 2.2: (a) Rules for a Parametric Shape Grammar (b) A derivation of the rules (c) 

A result shapes generated by applying the rules. Source: Stiny, 1985  

Changing a substitution rule of a shape grammar can generate 
various results. The user arranges shapes using simple operations 
(translation, rotation, scaling) and defines substitution rules.  

Both standard and parametric shape grammars have been used for 
generating of new forms and analyzing a predefined design styles. 
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2-1-2 Architecture Potentials  

2-1-2-1 Generating Forms 
 

i- 2D  Forms 
 

Using shape grammars with a label defined generate a wide 
variety of 2D forms.  The label is a symbol that indicates the 
orientation of the shape and how to apply this rule in a derivation. 
The labeled rules show how a rectangle on the left side of the 
arrow would generate a copy of the shape in a spatial argument.  
 
The two shapes on the right side of the arrow indicate the result of 
such rules. Left hand side of the rule; an initial shape with a dot 
label. Right hand side; the arranged shapes illustrating the 
derivation outcome. With labels at different position, each rule 
generates a different derivation result (Fig. 2.3, 2.4). 

  

Fig. 2.3: Various 2D labeled rules for standard shape grammar and their derivations. 
Source: Knight, 2001. 
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Fig. 2.4: Generating 2 dimensional zoning diagram using labeled rules of shape 
grammars1. 

                                           
1 Heitor, T., Duarte, J.P. and Pinto R.M.: Combining Grammars and Space Syntax: 
Formulating, Evaluating and Generating Designs. The 4th International Space Syntax 
Symposium, London, 2003. 
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ii- 3D Forms 
 
3D spatial relations could be configured using the same rules 
(Fig. 2.5, 2.6). 
 

Fig. 2.5: Various 3D labeled rules for standard shape grammar and their derivations.  

 

 

Fig. 2.6: Various 3d forms generated with Shape grammars. 
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Flemming1 (1990) presented grammars for various 3D 
architectural languages: wall architecture, mass architecture, panel 
architecture, layered architecture, structure/infill architecture, and 
skin architecture. He used shape grammars to define rules that 
illustrate how architectural elements can be placed in the space. 
  
(Fig. 2.7a) shows a grammar for wall architecture, one of the 
languages. The rules of this grammar specify how one wall can 
attach to another. (Fig. 2.7b) illustrates some wall configurations 
generated by applying the rules repeatedly. Other architectural 
languages can be described in a similar way. Designers can use 
computers to explore and make compositions within these 
architectural languages. 
 

 
Fig. 2.7: (a) Generation rules for wall architecture (b) Configurations generated by 

these rules. Source: Flemming, 1990.  
                                           
1 Flemming, U.: Syntactic Structures in Architecture. M. McCullough, W. J. Mitchell, and P. 
Purcell, eds., The Electronic Design Studio, The MIT Press, Cambridge, pp. 31-47, 1990. 
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2-1-2-2 Analysis of Style  

There have been several approaches to use a set of rules to analyze 
and describe a certain design style. For example:  

• Ice-ray Grammar:  

Stiny’s Ice-ray grammar is a parametric shape grammar that 
describes and generates instances of a Chinese lattice design style 
(Fig. 2.8). This grammar captures the compositional principle of 
lattice designs into a set of rules1.  

This ice-ray grammar generates various patterns in the Chinese 
lattice design style (Fig. 2.8a). Looking at Chinese window grilles, 
Stiny identified four rules for the ice-ray grammar (Fig. 2.8b). 
Each rule subdivides a shape by inserting a straight line. (Fig. 2.9) 
shows a derivation to generate a pattern starting from a rectangle 
shape.  

The rectangle is divided into two trapezoids using the third rule, 
and then the lower trapezoid is divided further into two trapezoids 
using the third rule. Finally the upper pentagon is split using the 
fourth rule into a triangle and a pentagon. These subdivisions are 
applied recursively and generate a pattern in the Chinese lattice 
design style. 

     
Fig. 2.8: (a) Some results of ice-ray grammar (b) Four rules for a shape grammar of 

an ice-ray pattern. Source: Stiny, 1977.  
                                           
1 Stiny, G.: Ice-ray: A Note on Chinese Lattice Designs. Environment and Planning B 4: 89-
98, 1977. 
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Fig. 2.9: A derivation using the third and fourth rule of ice-ray grammar. Source: 

Stiny, 1977.  

• Palladian Grammar: 
 
Stiny and Mitchell1 (1978) defined a series of rules for villas 
designed by the sixteenth-century architect, Andrea Palladio. (Fig. 
2.10) illustrates some villa plans depicted with the rules. The 
Palladian villas grammar focuses on describing architectural plans 
that consist of walls, spaces, windows, and entrances. It has 72 
production rules that generate all the villa plans that Palladio 
designed as well as new ones in the Palladian style. These rules 
are more complicated than the previous ice-ray grammar.  

 
Fig. 2.10: Possible Palladian villa plans with Palladian villas grammar. Source: Stiny 

and Mitchell, 1978.  

                                           
1 Stiny, G. and Mitchell W. J.: The Palladian Grammar. Environment and Planning B5, no.1: 
5-18, 1978. 
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(Fig. 2.11) shows how the 72 rules of this grammar are applied to 
each intermediate drawing and illustrates how Palladio’s Villa 
Malcontenta plan is developed. The grammar starts from defining 
a single point, which shows a location of the plan on a site. A grid 
with rectangles is used as an initial layout and controls all 
subsequent stages of plan generation. The grid is used for 
generating external walls and rectangular spaces to form rooms in 
the plan. The principal entrances and columns are then added with 
windows and doors inserted in the walls to complete the plan1.  

 

Fig. 2.11: A derivation of Villa Malcontenta using Palladian villas grammar. Source: 
Mitchell, 1994.  

They also implemented the two systems PlanMaker and 
FacadeMaker to generate various Palladian villa plans and 
facades. 
                                           
1 Mitchell, W. J.: The Logic of Architecture. The MIT Press. Cambridge, MA, 1994.  
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• Prairie House Grammar: 
 
Koning and Eizenberg1 (1981) developed a 3D parametric shape 
grammar for Frank Lloyd Wright’s prairie house style. They used 
99 production rules, including 18 rules to arrange major cubic 
masses and 81 rules to add details to the masses. (Fig. 2.12a) 
shows one of the massing rules. It extends one mass by attaching 
another mass to the right side of the existing mass. (Fig. 2.12b) 
illustrates one of the detailing rules. It adds a terrace object to an 
existing building.  

(Fig. 2.12c) shows the steps of a derivation in the prairie house 
grammar. The house design starts from the fireplace and is 
organized around it. Then, a living zone is located around the 
fireplace creating a core unit. The prairie house plan is composed 
with butterfly-shaped extensions of the core unit. The house plan’s 
basic composition is completed with named function zones such 
as living and service areas, and porches and bedrooms. 

  

 

 

Fig. 2.12: (a) A massing rule (b) Detailing rules for the prairie house grammar (c) A 
derivation of the rules. Source: Koning and Eisenberg, 1981. 

                                           
1 Koning, H. and Eisenburg, J.: The language of the Prairie: Frank Lloyd Wright’s Prairie 
Houses. Environment and Planning B8, 295-323, 1981. 
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There are also rules to add terraces, a basement, and a second 
story. The final rule completes the generation of the prairie house 
by adding a roof and chimney. (Fig. 2.13) illustrates some 
variations generated by the Frank Lloyd Wright’s prairie house 
using the prairie house grammar. 
 

 

Fig. 2.13: Various results of the prairie house grammar. Source: Koning and 
Eizenberg, 1981. 
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2-1-3 Shape Grammar Generative Systems 

Many systems of shape grammars had been implemented. (Tab. 
2.1) shows a brief survey of shape grammar implementations. 
 

 
Tab. 2.1: A list of 2d and 3d shape grammar implementations. Available on the web at 

http://www.shapegrammar.org 

2-1-3-1 GEdit 
 
Tapia1 (1999) developed GEdit, a two-dimensional shape 
grammar interpreter that provides an interface for users to make or 
control the rules for spatial layout (Fig. 2.14). A designer arranges 
shapes and defines the rules in the graphic window. The result of 
applying the rules is shown in another window. 
                                           
1 Tapia, M.A.: GEdit, A Visual Implementation of a Shape Grammar System. Environment 
and Planning B: Planning and Design, vol. 26, pp. 59-73, 1999. 
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Fig. 2.14: Screenshot of GEdit Interface. Source: Tapia, 1999.  

2-1-3-2 Shaper 2D  

Mcgill1 (2001) developed Shaper 2D as an interpreter for standard 
shape grammar with a graphic interface (Fig. 2.15). It allows 
designing two rules at the same time with result displayed in the 
same window. (Fig. 2.16) illustrates the process of applying the 
generated result to the design process. The designer first generated 
2D shape configurations in Shaper 2D (Fig. 2.16a) and then 
placed it on a site drawing in CAD system (Fig. 2.16b). Finally, 
the designer further developed the 2D shape into an architectural 
building plan (Fig. 2.16c).  

 

Fig. 2.15: Screenshot of Shaper 2D Interface. Source: Mcgill, 2001.  
                                           
1 McGill, M.: A Visual Approach for Exploring Computational Design. SMArchS Thesis, 
Department of Architecture, Cambridge, MA: Massachusetts Institute of Technology, 2001. 
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Fig. 2.16: Illustrations for using the result of Shaper2D in the design process (a) The 
generated result in Shaper 2D (b) Site planning with the result (c) Plan designing 

with the result. Source: Mcgill, 2001.  

2-1-3-3  3D-Shaper  

Yufei Wang1 (1999) developed 3D shaper (Fig. 2.17a) with a 
dialogue interface for 3D object creation and rule definition. A 
designer types numerical parameters in the dialogue interface for 
the size, type and labels of shapes as well as the spatial 
arrangement between shapes. Then the system generates 3D forms 
and creates 3D Open Inventor files. The resulting 3D form is then 
displayed in an Open Inventor Viewer (Fig. 2.17b).  

  

Fig. 2.17: (a) Screenshot of 3D Shaper Interface (b) Screenshot of SGI open 
Inventor Viewer to see the 3D result of 3D Shaper. Source: Wang, 1999.  

                                           
1 Wang, Y.: 3D Shaper, 3D Architecture Form Synthesizer. SMArchS Paper, Department of 
Architecture, Cambridge, MA: Massachusetts Institute of Technology, 1999.  
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2-2 Parametric Variations 
 
2-2-1 Description 
 
Parametric design is turning design into a set of principles encoded 
as a sequence of parametric equations. The equations are used to 
express certain quantities as explicit functions of a number of 
variables1.  
 
By changing any parameter in the equation new forms and new 
shapes could be generated. The parameters are not just numbers 
relating to Cartesian geometry, they could be performance based 
criteria such as light levels or structural load resistance, or even a 
set of aesthetic principles. 
 
At the moment, parametric design refers to Cartesian geometry 
and the ability to modify the geometry by means other than 
recomposition. The only parameters that can be revised are those 
that define the measurements of entities and distances along with 
their relative angles, and the ability to make formal associations 
between these elements.  
 
Thus the term "parametric design" is more accurately referred to 
as "associative geometry". Each time a value for any parameter 
changes, the model simply regenerates to reflect the new 
geometry. 
 
2-2-2 Architectural Potentials 
 
2-2-2-1 Generating Complex Curves and Ruled Surfaces 
 
A parametric description of form provides high potentiality to 
generate complex curves and ruled surfaces. Ruled surfaces are 
able to accomplish high levels of form complexity, especially by 
their intersections when assembled.  
                                           
1Kolarevic, B.: Digital Morphogenesis. In B. Kolarevic, (Ed) Architecture in the Digital Age, 
Design and Manufacturing. New York: Spon Press, 2003.  
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Ruled surfaces have been extensively applied to architecture, with 
their potentials adjusted to the new technological means. The 
Paramorph, designed by DeCoi in 1999, may serve as an example 
(Fig. 2.18). 
 

 
 

Fig. 2.18: Paramorph (DeCOi 2000). 
 
 
 

• Mathematical Definition of a Ruled Surface  
  
A 3D surface is called ruled if through any of its points passes  at  
least one line that lies  entirely  on that  surface.  A  ruled  surface  
results from  the  motion  of a line in space, similarly to the way a  
curve represents the motion of a point. 
 

 
 

Curve b is called Base curve or  directrix of  the surface.  In  
other words, we get the directrix curve  if  we  fix  a  point  on 
 the  moving straight line.  
  
Curve d is called the Director curve of the surface. d(v) is the unit
 tangent vector with the direction of generator through b. We may 
visualise d as a vector field on b1. 
 
  

                                           
1 ONeill, B.: Elementary Differential Geometry. New York: Academic Press, 1966. 
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 (Fig. 2.19) describes the state of some parametric ruled surfaces. 
 

 
 

Fig. 2.19: Ruled surfaces created using parameterized function. 
Images from  MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com 9/2007. 
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The following surfaces (Tab. 2.2) can be expressed parametrically 
within the following parametric functions: 
 

 
 

Tab. 2.2: Surfaces with equivalent parametric equations1. 
 

2-2-2-2 Simulating Buildings Parametrically 
 
It is possible to create a simple parametric system to  generate  an  
almost  complete  set  of  building types based on ruled  surfaces.  
Parametric design systems can simulate a wide variety of 
buildings in a very simple way, in a compact representation than 
representing a complex building in more detail.  
 
The values of the parameters are presented in 12x n matrices. 
where n is the number of surfaces. Active parameters of each 
surface take a real or integer number value, otherwise they are set 
to 0. 
 
Each surface of a building can be expressed using six parameters, 
three for the base curve and three for the director curve. 

                                           
1 Prousalidou, E.: A Parametric System of Representation Based on Ruled Surfaces. 
Master of Science in Adaptive Architecture&Computation,Bartlett School of Graduate Studi
es, University College London, September 2006. 
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Next, all surfaces had to be assembled in the common framework 
of the composition. This required a set of transformations 
(translation and rotation around each axis) to be applied to every 
surface in order to orient and locate it in the general framework 
and create the network of interrelated surfaces. 
 
A total number of six parameters, three for translation and three 
for rotation around each axis- were added to the previous six 
parameters. It has to be noted that trimming of the surfaces at their 
intersections is assumed as a precondition for the representation to 
work out. 
 
When all n surfaces are indexed, a 12x n matrix can represent a 
building1. 

 
            Where: 

 

 
tx  : translation of surface around X axis 
ty  : translation of surface around Y axis 
tz  : translation of surface around Z axis 
rx : rotation of surface around Z axis 
ry : rotation of surface around Z axis 
rz : rotation of surface around Z axis 
n: total number of surfaces that compose the represented building. 
                                           
1 Ibid. p.35. 
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An example showing Los Manantiales building in Mexico 
simulated parametrically in the figured matrices (Fig. 2.20). Any 
change in the parameters of the matrix followed by a change in the 
output or generated form of the building. 
 

 
 

Fig. 2.20: Los Manantiales represented parametrically in a defined matrix. 
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2-2-3 Parametric Generative Systems 
  
2-2-3-1 Parametric Ruled Surfaces1  
 
The concept of the system is based on the decomposition of the 
structure into elementary units, i.e. a number of surfaces. Once the 
surfaces were generated, then assembled to form the architectural 
composition.  The ruled surfaces had to be modeled as a set of 
parameters so that values could be assigned to the parameters in 
accordance to the given requirements. Specifying the parameters 
was the starting point of the system investigation. The use of 
parametric equations was obviously favored against algebraic 
expression of the surfaces. Mathematical equations were 
expressed as position vectors. 
 
The construction of a surface required two parameterized curves, 
i.e. the base curve and the director curve. 
 
The Base curve: (directrix) is the curve along which runs the 
straight line (ruling or generatix). The parameter t gives 
consecutive points on this curve. The points form one edge of the 
line which extends in the direction given by the director curve.  
 
The Director curve: may be understood as a given sequence of 
unit vectors that varies continuously with t. the surface is swept 
out by moving a straight line along the parameterized curve c so 
that it points in the direction z(t) at each time t. 
 
Looking at the parametric functions of those surfaces, it was 
observed that the most of them are expressed in terms of the sine 
and the cosine functions and appear to have an underlying 
relationship. The relation ship was further examined and a 
significant point was revealed.  
 
The parametric function of the helix expressed in vector form is: 

 [ a*cos(t), b*sin(t), c*t ] 

                                           
1Ibid.  
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If the z vector component is suppressed the curve is degenerated 
to a circle. 
 
If the x vector component is suppressed the curve is degenerated 
to the parametric sine function 
 
If the x and y vector components are suppresses the curve is 
degenerated to a line (Tab. 2.3). 
 

 
 

Tab. 2.3: Curves represented using trigonometric functions1. 
 
The combination of these four curves as base and director 
respectively can generate sixteen ruled surfaces. The rotation of 
one curve around the axes generates thirty two extra surfaces 
(sixteen for each rotation). 
 
Among these forty eight surfaces the plane, the cone, the cylinder, 
the hyperboloid and the helicoids are included, in addition to the 
commonly used sinusoidal surface. The wide spectrum of 
generated surfaces supported the decision to build the system of 
representation based on these 4 curves or the helix and its 
degenerated expressions. 
 
The various forms generated in this way are presented in the 
following Figures (Fig. 2.21, 2.22, 2.23). In all figures, the base 
curve is constantly oriented along the z-axis while the director 
curve is rotated each time. 

                                           
1 Ibid. 
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Fig. 2.21: Surfaces generated using parameterized function system. 
 

 
 

 Fig. 2.22: Surfaces generated using parameterized function system. 
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Fig. 2.23: Surfaces generated using parameterized function system. 
 
 (Fig. 2.24) shows composed 
surfaces with equivalent 
parametric functions. The 
program employs some 
additional variables such as 
the increment of value t, the 
line's length, the number of 
lines/density which can 
either be fixed or modified 
by the user.  
 
 
Fig. 2.24: Composed surfaces with 
equivalent values for a, b, c  for the 

base curve and director curve. 
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2-2-3-2 Parametric Spirals1  
 
It is a generative system that investigates a variety of spirals that 
exist in nature with different proportions and utilities. Spirals and 
helices can be described by the relation between one rotation and 
one or several directional arrays. To construct the program, it was 
necessary to study mathematical functions that generate spirals 
and consequently helices.  
 
These functions had been translated into Auto-LISP code in order 
to generate helical structures based on helices, spirals and ellipses. 
Also some trigonometric notions were necessary for the 
introduction of the third dimension and respective variables.  
 

(Fig. 2.25) shows Render of spirals made with Parametric spiral, 
an arithmetic spiral and a spiral made with a low quantity of 
segments. The number (1) corresponds to the number of turns; (2) 
distance between turns; (3) Extrusion ray; (4) Number of 
segments per turn – geometric resolution. 
 

 
 

Fig. 2.25: Render of spirals made with a LISP language in Parametric spirals. 
 

• The Process 
 
The variety of structures generated by the program was achieved 
by the inclusion of numerous variables. The parametric control of 
those variables allows the adjustment of the development’s 
direction, dimension, number of elements, proportions and 
rhythms involved in the creation of the structure.  
                                           
1 Couceiro, M.: Architecture and Biological Analogies, Finding a Generative Design 
Process Based on Biological Rules. Escola Tecnica Superior d´Arquitectura – Universidad 
Internacional de Catalunya, Spain, eCAADe 23 - session 13: generative systems, 2005. 
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(Fig. 2.26) shows how even with small changes in one or two 
parameters at a time, the difference between the results is 
considerable. 
 

 
 
 
Fig. 2.26: Board with renders of helices made by the program with different variables 
applied. (1) Initial ray value to the variable; (2) Distance between turns; (3) Number of turns; 
(4) Number of segments per turn - geometric resolution; (5) Total helices height; (6) Angle 
with the z axis; (7) Number of helices; (8) Extrusion ray; (9) Single or double rotation1. 
 
                                           
1 Ibid.  
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There is an intermediate function inside the code that is 
responsible for the translation of measures and the calculation of 
the variables to be applied in the main function.  
 
Then the last function generates the helices reference points, based 
on processes of repetition, associated with recurrent sub functions, 
in a system of polar coordinates. 
 
The use of this software can also be tried on itself. This means that 
the main mathematical function that generates the reference points 
to draw the axis of the helices was used to generate values to some 
of the variables of similar mathematical functions, resulting more 
complex spirals (Fig. 2.27). 
 
 

 
 
            

Fig. 2.27: Renders of some applications of parametric spiral generator.  
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2-3 Algorithmic Form Generation 
 
2-3-1 Description 
 
Generating form algorithmically is writing mathematical rules in a 
computation medium whose execution results are two or three 
dimensional geometry.  
 
Generally, creating a form using algorithms depends mainly, on 
two types of software, previously designed software for modeling 
forms, or writing an algorithm using programming languages (a 
small design program that executes forms)1. 
 

• Types of Algorithmic Form Generation 
 
(Tab. 2.4) distinguishes five types for algorithmic form generation 
provided by CAD modelers. Most CAD modeling programs offer 
macro facilities or scripting languages. 
 

 
 

Tab. 2.4: Five levels of support for algorithmic form generation. 
                                           
1 Gross, M.D.: FormWriter: A Little Programming Language for Generating Three-
Dimensional Form Algorithmically. Computer Aided Architectural Design Futures 2001, 
Kluwer Academic Publishers, 2001. 



                                                            Chapter 2: Conventional Mathematical Generative Systems 
 

 66

i. None 
 

Provide no support whatsoever for algorithmic generation: models 
must be constructed directly using the geometric primitives and 
operations provided on the CAD modeler's menus. 

 
ii. Macros 

 
Serves simple tasks well (such as repetitive window patterns or 
stairs), it is difficult to program more complex operations using 
only macros.  
 
iii. Scripting Languages 

 
Gained wide acceptance in other domains (JavaScript and Flash), 
provide considerably more power than macros but coding more 
sophisticated tasks and complex, requiring a specialist 
programmer.  
 
iv. Embedded Programming  Language  

 
Like a scripting language, enables the programmer to control and 
command the modeler from an environment within the CAD 
program, and allows more powerful constructs than the typical 
scripting language.  
 
Many CAD programs now include an embedded language, and 
advanced users of these CAD programs enthusiastically endorse 
their modeler’s scripting or embedded language.  
 
AutoLisp is arguably the best known example. Although the 
underlying Lisp language is extremely elegant and powerful, 
Autodesk’s implementation was a weak one and the programming 
environment for developing AutoLisp routines is woefully 
inadequate by modern standards1.  
 

                                           
1 Ibid. p.579-580. 
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Another example of an embedded programming language is 
ArchiCAD’s GDL, which provides access to the modeler's 
functionality through a BASIC-like language.  
 
Although it provides this functionality, the choice of a BASIC 
programming style limits the language and renders it inelegant, 
Language design makes an enormous difference. GDL does 
enable the construction of parametric objects.  
 

v. External Programming Language 
 

Such as C or Java can be used to write complex form-generating 
algorithms but it requires more expertise than most designers are 
willing to commit to acquiring. 
 
Some designers have resorted to using software such as 
Mathematica or MathCAD to generate three-dimensional surfaces.  
 
 
If the designer wants to generate three dimensional forms 
algorithmically, one must decide between two main alternatives1: 
  

• Macro facilities and scripting languages within CAD 
modelers are relatively easy to learn, but they inherently 
limit the programs one can write (and hence the forms one 
can generate).  

 
• Full-fledged programming languages such as C and Java 

are powerful but they require more effort to learn, and 
generating 3D geometry also requires attention to many 
language features that have no direct bearing on form. 

 
 

 

                                           
1 Ibid. p.578. 
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2-3-2 Architectural Potentials  

2-3-2-1 Generating Complex Forms 

i- Curves 
 
Algorithmic form generation can be used to generate a variety of 
curves useful for generating architectural floor plans, architectural 
ornamentation as well as generating geometric spaces for building 
domes or Greg Lynn and Frank Gehry’s organic forms and spaces. 
(Tab. 2.5, Fig. 2.28, 2.29) shows samples of the curve types that 
can be generated using algorithms1.  
 

 
 

Tab. 2.5: Samples of curve types generated using algorithms. 
 

 
         Chrysanthemum curve                   butterfly curve                          knot curve 
 

Fig. 2.28: Rendered curve families generated using algorithms. 
                                           
1 Mohammadi, G.: Geometric Shape Generator. M.Sc. thesis proposal, University of 
Washington, 2004. 
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(a) Super shapes 

 
 

 

(b) Knots 

 

 
 
 

(c) Spherical cardioids 
 

           
Fig. 2.29: More rendered curve families can be produced using algorithms1. 

 

                                           
1 Ibid. p.20. 
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ii- Surfaces 
 

Surfaces as well as curves can be generated using mathematical 
algorithms. (Tab. 2.6, Fig. 2.30) illustrates some of the surface 
categories that could be generated using algorithmic form 
generation1. 
 

 
 

Tab. 2.6: Surfaces categories generated using algorithmic form generation. 
 

 
 

Fig. 2.30: Examples of Blobs and super shapes surfaces generated using algorithms. 

                                           
1 Ibid. p.20. 
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2-3-2-2 Analysis of Style  

The following research model illustrates experiment in 
algorithmic form generation in Autolisp, AutoCAD programming 
language, to generate "Corbu" like prototypes. 
 

• Autolisp Routine for Le Corbusier Styles1. 
 
In Le Corbusier's own summary of his main architectural elements 
he identified his buildings to be made up of the five points of 
Architecture; Pilotis, Roof Garden, Free plan, Ribbon Windows, 
and Free façade (Fig. 2.31). The Pilotis raised the building off the 
ground into the air and the space underneath used for parking cars, 
road or gardens. Space lost was replaced on the top by a roof 
garden. The Roof Garden was a space open to the sky, containing 
greenery with view all round. Free planning was possible since the 
frame carried the weight partitions. 
 

 
 

Fig. 2.31: Illustrations for Le Corbusier's main points of Architecture2. 

                                           
1 Abimbola, O. A.: Exploring Algorithms as Form Determinants in Design. The University 
of Oklahoma, USA, the 3rd International Space Syntax Symposium, Atlanta, 2001. 
2 Boesiger, W.: Le Corbusier. Ingoprint, Barcelona, 1992. 
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Six of Le Corbusier's buildings were selected (Tab. 2.7) to 
develop an algorithm for generating typical styles.  These 
buildings were chosen because of their similarities, size, 
simplicity of language of design and relationship to the five points 
of architecture, which is the starting point of the design algorithm. 
 

 
 

Tab. 2.7: Summary for major elements from five of Le Corbusier's buildings1.  
 

                                           
1 Abimbola O. A.: Exploring Algorithms as Form Determinants in Design. The University of 
Oklahoma, USA, the 3rd International Space Syntax Symposium, Atlanta, 2001.op.cit.  
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• Program Rules 
 
The program rules were based on the main elements of Le 
Corbusier's architectural style under the following main 
categories: 
 
1. Orthogonal Cage determination 
2. Circulation 
3. External walls 
4. Main curved elements of interior 
 
These categories were further elaborated into rules specifying for 
example: points, vectors, polygons and other graphic token that 
could be interpreted in Autolisp1. 
 
AutoCAD's built in programming language Autolisp was chosen 
based on AutoCAD's adaptability and popularity. Autolisp is 
derived form common lisp and is open for customization to 
specific needs. Lisp presents information in form of lists. Lisp is 
known to be the most extensive of computer languages, it has 
about 200 to 300 built in functions and the programmer can also 
create their own functions. Lisp functions are used to express data.  
 
In the program separate functions were written for main elements 
like the column grid, circulation elements, terraces, curved 
screens, external wall placement etc. The functions were given 
separate arguments based on the rules and a main function 
evaluates all these separate functions.  
 
The use of randomness was incorporated such that the program 
determines the evolution of the design thus exploring architecture 
as self generated. The Autolisp routine is loaded from the 
command prompt in an AutoCAD drawing file, which then 
prompts the user for a random number function. The user can 
input a random number between 0 and 32567, then the program by 
itself selects a column grid system based on the program rules. 

                                           
1 Ibid. p.24.7. 
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Upon determining the column grid system it determines the 
number of slabs, types of external faces, elements of interior and 
then the curved screen.  
 
(Fig. 2.32) shows the main part of the 16 pages Autolisp Routine. 
This routine is based on the arguments and rules which were 
derived from the following categories: Orthogonal Cage 
determination, Circulation, External walls and main curved 
elements of interior. 
 

 
 

Fig. 2.32: Main part of Autolisp Routine for Le Corbusier's style1. 
                                           
1 Ibid. p.24.9-24.10. 



                                                            Chapter 2: Conventional Mathematical Generative Systems 
 

 75

The Autolisp routine generates a wide variety of Corbusier 
building types and supports the idea of generating complex 
outcomes from simple rules. The designer also received some 
unexpected design results. (Fig. 2.33) illustrates some of the 
"Corbu" like prototypes generated. 

 

Fig. 2.33: "Corbu" like prototypes generated1. 

                                           
1 Ibid. p.24.9-24.10. 
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2-3-3 Algorithmic Form Generative Systems 

Papert and Feurzeig in 1967 created the first version of Logo with 
a team from Bolt, Beranek and Newman1. Logo is easy to use and 
learn. It has been developed over the past 36 years.  

Designers can explore formal design ideas by making an 
algorithm for shape generation in Logo. The Logo programming 
environment uses a Turtle (Fig. 2.34a) that can be directed by 
commands typed at the computer. For example, the command 
[forward 50] causes the turtle to move forward in a straight line 50 
"turtle steps". The command [right 90] rotates the turtle 90 
degrees clockwise without moving any step. Then [forward 50] 
causes it to go forward 50 steps in the new direction. The turtle 
generates a square shape following the sequential commands (Fig. 
2.34b). This square can also be used as a procedure in a later 
instruction. Repeating the commands, while rotating 10 degree 
each turn the turtle generates a flower-like shape (Fig. 2.34c).  

This sequence of commands shows one way of generating shape 
configurations with simple operations. This simple process of 
Logo Programming is used in various systems for design like 
Design By Number and FormWriter. These two projects provide a 
symbolic language with which users can write and debug formal 
descriptions of geometric objects, which are then rendered 
visually by the program. 

  
Fig. 2.34: The turtle commands to generate shape configuration in Logo 

Programming Environment. Source: http://el.media.mit.edu/logo-foundation/. 
                                           
1 Kwon, D.Y.: ArchiDNA: A Generative System for Shape Configuration. Master of Science 
in Architecture, University of Washington, 2003. 
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2-3-3-1 Design By Number 

Maeda1 developed a two-dimensional programming system called 
Design by Number. He implemented this system as a tool for 
teaching computational design to designers and artists. Design by 
Number introduced the basic ideas of computer programming 
within the context of drawing. For example, visual elements such 
as dot, line, and field are combined with the computational ideas 
of variables and conditional statements to generate images. (Fig. 
2.35) shows the interface of the system. The interface allows a 
designer to write simple code and use the code to produce visual 
2D images. (Fig. 2.36) shows the various results produced using 
different user-programmed algorithms.  

 
Fig. 2.35: Snapshot of Design by Number Interface. Source: 

http://dbn.media.mit.edu/. 

 
Fig. 2.36: Various Results of Design by Number. Source: http://dbn.media.mit.edu/.  

                                           
1 Maeda, J.: Design by Number. The MIT Press. Cambridge, MA, 1999. 
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2-3-3-2 FormWriter 
 
Gross1 developed FormWriter, a simple and powerful generative 
system for generating three-dimensional geometry. With only a 
few lines of code, a designer generates interesting three-
dimensional graphics immediately. This programming language 
enables architects to explore 3D geometry form by simple 
programming. 

 
Fig. 2.37: Snapshot of FormWriter Interface. Source: Gross, 2001.  

The interface consists of an editor window for writing code and a 
3D space with browsing controls (Fig. 2.37). A designer writes 
simple commands on the editor window. It positions geometric 
elements in a 3D space. The designer views the generated forms 
through the 3D space with browsing controls. FormWriter can be 
used to generate interesting Islamic architectural forms (such as 
star rib frame and muqarnas dome) with no previous programming 
experience (Fig. 2.38).  

 

Fig. 2.38: Models of Islamic structures by students using the FormWriter. Source: 
Gross, 2001.  

                                           
1 Gross, M.D.: FormWriter: A Little Programming Language for Generating Three-
Dimensional Form Algorithmically. Computer Aided Architectural Design Futures 2001, 
Kluwer Academic Publishers, 2001.op.cit. 
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• FormWriter Process 
 
i- Writing Commands1 
 

Form writer enables writing 
codes directly, without 
defining any procedures. 
(Fig. 2.39) shows simple 
FormWriter steps along with 
the lines  of code that 
generated it.  
 

 
 

Fig. 2.39: Generating simple forms directly. 
 
FormWriter’s primitive procedures to generate geometry (triangle, 
cone, box, sphere and cylinder) take dimensions as parameters,  
the forms are positioned by moving the 3D “flying turtle” forward 
between the primitive geometry generating procedure call. 
 
(Fig. 2.40) shows how the 
3D (flying) turtle is used to 
position and orient five 
cylinders. The flying turtle 
can move forward and 
back, and turn (right and 
left), pitch (up and down), 
and roll (side to side).  
                                  
       
                    Fig. 2.40: Positioning cylinders in space using (pitch and forward). 
 
FormWriter inserts each geometric primitive at the current 
position and orientation of the flying turtle, so as the turtle moves 
forward (2 units) and pitches up (30 degrees), between calls to the 
“cylinder” primitive procedure, each cylinder is translated and 
rotated in space. 
                                           
1 Ibid. p.581-582. 
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ii- Defining Procedure1 
 

FormWriter employs the same editor window for defining 
procedures as for executing simple commands directly. Each of 
the forms in (Fig. 2.41) was produced by iterative calls to the user-
defined procedure as shown in (Fig. 2.42). Adding first a turn, 
then a roll, and finally a pitch instruction. Row of boxes (Fig. 2.41 
a), turning row (Fig. 2.41 b), twisting turning row (Fig. 2.41 c) 
and helix (Fig. 2.41 d). 
 

 
 Fig. 2.41: (a) A row of boxes; (b) turning boxes; (c) twisting boxes; (d) boxes helix. 

 
Fig. 2.42: Recursive codes for the generated boxes. 

 
(Fig. 2.43) shows variations produced by a similar program. 
Generated triangles are written with an input in (Fig. 2.44).  
        

 
Fig. 2.43: Triangle variations: Orchid, Spiny Tree, and Cathedral. 

 
Fig. 2.44: Recursive codes for the generated triangles. 

                                           
1 Ibid. p.583-584. 



                                                            Chapter 2: Conventional Mathematical Generative Systems 
 

 81

2-3-3-3 Processing1 
 

Processing is a programming environment generating interactive 
2D and 3D images. The idea is to support easy-to-use and 
simplified codes so that users can understand the concept of 
programming to create and interact with the images.  

Using Processing, a designer generates interesting graphic images 
(Fig. 2.45). Processing supports simplified codes that run through 
general Java applets.  

 
Fig. 2.45: Example of shapes generated with processing2. 

 
A designer writes a program in the text editor window and sees 
the visual result through the Java applet window. (Fig. 2.46) 
shows the working environment.  

 
Fig. 2.46: Snapshot of Processing Working Environment. Source: 

http://www.proce55ing.net/  

                                           
1 Kwon, D.Y.: ArchiDNA: A Generative System for Shape Configuration. Master of Science 
in Architecture, University of Washington, op.cit. 
2 Mohammadi, G.: Geometric Shape Generator. M.Sc. thesis, University of Washington, 
op.cit. 
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2-3-3-4 ArchiDNA (a generative system inspired by Eisenman)1  
 
ArchiDNA specifies design style 
and form generating rules to 
produce automatically spatial 
configurations. ArchiDNA is 
inspired by Peter Eisenman’s 
design of Biocentrum, an example 
of form generation from abstract 
design concepts. Eisenman 
developed the building form with 
the concepts of DNA (Fig. 2.47).  
      
 Fig. 2.47: Biocentrum (Eisenman 1986).                                                                                    
                                                        
A DNA chain is composed of four initial shapes A, T, C, and G,2 
interlocking pairs (Fig. 2.48 a, 2.48 b). Observing Eisenman’s 
design, it is found that his principles of form generation are (1): 
replication of the source forms, (2) rotation of the generative form, 
(3) rescaling of the generative form to fit the width of the selected 
form2 (Fig. 2.49). 
    
 
 
 
 
 
 
 
                

Fig. 2.48 (a): DNA Structure. (b): A, T, C, G. 
                                                                                                                                        

 
Fig. 2.49: Drawings for Biocentrum,Eisenman,1996 (a) Plan (b) Axonometric view. 

                                           
1 Kwon, D.Y.: ArchiDNA: A Generative System for Shape Configuration. Master of Science 
in Architecture, University of Washington, op.cit. 
2Eisenman, P.: Peter Eisenman Diagram Diaries. Universe Publishing, New York, p. 27-43, 
1999.  
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i- 2D Operations 
 
ArchiDNA system, defines the form generating with five elements 
(S, L, G, B, I). S is a set of shape rules of the form [A → B] that 
specifies how a shape A can be transformed to create B. S are 
three parametric rules: Rule 1 (move), Rule 2 (rotate) and Rule 3 
(scale). L labels the first edge. G is a set of parameters that assign 
values to transformation rules - the width and angle of each shape. 
B is the base shape to which the rule and source shapes apply to 
start a computation. I is an initial shape to act as a source for 
replication and as the base shape for orientation (Fig. 2.50). 

                                            
                                          Rule 1: Move                          Rule 2: Rotate                                     Rule 3: Scale 
S = {Rule 1, Rule 2, Rule 3} 
L = {•} 
G={g1, g2, g3} 
I={Initial shape} 
B={base shape} 

                                         
                                               Initial Shape                                                                         Base Shape 
 

Fig. 2.50: The rules used to manipulate the defined style1. 
 

ii- 2D Generation 
 
ArchiDNA generate 2D drawings similar to Eisenman’s plans 
for the Biocentrum building. We started with eight shapes (2 
copies of each of the four DNA shape elements). The first step 

                                           
1 Kwon. D.Y., Gross. M.D.  and Yi-Luen Do, E.: ARCHIDNA: A Generative System for 
Shape Configuration. Design Machine Group, University of Washington, USA, 2003. 
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is to apply the shape G (ribbon) as the applier-shape to the 
base-shape C (pentagon). ArchiDNA goes to work. It copies 
and attaches the applier-shape G to every edge of the base-
shape C. (Fig. 2.51 a, 2.51 b) demonstrate this process again 
with a base-shape A (arch), which has eight edges including 
five short line segments that approximate the curve. Eight 
applier G shapes are generated and attached to the eight edges 
of the base-shape A. Results shown in (Fig. 2.52) and 
derivations shown in (Fig. 2.53, 2.54). 

 

 
 
Fig. 2.51: (a) Applying the applier-shape G (ribbon) to the base-shape C (pentagon) 

(b) Applying the applier-shape G to the base-shape A (arch). 
 

 

         
 

Fig. 2.52: 2D Eisenman-like drawing generated in ArchiDNA. 
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         Fig. 2.53: Derivation 1                                         Fig. 2.54: Derivation 2                     
       produced by ArchiDNA.                                       produced by ArchiDNA.                     

 
iii- 3D Operations 
 

The 2D shapes can be converted to three dimensions by 
automatically assigning heights. Each of the eight shapes is 
extruded to a certain height, a function of its area. It appeared that 
a certain threshold controls the shape extrusion. If the area is 
larger than the threshold, the height of the shape is assigned a 
negative value, so that the 3D object extrudes downwards from 
the ground of the building. Otherwise, the shape will compose a 
building mass projecting upward. (Fig. 2.55 a) shows that the 
small shape A1 (pentagon) is extruded upwards whereas the larger 
shape A2 (pentagon) is extruded downwards because its area is 
larger than the threshold (Fig. 2.55 b, 2.55 c). On the other hand, 
the height of shape B (ribbon) is fixed with a user-defined value 
(Fig. 2.55 d). 

 
 
Fig. 2.55: 3D form generation in ArchiDNA (a) Calculating the area of two applied 
shape A1&A2 and assigning heights (b) Comparing areas with a threshold and 
deciding up and down (c) Extrusion of small shape A1 upward and extrusion of 
large shape A2 downward (d) Extrusion of shape B with a user-defined height. 
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iv- 3D Generation 
  

ArchiDNA automatically generates 
3D objects by extruding the 2D 
drawings and exporting a 3D VRML 
file. (Fig.2.56) shows a 3D drawing 
generated in ArchiDNA. The eight 
shapes (two pairs of A-T-G-C 
shapes) in the      center are extruded 
by a  certain   user  - defined   height.  Fig.2.56: 3D Generated in ArchiDNA. 
Other shapes were extruded to a function of their area.  
ArchiDNA not only generates interesting 2D shapes but also 
extends to 3D massing and can translate the result into a 3D 
VRML format  (Fig. 2.57) or CAD systems (Fig. 2.58). 
 
 
 
 
 
 
 
 
 
 
 
          Fig. 2.57: ArchiDNA 3D Model                        Fig. 2.58: ArchiDNA 3D Model 
              in VRML Viewer, Cortona.                               in Modeling System, FormZ. 
 

v- ArchiDNA Interface 
 

ArchiDNA   has  an   easy-to-use      
interface  (Fig. 2.59).  Designers 
can draw  initial shapes and  then  
select   any  shape  to  apply   the  
algorithmic   shape    generations. 
All newly generated   shapes  can 
be   selected  as   base   shape   to               
apply  shape  generation  as  well. 

 
    Fig. 2.59: Snapshot of ArchiDNA Interface.    
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Summary of chapter two: 
 
       Chapter two discussed three well-established themes in 
computer generated design. These form generative systems based 
on conventional mathematical principles like: Shape Grammars, 
Parametric Variations, and Algorithmic Form Generation. Shape 
Grammars as a tool used to generate orthogonal conventional 
forms using basic shape algebra and formal logic, and Parametric 
Variations as a tool used to generate complex three dimensional 
curves and folding surfaces using trigonometry and parameterized 
functions, and Algorithmic Form Generation as a tool used to 
generate and direct manipulate two dimensional and three 
dimensional forms using macro facilities and scripting languages 
or full fledged programming languages.  
 



 
 
 
 
 

Chapter 3 
Chaos Based Mathematical 

Generative Systems 
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Chapter 3: Chaos Based Mathematical Generative 
Systems 

 
In the last years of the 19th century and in the beginning of the 
20th, century a group of mathematicians led by Koch, Peano, 
Cesàro, Hilbert, Julia, Pointcaré, etc. started the study of the 
possibilities of new geometries, clearly different from the shapes 
and basic principles used in conventional mathematics, and 
opposed in its conception to the Euclidean geometry, 
preponderant until this moment.  
 
Simultaneously to these precursors of modern geometry appears a 
new way of understanding and conceiving art, radically different 
from all the artistic tendencies developed until now, based on a 
new branch of mathematics known by chaos mathematics. 
 
The Chaotic mathematical processes are not random, they follow 
rules, but even very simple rules can produce extreme complexity. 
Chaos mathematics leads to new geometries, these geometries 
cause a revolution in the scientific world generating an exciting 
family of images and forms whose basic generation elements are 
not Euclidean objects. Mathematics of chaos provides the tools for 
displaying such phenomenon.   
 
In this method of creation, forms do not born in the designer's 
mind but they are generated by chaos in a computational medium. 
The designers only select, evaluate and transform that form.  
 
This chapter will discuss two examples of these chaotic 
phenomena and studies their nature, mathematical concepts and 
architectural potentials. With the purpose to use them as tools of 
inspiration (inspiration triggers) or form generators for the 
modeling process, especially in the earlier stages of form finding. 
These tools are: Fractals and Spirolaterals. 
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3-1 Fractals  
 
3-1-1 Introduction 
 
3-1-1-1 Definition 
 
The term fractal comes from the Latin word fractus, which means 
broken and irregular. Its own name indicates that it is a geometry 
that is specially thought for irregular objects -a geometry of 
nature- in contrast with the regular geometry created by men. A 
fractal is an object or quantity that displays self-similarity on all 
scales with non-integer dimensions. The object need not exhibit 
exactly the same structure at all scales, but the same “type” of 
structures must appear on all scales1. 
 
3-1-1-2 Outlines 
 
The first confirmation of Chaos existence was done by Edward 
Lorenz in 1963. Lorenz was carrying computer research on 
weather. He wanted to clarify why there were discrepancies 
between the weather forecasted and the real one. He made a 
mathematical model of atmosphere composed of 12 equations. 
The system of equations was being solved by computer. 
Accidentally, to speed up the calculations, he introduced the 
intermediate values, which he got in a previous simulation and 
rounded off the values from 6 to 3 places after decimal point.  
 
During the simulation of two months of weather this initially 
small difference of results became as big as the very signal from 
the beginning. In such a case if the real atmosphere behaves in the 
same way, it is impossible to forecast the weather months ahead. 
Even the most powerful computers won’t be of help here, as small 
mistakes would be growing to get big2. 
                                           
1 Weisstein, E.W.: Concise Encyclopedia of Mathematics, CD-ROM edition 1.0, Chapman & 
Hall/CRCnetBASE, 1999. 
2 Jadwiga C.Z.: Chaos, Databases and Fractal Dimension of Regional Architecture. PhD in 
Architecture, Faculty of Architecture TU of Bialystok, Poland, eCAADe conference 
proceedings, Paris, France 24-26 September 1998. 
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The effect of sensitivity to the initial conditions was called ‘the 
butterfly effect’. (It comes from Lorenz’s publication ‘Can a flap 
of a butterfly wings in Brazil stir up a tornado in Texas?’). It 
means that due to chaos, even the smallest events can have great 
consequences.  This Unpredictable behavior of deterministic 
systems has been called chaos1.  
 
In the 70’s some scientists in the USA and in Europe started to 
find their way through the chaos. They were dealing with different 
spheres of science: mathematics, physics, biology, chemistry, 
physiology, ecology, economy. In the next 10 years’ time the term 
‘Chaos’   has become   generally   known   in   art.  In 1975 Benoit 
Mandelbrot called them (fractals). Fractal geometry that described 
fractal objects was also his invention.  
                                                                     
3-1-1-3 The Mathematical Concept  
 
The mathematical nature of fractals based on chaotic 
mathematical equations that have an iterative manner. Chaotic 
processes are not random; they follow rules, but even very simple 
rules can produce extreme complexity. This complexity can be 
expressed by a series of equations or visualized and rendered 
when the element of color is introduced into its interpretation. The 
mathematics of chaos provides the tools for creating and 
displaying such phenomenon. It is a way to measure the degree of 
harshness, unevenness, irregularity of a given object. i.e.: Objects 
that described Chaos were irregular in shape, ripped and 
unpredicted2.  
 
Fractal geometry can be defined as a geometry whose dimension 
is not an integer, in contrast with the elements of the classic 
geometry whose dimension is always integers (1 for lines, 2 for 
areas, 3 for volumes). This concept can be understood better by 
observing (Fig. 3.1) of the Cantor set and the Koch curve. In both 
sets there are series of paradoxes that can not be solved using 
classic geometry. 

                                           
1 Ibid. 
2 Ibid. 
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Fig. 3.1: Cantor set (left) and Koch curve (right)1. 

 
For example the Cantor set, each line is substituted for two 
others, each one of them is 1/3 of the preceding. If the substitution 
continues indefinitely, what kind of structure will remain: 
segments or points? The answer is not obvious for the classic 
geometry, now that it has a non entire dimension, a hybrid 
between a point and a line. 
 
Koch curve presents another paradox on its genesis: each time 
that a segment line is substituted by another 4, its length grows up 
1/3. So, given that this object is created after infinite substitutions, 
its length is infinite.  
 
3-1-2 Classifications 
 
Various types using different algorithms have been discovered to 
produce fractals like: Ant Automaton, Barnsley Mandelbrot/Julia 
Set, Bifurcation, Martin Attractors, Circle, Peterson Variations, 
Formula, Diffusion Type, Dynamic System, Pick over Popcorn, 
Frothy Basins, Gingerbreadman, Halley, Hyper Complex, 
Newton, Icon and Icon3d ,Julia Sets ,Inverse Julia’s, L-Systems 
(2d, 3d). 
        
They can be classified into three main categories depending on the 
technique they are generated from and the mathematical process 
that are used to calculate them2. 
                                           
1 Bovill, C.: Fractal Geometry in Architecture and Design. Birkhauser, Boston 1996. 
2 Ibrahim, M. and Krawczyk, R.J.: Generating Fractals Based on Spatial Organizations. 
College of Architecture, Illinois Institute of Technology, USA, February 2001. 
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3-1-2-1 Vector Fractals  
  
They are generated from the collection of vector substitution, Like 
Koch snowflake, cantor set, Barnesley’s Fern, and the Dragon 
curve (Fig. 3.2, 3.3, 3.4)1. Fractal generates from any set of 
vectors or any defined curve.  
 

 
 
 
Fig. 3.2: First four generations of Dragon Curve.    Fig. 3.3: Dragon Curve (vector fractal). 
 
 

 
 

 
Fig. 3.4: Form generated using vector-base fractal; Tree fractal, Cesàro fractal, 

Barnsley's Fern, Dragon Curve, H-fractal, Sierpinski square and triangle2. 
 
 

                                           
1 Ibid. 
2 Some fractals that exhibit a vector quality can also be generated by point plotting methods. 
P.93. 
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3-1-2-2 Point Fractals 
 

They are groups of points in a complex plane like the Mandelbrot 
set and the Julia set. They are Two-dimensional (Fig. 3.5, 3.6), 
three-dimensional (Fig. 3.7) or multiple dimensional.  
 
They represent a single case of the IFS that is using the complex 
numbers or the hyper complex numbers in a Cartesian plane to 
plot the fractals. The Mandelbrot set and Julia set are examples1.  
 

     
              
               Fig. 3.5: 2D Julia set.                               Fig. 3. 6: 2D Mandelbrot set. 
  
Transforming or extruding existing 2d fractals like Mandelbrot or 
Julia sets along z axis, using series of parameters in a 
programming code enables the designer to easily manipulate and 
generate forms in 3 dimensions, they are called "Quaternions"2. 
 

 
 

Fig. 3.7: 3D Quaternion Julia set generated by Pov-Ray. 

                                           
1 Ibrahim, M. and Krawczyk, R.J.: Generating Fractals Based on Spatial Organizations. 
College of Architecture, Illinois Institute of Technology, USA. February 2001, op.cit. 
2 Mohammadi, G.: Geometric Shape Generator. M.Sc. thesis, University of Washington, 
2004, op.cit. 
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(Fig. 3.8) shows some of the most well-known complex fractal 
types. 
 

 

 
 

Fig. 3.8: Shapes generated with various complex 2D fractal types1. 

                                           
1 Ibid. 
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3-1-2-3 Orbit Fractals (Strange Attractors) 
 
Plotting an orbit path in two and three-dimension generates this 
fractal space. Examples include the Bifurcation orbit, Lorenz 
Attractors, Rossler Attractors, Henon Attractors, Pickover 
Attractors, Gingerbreadman, and Martin Attractors.  They can be 
divided into two types; two dimensional attractors and three 
Dimensional attractors1. 
 
 

ii- 2D Attractors 
 
Clifford Pickover2 developed a two-dimensional strange attractors 
based on a simple equation consisting of sine functions. What are 
intriguing about these attractors were the variations possible by 
the execution of a simple iterative mapping with minor changes in 
parameters. (Fig. 3.9) displays two such attractors based on 
equation 1. 

 
Fig. 3.9: Pickover's 2D strange attractors3. 

 

                                           
1 Ibrahim, M. and Krawczyk, R.J.: Generating Fractals Based on Spatial Organizations. 
College of Architecture, Illinois Institute of Technology, USA. February 2001, op.cit. 
2 Pickover, C.: Chaos in Wonderland. St.Martin’s Press, New York, 1994. 
3 Krawczyk, R.J.: Dimension of Time in Strange Attractors. College of Architecture, Illinois 
Institute of Technology, USA. ISAMA, Bridges Conference, 2003. 
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Paul Bourke1 developed another equation. This equation is a 
variation of the ones that Pickover developed. In reproducing 
these images, a time limit of 100,000 computations was used. This 
single attractor displays some interesting visual aspects depending 
on the values selected (Fig. 3.10). 

 
 

Fig. 3.10: Bourke's 2D strange attractor2.  
 

In the first, all the points lie on curves with little or no deviation. 
In the second, a distinct curve is also traced but you can begin to 
see lighter trails forming. In the third, the distribution of points is 
much greater and because of the density of points in certain areas, 
surfaces begin to appear (virtually). The curves which are greater 
congregation of points begin to represent the edges of these 
surfaces.  
 
A third dimension appearance is only implied by these visual cues 
since the equations are a two-dimensional mapping. In this case 
density of points is controlled by time or time seen to begin to 
give two-dimensional attractors a three dimensional visual 
appearance. The distance between the points controls apparent 
shading. 
                                           
1 Bourke, P.: The Pattern Book: Fractals, Art and Nature. Edited by Pickover C., World 
Scientific Publishing, Singapore, 1995.  
2 Krawczyk, R.J.: Dimension of Time in Strange Attractors. College of Architecture, Illinois 
Institute of Technology, USA. ISAMA, Bridges Conference, 2003. op.cit. 
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When time is increased, the density of the points further draws 
out either hidden areas within regions of the attractor or it 
strengthens what appear to be edges of three-dimensional 
surfaces. (Fig. 3.11) displays the Bourke's third attractor using 
200,000 points. Increase of time will generate finer detail at a 
given image resolution1. 

 
 

Fig. 3.11: Comparison of density. 
 

(Fig. 3.12 a) displays another Bourke attractor based on 
equation 2. This particular attractor is one that generates a 
large number of repeating values so that distinct curves are 
created with a small number of points appearing between the 
curves. Computing more points, adding time, will not 
introduce any inbetween points. Devaney2 discussed a random 
iteration algorithm for iterated function systems that seemed 
appropriate for expanding the generated curves.  
 
This method is based on the random selection from a range of 
specific values. For this attractor this basic concept was used in 
two variations. The first, (Fig. 3.12 b) used a percent offset to 
compute related attractors. From these computes values any 
one was selected. The result is a soft haze surrounding each of 
the curves in the attractor. The second (Fig. 3.12 c) used the 
same percent offset, but the possible random values were 
selected from a fixed interval. The haze surrounding the curves 

                                           
1 Ibid.  
2 Devaney, R.: Chaos and Fractals, The Mathematics behind the Computer Graphics. 
American Mathematical Society, Providence, p.141. 1989. 
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was greater in area. In both cases, the regions between the 
curves begin to be filled and create possible surfaces. 
 

 
 

Fig. 3.12: Random selection of values for an attractor. 
 

While selecting values for a variety of attractors, it was noticed 
that related images were created when a single parameter was 
modified. For example, the attractor based on equation 3 (Fig. 
3.13) can generate a series having an unraveling motion when 
only the first parameter is changed. A series such as this can be 
viewed as a static images, frozen time, or animated to give an 
attractor the added dimension of motion. Other attractors were 
found that developed an unfolding motion. The challenge is to 
determine in a specific attractor which parameter or parameters 
can be changed and their range to generate this effect. It does 
offer a unique display of related family attractors.  
 

 
 

Fig. 3.13: Unraveling an attractor1. 

                                           
1 Krawczyk, R.J.: Dimension of Time in Strange Attractors. College of Architecture, Illinois 
Institute of Technology, USA. ISAMA, Bridges Conference, 2003. op.cit. 



                                                       Chapter 3: Chaos Based Mathematical Generative Systems 

 99

(Fig. 3.14) displays a sample from the current series of rendered 
attractors based on this concept. Many of these could have been 
inspired from natural forces, such as, wind, smoke water, earthen 
formations and other folding, bending, twisting, draping and 
crumpling of identifiable materials or organisms. The third 
dimension is determined by the perception of the viewer coupled 
with the created intent by selection of attractor and its parameters. 
 

 
 

Fig. 3.14: Examples of completed strange attractors1. 

                                           
1 Ibid. 
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iii- 3D Attractors 
 
Many 3D attractors had been developed, (Fig. 3.15 – 3.27) show a 
rendered result and description for some of these strange attractors 
with corresponding mathematical function1.  
 

• Chaotic Flow 
 
In this equation the position of 
the variables (x, y and z) is itself 
a parameter, Mi Op. This means 
that during a Search, not only the 
parameters are randomized, so is 
the equation.  
 

 
Fig. 3.15: Chaotic flow strange attractor. 

• Icon 
 

This attractor is an example of a two 
dimensional attractor converted to a 
three dimensional one: values of z are 
not used for x and y calculations. 

 

Fig. 3.16: Icon strange attractor. 

                                           
1 http://www.btinternet.com/~ndesprez/manual/attractors.htm. Accessed 23/10/2007. 
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• Lorenz 
 
Simple equation created by 
Edward Lorenz to demonstrate the 
chaotic behavior of dynamic 
systems Lorenz discovered, while 
working on weather simulation, 
one of the fundamental laws of the 
Chaos Theory: "the sensitive 
dependence on initial conditions" 
he himself dubbed "the butterfly 
effect". 

                          

Fig. 3.17: Lorenz strange attractor. 

• Lorenz-84 
 
This equation is a low-
dimensional model for long term 
atmospheric circulation. Rather 
than a graphical representation of 
atmospheric currents, the orbit 
coordinate are the three variables 
of the model. 
 

                        

Fig. 3.18: Lorenz-84 strange attractor. 
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• Pickover 
 

Probably the best equation to 
start experimenting with, since 
the orbit will never escape the 
attractor as it is "trapped" in 
sinusoids. A good set of 
parameters is {1, 1.8, 0.71, 1.51} 
from which nice attractors can be 
found, after modifying each 
parameter slightly. 
 

                    

Fig. 3.19: Pickover strange attractor. 

• Polynomial, Type A 
 
The Polynomial type A uses the 
simplest equation, it is therefore 
the fastest attractor to render. The 
equation is a special case of Type 
B where P1, P3 and P5 = 0. 
 
 
                   

 

Fig. 3.20: Polynomial, type a strange attractor. 
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• Polynomial, Type B 
 
A slightly more complex 
equation for a challenging 
specimen. This attractor equation 
is rather feeble and will see the 
orbit escapes more than often. 
When not escaping, it won't 
produce a great variety of shapes. 
 

                     
 

Fig. 3.21: Polynomial, type B strange attractor. 

• Polynomial, Type C 
 
Next step up the Polynomial 
evolution ladder, it has three 
times more parameters than its 
predecessor. This equation is a 
good compromise between speed 
and complexity. 
 
 

 

Fig. 3.22: Polynomial type c strange attractor. 
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• Polynomial Function (Abs, Power and Sin) 
 
Polynomial Function is a group of three equations which make use 
of algebraic or trigonometric functions rather than the normal 2nd 
order structure. They were adapted to 3 dimensions from Julien 
Sprott's book on Strange Attractors. Abs (Fig.3.23) will yield very 
typical angular forms, Power (fig. 2) will add some flexibility to 
Abs straight lines, while Sin (fig. 3) will produce wavy attractors. 
 

 
Fig. 3.23: Polynomial function –Abs. 

 
 

         
 
 Fig. 3.24: Polynomial function-Power.           Fig. 3.25: Polynomial function-Sin. 
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Fig. 3.26: The three polynomial function equations. 
 
 
 

• Polynomial, Sprott 
 
It is the most complex equation 
found. Given the number of 
parameters, it allows 2030 
combinations, which means it 
would have virtually one chance 
out of         1,073,741,824,000,000, 
000,000,000,000,000,000,000,000 
to reproduce a strange attractor. 
 

  
 

Fig. 3.27: Polynomial sprott strange attractor. 
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3-1-3 Architectural Potentials 
 
3-1-3-1 Generating 2D Forms 
 
i- Using Vector-Base Fractal1 
 
The vector-base fractals can be used to generate a wide variety of 
2D shapes and patterns by applying the fractal process on a 
selected initiator and a generator (Fig. 3.28).  
 
A vector-base fractal is composed of two parts: the initiator and 
the generator. In the Kock curve for example, the generator is a 
line that is divided into three equal segments, and the middle 
segment forms an equilateral triangle. By replacing every line of 
the initiator with the full generator, we get the first iteration of the 
snowflake.  
 
By iterating this operation again and again, replacing every line of 
the new initiator with the full generator, it ends with a figure that 
approximates a snowflake. The iteration process should continue 
to infinity to generate a real Koch Snowflake fractal, but the 
function is iterated for some finite number of times. (Fig. 3.29) 
displays the Koch Snowflake with 3 iterations.  
 
If the generator is changed, inverted, an entirely different form can 
be developed, like the Koch Antisnowflake shown in Figure 10. 

 

 
 

Fig. 3.28: Generator and initiator. 

                                           
1 Ibrahim, M. and Krawczyk, R.J.: Generating Fractals Based on Spatial Organizations. 
College of Architecture, Illinois Institute of Technology, USA, February 2001, op.cit. 
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Fig. 3.29: The Koch Snowflake and the Antisnowflake. 
 

Some of the IFS fractals (vector fractals) are: Cantor Set, 
Barnsley's Fern, Koch Antisnowflake, Koch Snowflake, Box 
Fractal, Cantor Square Fractal, Cesàro Fractal, Dragon Curve, 
Gosper Island Fractal, H-Fractal, Sierpinski Curve, Minkowski 
Sausage. 
 
All of these fractals are based on simple geometric shapes: lines, 
squares, or triangles. Shakiban and Berstedt1 discussed a new 
generating procedure based on vector calculus and modular 
arithmetic to generate the Koch Snowflake. The procedure was 
then applied to create more generalized snowflakes rather than the 
triangular classical snowflakes. They also suggested the use of n-
sided polygons, such as pentagons as initiators.  
 
- Another method to modify the geometric shapes produced by a 
fractal comes from the random selection of the direction and 
displacement of the initiator.  
 
- Direction and Proportion Variations2 
 
Normally, the length of the generator is equal to a segment of the 
initiator and the direction of the line segments in the generator and 
initiator are the same as seen in the Koch Snowflake in (Fig.3.29).  
                                           
1 Shakiban, C. and Berstedt, J.E.: Generalized Koch Snowflakes. In Bridges: Mathematical 
Connections in Art, Music and Science, 1998.  
2 Ibrahim, M. and Krawczyk, R.J.: Exploring the Effect of Direction on Vector-Based 
Fractals. College of Architecture, Illinois Institute of Technology, USA, Bridges 2002 
conference, Towson, MD, July, 2002. 
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One possible variation is to modify the direction of the entire 
generator or initiator or individual parts of each and the 
orientation of the generator as it is placed on the initiator.  
 
(Fig. 3.30) displays the Koch Snowflake with the generator in one 
direction and normal and reversed direction for the initiator. When 
the initiator is reversed the Antisnowflake appears. (Fig. 3.31) 
reverses the direction of the placement of the generator. The 
fractals developed starting at the second iteration are 
undocumented versions of the Koch Snowflake. Additional 
variations were found by modifying the direction of individual 
line segments within the generator or the initiator.  
 
In addition to direction, the proportions of the line segments in the 
generator could be modified in relationship to the initiator. To 
demonstrate this concept, a square initiator and the normal Koch 
Snowflake generator are used. (Fig. 3.32) shows fractals that are 
based on generators that range from 25% to 75% of the size of the 
initiator. 

 
 
 

Fig. 3.30: The direction effect on the generated fractal applied on the simple Koch 
Snowflake. 

 

 
 

Fig. 3.31: The effect of the direction of the placement of the generator on the 
generated fractal applied on the simple Koch Snowflake. 
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Fig. 3.32:  The proportion effect on the generated fractal applied on the simple 
square. 

 
The classical fractals have no specific meaning associated to their 
shapes; they are simply forms that generate interesting fractals. 
Selecting the generator can be based on architectural 
organizational schemes used as major axes of a site planning or a 
building, or using the patterns discussed by Francis D.K. Ching in 
organizing spaces1.  
 
The fractal process, if left unrestrained, will go on for ever. It will 
create an interesting shape but will never produce a building. A 
building typically has to respond to a multiplicity of process, 
superimposed or interwoven.  
 
 
 
 

                                           
1 Ibrahim, M. and Krawczyk, R.J.: Generating Fractals Based on Spatial Organizations. 
College of Architecture, Illinois Institute of Technology, USA, February 2001, op.cit. 
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Therefore, the fractal process needs to be guided, to be 
constrained and to be filtered. Then has to be mutated by the 
utilitarian requirements of the functionalities of a building. 
 
The 2D fractals first resulted might be used as site boundaries or 
circulation axes, or any other architectural organizational element.   
(Fig. 3.33) shows another base and generator and the first twenty 
states generated by twenty applications of the generator. 
 
 

 
 
 

Fig. 3.33: A fractal process after 20 iteration1. 
 

                                           
1 Yessios, C.I.: A Fractal Studio. In ACADIA ’87 Workshop Proceedings, 1987. 
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This concept is further illustrated in (Fig. 3.34). The initial shape 
(base) can itself be the product of a fractal or some other 
generative process.  
 
Applying generators I and II individually results to distinctly 
different shapes. The two generated can then be mixed uniformly 
to produce the fractal shape in (Fig. 3.34 e). Or the mixture of the 
generation can be controlled and regulated to produce a shape as 
the one shown in figure (Fig. 3.34 f). 
 
 

 
 

 
 

Fig. 3.34: Applying two generators, one at a time & mixed1. 
 

 

                                           
1 Ibid. 
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ii- Using Point Fractal 
 
- Environment Design and Landscape Generation1 
 
Point fractals generate an extensive range of shapes. These shapes 
are especially interesting in the simulation of forests, galaxies, 
leaves, flowers, rocks, mountains, torrents of water, carpets, bricks 
and much more. The environment design is one of the most 
important contributions of fractal geometry to CAAD (Fig. 3.35). 
 

     
 

Fig. 3.35: Environment and landscape fractals. 
 
- Texture Generation2 
 
The design of fractal texture makes possible the simulation of 
wood, water, minerals and a long list of materials very useful in 
photorealistic modeling (Fig. 3.36). 
 

 
 

Fig. 3.36: Cloud texture, stucco texture, microscopic texture, granite texture, 
vegetation texture and water texture. 

                                           
1 Garcia, F., Fernandez, A. and Barrallo, J.: Discovering Fractal Geometry in CAAD. 
eCAAD 1994, Proceedings (conversion 2000). 
2 Ibid. 
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- Patterns Generation  
 
The fractal patterns generated can be used as patterns for 
architectural layouts or landscape or meshes or terrain or patterns 
that can be used in architectural building details (Fig. 3.37). 
 

 

 
 

Fig. 3.37: Gallery generated using point fractals1. 

                                           
1 Chapuis, J. and Lutton, E.: ArtiE-fract: Interactive Evolution of Fractals.  International 
journal on artificial intelligence tools, 15 December, 2005. 
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3-1-3-2 Generating 3D Forms 
 

i. Assigning Height to a 2D Vector-Base Fractal 
 
The example below shows how a 2D vector-base fractal can be 
transformed into 3D vector-base fractal. Yessios’s1 implemented a 
fractal generation that was highly interactive and allowed a fractal 
to be developed one iteration at a time or at multiple increments. 
At the same time, generators could be changed, replaced, deleted, 
or inserted, at any iteration. The generation process could go 
forward and backward allowing the designer to return to an earlier 
state.  
 
In (Fig. 3.38 a) the base and the generator are one and the same 
shape. The fractal generated after 30 steps (Fig. 3.38 b). It has 
been filtered and transformed into a structured drawing (floor 
plan) which next becomes the base for generating a 3D building 
model. An interior model is shown in (Fig. 3.38 c) and two views 
of the exterior model are shown in (Fig. 3.38 d) and (Fig. 3.38 e). 
the heights were determined using Fibonacci sequence 
(0,1,1,2,3,5,8,13,21,…..).  
 

 
 

Fig. 3.38: Assigning height to a 2d vector-base fractals. 

                                           
1 Yessios, C.I.: A Fractal Studio. In ACADIA ’87 Workshop Proceedings.1987, op.cit. 
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ii. Applying a 3D Generator to a 3D axiom 
 
Applying rules to the single or complex 3d axiom results in 
generating architectural spaces. (Fig. 3.39, 3.40) exemplifies a 3 
dimensional structure of the (carpet L-system) fractal. The unit 
cube is divided to slice the width of the cube by 1/3. The central 
pieces of the resulting cubes located at the center of the faces are 
removed from original cube. This process is repeated perpetually 
with the resulting cubes1.  

 
 

Fig. 3.39: An axiom and a generator. 
 
An example of a cube generated using carpet L-system fractal by 
applying rules to a simple 3D axiom, results in generating an 
architectural space (Fig. 3.40). 
 
 
                   
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.40: Generated 3 dimensional space using carpet L-system fractal. 

                                           
1 Mohammadi, G.: Geometric Shape Generator. M.Sc. thesis proposal, University of 
Washington, 2004.. 
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iii. Metaphorization of Orbit Fractals 

 
Metaphorization of abstract form had been an essential element of 
creativity. Thus, strange attractors can empower creativeness and 
trigger inventiveness. (Fig. 3.41) shows a gallery for some 
rendered attractors that can hold architectural potentials after 
being mutated by the utilitarian requirements and the 
functionalities of a building. These attractors resemble forms 
created by Greg Lynn's Blob architecture.  
 

   
  
 

Fig. 3.41: Varieties of rendered strange attractors1. 
                                           
1 Krawczyk, R.: www.netcom.com/~bitart.2002, Accessed 1/10/2007. 
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3-2 Spirolaterals  
 
3-2-1 Introduction 
 
3-2-1-1 Definition 
 
Spirolaterals are mathematical figures that resemble fractals in its 
chaotic phenomena. The name Spirolateral is derived from two 
roots; lateral, referring to a flat surface, and Spiro, since the 
original series of spirolaterals was generated from the “square 
spiral”. Spirolaterals are geometry with increasing length of turns 
and the turns repeating themselves with predefined angles. 
  
They generate artistic two dimensional forms of unexpected 
complexity and beauty that might be used as ornaments or in any 
architectural organizational elements or for the purpose of 
inspiration and generation in the conceptual phase of design, 
before being guided, constrained, filtered and mutated by the 
utilitarian requirements and the functionalities of a building. 
  
3-2-1-2 Outlines 
 
Spirolaterals were encountered while investigating space curves 
and fractals. Researches uncovered what seems to be the first 
description of this geometrical form by Frank C. Odds1, a British 
biochemist, Further research uncovered additional description by 
Abelson2, Then Robert J. Krawczyk3 find it a fertile area for 
generating unexpected infinite forms. Krawczyk focused on 
developing computer-based methods to investigate these two 
dimensional forms then begin to suggest three-dimensional 
versions of them, then the focus changed to investigate the 
mathematical rules of generating them that would result in 
visually more interesting designs. 

                                           
1 Odds, F.: Spirolaterals. Mathematics Teacher, pp.121-124, 1973.  
2 Abelson, H. and Disessa, A.: Turtle Geometry.  MIT Press, pp.37-39, 120-122, 1968. 
3 Krawczyk, R.J.: Spirolaterals, Complexity from Simplicity. In International Society of Arts, 
Mathematics and Architecture, 1999. 
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3-2-1-3 The Mathematical Concept  
 
The mathematical nature of spirolaterals based on the recursion of 
a predefined geometrical principles using mathematical and 
computer based tools. A spirolateral is created by drawing a set of 
lines; the first at a unit length, then each additional line increasing 
by one unit length while turning a constant direction. (Fig. 3.42) 
shows the systematic generation of an order 3 spirolateral, one 
that consists of 3 segments at turns of 90 degrees. 
 

 
 

Fig. 3.42: Generation of an order 3 spirolateral. 
 

Step 1: turn 90 degrees, draw one unit segment, turn 90 degrees, 
draw two unit segments, turn 90 degrees, draw three unit segments 
Step 2, 3 and 4: repeat Step 1. To complete a closed spirolateral, it 
is necessary to only to repeat the “square spiral” design, until the 
starting point is reached. 
 

• The Mathematical Properties of Spirolaterals1 
 
From the introductory example, the spirolateral is defined by three 
basic factors: the turning angle, the number of segments or turns, 
and the number of repetitions, which create a closed figure. To 
predict the closing property of a spirolateral, Krawczyk developed 
the following relationship. If the total turning angle is module of 
360, then the spirolateral is closed. 
 
Total turning angle = angle of turns x number of turns x 
repetitions. 
                                           
1 Ibid. 
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The exception is that when only one repetition become 360 
degrees, the spirolateral will not be closed, or if repeated further it 
will just meander outward without ever closing on itself. Odds 
developed a notation to describe each of the spirolaterals. The 
number of turns, n, referred to as the “order” of the spirolateral, is 
the base number.  
 
The angle of turn is written as a subscript; thus, 590 would define a 
spirolateral with five turns each through 90 degrees. Odds 
suspected that any angle that is an exact divisor of 180 degrees 
would generate a spirolateral. Gardner1 also agreed with Odds 
without investigating any other possible angles. (Fig. 3.43) 
demonstrates closed spirolaterals based on an angle of 180/n. 
 

 
 

Fig. 3.43: Spirolaterals based on an angle 180/n. 
 

Odds then introduced the concept that not all the turns need to be 
in the same direction. For any series of segments, some of the 
turns can be to the right and others can be to the left. The notation 
he suggests is: 790 4,6 for a spirolateral of 7 turns at 90 degrees in 
which the 4th and 6th turns are in the opposite direction. (Fig. 
3.44) shows a series of reverse turn spirolaterals based on the 
angle of 90 degrees. For a specific order n there are 2n possible 

                                           
1 Gardner, M.: Knotted Doughnuts and Other Mathematical Entertainments. W. H. 
Freemand and Company, pp. 205-208, 1986. 
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turns that generate spirolaterals, half of those are mirror images; 
so 2n-1 unique figures are possible in each order. From the analysis 
of the closure relationship previously described it has been found 
that spirolaterals, which close for all turns in the same direction, 
will also close for any reversed turns given the same number of 
turns and repetitions1. 

 
Fig. 3.44: A 990 Spirolaterals with reverse turns. 

 
Another example is given in (Fig. 3.45) of a 645 spirolateral. 

 

 
 

Fig. 3.45: A 645 Spirolateral with only unique reverse turns. 
                                           
1 Krawczyk, R.J.: The Art of Spirolateral Reversal. The International Society of Arts, 
Mathematics and Architecture, edited by N. Friedman, University of Albany-SUNY, 2000. 
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3-2-2 Classifications 
 
Spirolaterals classified into two main types: straight and curved. 
 
3-2-2-1 Straight Spirolaterals 
 
The first studies on spirolaterals didn't break away from the canon 
of straight lined spirolaterals. The first applications simply used a 
single line to represent each spirolateral. Visually it was very 
weak. Robert J. Krawczyk added a line thickness to it. The forms 
turned from simple line drawings to iconic symbols. As the line 
thickness was increased, the open areas between the lines began to 
close and a totally different form emerged (Fig. 3.46 a). 

In addition to displaying the line thickness, options are included to 
add the centerline and edge lines or both for each. (Fig. 3.46 b, 
3.46 c and 3.46 d) display these variations.  These options 
displayed the internal geometry of the spirolateral that was 
somewhat lost to the line thickness1.   

 
                   a. Line thickness                                        b. Centerline  

 
                     c. Edge lines                                      d. Center and edge lines  

Fig. 3.46: Variation of thickness and lines. 

                                           
1 Ibid. 
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(Fig. 3.47) display selected examples from JAVA spirolateral-
generating module. (Fig. 3.48, 3.49) display two types of 
spirolaterals closed and closed with reversals1.  
 
 

                      
 

 
 

Fig. 3.47: Selected examples. 
 

 
Fig. 3.48: Closed spirolaterals. 

 

 
 

Fig. 3.49: Closed spirolaterals with reversals. 
 

                                           
1 Ibid. 
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3-2-2-2 Curved Spirolaterals 
 
Investigations had been made to transform the straight 
spirolaterals into curves, a series of artworks developed showing 
possible curving methods: curve fitting, spins, inversion, 
antimercator and circular transformations, along with hypocycloid 
and epicycloids curves1.  
 
A spirolateral consists of lines drawn between two vertices. 
Instead of using the actual lines, one idea was to use only the 
vertices. Using CAD-based software, procedures were written to 
interpret the vertices as control points for curves. (Fig. 3.50) 
displays this concept. The simple 190 spirolateral, a square, 
consists of four vertices. These vertices can be fitted with arcs at 
the start and end of adjacent vertices. The vertices can also be 
control points to generate a spline curve. 

 
 

Fig. 3.50: Curved spirolateral 190. 
 
 

Many of the spirolaterals developed as curves were found to be 
interesting while some not visually exciting nor did they generate 
any unexpected images. The first set created were ones that 
consisted of ten or less turns (Fig. 3.51). 
 

 
 

Fig. 3.51: Curved spirolateral 790. 

                                           
1 Krawczyk, R.J.: More Curved Spirolaterals. College of Architecture, Illinois Institute of 
Technology, USA. BRIDGES: Mathematical Connections In Art, Music, and Science, 2001 
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Only when the number of turns increased to a range of 11 to 15, 
with reversed turns included, did the number of control points 
increase to the point where they begin to generate images of 
unexpected detail and complexity. (Fig. 3.52) displays two such 
examples. 

 
Fig. 3.52: Curved spirolaterals of 1490. 

 

• Curved Spirolaterals Types 
 
Many approaches to curve spirolaterals had been developed 
like applying a transformation, a projection, or mapping from a 
linear image to a curved one.   

 
a- Curves by Inversion 

 
In researching these possibilities, the first one encountered was the 
concept of inversion, as described by Weisstein1, Dixon2 and 
Lawrence3. This mathematical method turns lines into circles. The 
transformation based on the image midpoint is as follows: 
X = (x * r2) / (x2 + y2) 
Y = (y * r2) / (x2 + y2) 
(Fig. 3.53) demonstrates this transformation on a simple square 
spirolateral. Inversion by definition reconstructs the spirolateral as 
curves. After transforming a variety of spirolaterals, it was found 
that ones that are open in the center generate the most interesting 
results. Ones that have lines that cross the image midpoint 

                                           
1 Weisstein, E.W.: Concise Encyclopedia of Mathematics. CD-ROM edition 1.0, Chapman & 
Hall/CRCnetBASE, 1999.  
2 Dixon, R.: Mathographics. Dover Publications, Inc., p.152, 1987.  
3 Lawrence, J.D.: A Catalog of Special Curves. Dover Publications, Inc., p.43, 1972. 
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generate very strange results, which are visually not interesting. 
Symmetry also added to the quality of the results, as did the 
selection of the line thickness. (Fig. 3.54) displays a sample of 
spirolateral inversions. 

 
Fig. 3.53: Inversion of spirolateral 190. 

 
Fig. 3.54: Spirolateral inversions. 

 
b- Circular Transformations1 

 
Continuing the search for other methods of curving spirolaterals, 
Dixon outlined a method he calls anitMercator. Horizontal lines 
become circles concentric with the coordinate origin, vertical lines 
become radial, and slanting lines become logarithmic spirals. The 
transformation in polar coordinates is as follows: 
A = k * x where: k = 2π/(xmax-xmin) 
R = exp (k * y) 
(Fig. 3.55) demonstrates this transformation on a simple square 
spirolateral. This transformation is affected by the line thickness 
and also by the offset from the origin. The origin is positioned in 
the lower-left corner of the image. This location results in the 

                                           
1 Krawczyk, R.J.: More Curved Spirolaterals. College of Architecture, Illinois Institute of 
Technology, USA. BRIDGES: Mathematical Connections in Art, Music, and Science, 2001, 
op.cit. 
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image being bent clockwise starting with the left corner. 
(Fig.3.56) displays a sample of spirolateral transformed by 
antiMercator. 

 
Fig. 3.55: antiMercator spirolateral 190. 

 
                      160                                                                          230                                                                  390 

Fig. 3.56: antiMercator spirolaterals. 
 

While investigating the antiMercator transformation, one alternate 
method was found by removing the exponential function. The 
circular form remains without the logarithmic spiral effect. Since 
no formal name has been found for this transformation, it will be 
referred as simply circular. (Fig. 3.57) demonstrates this circular 
transformation on a simple square spirolateral. This 
transformation differs from the antiMercator in that the line 
spacing is of a more constant 
distance from the center, so that 
the original distances are better 
represented1. This transformation 
also changes as the offset 
increases. (Fig. 3.58) displays a 
sample of spirolateral transformed 
by the Circular transformation.         Fig. 3.57: Circular spirolateral 190.                           

                                           
1 Ibid. 
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                    160                                 245                                                      230 

 
Fig. 3.58: Circular spirolaterals. 

 

c- Following a Curve1 
 
The antiMercator and Circular transformation consist of 
computing polar coordinates based on the original image and then 
converting them to Cartesian coordinates. An alternate method is 
to not converting the polar to rectangular Cartesian coordinates 
but to follow curved ones. Using the angle and radius computation 
from the Circular transformation, the modified Cartesian 
coordinates are computed with the following curves, as in 
Lawerence: 
Hypocycloid: X = R * (cos (A)*(n-1) + cos (A*(n-1))) where: n = number of 
cusps, 3 and 4. Y = R * (sin (A)*(n-1) – sin (A*(n-1))) 
Epicycloid: X = R * (cos (A)*(n+1) – cos (A*(n+1))) where: n = number of 
cusps, 2, 3, and 4. Y = R * (sin (A) (n+1) – sin (A*(n+1))) 
The major difference between these two curves is that the 
Hypocycloid produces concave curves and the Epicycloid 
produces convex ones. (Fig. 3.59, 3.60) demonstrate these 
transformations on a simple square spirolateral. 

 
Fig. 3.59: Hypocycloid spirolateral 190. 

                                           
1 Ibid. 
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Fig. 3.60: Epicycloid spirolateral 190. 

 

(Fig. 3.61, 3.62) display sample of spirolaterals using the 
Hypocycloid and Epicycloid curves. 

 
                     160                                                             245                                390 

Fig. 3.61: Hypocycloid spirolaterals. 
 
 

 
               245                                        230                                   390 

 
Fig. 3.62: Epicycloid spirolaterals. 

 

These transformations produce more delicate curves and 
unexpected results due to the effect of the line thickness.  
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3-2-3 Architectural Potentials 
 
3-2-3-1 Generating 2D Forms 

A number of different attempts have been made to use the forms 
generated by the spirolaterals in two-dimensions to create actual 
artwork, could be used as masses or master plans or landscaping 
or tiling or any other architectural organizational elements. 

A series of programs have been written to generate spirolaterals.  
The first one written in Microsoft QuickBASIC for computational 
inquiry and AutoCAD’s AutoLISP for visualization.  The first 
version simply used a single line to represent each spirolateral.  
Visually it was very weak.  A line thickness was added.  The 
forms turned from simple line drawings to iconic symbols.  As the 
line thickness was increased, 
the open areas between the 
lines began to close and a 
totally different form 
emerged.   Once the basics 
were understood a JAVA 
version (Fig. 3.63)  was 
written to display the 
spirolaterals1.                                                    Fig. 3.63: The JAVA version.  

(Fig. 3.64) to (Fig. 3.76)2 show 13 galleries of different types of 
spirolaterals , straight and curved that could be generated using a 
JAVA application by just varying 8 parameters in the JAVA 
interface.  

These generated patterns strongly aid the preliminary design 
phase, empower creativeness, trigger inventiveness and could be 
an initiator for a three dimensional composition.     

                                           
1 Krawczyk, R.J.: The Art of Spirolateral Reversal. The International Society of Arts, 
Mathematics and Architecture, edited by N. Friedman, University of Albany-SUNY, 2000. 
op.cit. 
2 Krawczyk, R.J.: www.netcom.com/~bitart.2002. Accessed 1/10/2007. op.cit. 
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Fig. 3.64: Straight spirolaterals series. 
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Fig. 3.65: Circular & antiMercator series. 
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Fig. 3.66: Inversion series. 
 

     

     

     

     
 

Fig. 3.67: Hypocycloid series. 
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Fig. 3.68: Epicycloid series. 
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Fig. 3.69: Harmonic Mean Inversion series. 

 
 

     

     
Fig. 3.70: Epitrochoid Curve series. 

 

     

     
Fig. 3.71: Piriform Curve series. 
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Fig. 3.72: Bicorn Curve series. 

 

     

     

     

      
 

Fig. 3.73: Tear Drop Curve series. 
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Fig. 3.74: Lips Curve series. 
 

     
 

Fig. 3.75: Lame Curve series. 
 

     

     

     
Fig. 3.76: Hippopede Curve series. 
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3-2-3-2 Generating 3D Forms  
 
All the previous investigations have created spirolaterals in two-
dimensions. For this particular, series of three-dimensional 
constructions were investigated. (Fig. 3.77) displays the 
spirolateral that was selected. (Fig. 3.77 a, 3.77 b) are the original 
spirolateral, and (Fig. 3.77 c) is the variation selected. In this 
version the line thickness is decreased so to better articulate the 
turns as separate sculptural elements. 
 

 
Fig. 3.77: A 490 spirolateral to be transformed to a 3d composition. 

 

In moving these figures into the third dimension, an interpretive 
approach was examined. This approach attempts to use every 
possible property of the spirolateral and its potential to define the 
third dimension. The overall concept was to follow the given 
geometry, retain the step and turn properties of the original 
spirolateral, and retain the entire form. Three basic approaches 
were explored; as a relief, as an assembly, and as a construction1. 
 

• As a Relief 
 

The first interpretation was as a relief, a simple three-dimensional 
extrusion of the two-dimensional figure. The relief concept 
continues the line quality of the original spirolaterals in three 
dimensions. (Fig. 3.78 a) displays the simplest extrusion that is 
possible. All of the parts of the spirolateral have the same 
                                           
1 Krawczyk, R.J.: Sculptural Interpretation of a Mathematical Form. College of 
Architecture, Illinois Institute of  Technology, USA, Bridges, Towson University, 2002. 
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dimension and the same height. The extrusion can also be viewed 
in a positive and negative fashion, (Fig. 3.78 b) displays the 
negative and (Fig. 3.78 c) displays a combination of the positive 
and negative. 
 

 
              a                                                b                                              c 
                        

Fig. 3.78: Simple relief, positive and negative. 
 

Continuing with the relief concept, the next sets of pieces consider 
the spirolateral property of turn size and its change in length. First 
considered is each turn individually, (Fig. 3.79 a) increases the 
height of each individual turn from its starting turn to the ending 
turn, a total of 20 turns. The height parallels the change in turn 
length. A simple variation would be to reverse the turn size from 
increasing to decreasing from the starting turn. Another 
interpretation of the increasing turn size is to combine the 
increasing and decreasing turn height. (Fig. 3.79 b) increases each 
turn height until the midpoint is reached, then the turn height is 
decreased1. 

 
                                        a                                                                   b 
                                          Fig. 3.79: Increasing/decreasing turn height. 
 
The next consideration was treating each set of turns as a unit, not 
as individual turns. (Fig. 3.80 a) increasing the height of each set 
                                           
1 Ibid. 
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of turns, in this case, there are four set of turns. A simple variation 
would be to reverse the pattern of height from increasing to 
decreasing. Another variation is to incorporate both increasing and 
decreasing. (Fig. 3.80 b) alternates the height of each set of turns. 

 
                                a                                                                 b 

Fig. 3.80: Increasing/decreasing set of turn height. 
 

Using the same type of variations as in the previous pieces, 
stepping the turns, a series of variations was considered that 
ramped the turns. (Fig. 3.81 a) simply ramps the turn height from 
the starting turn to the ending. A variation would be to reverse the 
increasing ramp to decreasing. (Fig. 3.81 b) increases the ramp 
from the starting turn to the midpoint and then decreases it to the 
final turn. It can also be varied by revering the increase and 
decrease direction. 
 

 
                                 a                                                                 b 

Fig. 3.81: Increasing/decreasing turn height as ramps. 
 

As with the stepped variations, the ramping can also consider an 
entire set of turns not just each individual one. (Fig. 3.82 a) 
increases the ramp for each set of turns and then resets the 
ramping to start it over again. (Fig. 3.82 b) alternates the 
increasing and decreasing of the ramp for each set of steps. As 
before a reverse variation is also possible for both. 
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                                       a                                                    b 

Fig. 3.82: Increasing/decreasing set of turns height as a ramp. 
 

• As an Assembly1 
 

A simple assembly can also be created by taking the entire 
spirolateral and comibidbining it with itself. (Fig. 3.83 a) displays 
one variation where three forms are combined at the dimensional 
center of the spirolateral. One is positioned horizontally and the 
other two are placed vertically. (Fig. 3.83 b) also combines three 
forms in the same manner, but at the beginning of the first turn of 
the spirolaterals. Another variation is to construct a volumetric 
interpretation, by combining six copies, each copy forms one side 
of the volume. In (Fig. 3.84 a) all the spirolaterals have the same 
orientation; an additional variation (Fig. 3.84 b), mirrored 
opposite sides, so that the spirolateral meets with common turns at 
the corners. This simple assembly concept attempted to 
investigate on how to translate the spirolateral flatness to a 
volumetric form. 

 
                                           a                                                          b 

              Fig. 3.83: Simple assembly using three copies. 

                                           
1 Ibid. 
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                                           a                                             b 

Fig. 3.84: Simple assembly using six copies. 
 

• As a Construction1 
 

A set of construction can be generated by introducing vertical 
supports under the entire spirolateral, sets of turns, or each 
individual turn. These supports can have a height based on the 
turns or sets of turns. The first in the series considers the entire 
spirolateral. (Fig. 3.85 a) includes the spirolateral with supports at 
each end of each turn with an additional copy of it as a base 
support. (Fig. 3.85 b) follows the same concept except the 
supports are only at the beginning of each set of turns.  

 
                                  a                                                            b 

Fig. 3.85: Simple construction using the entire spirolateral. 
 

Following the concepts developed in the step and ramp forms, 
individual turns or a set of turns, the height of each turn is 
considered the first of these was individual turns, (Fig. 3.86 a) 
increases the height of each turn, segment by segment throughout 
the spirolateral. Supports are included at each start of each turn. 
(Fig. 3.86 b) is based on the same concept except that the height is 
decreased at the midpoint. (Fig. 3.86 c) also exhibits increasing 
                                           
1 Ibid. 
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and decreasing but the direction is changed at every set of turns. 
While (Fig. 3.87) shows excluding supports at some set of turns. 

 
                             a                                           b                                       c 

Fig. 3.86: Increasing/decreasing turn height. 
 

 
 

Fig. 3.87: Excluding supports at some set of turns. 
 

• Using Spirospaces entity1  
 
A Spirospace is a tridimentional geometrical entity characterized 
by its formal configuration. It is inspired from the bidimentional 
geometries of spirolaterals. The main value of Spirospaces for 
architectural design resides on its spatial potentiality. It is easy to 
verify from a simple observation of a spirospace (Fig. 3.88, 3.89), 
its strong analogy with architectural forms. 
 

 
Fig. 3.88: Typical Spirospaces. 

                                           
1 Luis, F.B., Roberto, G.L. and Roberto, S.: Spirospaces in Architectural Design. .Design  
Systems Laboratory, University of Tucuman ,Argentina, 1st ASCAAD International 
Conference, e-Design in Architecture KFUPM, Dhahran, Saudi Arabia. December 2004. 
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Fig. 3.89: Three first steps of a fractalized Spirospace. 
 
 

• Spirospaces Components1 
 
A spirospace is made up of tridimentional units, grouped by 
"packages" of variable complexity. A first package is compound 
by a set of "Pieces", somehow equivalent to spirolaterals 
segments. A second package is the "Module", conformed by 
consecutive pieces of variable length. A third package defines an 
"Element", which groups modules together (Fig. 3.90). The 
integration of elements can continue indefinitely, generating even 
more complex elements. 
 

 
Fig. 3.90: Spirospaces components. 

                                           
1 Ibid. 
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• Spirospaces Parameters1 
 
Spirospaces parameters are directly related with the components 
that define a spirospace, which are: pieces, joints and spaces. 
Parameters that operate on the "pieces" are: 
 

(a) Shape Parameter: defines the geometry of spirospaces' 
pieces (Fig. 3.91). 

 

 
 

Fig. 3.91: Spirospace shape parameter. 
 

(b) Dimension Parameter: defines the size of spirospaces' 
pieces (Fig. 3.92). 

 

 
 

Fig. 3.92: Spirospace dimension parameter. 
 

(c) Orientation Parameter: controls the rotation angle for 
each piece that composes a spirospace. The angle 
variation is only possible along the longitudinal axis of 
each piece (Fig. 3.93). 

 

                                           
1 Ibid. 
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Fig. 3.93: Spirospace orientation parameter. 
 

(d)  Materiality Parameter: refers to the appearance of 
spirospaces' pieces (Fig. 3.94). 

 

 
 

Fig. 3.94: Spirospace materiality parameter. 
 
 

(e) Joints Parameter: joints parameters are based on the 
relative positions of concurrent pieces. Considering 
plan and elevation relative positions, it is proposed 
the distinction between "Meetings" (plan), and 
"Encounters" (elevations).  

 
"Meetings" parameter expresses all possible combinations         
of joints between two consecutive pieces. (Fig. 3.95). 
exemplifies this. 
 

 
 

Fig. 3.95: Spirospace meetings types. 
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Spirospace spatiality varies with the type of junction. (Fig. 3.96) 
shows the same spirospace with different junctions. 
 
 

 
 

Fig. 3.96: Spirospace junctions. 
 
 
 

The analogy process implies to relate two organizations, and to 
translate some characteristics from one to the other. Spirospaces 
proposed as the analogy source, and the design idea as the target. 
Now the question is, what to get from spirospaces that can be 
translated into architectural ideas?  

 
• The Analogy Source1 
 

A spirospace can be a very intricate entity, it is always perceived 
with a strong sense of unity, provided by its generation rules. For 
this reason, postulate that the characteristics related to the 
wholeness sense of spirospaces are valuable on three basic 
features: geometry, space, and syntax organization. 
 
(a) Geometry: it refers to the morphological characteristics of a 
spirospace. The spirospaces arrangements usually have a 
remarkable formal personality, obtained from their generation 
rules, which means that this aspect has a powerful analogy 
potentiality. 
 
 

                                           
1 Ibid. 
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(b) Syntax: it refers to the conceptual organization of a 
spirospace. It implies a high degree of abstraction from direct 
observation. It is the form structure of the spirospace. 
 
 (c) Space: it refers to the space generated by spirospaces. It 
implies the observer interpretation to consider either objectual or 
interstitial spaces configurations, mentioned before. 
 

• The Analogy Target1 
 
Starting from a conceptual definition it is possible to associate 
some features of the object used as a creative trigger, establishing 
a relation by analogy. Creative analogy is accomplished by 
translating some characteristic from the paradigmatic entity used 
as a creative trigger to some characteristic of the architectural 
ideas. The form, function and structure are the target for the 
creative analogy. This means that the geometry of a spirospace 
can be used to inspire architectural morphological configurations. 
 
We can use spirospaces to interpret some functional architectural 
schemes; those related to a central system with rotational 
subsystems, or to use the syntax organization of a spirospace to 
inspire the layout of the same kind of architectural ideas.  The 
following table expresses all possible analogies between a 
spirospace and an architectural object (Tab. 3.1). 
 

 
 

Tab. 3.1: A table showing possible analogies between a spirospace and an 
architectural object. 

                                           
1 Ibid. 
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Summary of chapter three: 
 
       Chapter three discussed two generative tools with clearly 
different outcomes belonging to a new branch of mathematics 
known by Chaos mathematics, and opposed in its conception to 
the conventional mathematical and geometrical principles 
preponderant until this moment. In this method of generation, 
forms do not born in the designer's mind but they are generated 
using iterative random functions and recursive equations in a 
computational medium. The designers only choose, select, 
evaluate and transform these forms. Fractals and Spirolaterals are 
the two studied examples of these chaotic phenomena. The 
chapter Studied: their nature, mathematical concepts and 
architectural potentials, with the purpose to use them as form 
generators in the preliminary phase of the form finding process.  
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Chapter 4: Evolutionary Based Mathematical 
Generative Systems 

 
Since Charles Darwin proposed his theory stating that all species 
are generated via the process of evolution, Attempts had been 
developed to explain the adaptive process of natural systems and 
to design artificial systems based upon these natural ones1 
(Fig.4.1). 

 
Fig. 4.1: Evolutionary computation roots in computer science 

and Evolutionary Biology. 
 

Evolutionary design has its roots in computer science, design, and 
evolutionary biology. It is a branch of evolutionary computation, 
which extends and combines CAD and analysis software, and 
borrows ideas from natural evolution2 (Fig. 4.2). 
 

 
Fig. 4.2: Evolutionary design roots in Computer Science, 

Design and Evolutionary Biology. 
 

Evolutionary design covers generative computer tools useful in 
the simulation and generation of 3D graphics of higher level of 
complexity and diversity. Examples of these evolutionary tools 
are: Genetic algorithms, Cellular automata. 
                                           
1 Bentley, P: Evolutionary Design by Computers. Morgan Kaufmann publishers, 1999. 
2 Eldaly, H.: Architecture in the Age of Information Technology. M.Sc. thesis in architecture, 
Ain Shams University, 2005. 
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4-1 Genetic Algorithms 
 
4-1-1 Introduction 
 
4-1-1-1 Definition 
 
Genetic algorithm is an artificial intelligence procedure based on 
the principles of evolution and natural selection. i.e., survival of 
the fittest. GA is inspired by natural systems and how they often 
rely on the repetition of very simple steps such as crystal growth.  
 
It is now considered not only powerful enough to solve biological 
puzzles, but also tools useful in the simulation of algorithms and 
3D graphics having a huge potential for creating artistic forms of  
higher level of complexity and diversity. GA today is the most 
widely used form of the evolutionary algorithm. 
 
4-1-1-2 Outlines 
 
GA originally developed and characterized by John Holland1 
(1975) and made famous by David Goldberg2. 
 
The first experimental 
system for art generation, 
'FormSynth' was created 
by William Latham in 
(1989). It was a system for 
drawing on paper in which 
repeated applications of 
rules generate an 
evolutionary tree of 
unexpected forms3, some of       Fig. 4.3: Small hand-drawn genetic tree. 

                                           
1 Holland, J. H.: Adaptation in Natural and Artificial Systems. The University of Michigan 
Press, 1975. 
2 Goldberg, D.E.: Genetic Algorithms in Search, Optimization & Machine Learning. 
Addison-Wesley, 1989. 
3 Jakimowicz, A., Barrallo, J. and Guedes, E.M: Spatial Computer Abstraction: From 
Intuition  to Genetic Algorithms. CAAD futures Digital Proceedings, 1997. 
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them with architectural quality. (Fig .4.3) presents an image based 
on 'Mutator', an algorithm created by William Latham and 
Stephen Todd1. This algorithm displays geometric forms under the 
action of associated gene values.                                               
             
The basis of the graphic process lies in a very simple gallery of 
Euclidean objects (cubes, cylinders, pyramids, spheres, ...) and a 
collection of mutation processes based on natural systems (tree 
branch, spider web, DNA helix, ...).  
                                                                           
 
The combined action of one or more of these objects with a 
mutation   process results in new forms with an imaginative and 
increasingly complex structure. The user must explore the 
resulting forms and select one of them, (The user acts as a judge 
driving selection, using aesthetic judgments to breed artwork). So 
only the most aesthetic form is allowed to survive and reproduce. 
 
GAs are widely used in optimization of design in many 
engineering fields, to improve a previous design, or to create new 
design from scratch. GAs show great power in design fields due to 
its ability of creating a wide range of alternatives in design, in a 
very short time, which can help the designer in decision making. 
 
The idea of the GAs is based mainly on the genetic rules, similar 
to the genetic rules of the living creatures. 
 
4-1-1-3 The Evolutionary Concept 
 
Genetic algorithms (GAs) are algorithms inspired from Darwin's 
theory of evolution. These algorithms operate with the population 
of candidate solutions (individuals). Every new population is 
formed using genetically inspired operators (like crossover and 
mutation) and through a selection pressure, which guides the 
evolution towards better areas of the search space. The 
evolutionary algorithms receive this guidance by evaluating every 

                                           
1 Todd, S. and Latham, W.: Evolutionary Art and Computers. Academic Press, 1992. 
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candidate solution to define its fitness. The fitness, calculated by 
the fitness function (i.e. objective function), indicates how well 
the solution fulfills the problem objective (specification). 
 
Genetic algorithms use two separate spaces: the search space and 
the solution space1 (Fig. 4.4). 
 

i. The search space is space of coded solutions to the problem.  
 

ii. The solution space is the space of actual solutions. 
 

Coded solutions, or genotypes must be mapped as actual    
solutions, or phenotypes, before the quality or fitness of 
each solution can be evaluated.  

 
Fig. 4.4: Mapping genotypes in the search space to phenotypes in the solution space. 

 
In GA each individual element (in the phenotype) in the solution 
space, takes a code (a binary code depends on its properties) in the 
search space (in the genotypes). Phenotypes usually consist of 
collections of parameters; Genotypes consist of coded versions of 
these parameters. A coded parameter is normally referred as a 
gene, with the values a gene can be known as alleles. A collection 
of genes in one genotype is often held internally as a string, and is 
known as a chromosome (Fig. 4.5, 4.6). 
 

                                           
1 Bentley. P.: Evolutionary Design by Computers. Morgan Kaufmann publishers, 1999. 
op.cit. 
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Fig. 4.5: The behavior of the crossover operator. The vertical line shows the position 

of the random crossover point. 
 
 

 
 

Fig. 4.6: Four generations of evolving house designs using a population 
  size of four. Parents of the next generation are circled. 

 
 

The simplest form of a GA is summarized in (Fig. 4.7). This 
genetic algorithm can be explained in the following points1:  
 

i. The genotype of every individual in the population is 
initialized with random alleles. 

  
ii. The main loop of the algorithm then begins, with the 

corresponding phenotype of every individual in the 
population being evaluated and given a fitness value 
according to how well it fulfils the problem objective or 
fitness function. 

iii. These scores are then used to determine how many copies 
of each individual are placed into a temporary area often 

                                           
1 Ibid. 
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termed the ‘mating pool’ (i.e. the higher the fitness, the 
more copies that are made of an individual). 
 

iv. Two parents are then randomly picked from this area. 
  

v. Offspring are generated by the use of the crossover 
operator, which randomly allocates genes from each 
parent’s genotype to each offspring’s genotype. For 
example, given two parents: ‘ABCDEF’ and ‘abcdef’, can 
create a new generation of ‘ABcdef’ and ‘abCDEF’, and 
another new generation can be created by ‘ABcdef’ and 
‘abCDEF’, and so on….. 

 
vi. This entire process of evaluation and reproduction then 

continues until, either a satisfactory solution emerges or the 
GA will run for more generations. 

 

 
 

Fig. 4.7: The simple genetic algorithm1. 
                                           
1 Eldaly. H.: Architecture in the Age of Information Technology. M.Sc. thesis in architecture, 
Ain Shams University, 2005. op.cit. 
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4-1-2 Classifications 
 

     The use of evolutionary computation by (GAs) to generate designs 
has taken place in many different fields over the last 10 or 15 
years. 

  
Designers have optimized selected parts of their designs using 
evolution, artists have used evolution to generate aesthetically 
pleasing forms, architects have evolved new building plans from 
scratch, and computer scientists have evolved morphologies and 
control systems of artificial life1. 

 
In general, these types of evolutionary design by (GAs) can be 
classified into many categories the most important are as follows: 
Evolutionary design optimization, Evolutionary art, Evolutionary 
artificial life forms and Creative evolutionary design (Fig. 4.8).  
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
Fig. 4.8: Classifications of evolutionary design by GAs. 

 

                                           
1 Bentley. P.: Evolutionary Design by Computers. Morgan Kaufmann publishers, 1999. 
op.cit. 
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4-1-2-1 Evolutionary Design Optimization 

For example, Evolutionary optimization of a table (Fig. 4.9).  

 

Fig. 4.9: Evolutionary optimization of a table. 

4-1-2-2 Conceptual Evolutionary Design 

For example, Conceptual evolutionary design of table (Fig. 4.10). 

 

Fig. 4.10: Conceptual evolutionary design of a table. 
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4-1-2-3 Evolutionary Art 

For example, evolving artistic tables (Fig. 4.11). 

 

Fig. 4.11: Evolving artistic tables. 

Evolving artistic chairs using artificial DNA by Soddu1 (Fig. 
4.12). 

 
 

Fig. 4.12: Generated artistic chairs with “artificial DNA” by Soddu2. 

                                           
1 Celestino Soddu, A professor of Architectural Design at Politecnico di Milano University, 
Italy, Director of Generative Design Lab, DiAP and Chairman of Generative Art Annual 
International Conference 
2 Soddu, C.: Generative Natural Flux.  Proceedings of Generative Art Conference, Milan, 
AleaDesign Publisher, December 2001. 
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Celestino Soddu, an Italian architect and chairman of the 
generative art annual international conference held in Milan 
developed many AI software for the purpose of generating endless 
variations of artificial DNA species in art and architecture.  

Another example for an evolutionary art application (Fig. 4.13) 
shows variations for a woman portrait using genetic interpretative 
code that characterizes Picasso's paintings made by Soddu. 

 

Fig. 4.13: Generated portraits “d’après Picasso” with “artificial DNA” by Soddu1. 

                                           
1 http://www.generativeart.com. Accessed 15/7/2007. 
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Soddu also used GA to generate species of lamps (Fig. 4.14), 
coffee pots, rings (Fig. 4.15), chairs and many other artistic 
products. 

 

Fig. 4.14: Generated artistic lamps with “artificial DNA” by Soddu1. 

 
Fig. 4.15: Generated artistic rings with “artificial DNA” by Soddu2. 

 

                                           
1 Soddu, C.: Generative Natural Flux.  Proceedings of Generative Art Conference, Milan, 
AleaDesign Publisher, December 2001. op.cit. 
2 Ibid. 
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4-1-2-4 Evolutionary Artificial Life Forms 

GAs spread widely in industrial design but so far slowly in 
architecture design. One of the famous uses in industry is furniture 
design. The design criteria have been translated into genotypes 
and the products are left to an autonomous process. After 
generating sufficient alternatives, form selection can be made 
according to the user needs, material criteria or an expert decision. 
Structural and functional details will be elaborated after the 
selection.  
 
Generative evolutionary design of a table (Fig. 4.16) and 
generated chairs using 'ConGen' software (Fig. 4.17). 

 
 

Fig. 4.16: Generative evolutionary design of a table. 

 

Fig. 4.17: Generated chairs using 'CongGen' software. 
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4-1-3 Architectural Potentials 

The previous types of GA applications (evolutionary design 
optimization, creative evolutionary design, etc.), can be applied in 
simple form finding problems, but functional problems still 
require more complicated computing power.   

GA proposed the evolutionary model of nature as the generating 
process for architectural form. The creative power of natural 
evolution is done by generating virtual architectural models. 
Architecture by a GA is considered as a form of artificial life.  

The use of genetic algorithms to manufacture forms and 
relationships is the main process in creating an evolutionary 
architecture. These genetic algorithms can be used to generate 
complex spatial models, which can then be filled, punched, and 
stretched to meet other functional or aesthetic criteria. 
 

• Architectural concepts in evolutionary architecture are 
expressed as1:  

 
i. Generative rules, so that their evolution and development 

can be accelerated and tested by the use of computer 
models. Computer models are used to create the 
development of prototypical forms that are then evaluated 
on the basis of their performance in a simulated 
environment. The best models become (according to their 
performance) the parents, which are going to create better 
models in the new offspring. These new evolutionary steps 
(offspring) can be generated in a short space of time and 
the emergent forms are often unexpected. 

 
ii. Genetic language that produces a code script (Genotype at 

search space) of instructions for form-generation. 
 
                                           
1 Frazer, J., Frazer, J., Liu, XY., Tang, MX. and Janssen, P.: Generative and Evolutionary 
Techniques for Building Envelope Design. GA2002 (Generative Art and Design Conference, 
Politecnico di Milano University, Italy , Milan 11-12-13 December 2002). 
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• Applying GA to design problems  
 
Applying GA to design problems means treating design variants 
as members of a population of candidate solutions that compete 
for survival in a game of evolution. Evolution proceeds in two 
steps: reproduction and selection. Reproduction means members 
of the population mate and generate offspring. Selection, in the 
context of genetics, means that the individual phenotypes undergo 
a process of testing their ‘fitness’. In biology, fitness is the 
capability of the individual to survive and reproduce1. 
 

• How do we make design variants mate? 
 
By treating the coding of their parts as genes capable of being 
taken apart and recombined in certain ways. Mating is 
accomplished by crossing over the strings of bits encoding two 
‘parent’ design (Fig. 4.18). The reproduction process engendered 
by GA is ‘blind’ in that both the selection of the pairs that mate 
and the selection of the locations of the strings of bits at which the 
crossing over takes place are random2.  
 
 
 
 

 
 
 

Fig. 4.18: Crossing over design variants. 
                                           
1 Elezkurtaj, T. and Franck, G.: Genetic Algorithms in Support of Creative Architectural 
Design. Vienna University of Technology, Department of Computer Aided Planning and 
Architecture, Vienna, Austria, eCAADe conference proceeding, Liverpool (UK) 15-17 
September 1999. 
2 Ibid. 
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In addition to this two kind of randomization, the strings are 
subject to a third kind of random change, acting in the manner 
mutation does in genetics. In the context of GA, mutation means 
that single bits are changed by chance from 1 to 0 or vice versa. 
 
4-1-3-1 Generating 2D Forms 
  
The above concepts can be exemplified through the next example, 
showing how a designer can use GA in generating two 
dimensional forms. Generally, the evolutionary model requires 
that a design concept must be described in a genetic code. The 
code is then mutated and developed in a computer program into a 
series of models in response to a simulated environment. The 
models are then evaluated in the simulated environment and the 
code of successful models is selected. The selected code is then 
used to repeat the cycle until a particular stage of development is 
selected for prototyping in the real world.  

 
• A House space generation example1 
 

A house can be considered to be composed of a number of zones, 
such as living zone, entertainment zone, bed zone, utility zone, 
etc. Each zone is composed of a number of rooms (or spaces), 
such as living room, dining room, bedroom, hall, bathroom, etc. 
Each room is composed of a number of space units.  
 
Generally, in a design such as a house, the space unit will be 
constant. The scale (level of abstraction) of the space unit depends 
on the precision required in differences between various possible 
room sizes. The smaller the unit, the longer the genotype for a 
given size of room but the greater the shape alternatives. But first 
some criteria must be described for a thorough understanding. 
 
 

                                           
1 Rosenman, M.A. and Gero, J.S.: Evolving Designs by Generating Useful Complex Gene 
Structures. In P. Bentley (ed.), Evolutionary Design by Computers, Morgan Kaufmann, 
London, pp. 345-364. 1999. 
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• The Design Grammar 
 
In the above example, the generation of spaces, basically comes 
down to locate spatial component units for that level. At the room 
level, the component unit is a fundamental unit of space. At the 
zone level, the component unit is a room and at the house level the 
component unit is a zone1.  
 
The design grammar used here is based on the method for 
constructing polygonal shapes represented as closed loops of edge 
vectors. The grammar is based on a single fundamental rule which 
states that any two polygons, Pi and Pj, may be joined through the 
conjunction of negative edge vectors, V1 and V2, (equal in 
magnitude and opposite in direction). The conjoining of these 
vectors results in an internal edge and a new polygon, Pk. This 
rule ensures that new cells are always added at the perimeter of 
the new resultant shape.  
 
The fundamental conjoining rule can be specialized for different 
types of geometries. Orthogonal geometries are based on the 
following four vectors of unit length: W = (1, 90), N = (1, 0), E = (1, 
270), S= (1, 180) so that the two pairs of negative vectors are N - S 
and E - W. These two pairs of negative vectors allow for the 
generation of all polyminoes. Orthogonal geometries will be used 
in this example without loss of generality. Other (sub) rules may 
be formed for other geometries. 
 

• Genotype and Phenotype 
 

A polygon is described by its sequence of edge vectors. A suffix is 
used to identify individual edges of the same vector type. Thus the 
square cell is described as (W1, N1, E1, S1). The sequence of 
edge vectors for a shape is the phenotype providing the 
description of that shape’s structure. The genotype for any 
generated polymino is the sequence of the two subshapes 

                                           
1 Ibid. 
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(polyminoes) used and the two edges joined. An example of the 
generation of a trimino is shown in1 (Fig. 4.19). 
 
(Fig. 4.14) shows a basic unit or cell, P1, which provides a starting 
point for the generation of polyminoes. Each generated shape is 
accompanied by its genotype and phenotype.  
  
The generation of these polyminoes occurs from a random 
selection of edges in the first shape conjoined with a random 
selection from equal and opposite edges in the second shape. At 
each step in the generation, the phenotype is reinterpreted to 
generate a new edge vector description and the conjoining (sub) 
rules applied.  
 
The genotype for the generated trimino is given as (P2, P1, 
N2|S1). This can be expanded as ((P1, P1, E1|W1), P1, N2|S1). 
When the same units are used for generation, the unit can be 
omitted and the genotype represented as the sequence of edge 
vector conjoining. That is P3(g) = (E1|W1, N2|S1). The length of 
the genotype depends on the size of the polymino to be generated, 
that is on the area of the polymino. This corresponds to required 
room sizes. 

 
 

Fig. 4.19: Generation of a Trimino. 
 

Once a population of different rooms is generated for each room 
type in a given zone, the zone can be generated through the 
conjoining of rooms in a progressive fashion. Because of the cell-
type structure of the polygons, the conjoining may occur at any 
appropriate pair of cell edges. Therefore, a large number of 
                                           
1 Ibid. 



                                             Chapter 4: Evolutionary Based Mathematical Generative systems  

 166

possible zone forms can be generated from two rooms. An 
example of some possibilities arising from the conjoining of two 
polyminoes is given in (Fig. 4.20). 
 

 
 

Fig. 4.20: Some Examples of Conjoining Two Polyminoes. 
 
 

The two polyminoes, P1 and P2, represent instances of two 
different room types and the polyminoes resulting from the 
joining of the two rooms represent instances of a particular zone 
type. When one pair of edges are conjoined other edges may also 
be conjoined, e.g. P4, P5 and P6. In the case of overlap, as in P6, 
the resultant shape is discarded. 
 
The same process used for generating zones is used to generate 
houses. The joining of different instances of different zone types 
generates different instances of houses. 
 
The above grammar can be used to generate initial populations for 
each level in the spatial hierarchy. Each such initial population is 
then evolved, as necessary, so that solutions are ‘adapted’ to 
design requirements1. 
 
                                           
1 Ibid. 
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• The Evaluation Criteria - Fitness Functions 
 
At each level, different fitness functions apply according to the 
requirements for that level. While the requirements for designs of 
houses involve many factors, many of which cannot be quantified 
or adequately formulated in a fitness function, some simple factors 
have been used initially to test the feasibility of the approach. For 
this example, the fitness function for rooms consists of 
minimizing the perimeter to area ratio and the number of angles. 
 
This requirement tends to produce compact forms, useful as 
rooms. For zones, the fitness function consists of minimizing a 
sum of adjacency requirements between rooms reflecting 
functional requirements.  
 
At the house level, the fitness function consists of minimizing a 
sum of adjacency requirements between rooms in one zone and 
rooms in other zones. This has the tendency to select those 
arrangements of zones where adjacency interrelations are required 
between rooms of different zones. In addition to these quantitative 
assessments, qualitative assessments will be made subjectively 
and interactively by a user/designer. 
 
The aim is to direct the evolutionary process to produce 
populations of good solutions either as components for higher 
levels or at the final level itself. So that, even though the global 
optimum solution for the shape of a room using the above criteria, 
may be known, this may not be the optimum solution at the zone 
and house levels. By selecting other non-optimal but good 
solutions, according to the given criteria, good unexpected results 
may be achieved for the overall design1. 
 
 
 
 
 

                                           
1 Ibid. 
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• Propagation – Crossover 
 

Simple crossover is used for the production of 'child' members 
during the evolution process. Looking first at the room level to see 
the effect of such a crossover process, crossover can occur at any 
of the four sites as shown in (Fig. 4.21 a) with two results as 
shown in (Fig. 4.21 b). Since the cells are always of the same 
space unit, the cell identification in the genotype representation 
has been omitted for simplicity1. 
 

 
Fig. 4.21: Crossover at Room Level; (a) initial rooms R1 and R2 generated 

from unit square cell U1, (b) crossover at site 4. 
 
 

At the zone level, crossover occurs as shown in (Fig. 4.22). Two 
initial instances of living zones, Z1 and Z2 are shown in (Fig. 4.22 
a). Each zone has one instance of each of living room, dining 
room and entrance. (Fig. 4.22 B) shows crossover for one of the 
four possible sites. A similar process is followed at the house 
level. 

                                           
1 Ibid. 
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Fig. 4.22:  Zone Crossover; (a) rooms and initial zones, Z1 and 

Z2, (b) crossover at Site 2. 
 

• Implementations  
 
A computer program written in C++ and Tcl-Tk under the Sun 
Solaris environment has been implemented using the simple 
criteria described previously. Each evolution run, for all levels, 
tends to converge fairly quickly to some dominant solution. 
Rather than use a mutation operator to break out of such 
convergence, it was found that a more efficient strategy was to 
generate multiple runs with different initial randomly generated 
populations. This produces a variety of gene pools thus covering a 
more diverse area of the possible design space. Users can 
nominate the population size, number of generations for each run 
and select rooms, zones and houses from any generation in any 
run as suitable for final room, zone or house populations. These 
selections are made interactively by users as solutions appear 
which are judged favorable, based perhaps on factors not included 
in the fitness function. Such selections may therefore not be 
optimal according to the given fitness function1. 

                                           
1 Ibid. 
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Results are shown in the following figures (Fig. 4.23 – Fig. 4.26) 
for room, zone and house generation. 
 

 
 

Fig. 4.23: Results of Living Room Generation after the 17th generation. 
 

 
 

Fig. 4.24: Results of Living Zone Generation. 
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Fig. 4.25: Results of Bed and Living Zones Generation. 
 

 
 

Fig. 4.26: Results of House Generation. 
 
(Fig. 4.23) shows the 17th generation of the evolution of this 
population of 60 members. A fifth room shape was selected at the 
14th generation and two more room shapes (Room Numbers 1 and  
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41) are being selected. The upper line in the graph shows the 
evolution of the best solution while the lower line shows the 
evolution of the population average.  
 
Other rooms were generated in a similar way. The room areas 
generated were: (a) Living Zone: Living Room 24; Dining Room 
15; Kitchen 9; Entrance 4; (b) Bedroom Zone: Master Bedroom 
15; Bedroom 12; Bathroom 6; Hall 3. (Fig. 4.24) shows the results 
of the Living Zone generation. The initial population of 50 Living 
Zones at run 1 was randomly generated by selecting rooms from 
the final selections for the Living Room, Dining Room, Kitchen 
and Entrance. Twenty Living Zones have been selected by the 
user. (Fig. 4.25) shows the set of Bedroom and Living Zones 
selected. (Fig. 4.26) shows the final set of houses generated in this 
example.  

4-1-3-2 Generating 3D Forms  

Applying the same concept previously stated in 2d forms, multiple 
architectural 3D forms mate and deliver their features (genotypes) 
to the next generation. This allows desirable features to evolve 
independently and later be merged into one single individual. (Fig. 
4.28, 4.29) shows various 3d compositions generated using GA 
system applied on shapes generated with shape grammar system 
(Fig. 4.27), by selecting 2 individuals (parents) to mate and 
generate1. 

 
 

Fig. 4.27: Forms generated using shape grammar system. 

                                           
1 Loomis, B.: A Note on Generative Design Techniques: SGGA a User-Driven Genetic 
Algorithm for Evolving Non-Deterministic Shape Grammars. Massachusetts Institute of 
Technology, Cambridge MA, USA,2000. 
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Fig. 4.28: Parents selected for mating and generating more forms. 
 

 
 

Fig. 4.29: Repeating step for generating more individuals. 
 

The next are four experimental examples, showing how the 
individuals in each generation of the genetic programming 
undergo reproduction via the choice of two genetic operations1: 
 

i. crossover (sexual recombination) 
ii. mutation 

                                           
1 Yang, D. and Tang, M.: Genetic Evolution: A Synthetic Approach in Form Generation. 
Savannah College of Art and Design (SCAD), Georgia, USA, http:// genetic.ming3d.com/GE 
FEIDAD3.pdf. Accessed 16/10/2007. 
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1- A Roof form generation example (using crossover) 
 

A roof form generation was facilitated using Maya program. A 
prototype matrix was created to drive the deformation of target 
geometry mesh. 100 children were produced from each pair of 
“roof parents”. The first child was identical to parent-A, and the 
100th child was identical to parent-B. The other 98 children were 
just the mixture of parent A and B with the different weight 
combination. For instance, the second child had 99% affluence 
from A and 1% affluence from B, the third child had 98% 
affluence from A and 2% from B, etc. (Fig. 4.30). 
 

 
 
Fig. 4.30: By mating two, three or four successful roof structures, a large quantity of 

offsprings were generated. 
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2- A Tower's skin structure example (using mutation) 
 

Inspired by the role of mutation of an organism’s DNA in natural 
evolution, mutations simulated in one or more members of a tower 
skin current population, yielding a new candidate solution. There 
are two strategies to add mutation in this process. 
 

i. Using random noise 
 

In (Fig. 4.31), random noise was 
added into the procedural model. The 
noise normally had a subtle effect on 
the phenotype unless we amplified the 
result or the noise accumulated 
several generations. Controlled by the 
Turtle script and L-Systems in Maya, 
this type of mutation allowed the 
complexity of the form to grow 
continuously as evolution proceeded.  

 
Fig. 4.31: Width and bevel values were mutated by adding weight map.  

 
ii. Using weight map 

 
In (Fig. 4.32), each voxel’s mutation 
probability was controlled by it’s 
coincide pixel’s alpha value in a 2D 
gray scale weight map. The weight 
map was edited in Photoshop and 
applied 2D filters such as noise and 
blur. After a mutation weight map 
completed, an amplifier was added to 
its original displacement value and 
applied to its controlling voxels in the 
tower’s skin structure.  
                                

Fig. 4.32: Height, width and bevel values were mutated by adding random noise. 
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3- Hybrid house example (using crossover) 
 
In nature, when two individuals mate, each parent passes half of 
its paired chromosomes onto its common offspring. The 
chromosomes combine to form new pairs, which lead to a unique 
new individual with phenotypes inherited from both parents. 
Individuals with more adapted genotypes will survive in the 
evolution process while others will eventually be eliminated. 
 
Inspired by this nature analog, five building units were designed 
using the CAD program and exported them into Maya. Then, a 
program was written in MEL language to execute GE and 
produced 3125 offspring in the first generation, by an exhaustive 
combination of five original units’ genotype. From these 3125 
samples, only five ideal spatial arrangement solutions were 
selected by reviewers and then used as the genotype for the next 
generation.  
 
In the third generation, three nonlinear deformation nodes (bend, 
twist, and wave) were evolved independently in the evolution and 
then explicitly added to the five units to yield a more complex 
layout potential. As a result, a high degree of complexity was 
generated. 
 
In this process, GE demonstrated itself with great power and 
unlimited potential of form reproduction driven from sets of 
genetic parameters. The reviewers selected the desired spatial 
layouts that survived and reproduced them to create the new 
generation.  
 
In the fourth generation, a central courtyard was introduced into 
the evolution as a “void unit” and blended with the selected 
layouts. Another input variable, time, as the 4th dimension, was 
also added to freeze all the layout possibilities into a motion. 
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Expressions were evolved and various spatial arrangements were 
produced as the value of time was smoothly animated. All of the 
3125 generated housing models were captured into a single 
morphing animation (Fig. 4.33). 
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Fig. 4.33: The animation was captured from 3125 spatial 
arrangement solutions crossed four generations. 
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4- A Chameleon example (using mutation) 
 
An experimental project 
introduces a new approach to 
design a shelter form, a filter 
to the tropical climate that 
responded to the changing 
environment like a chameleon 
skin. 
 
First, a Non-Uniform, 
Rational, B-spline (NURB) 
surface was subdivided by 36 
driving nodes in Maya. These 
nodes allowed the surface to 
be dynamically configured in 
real-time. Then, 2D 
displacement maps were 
created to shape the feature of 
each node and sculpted a 
series of 3D surfaces by the 
process of mapping and 
morphing. Two parameter 
sets were defined. Each of 
them could create an ideal 
building skin with different 
successful features, such as 
climatic and topographic 
responsiveness. It became 
desirable to combine these 
two features   into one single  
skin structure (Fig. 4.34).        Fig. 4.34: As the chameleon skin, a gray scale         
                                                          weight map was projected to the NURB surface.                
                                                            
The  new skin generated according to the weighed maps suggested 
a new solution that could constantly change its surface 
corresponding to the changes of these environmental conditions. 
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4-2 Cellular Automata 
 
4-2-1 Introduction 
 
4-2-1-1 Definition 
 
Cellular automata are a computational method simulating the 
process of growth and evolution by describing a complex system 
by simple individuals (cells) following simple rules1. 
 
4-2-1-2 Outlines 
 
Concept of simulating growth was introduced by John von 
Neumann2 and further developed by Ulam3 in the area of 
simulating multi-state machines. The concept gained greater 
popularity when Martin Gardner4 described John Conway’s 
“Game of Life”, a game that generated two-dimensional patterns. 
Stephen Wolfram5 in the eighties began researching the concept to 
represent physical phenomena. 
 
4-2-1-3 The Evolutionary Concept 
 
Cellular automata viewed as a mathematical approach differs from 
traditional deterministic methods in that current results are the 
basis for the next set of results. In the recursive methods the 
outcome usually can not be easily anticipated. This offers an 
interesting and rich platform from which to develop possible 
architectural patterns. This recursive replacement method 
continues until some state is achieved. 

                                           
1 Krawczyk, R.J.: Architectural Interpretation of Cellular Automata. Illinois Institute of Technology, 
USA, Generative Art 2002. 
2 Von Neumann, J.: The General and Logical Theory of Automata. In J. von Neumann, Collected 
Works, edited by A. H. Taub, 1963. 
3 Schrandt, R. and Ulam, S.: On Recursively Defined Geometrical Objects and Patterns of Growth. In 
A. Burks (Ed), Essays on Cellular Automata, University of Illinois Press, Urbana, pp. 232-243, 1970. 
4 Gardner, M.: The Fantastic Combinations of John Conway's New Solitaire Game of "Life". Scientific 
American, 223, pp. 120-123, 1970. 
5Wolfram, S.: A New Kind of Science. Wolfram Media Press, Champaign, 2002.  
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Fig. 4.35: Basic cellular automata terminology. 

 
The three-dimensional universe (Fig. 4.35 a) of cellular automata 
consists of an unlimited lattice of cells. Each cell has a specific 
state, occupied or empty, represented by a marker recording its 
location. The transitional process begins with an initial state of 
occupied cells and progresses by a set of rules to each succeeding 
generation.  
 
The rules determine who survives, dies, or born in the next 
generation. The rules use a cell’s neighborhood to determine its 
future. The neighborhood can be specified in a number of ways, 
(Fig. 4.35 b) displays two common methods of determining which 
adjacent cells to consider.  
 
The rule developed by Conway is: check each occupied cells’ 
neighborhood, survival occurs if there are two or three neighbors, 
death occurs if there are any other number of neighbors, and birth 
occurs in an empty cell if it is adjacent to only three neighbors. As 
each generation evolves, one of four cases can occur over some 
period of time. Either the cells find a stable form and appear not to 
change; or they become what is called a “blinker” and alternate 
between two stable states; or all or a cluster of the cells become a 
“glider”, a group of cells that begins to transverse the universe 
forever, or all the cells die, extinction. A variety of rules have 
been proposed, with Conway’s being the starting point1. 

                                           
1 Krawczyk, R.J.: Architectural Interpretation of Cellular Automata. Illinois Institute of 
Technology, College of Architecture, USA, Generative Art 2002. op.cit. 
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4-2-2 Architectural Potentials 
 
The connection to architecture is the ability of cellular automata to 
generate organized patterns. From this organized patterns it might 
be able to suggest architectural forms. 
 
The pure mathematical translation of cellular automata into 
architectural form includes number of issues that do not consider 
built reality. For example, (Fig. 4.36 a) displays an initial 
configuration and its raw results at the 8th generation (Fig.4.36 b).  
 
The interpretation or translation to a possible built form can be 
dealt with after the form has evolved or it can be considered from 
the very beginning. Deciding to follow a combination of both 
approaches, a boundary is placed on the lattice to represent a site, 
along with a ground plane, and an orientation of growth that is 
vertical and to the sides, but not below. The cells are stacked over 
each other to create a vertical connection without a vertical 
displacement between layers of cells1.  
 

 
 

Fig. 4.36: Sample generation. 
 

An initial review of the results highlighted a number of other 
issues, some cells were not connected horizontally to others and 
some cells had no vertical support.  
 
                                           
1 Ibid. 
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4-2-2-1 Generating 2D Forms 
 
A series of interpretations were made by Krawczyk1 to address the 
horizontal connection of cells resulting 2D architectural spaces. 
The centroid of each cell becomes the basis for this horizontal 
development (Fig. 4.37).   
 
(Fig. 4.37 a) displays the initial cell configuration at a typical 
layer, each cell is adjacent to another. Cells are first joined 
together to form the largest contiguous floor areas possible. In this 
configuration, the cells that are diagonally adjacent do not connect 
horizontally.  
 
(Fig. 4.37 b) the cell remains a square unit but is scaled so to 
overlap its neighbors. When joined, a small connector at the 
diagonals appears.  
 
 

 
 

Fig. 4.37: Horizontal connection of cells. 
 
 
 
 

 
                                           
1 Ibid. 
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In (Fig. 4.38) the scale of the square unit is increased to further 
develop a connector. The entire character of the exterior edge of 
the initial cells changes by these interpretations, as well as, 
addressing the interior horizontal connections between unit 
spaces. Additionally, a series of interesting interior openings begin 
to emerge. 

 

 
 

Fig. 4.38: Horizontal connection of cells with increasing scale. 
 

In addition to a square unit, a variety of other shapes could be 
investigated that would articulate the building edge in other ways 
than the square and that could accommodate orientation and 
additional surface area in elevations for fenestration.  
 
(Fig. 4.39) displays a series of possible unit shapes: circular, super 
ellipse, rotated square, and a hexagon.  
 
The joining of the units' spaces, in addition to creating large 
contiguous areas, also creates a series of edge points, an envelope 
that can be further given an interpretation or transformed. 
 
This envelope can be interpreted as a series of curve segments or a 
spline (Fig. 4.40).  Depending on the type of unit shape, a variety 
of curved edges begin to develop.  
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Fig. 4.39: Variation of unit shape. 
 

 
 

Fig. 4.40: Envelope interpretation. 
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4-2-2-2 Generating 3D Forms 
 
An early example of three-dimensional pattern development is the 
wooden block model created by Schrandt and Ulam (Fig. 4.41 a).  
Bays Investigated repeating patterns as Conway had found in two-
dimensions (Fig. 4.41 b). And finally a highly inspirational 
architectural application by Coates (Fig. 4.41 c), which had the 
same spirit as Bays. The most recent is two methods develop by 
Wolfram (Fig. 4.41 d), in which a stacking method is explored, as 
well as, one similar to Bays. The striking similarity in these is the 
explicit representation of the cellular automata, even though each 
had taken a different approach and had a different application as 
an investigative goal. 
 

 
Fig. 4.41: Early three dimensional CA patterns examples1. 

                                           
1 Krawczyk, R.J.: Experiments in Architectural Form generation Using Cellular Automata. 
Illinois Institute of Technology, College of Architecture, USA, (design e-education) 
Modeling Real and Virtual Worlds Session 15, eCAADe 2002. 
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Krawczyk developed many experiments on using CA in 
architectural design. He interpreted the generated abstract form to 
three dimensional architectural forms in many ways, like: 

 
• Adding vertical supports1 

 
In 2D growth, the initial cell configuration lacked in having 
vertical supports. This issue could be addressed in the growth 
rules by limiting growth that had cell supporting it from below or 
to add supports to the final configuration. (Fig. 4.42) displays two 
possible support strategies, one with columns at the each cell 
corner and the second, columns located at the center of each cell. 
 

  
Fig. 4.42: Cell supports. 

 
• Cell growth variations2 
 

(Fig. 4.43 a) is the raw cell configuration with supports 
represented as a mass model and with the cells represented as 
spatial modules of three floors each. Individual floor plates are 
included and each set of merged cells has a glass enclosure. 
 
(Fig. 4.43 b, 4.43 c) are the curve and spline versions. One of the 
interesting aspects on this particular interpretation is the interior 
spaces created by the merging of the cells.  
 

                                           
1 Krawczyk, RJ.: Architectural Interpretation of Cellular Automata. Illinois Institute of 
Technology, College of Architecture, USA, Generative Art 2002. op.cit. 
 
2 Ibid. 
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A number of other merge schemes were investigated to further 
develop this concept. To articulate the edges of each layer of cells, 
a variety of spatial units, as shown previously, were also 
investigated. 
 

 
Fig. 4.43: Basic architectural form series. 

 
• Different interpretations1 

 
Other approaches to the interpretation of the unit cells were also 
investigated. (Fig. 4.44) highlights an approach where the size of 
the unit cell is given a minimum and maximum, the actual size is 
selected randomly. The random method was also implemented in 
(Fig. 4.45), a minimum and maximum offset was defined for each 
vertex of a cell, then selected randomly. The shape in both of 
these cases remains approximately the same to the original.  
 

 
Fig. 4.44: Cells of random size. 

                                           
1 Ibid. 
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Fig. 4.45: Cells with random offset of vertices. 

 
An entirely different approach was also investigated in that the 
vertical aspect of the stacked cells was considered as primary after 
the basic horizontal connections were made. (Fig. 4.46) displays 
one such example using the square cell unit. 
 
The final concept considered was to interpret the cell formations 
as they are created. In this case, called retained growth, in each 
generation when a cell survives, it increases in size. This approach 
considers the actual growth process in the cellular automata and 
interprets it directly. (Fig. 4.47) display such a example. 
 

 
Fig. 4.46:  Cells as vertical volumes. 

 
Fig. 4.47: Cells with retained growth. 
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• Skinned with an envelope 
 
Still other methods which have been developed by others, offer 
possibilities for future investigations. One in particular was 
suggested by Coates1, in which the entire three-dimensional cell 
configuration is skinned with an envelope (Fig. 4.48). The 
challenge would be to use this method but still embed the floor 
and unit space concept that was developed in this paper.  
 
The varieties of methods on interpretation are only limited by the 
actual mathematics of the generating concept, the ability of the 
tools we use to model it, and our imagination. 
 

 
 

 Fig. 4.48: CA forms Skinned with an Envelope. 

                                           
1 Coates, P.: The Use of Cellular Automata to Explore Bottom Up Architectonic Rules. 
Eurographics Conference, Imperial College of Science and Technology, London, 1996.  
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Summary of chapter four: 
 
       Chapter four discussed another two generative tools evolved 
when computer science reciprocated with evolutionary biology of 
natural systems that had been proposed by Charles Darwin's 
theory of evolution to produce evolutionary computation. Then 
evolutionary computation in turn reciprocated with design to 
evolve evolutionary design. This chapter covers two generative 
tools belonging to evolutionary design like: Genetic algorithms 
and cellular automata. The chapter Studied: their nature, 
mathematical concepts and architectural potentials, with the 
purpose to use them as form generators in the preliminary phase 
of the form finding process. 



 
 
 
 
 

Chapter 5 
Discussions, Results and 

Recommendations 
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Chapter 5: Discussions, Results and Recommendations 
 
5-1 Discussions 
 

• In the previous chapters we discussed: 
 
-WHAT are the tools that one can use in order to generate forms?  
-WHAT is the Evolutionary & Mathematical concept of each?  
-HOW Mathematics has been shifted from being a supporting 
tool into a generative medium? 
-HOW Evolutionary and Mathematical elements can be 
interpreted into elements with architectural potentials? 

 
• While in this chapter we will discuss: 

 
-WHAT are the characteristics and promises of these tools? 
-HOW some architects apply the results of these generative tools 
in forming their design basis? 
-WHEN each of these generative tools is efficient? 
-WHY should we use these generative tools in design? 
 
First there are two different methods to design form with 
computers1: 
  
1- The ComputerSupported form Process:  
 
Which intends the possibilities of feedbacks and intersections 
between man and machine.  
 
2- The ComputerGenerated form Process: 
 
Which is characterized by an automatic process, without the 
intervention of the user, who only predefines parameters and 
algorithms for a system. Then filter, select, and evaluate the 
generated form. 
                                           
1 Dürr, C.: Morphogenesis, Evolution of Shape. ETHZ, CAAD, NDS 2004. 
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According to John Gero and Mary Lou Maher, creative design 
while highly valued is not currently supported by computer 
programs used during design. Research in design and artificial 
intelligence shows potential for improving our understanding of 
design and establishing computational models for creative design. 
Research in computational processes for design has been primarily 
concerned with routine design which has not provided much 
insight into the adequacy of these processes to support creative 
design1. 
 
1- The routine design 
  
Is the result of making design decisions in the context of a design 
situation where all the decision variables are known priori. Thus, 
in routine design the designer operates within a defined, closed 
state space of possible designs.  
 
2- The Creative design  
 
Occurs when new design variables are introduced in the process of 
designing. Thus, in creative design the designer operates within a 
changing state space of possible designs, which increases in size 
with the introduction of each new variable (Fig. 5.1). 
 

 
 

Fig. 5.1: State space for routine and creative design 
                                           
1 Gero, J.S. and Maher, M.L.: Mutation and Analogy to Support Creativity in Computer 
Aided Design. Design Computing Unit University of Sydney, NSW, 2006, Australia, CAAD 
futures Digital Proceedings 1991 
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1- Traditional Design Approach1:  
 

In usual traditional design, the role of the designer is to explore a 
solution space. The key relationship between designer and product 
is a direct one (even if mediated via a third-party or medium). 
There is a direct relationship between the designer’s intentions 
and that of the designed product (Fig. 5.2). 
 

 
Fig. 5.2: Traditional design approach. 

 
In contrast, design using generative methods involves the creation 
and modification of rules or systems that interact to generate the 
finished design autonomously (Fig. 5.3). 
 
2- Generative Design Approach:  

 
Is a design methodology that differs from other design approaches 
that during the design process the designer does not interact with 
materials and products in a direct (hand-on) way but via a 
generative system. Generative design is capable of producing 
surprising and unpredictable results. 

 

 
Fig. 5.3: Generative design approach. 

                                           
1 McCormack, J., Dorin, A. and Innocent, T.: Generative Design: A Paradigm For Design 
Research. In Redmond, J. et. al. (Eds) Proceedings of Futureground, Design Research 
Society, Melbourne. (2004). 
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Thus we can conclude that computer generated form process 
or the generative design approach introduce new variables 
into the computer supported form process or the traditional 
design approach that extended the space of routine design into 
more creative design space. 
 
The idea that generative systems can support a creative process 
appears questionable at first glance, as generally known 
computers are pretty dump and only perform what they are 
programmed to perform. However, the automatic permutation of 
large numbers of design elements can indeed inspire ideas and 
concepts, which designers wouldn't have considered without the 
support of a generative tool. 
 
The confirmation of the previous statement appears in the sources 
of inspiration and the essences and theories of creativity all over 
the decades. These theories were based on: Intuition, 
unpredictability, metaphorization and no logic. Theory of 
incubation elaborated by (Wallas), Genploration (Finke, Ward and 
Smith), Redundant generation (Lem), and Synectics (Gordon). All 
these theories emphasize the role of unpredictability and 
metaphors in creativity. Process of metaphorization is 
characteristic for our era and plays important role in the creative 
process. Three examples (Fig. 5.4, 5.5 and 5.6) show how one can 
use metaphorization of abstract forms in the form finding process: 
 
Forms inspired by metaphorization of abstract dynamic forms 

 

 
 

Fig.5.4: Process of form finding using metaphorization of folded paper & cardboard 
 



                                                               Chapter 5: Discussions, Results and Recommendation 
 

 196

Forms inspired by metaphorization of nature 
 

 
 

Fig. 5.5: Process of form finding using metaphorization of a sea-holly leaf.   
 

Forms inspired by metaphorization of art 
 

 
 

Fig. 5.6: Process of form finding using metaphorization of Rodtchenko’s picture.   
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• Applications in Architecture 
 

In recent years, the diversity and complexity of the generated 
forms using generative systems have turned many artists and 
architects to these tools to form their design basis, and use 
generated forms as a trigger for inspiration and creative ideas. The 
following part will discuss the application of each of these 
generative tools in architecture forming. 

 
- Shape Grammars: 

 
Shape grammars have been used to analyze historical architecture 
such as Palladian villas and Victorian windows, and to create 
novel designs such as for Alavaro Siza's Malagueira housing 
project (work by dr. José Duarte at MIT). Shape grammars are 
most useful when confined to a small, well-defined generation 
problem such as housing layouts. A shape grammar can quickly 
contain a lot of rules, for example the Palladian villas shape 
grammar presented by William Mitchell contains 69 rules. 
 
Randomly transforming the left hand side initial shape (Shape & 
Label) to the right hand side through the rule given with 
repositioning the label and repeating this rule with a certain 
number, generate derivations that might suggest architectural 
spaces as shown in (Fig. 5.7). 

 
Fig. 5.7: (Right)Suggested architectural forms inspired from a shape grammar (Left). 

 
 



                                                               Chapter 5: Discussions, Results and Recommendation 
 

 198

- Parametric Variations: 
 
Parametric design can represent complex curves and ruled 
surfaces in a set of principles encoded as a sequence of parametric 
equations. Ben Van Berkel used Mobius band resulted from a 
parametric function as a spatial circulation for the design of 
Mobius house. (Fig. 5.8) shows his diagram of spatial circulation 
for Mobius house concept design. 

 
Fig. 5.8: Mobius house spatial circulation Diagram, based on Mobius band 

(Van Berkel, 1998). 
 

Eight twisted belts are working as Mobius flat surfaces that 
shaping the Mobius house design. These flat Mobius surfaces are 
treated as walls, ceilings, and floors that are interlinking inside 
spaces, (Fig. 5.9, Right) with surrounding exterior, (Fig. 5.9, Left) 
creating a spatial twist through out the house. 
 

 
 

Fig. 5.9: Left: Mobius house exterior, Right: Mobius house interior. (Van 
Berkel, 1998). 
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The Office for Metropolitan Architecture (OMA) used Mobius 
concept for the design of China Central Television (Fig. 5.10).  

                                       

 
 

Fig. 5.10: (right) Mobius structure made of cubes, (left) Headquarters for 
China Central Television (CCTV) in Beijing, China, Scheduled for 

completion in 2008. 
 

 
Avant-garde architects like 
Peter Eisenman and Ben Van 
Berkel use Mobius concept for 
architectural design. Peter 
Eisenman was one of the first 
architects to use Mobius form to 
design “Max Reinhardt Haus” 
building (Fig. 5.11). He used 
Mobius strip as a volume with 
varied width and sliced it into 
many pieces and used it as an 
overall volume of building. 
 

 
 

Fig. 5.11: Mobius building by Peter Eisenman. 
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- Algorithmic Form Generation: 
 
Algorithmic form generation can be used to generate a variety of 
curves useful for generating architectural floor plans, architectural 
ornamentation as well as generating geometric spaces for building 
domes like Greg Lynn and Frank Gehry’s organic forms and 
spaces. 
 
Greg Lynn uses self intersecting algorithmic curves to generate 
volumetric pockets within continuous surfaces. According to Greg 
Lynn, blebs are pockets of space formed when a surface intersects 
itself, making a captured space. He uses a class of geometric 
curves beginning with the folium of Descartes and including 
Limacon of Pascal Maclaurin’s Trisectrix, TschirnHaus’s cubic, 
Cubic curves Freeth’s, Nephroid Stronoid and Plateau curves (Fig. 
5.12, 5.13, 5.14). 

 
  

Fig. 5.12: Tri Of Maclaurin is used to create the volumes in figure 5.13. 
 

 
 

Fig. 5.13: St. Gallen Kunst Museum. Three volumes sandwiched between 
outdoor ceiling and St. Gallen Kunst Museum. 
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Fig. 5.14: Examples of astroid and limacon of pascal curves used by Greg 
Lynn for building design. 

 
Mathematical algorithms may be used to generate other surfaces 
which are useful for architectural design. (Fig. 5.15, Fig. 5.16) 
illustrates Embryological House and Offices in New York, 
designed by Greg Lynn showing the use of algorithmic curves to 
form folding surfaces.  
 

 
 

Fig. 5.15: Voluptuous undulating surfaces in Embryological House. 
 

 
 

Fig. 5.16: Imaginary forces, New York offices by Greg Lynn. 
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- Fractals: 
 

The IFS fractals (vector fractals), Complex number fractals (Point 
fractals) and the Orbit fractals (strange attractors) are the three 
types of fractals previously discussed in chapter three.  
 
Peter Eisenman exhibited “House 11-a”, less than a year after the 
English language publication of Fractals: Form, Chance and 
Dimension by scientist Benoit Mandelbrot. 
 
Peter Eisenman used the concept of fractal scaling in his house. 
House (11a) became a motif in Eisenman's housing. The process 
he describes philosophically as entailing "three destabilizing 
concepts: discontinuity, which confronts the metaphysics of 
presence; recursively, which confronts origin; and self-similarity, 
which confronts representation and aesthetic object".  
 

 
 

Fig. 5.17: Using fractal repetition in house 11-a and House X respectively. 
 
House 11a and house X (Fig. 5.17), a composition of Eisenman’s 
signature “L”s is a combination of transformation rules; such as 
rotation and scaling. The “L” is actually a square which has been 
divided into four quarters and then one quarter square is removed. 
Eisenman viewed this resulting “L” shape as symbolizing an 
“unstable” or “inbetween” state; neither a rectangle nor a square. 
The three dimensional variation is a cubic octant removed from a 
cubic whole. 
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Point fractals as well as vector fractals can generate a wide variety 
of shapes and patterns that can be used in tiling, flooring, facades 
(Fig. 5.18), shaping plans and layouts (Fig. 5.19),. Heneghan Peng 
used Sierpinski's point fractal in the design of the translucent 
alabaster cladding of the front facade of the grand Egyptian 
museum.  

 

 
 

Fig. 5.18: Sierpinski set used in the translucent alabaster cladding of the grand 
Egyptian museum's façade. 

 
 

        
 

Fig. 5.19: H-fractal used in a housing layout in Nouakchott, Mauritania. 
 
 



                                                               Chapter 5: Discussions, Results and Recommendation 
 

 204

Orbit fractals (strange attractors) generate repeating point patterns 
in two-dimensional space while their coloring algorithms which 
represent time can produce images of coherent three-dimensional 
forms. The third dimension is determined by the perception of the 
viewer coupled with a created intent. 
 
Endless numbers of three dimensional forms can be generated 
using a series of related strange attractor equations and 
polynomial functions. The product of these attractors may inspire 
broken forms and spaces resemble Naga's style (Fig. 5.20). As 
well as organic forms and spaces resembles Greg Lynn's style 
(Fig. 5.21).  
 
 

 
 

Fig. 5.20: Poly-function attractor (right) resembles sketches by architect  
T. Naga in Yokohama terminal (left). 

 

       
 

Fig. 5.21: Related attractors (right) resembles forms by T. Naga- Science Museum 
(left-up) and Greg Lynn- Embryological house (left-down). 
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- Spirolaterals: 
 

Spirolaterals as a mathematical figure that generates novel 
geometric entities of unexpected complexity can be used for the 
purpose of inspiration and generation of two and three 
dimensional patterns and figures.  

These geometric entities (Fig. 5.22) can be utilized in a number of 
methods to generate architectural forms. One is to technically 
layout architectural elements along these patterns as masses or 
master plans, another is to use these geometries in wall 
architecture, mass architecture, panel architecture, layered 
architecture, Infill architecture, skin architecture and landscape or 
patterns for doors and windows, tiling and ornaments (Fig. 5.23). 

 

 

 

 
 

Fig. 5.22: A series of generated straight spirolaterals.  
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Fig. 5.23: Ornaments can be figured using generated spirolaterals. 

Hypocycloid curves, epicycloids curves, antimercator, circular, 
normal and harmonic mean inversion are types of curved 
spirolaterals (Fig. 5.24) that empower design with curved lines. 

 
 

Fig. 5.24: A series of generated curved spirolaterals.  
 
Barrionuevo and Borsetti (2001) extended the spirolateral 
definition to the three-dimensional space, introducing the concept 
of "Spirospaces". They developed a computer program to draw 
closed spiroraterals and they outlined the possibility to carry out 
rotations in three-dimensional space to generate more complex 
configurations (Fig. 5.25, 5.26, 5.27). 
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- Spirospace's geometry to architectural idea's form analogy. 
Spirospace element configuration inspires interior 
architectural solutions (Fig. 5.25). 

 

 
 

Fig. 5.25. Architectural interpretation of an interior space (R. Borsetti). 
 

- Spirospace's syntax to architectural layout analogy (Fig. 
5.26). 

 

 
 

Fig. 5.26. Architectural layout from a spirospace interpretation (R. Borsetti). 
 

- Spirospace's space to architectural function analogy (Fig. 
5.27). 

 

 
 

Fig. 5.27. Architectural interpretation of a skyscraper. 
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- Genetic Algorithms: 
 
Using genetic algorithms in architecture models require 
architectural concepts to be described in the form of genetic 
codes. Then these codes are mutated and developed by computer 
programs into a series of populations. While models are evaluated 
by optimization or selection sub-systems, the codes of successful 
models are constantly picked up until a particular stage of 
development process is reached (Fig. 5.28). 
 

 
 

Fig. 5.28: The generative process cycle using GA. 
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Celestino Soddu, professor at Milan University, has been involved 
with creating many generative systems for various purposes based 
on genetic code scripts. He has written programs like Basilica, 
which creates endless sequences of architecture, and Argenia 
which is a design machine that makes endless generative forms 
(Fig. 5.29). 
 

 
 

Fig. 5.29:  Generated variations of Castles with Argenia by Soddu. 
  

Since 1987, Celestino Soddu has been experimenting with 
creation of systems that can be used to generate unique objects, 
whether art, city planning, architecture, industrial design objects 
or graphic design. 

 
The following images present a series of visionary scenarios of 
genetic applications in Hong Kong (Fig. 5.30), Washington DC 
(Fig. 5.31), New York (Fig. 5.32), Milan (Fig. 5.33 and 5.34) and 
Nagoya (fig 5.35). In these generative projects the architecture 
was designed and generated with Argenia, a genetic code script 
program, made by architect Celestino Soddu.  
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Fig. 5.30: Generated Variations of buildings for Hong Kong waterfront. 
 

 

 
 

Fig. 5.31: Generated variations of IDB Cultural Centre, Washington DC. 
 

 

 
 

Fig. 5.32: Generated town system representing the New York identity code. 
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Fig. 5.33: 1 real + 2 generated Variation of a New Gallery in Milan. 
 
 

 
 

Fig. 5.34: 1 real+3 generated Variation of Milan New Museum of Futurism. 
 
 

 
 

Fig. 5.35: 1 real + 2 generated Variation of a tower in Nagoya downtown. 
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- Cellular Automata: 
 
The connection of Cellular automata to architecture is the ability 
to generate patterns. From these organized patterns it might be 
able to suggest architectural forms. Developments for the 
integration of CA into the architecture design process undergo in 
many academic researches. Some used CA as a recursive form 
generator in architecture, and other used it as generative strategy 
in architecture to generate varieties for high-density contexts.   
 
Frazer, Coates, Watanabe, Krawczyk and Clarke, are architects 
undergoing researches on architectural interpretation of Cellular 
automata. Some of their works are shown in (Fig.5.36, Fig. 5.37).  
 

 
 

Fig. 5.36: Frazer, Coates, Watanabe, Krawczyk interpretations of cellular automata. 
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Fig. 5.37: Clarke interpretations of cellular automata using skinned envelopes. 
 
Cero9 examined the generative design potential of cellular 
automata by applying them to the re-modeling of the northern 
style housing competition in Aomori/Japan 2001. (Fig. 5.38) 
shows the adaptation of CA in the design process. (Fig. 5.39, 5.40) 
shows the final results. 
 

 
 

Fig. 5.38: CA adaptation into the design process of the housing competition re-
modeling. 



                                                               Chapter 5: Discussions, Results and Recommendation 
 

 214

 
 

Fig. 5.39: The final outcome of the northern style housing competition re-modeling 
Aomori/Japan 2001 using CA. 

 

 
 

Fig. 5.40: Variations in outcome. 
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- Comparative Analysis 
 
The following is an analytical comparative study for the efficiency 
of the use of each generative tool in different applications in the 
architectural design process (Tab. 5.1): 
 

 
 

Tab. 5.1: The efficiency of each generative tool in design. 
 

Conclusions 
 

- First, these geometric entities need to be guided, to be 
constrained, to be filtered and to be mutated by the 
utilitarian requirements of the functionalities of a building 
before being interpreted into any architectural element. 

 
- Fractals, Spirolaterals, Genetic Algorithms and Cellular 

automata are very efficient for the concept phase in 
architectural design process. 

 
- Shape grammar, Fractals and Spirolaterals can be utilized in 

a number of methods to generate architectural forms. They 
can relate to orthogonal architectural elements like axes or 
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masses and zoning layout. Another method is to use these 
geometries in a variety of architectural elements like: wall 
architecture, panel architecture, skin architecture, landscape 
architecture or patterns for doors, windows, tiling and 
ornaments. 

 
- Parametric Variations, Algorithmic Form Generation and 

Fractals (strange attractors in particular) can be used to 
generate a variety of complex curves and surfaces useful for 
generating organic designs, architectural ornamentations as 
well as generating geometric spaces for building domes like 
Greg Lynn's and Frank Gehry's organic forms and spaces. 

 
- Fractals and Cellular Automata can be used to obtain high 

density housing layouts and urban planning. 
 

- IFS Fractals can be used to analyze complex rhythms of 
facades of buildings (façade designs) and generation of 
patterns similar to Islamic architecture. 

 
- Point Fractals are used in landscape and terrain generation 

and used in texture generation as well generation of clouds, 
mountains and plants. 

 
- Spirolaterals can generate a great number of unexpected 

orthogonal or curved designs and Islamic patterns. The 
unpredictable under controlled conditions, is what makes 
the spirolateral of continuing interest. They could be small 
in scale, desktop size, or wall hung. They could be used in 
furniture, or in outdoors area for sitting, the assemblies 
could be scaled for a person to walk into.  At smaller scale. 
Some could be created as jewelry.  

 
- Genetic Algorithms and Cellular Automata show great 

power in design fields due to their ability of creating a wide 
range of alternatives in design in a very short time. The user 
acts as a judge driving selection using aesthetic judgments 
to breed art work. 
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5-2 Results 
 

- The mathematical character of the generative tools could 
seem that their creation is something automatic, cold and 
distant from the sensibility and intimacy that is supposed to 
creativeness, but this is not true. The use of these tools to 
model objects simply constitutes a tool to work, like the 
hammer and chisel of the sculptor or the brush of the 
painter. 

 
 
- Generative systems will not block human creative abilities. 

They are simply tools that allow the designer to explore 
more design possibilities and trigger inspiration and 
empower inventiveness. 

 
 
- Changes in the architects' intuitive design methods should 

be accompanied by a shift in the mathematical basis of 
architectural design, as classical geometry can no longer be 
divorced from Algebra, Topology, Trigonometry, Chaos 
Mathematics and Evolutionary Algorithms. 

 
 
- Functions of mathematical digital tools are no longer 

limited to two and three dimensional drafting and functional 
solutions or for final presentations as digital pens. They 
have become tools that can assist design thinking and form 
creation. And finally transformed into media generating 
unpredictable novel design. 

 
 
- The computational tools currently used by the architects 

must evolve beyond their current limited representational 
use (e.g. CAD, 3D rendering) into a generative use. 
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- Generative art refers to any art where the artist uses a 
system, such as a set of natural language rules, a computer 
program, a machine, or other procedural invention, which is 
set with some degree of autonomy contributing to or 
resulting in a completed work of art. 

 
 

- Generative systems are used for a variety of complex form 
design problems. They are especially useful in the concept 
generation phase of the design process where they are 
beneficial to consider a large number of possible solutions 
before proceeding to the selection and refinement phase. 

 
 
- The difference between the conventional use of 

mathematics in design and the mathematical generative 
systems is that in the first the results can be easily 
anticipated, while in the second, the recursive manner of the 
mathematical functions of some generative systems makes 
the outcome usually can not be anticipated. This offers an 
interesting and rich platform from which to develop 
possible creative architectural forms.  

 
 

- The process of generating architectural forms using 
mathematical constructions can be utilized in a number of 
methods. One is to technically layout architectural elements 
along such constructions, another is to explicitly develop 
forms corresponding exactly to the underlying concept, and 
another is to use such geometries as creative triggers and 
sources of inspiration for architectural design. 

 
 
- The developments of generative design systems usually 

require programming skills, while their applications can be 
comparatively user-friendly and easy for non-programmers. 
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- Mathematical generative systems are powerful tools for 
creating design variance. But reducing design variance 
according to criteria of usefulness and beauty needs a great 
deal of knowledge and common sense. This common sense 
can not be put into software easily. Hence, in actual 
generative design projects, selections from design 
generations are typically performed by humans. 

 
 
- Conventional CAD software is not easy to control in the 

design process, and it can be time consuming and labor-
intensive to produce a complex shape configuration 
However, generative systems offer additional options that 
give Designers more complex form generating capabilities 
that quickly produce a large number of alternative designs, 
To be a design partner. 

 
 

- Generative design is a scientific art process, thus the 
architect should be a mixture of artist/designer/programmer. 

 
 

- The successful use of generative systems in other design 
field's conceptual design process, automotive design, 
aerospace design, furniture design and industrial design 
proves the feasibility of their use at an early stage of 
architectural design. 

 
 
- Mathematical models can be abstracted into typological 

models. From this perspective, architectural objects are 
considered particular instances of typological models. This 
is an example of what, in academic communities, is called 
"to go from the form to the purpose". One of the ways to 
accomplish this is by using generative systems. 
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- The nonlinearity of chaotic systems results in the 
amplification of small differences. Chaotic system may 
seem random because its behavior is so unpredictable. But 
they are not random systems. Chaotic systems may be 
difficult to predict but they will still exhibit structure that is 
different than purely random systems. 

 
 
- Evolutionary design is used in architectural design and in 

many engineering fields, to improve a previous design, or to 
create new design from scratch. Though successfully 
applied in other fields of engineering, still waits to be 
applied broadly in architectural design.  

 
 

- Generative systems free the designer to focus more on 
choice, evaluation and refinement rather than generation 
which is entirely left to the autonomy of the computer. 

 
 

- The evolutionary mathematical structures of these 
generative tools are capable of creating music as well as 
forms. 

 
 
- Generative art is neutral. It is neither modern nor post 

modern. It is simply a way of creating art and any content 
considerations are up to the given artist. Certainly one can 
make generative art that exhibits a postmodern attitude. 
And others can make generative art that attempts to refute 
post-modernism. 
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5-3 Recommendations 
 
With respect to architects: 
 

- If the designer does not master the internal working of these 
new tools thoroughly, he can neither develop nor express 
his creativity. Therefore the real support of the form finding 
process requires one to learn the new methods of using 
computers and the evolved generative approach, 
particularly in the early stages of the process. 

 
- To remain relevant in the rapidly changing design field the 

architects must maximize their use of the latest 
mathematical design tools during conceptual design. 

 
- One can not master the use of the generative systems 

without a thorough understanding of the mathematical 
principles involved. Therefore, in design courses, computer-
based application and creativity should be supported by 
"mathematics for design" courses. 

 
 
 
With respect to academic teaching: 
 

- Growing recognition of the importance of generative design 
methodologies must be a priority and theories and 
applications of generative design must be introduced to 
undergraduate students as part of their design studies. 

 
- Teaching generative techniques initially requires the 

introduction of generative toolbox. This toolbox contains 
mathematical techniques, which in early teaching stages 
should be introduced in breadth rather than in depth. 
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- Architectural computing research must shift a bit from 
fundamental CAD developments towards higher 
applications of CAD tools. And computer programming 
should be taught within the curriculum in architectural 
schools.  

 
- Generative design oriented textbooks are lacking at the 

moment, for that introductory materials must be developed 
and published. 

 
 
 

        The developments of advanced computer techniques and 
mathematical systems surely influences architecture and that is 
almost inevitable. We should not be afraid that these 
techniques and systems will take our place, because humans 
can only have wisdom. Though, some architects already 
decided to run parallel with technology, because they have 
realized that if they would ignore these developments, the 
technological culture might just go on without them, and no 
one likes the feeling of being deserted and left behind. 

 
 
 
Summary of chapter five: 
 
       Chapter five covered a deduction for the characteristics of 
these generative systems with listing some applications for these 
generative tools in architecture and an analytical comparison study 
for the efficiency of each of generative tool in different phases in 
architectural design process. And finally, results and 
recommendations are presented at the end of the chapter. 
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