

 Ain Shams University
 Faculty of Engineering
Departement of Architecture

REVISITING ALGORITHMS IN ARCHITECTURAL
DESIGN

 “TOWARDS NEW COMPUTATIONAL METHODS”

By

Hazem Mohamed Talaat El Daly
B.Sc. Architecture. Ain Shams University

A Thesis Submitted in Partial Fulfillment
Of the Requirements of

Phd Degree in Architecture

Supervised by

 Prof. Dr. Yasser Mansour
 Head of Departement of Architecture

Ain Shams University
Faculty of Engineering

 Prof. Dr. Medhat Dorra
 Head of Departement of Architecture

Cairo University
Faculty of Engineering

 Prof. Dr. Khaled Dewidar
 Professor of Architecture

 Departement of Architecture
 Ain Shams University
 Faculty of Engineering

 Dr. Mohamed Sobh
Lecturer of computer
Ain Shams University
Faculty of Engineering

i

ABSTRACT

 During the last two decades new forms are added to architecture,

which differ radically from the previous forms. The increasing

sophistication of software, has led to an already recognizable

computer style characterized by smooth, digitally rendered

surfaces, complex curvilinear forms, blob-like objects, shells and

skins stretched over wire-frame structures. Later on, the

fascination with these forms starts to fade due to lack of control

and the irrationality of using these forms with respect to function

and other aspects. During the last few years, architects start to

revisit algorithms to generate these complicated forms but with

more control to fulfill more needs in design rather than only

generating form.

The thesis aim is to create architectural design method based on

algorithms as a computational tool. This method is created mainly

to design architectural projects but it’s importance appears more

in certain design cases (such as fulfilling certain aspects in design

based on computations).

The first part of this research is discussing algorithms and the

history of their applications in architecture, and it consists of two

chapters: the first chapter discusses an introduction to algorithms (

definition, explanation, implementation, classification,..etc) , the

ii

second chapter discusses a brief history of applying algorithms in

architecture (Automated design system, augmented design

system, and formalistic design).

 The second part discusses the implementation of algorithms in

contemporary architecture through studying in detail the main

algorithms applied in contemporary architecture such as voronoi,

A* algorithm, Stochastic search, Cellular automata, l-systems,

swarm intelligence, ,etc. in chapter 3. Chapter 4 discusses the

applications of algorithms in contemporary architecture. These

applications are generation, permutation, optimization, simulation,

and transformation. For every application in architecture a large

number of examples are discussed.

The third part consists of chapter 5 which discusses creating a new

architectural design method based on algorithms, and chapter 6

shows an application on the new design methodology through

designing a museum.

INTRODUCTION

iii

INTRODUCTION

 During the previous years, architects start revisiting algorithms
to make the computer helps in creating complex forms but within
certain rules to make their architecture fulfill design criteria.
Using algorithms differs from the ordinary use of computers,
because using the ordinary software makes the architects create
only meaningless forms.

Unlike traditional methods of using computers in design,
algorithms offer a degree of rationality. This makes the architects
shift from using ordinary computer methods to use algorithms. By
using algorithms a complementary synergetic relationship
between humans and computers becomes possible. Ideally, in such
a framework, both parties can contribute each one's unique
strengths in an attempt to seek, explore, invent, or discover
principles and methods of architectural design. Algorithms
become the essential links between the two systems.

 Through an analytical deduction study, this research tries to
disclose the architecture based on algorithms, and creates a design
methodology based on algorithms.

FIELD OF STUDY

 The field of study is the studying of the fascinating changes
brought by the algorithms to architecture, and this will be done
through studying the following fields:-

- Introduction to algorithms, their definitions, and their types.
- History of applying algorithms in architecture.
- Most important algorithms used in contemporary architecture.
- Applications of algorithms in contemporary architecture.
- Design methodologies based on algorithms.

INTRODUCTION

iv

RESEARCH OBJECTIVES

Research objective can be explained in the following points;-

Objective 1:-

 The aim is to create design methodologies in architecture based
on algorithms.

Objective 2:-

 To Show the relationship between the algorithms and the
contemporary architecture.

Objective 3:-

 To study the capability of using computational methods to create
architectural designs.

THESIS STRUCTURE

The thesis consists mainly of three parts: - (each part consists of
two chapters)

I. Part I: Algorithms an history of algotecture, and consists
of ;

Chapter 1: Introduction to algorithms.

Chapter 2: A brief history of algotecture.

II. Part II: Implemented algorithms in contemporary
architecture., and consists of ;

 Chapter 3: Main algorithms applied in contemporary

architecture.
.

INTRODUCTION

v

 Chapter 4: Applications of algorithms in architecture.

III. Part III: Architectural design based on algorithms,
consists of ;

 Chapter 5: New methods in architectural design based on
algorithms.

 Chapter 6: Applying computational design methods.

METHODOLOGY

 The methodology of the study will follow the following;

A. Historical review for the applications of algorithms in
architecture.

B. An analytical study for the algorithms used in contemporary

architecture and their applications in architecture.

C. A deduction analytical study for creating an architectural
design method based on algorithms.

TABLE OF CONTENTS

vi

TABLE OF CONTENTS

vii

TABLE OF CONTENTS

 ABSTRACT I

 INTRODUCTION III

 TABLE OF CONTENTS VII

 LIST OF FIGURES XV

 LIST OF TABLES XXVII

 GLOSSARY XXXI

 THESIS STRUCTURE XXXVII

PART I: ALGORITHMS AND HISTORY OF
ALGOTECTURE

1

CHAPTER 1: INTRODUCTION TO ALGORITHMS 3

1-1 Definition. 5

1-2 Explanation. 5

1-3 Etymology. 7

1-4 Formalization of algorithms. 7

1-5 Expressing algorithms. 10
 1-5-1 Natural Language. 10
 1-5-2 Pseudo code. 11
 1-5-3 Flowchart. 13

TABLE OF CONTENTS

viii

 1-5-4 programming language. 13

1-6 Levels of Representing an Algorithm. 14
 1-6-1 High-level description. 14
 1-6-2 Implementation description. 15
 1-6-3 Formal description. 15

1-7 Implementation. 15

1-8 Classes. 16
 1-8-1 Classification by implementation. 18
 1-8-2 Classification by design paradigm. 18
 1-8-3 Classification by field of study. 20
 1-8-4 Classification by complexity. 21

1-9 General characteristics of algorithms. 21
 1-9-1 Algorithms are well-ordered. 21
 1-9-2 Algorithms have unambiguous

operations.

 21
 1-9-3 Algorithms have effectively

computable operations.

 22
 1-9-4 Algorithms produce a result. 22

 1-9-5
Algorithms halt in a finite amount
of time. 21
Conclusion 25

CHAPTER 2: A BRIEF HISTORY OF
ALGOTECTURE.

27

2-1 Automated design Systems. 31
 2-1-1 Linguistic approach. 31
 2-1-2 Graph Theory. 32
 2-1-3 Machine Learning. 35
 2-1-4 Automated design. 36
 2-1-5 Expert Systems 37

2-2 Formalistic design. 38

TABLE OF CONTENTS

ix

 2-2-1 Shape Grammars 39
 2-2-2 Generative Systems 42
 2-2-3 Transformation (Morphing) 44
 2-2-4 Parametric Variations 47

Conclusion 51

PART II: IMPLEMENTED ALGORITHMS IN
CONTEMPORARY ARCHITECTURE

53

CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE

55

3-1 Methods of running an algorithm for designing

architecture.

 58

3-2

Most popular algorithms applied in architectural design.

 59
 3-2-1 Voronoi Algorithms. 60
 3-2-1-1 Definition 60
 3-2-1-2 Explanation. 61

 3-2-1-3
Simple Voronoi
Algorithm. 64

 3-2-1-4
General
Applications. 65

 3-2-1-5
Architectural
Applications 65

 3-2-2 A* Algorithms. 69
 3-2-2-1 Definition. 69
 3-2-2-2 Explanation. 70

 3-2-2-3
Simple A*
Algorithm. 71

 3-2-2-4
General
Applications. 72

 3-2-2-5
Architectural
Applications 72

 3-2-3
Stochastic
Search. 73

 3-2-3-1 Definition 73

TABLE OF CONTENTS

x

 3-2-3-2 Explanation. 74
 3-2-3-3 Simple stochastic

search algorithm.

 75

 3-2-3-4
Architectural
Applications 75

 3-2-4 L-Systems. 80
 3-2-4-1 Definition. 80
 3-2-4-2 Explanation. 80

 3-2-4-3
Simple L-system
algorithm. 84

 3-2-4-4
General
Applications. 84

 3-2-4-5
Architectural
Applications. 85

 3-2-5 Cellular Automata. 90
 3-2-5-1 Definition 90
 3-2-5-2 Explanation. 91
 3-2-5-3 Simple algorithm. 93

 3-2-5-4
General
applications 94

 3-2-5-5
Architectural
Applications 94

 3-2-6 Swarm Intelligence. 97
 3-2-6-1 Definition 97
 3-2-6-2 Explanation. 98
 3-2-6-3 Simple swarm

Intelligence
algorithm.

 100

 3-2-6-4
General
applications 100

 3-2-6-5
Architectural
Applications 101

 3-2-7 Genetic algorithm. 103
 3-2-7-1 Definition 103
 3-2-7-2 Explanation. 104
 3-2-7-3 Simple Genetic

algorithm.

 109

 3-2-7-4
Architectural
Applications 110

 3-2-8
Examples for other kinds of
algorithms. 115

TABLE OF CONTENTS

xi

 3-2-8-1 Cracking 115
 3-2-8-2 Packing 117
 3-2-8-3 Spiraling 118
 3-2-8-4 Weaving 120

Conclusion 125

CHAPTER 4: APPLICATIONS OF ALGORITHMS IN

ARCHITECTURE.

127

4-1 Generation. 130
 4-1-1 Algorithms used in generation. 130
 4-1-2 Generating architecture design. 131
 4-1-2-1 Transportation node +

Shopping mall
downtown St. Louis.,
Greece, 2007-2007,
by Dimitris
Gourdoukis.

 131
 4-1-2-2 Generating a high rise

building.

 138

4-2 Permutation. 142

 4-2-1
Algorithms used in Permutation.

142

 4-2-2
Permutations in architectural
design. 142

 4-2-2-1 Making permutations
for a certain plan.

 143
 4-2-2-2 A residential tower (

by the design studio
of Columbia
university in the
USA).

 152
 4-2-2-3 Great Court Roof

Museum. , British,
London, UK, 1999-
2000 by Norman
Foster and Partners.

 156
 4-2-2-4 Serpentine Gallery

TABLE OF CONTENTS

xii

Pavilion, London,
UK, 2002 by Toyo Ito 158

4-3 Optimization. 159
 4-3-1 Algorithms used in Optimization. 159
 4-3-2 Optimizing the design. 159
 4-3-2-1 Example: Optimizing

a building to make it
with the maximum
market value.

 160
 4-3-2-2 Optimization of

Building Form
(related to energy).

 163
 4-3-2-3 Optimizing roof of

Beijing Stadium,
Beijing, China, 2002-
07, by Herzog & de
Meuron

 166

4-4 Simulation. 169
 4-4-1 Algorithms used in simulation. 169
 4-4-2 Simulating the architectural design. 169
 4-4-2-1 Pedestrians

simulations of
passengers in
Pennsylvania train
station. (based on A*
algorithms)

 170
 4-4-2-2 Simulating the design

of a ferry Terminal at
the world Financial
Center in New York
City (by the design
studio of Columbia
university in the
USA)

 180
 4-4-2-3 Simulation of a

structure membrane,
by Emergent
technologies and
design studio.

 182

TABLE OF CONTENTS

xiii

4-5 Transformation. 183
 4-5-1 Algorithms used in Transformation. 183
 4-5-2 Example for algorithms used in

transformation. Twin towers project by
Emergence and design group.

 184

Conclusion 191

PART III: ARCHITECTURE DESIGN BASED ON
ALGORITHMS

193

CHAPTER 5: NEW METHODS IN ARCHITECTURAL
DESIGN BASED ON ALGORITHMS

195

5-1 Introduction 195

5-2 Architectural design. 196
 5-2-1 Function. 197
 5-2-2 Form. 201
 5-2-3 Economy 204
 5-2-4 Time. 205

5-3

Using algorithms in designing an architectural project.

 208
 5-3-1 Generation. 211
 5-3-1-1 Algorithm for

generating function.

 214
 5-3-1-2 Algorithm for

generating the form.

 220
 5-3-2 Permutations. 225
 5-3-2-1 Algorithm for making

Permutations with
respect to the aspects
of function

 227
 5-3-2-2 Algorithm for making

Permutations with
respect to the aspects
of form .

 230

TABLE OF CONTENTS

xiv

 5-3-2-3 Algorithm for making
Permutations with
respect to the aspects
of time

 233
 5-3-3 Optimizations. 235
 5-3-3-1 Algorithm for

optimizing design
with respect to the
aspects of form.

 236
 5-3-3-2 Algorithm used for

optimizing design
with respect to
aspects of economy

 238
 5-3-4 Simulations. 241
 5-3-4-1 Algorithm for

Simulating design
with respect to the
aspects of form.

 242
 5-3-5 Transformations. 245
 5-3-6 The form of applying the previous

design method.

 246
Conclusion 246

CHAPTER 6: APPLYING COMPUTATIONAL
DESIGN METHODS

251

6-1 Generation (Voronoi algorithm). 254
 6-1-1 Preparing for generating the voronoi

diagram.

 255
 6-1-2 Running the voronoi algorithm. 257
6-2 Permutations. 258
6-3 Optimization. 262
6-4 Final design. 263

CONCLUSIONS & RECOMMENDATIONS 273

REFERENCES 279

APPENDIX 285

LIST OF FIGURES

xv

LIST OF FIGURES

CHAPTER 1: INTRODUCTION TO ALGORITHMS

Fig.1-1 Visualization of Turing-machine. 8
Fig.1-2 Algorithmic description of program 9
Fig.1-3 A simple flowchart algorithm for replacing a lamp. 13

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE

Fig.2-1 Applications of computers in architecture. 30
Fig.2-2 Linear graph diagram. 32
Fig.2-3 Generating a relationship graph from a relationship

matrix. 34
Fig.2-4 Layout alternatives and a dual graph representation. 35
Fig.2-5 Space allocation process: (a) grid (b) site (c) program (d)

relationship table (f) solution
37

Fig.2-6 Prototypes refinement rules select appropriate
prototypes based on layout conditions.

38
Fig.2-7 Sample shape grammar. 40
Fig.2-8 Sample layout using the Shape grammar. 41
Fig.2-9 Various 3d forms generated with Shape grammars. 42
Fig.2-10 A generative theme. 43
Fig.2-11 Assigning height to 2d vector-base fractals. 44
Fig.2-12 The transformation process. 45
Fig.2-13 Various examples for transformation processes. 46
Fig.2-14 A process of morphing a box into a sphere. 46
Fig.2-15 Los Manantiales represented parametrically in a defined

matrix.

49

LIST OF FIGURES

xvi

CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE

Fig.3-1 Dividing a plane with a set of points (S) into a voronoi

diagram, the left picture shows the main points (voronoi
points or cells) and the circled points are the generated
voronoi nodes. The right figure shows the voronoi
diagram generated based on the voronoi points.

60
Fig.3-2 Main definitions concerning any Voronoi diagram. 61
Fig.3-3 Shows different voronoi diagrams due to variations in

the voronoi cells. 62
Fig.3-4 A simple Voronoi diagram with 5 points is modified by

moving one point.
62

Fig.3-5 Segments bisect the distances between cells. 63
Fig.3-6 Voronoi diagrams in biology and mineralogy of

formation principles, geometry, spatial effect and
construction such as foams, sponges, and bone
structures. 63

Fig.3-7 Different voronoi diagrams due to the variations in
points distribution.

64
Fig.3-8 Methods of applying voronoi diagrams in architecture

by starting with certain points in a volume.
66

Fig.3-9 Right: the main layout. Left: the stages of generating the
layout starting from the points to the final form.

66
Fig.3-10 The main façade of the performing arts center. 67
Fig.3-11 Various interior pictures represents the entrance and the

main hall. 67
Fig.3-12 The public plaza. constructed from the voronoi diagram. 67
Fig.3-13 Right: the main building reflects the use of voronoi

diagram, Left : using the envelope to .optimize the
building performance. 68

Fig.3-14 Interior picture shows the surface constructed by a
voronoi diagram.

68
Fig.3-15 Examples showing the shortest path between two points

selected by an A* algorithm.
69

LIST OF FIGURES

xvii

Fig.3-16 Steps done by an A* algorithm to compare paths from
green node (upper right) to blue node (bottom left)

70

Fig.3-17 In the two pictures above, the red squares mark regions,
where it's not possible to walk. The blue squares are the
data copied and recalculated for the figure which is
walking. To find out, which way is the best, some free
squares are observed ("expanded" in technical
terminology). Those squares are the yellow ones.

72
Fig.3-18 A* algorithm used in studying circulation in a certain

plan. 73
Fig.3-19 Using a stochastic search to distribute toys without any

overlaps in a certain area. 75
Fig.3-20 Office building façade based on stochastic search. 76
Fig.3-21 Various iterations for the façade. 77
Fig.3-22 Steps in the process of allocating program spaces

recursively within a 30 × 30 unit square site.
79

Fig.3-23 Library generated by the stochastic search algorithm. 79
Fig.3-24 Various generations for Koch Curve. 82
Fig.3-25 Various generations for Sierpinski triangle. 83
Fig.3-26 Various examples for using structure similar to nature

structures. 85
Fig.3-27 Final elevation for the skyscrapers. 86
Fig.3-28 Perspective shows the benefits for the inverted

skyscrapers (connected urban clusters). 86
Fig.3-29 Structure System for one of the skyscrapers 87
Fig.3-30 Using L-systems to generate structure (studying of

plans relative to structure)
87

Fig.3-31 Fakeplastic trees made from plastic PVC tubes. 88
Fig.3-32 Fakeplastic trees main form. 89
Fig.3-33 Cross-section showing the flow of water. 89
Fig.3-34 Sierpinski set was used in designing the translucent

alabaster cladding of the grand Egyptian museum's
façade. 90

Fig.3-35 An Eight Neighborhood. 91
Fig.3-36 Basic cellular automata terminology. 91

LIST OF FIGURES

xviii

Fig.3-37 Game of life by John Conway 92
Fig.3-38 Game of life by John Conway (Reproduction Phase). 93
Fig.3-39 Cellular automata as an LCD display wrapped around a

building (class project by N. Anderson for course
GSD2311 taught by Kostas Terzidis in Fall 2005 at
Harvard University)

95
Fig.3-40 CA adaptation into the design process of the housing

competition re-modeling. 96
Fig.3-41 The final outcome of the northern style housing

competition re-modeling Aomori/Japan 2001 using CA. 96
Fig.3-42 Variations in outcome. 97
Fig.3-43 Natural examples of SI include ant colonies, bird

flocking, and fish schooling.
98

Fig.3-44 Diagram of the swarm. Arrows represent each agent’s
heading, dotted lines their closest neighbors.

99
Fig.3-45 Ant Colony as a natural swarm system. 99
Fig.3-46 Main items in creating a flocking algorithm 100
Fig.3-47 Paths of pedestrian exploration driven by space syntax

architectural concepts based on swarm intelligence.

 102
Fig.3-48 Breaking of a corridor doorway into two helps in lane

formation and avoid door clogging and oscillation.

 102
Fig.3-49 Simulation of a ship evacuation, using the tool

EXODUS based on swarm intelligence.

 103
Fig.3-50 Evolutionary computation has its roots in computer

science and evolutionary biology.

 104
Fig.3-51 Mapping genotypes in the search space to phenotypes in

the solution space.

 105
Fig.3-52 The behavior of the crossover operator. The vertical line

shows the position of the random crossover point.

 105
Fig.3-53 Four generations of evolving house designs using a

population size of four. Parents of the next generation
are circled.

106
Fig.3-54 Classifications of evolutionary design by GAs. 106
Fig.3-55 Evolutionary optimization of a table. 107

LIST OF FIGURES

xix

Fig.3-56 Conceptual evolutionary design of a table. 107
Fig.3-57 Evolving artistic tables. 108
Fig.3-58 Generative evolutionary design of a table. 108
Fig.3-59 Generated chairs using 'CongGen' software. 109
Fig.3-60 The simplest genetic algorithm. 110
Fig.3-61 Two generations with their samples. 113
Fig.3-62 The animation was captured from 3125 spatial

arrangement solutions crossed four generations.

 114
Fig.3-63 Natural cracks found in nature. 115
Fig.3-64 Steps for cracking a certain object. 116
Fig.3-65 Cracked objects by using the cracking the algorithm. 116
Fig.3-66 Oscillatory packing. 117
Fig.3-67 Various forms generated by packing. 118
Fig.3-68 Spiral as a path for objects. 119
Fig.3-69 Parameters for generating a spiral. 119
Fig.3-70 Examples for spirals generated by the algorithm. 120
Fig.3-71 Various types for weaving. 121
Fig.3-72 Forms generated by weaving algorithm. 122

CHAPTER 4: APPLICATIONS OF ALGORITHMS IN
ARCHITECTURE.

Fig.4-1 Exterior perspective for the final form. 132
Fig.4-2 Automaton cells generation (1-6). 133
Fig.4-3 Automaton cells generation (7-10). 134
Fig.4-4 The previous generated Automaton cells. 134
Fig.4-5 Connecting the cellular cells together. 135
Fig.4-6 Connecting the cellular cells together. 135
Fig.4-7 Generating the voronoi diagram from the cellular cells. 135
Fig.4-8 Smoothing the voronoi diagram. 136
Fig.4-9 Smoothing the voronoi diagram. 136
Fig.4-10 Successive sections show the generated voronoi 136

LIST OF FIGURES

xx

diagram.
Fig.4-11 Section shows the generated voronoi diagram. 137
Fig.4-12 Final form shows the generated smoothed voronoi. 137
Fig.4-13 Final form shows the generated unit and interior shot. 137
Fig.4-14 Final form shows the generated unit and interior shot. 137
Fig.4-15 Escalator surrounded by the voronoi diagram. 138
Fig.4-16 Specifying the points in space to generate the form

based on Voronoi diagram.

 139
Fig.4-17 Specifying the points in space to generate the form

based on Voronoi diagram.

 139
Fig.4-18 Studying the form relative to the context. 139
Fig.4-19 Smoothing the outline of the tower. 139
Fig.4-20 Studying the generated spaces. 140
Fig.4-21 Studying the generated spaces. 140
Fig.4-22 Clusters generated by voronoi cells resembles the

relation of bones to organs.

 140
Fig.4-23 Final form for the building. 141
Fig.4-24 Main Façade for the building. 141
Fig.4-25 Generation of a Trimino.(Each generated shape is

accompanied by its genotype and phenotype).

 145
Fig.4-26 Some Examples of Conjoining Two Polyminoes. 145
Fig.4-27 Crossover at Room Level; (a) initial rooms R1 and R2

generated from unit square cell U1, (b) crossover at site
4.

148
Fig.4-28 Zone Crossover; (a) rooms and initial zones, Z1 and Z2,

(b) crossover at Site 2.

 148
Fig.4-29 Results of Living Room Generation after the 17th

generation (The left side shows the solutions selected
by the architect).

 149

Fig.4-30 Results of Living Zone Generation. 150
Fig.4-31 Results of Bed and Living Zones Generation. 150
Fig.4-32 Results of House Generation. 151

LIST OF FIGURES

xxi

Fig.4-33 Main steps in generating the form. 152
Fig.4-34 Volume aggregation algorithm. 153
Fig.4-35 Volume division algorithm. 154
Fig.4-36 Selection of a variant. 155
Fig.4-37 Final form for the project. 156
Fig.4-38 Using algorithm based on mathematical equations to

generate the mesh.

 157
Fig.4-39 Final roof as generated by the algorithm. 157
Fig.4-40 Permutations for the form of the gallery based on special

algorithm.

 158
Fig.4-41 Final form for the gallery. 158
Fig.4-42 The algorithm (Based on (GA) used in optimizing the

building.

 160
Fig.4-43 Steps for generating the design. 161
Fig.4-44 A building variant is assembled out of pre-defined

apartment types based on a series of construction rules.

 162
Fig.4-45 Number of iterations relative to the value, with examples

to show the form of the buildings after number of
iterations.

162
Fig.4-46 The construction rule parameters are altered recursively

with the goal of increasing the building value.

 163
Fig.4-47 Two views are shown for each solution, from the

southwest and northeast, and for every solution the
values for energy are stated relative to the lighting and
heating factors.

 164
Fig.4-48 Solution 1 represents the best building shape in terms of

heating. Solution 6 is the best building shape in terms of
lighting. The other images represent intermediate
solutions.

 165
Fig.4-49 A certain algorithm is used to rotate the beams to

generate forms and iterates until the resultant meet the
architect needs.

 167
Fig.4-50 Steps of optimizing the surface of the stadium by

LIST OF FIGURES

xxii

 minimizing the in-between spaces (colored red). 168
Fig.4-51 Hierarchical World Model. 171
Fig.4-52 Perception maps : Stationary, and Mobile. 173
Fig.4-53 Visual Sensing. Left: Sensing stationary objects by

examining map entries along rasterized eye rays. Right:
Sensing mobile objects by examining (color-coded) tiers
of the sensing fan.

 174
Fig.4-54 Path maps : Grid, and Quadtree. 176
Fig.4-55 Constructing a quadtree map. 177
Fig.4-56 Visualization of the quad-tree map of the concourse’s

upper level in the Penn Station environment model. The
white quads denote ground nodes and the blue ones
denote obstacles. The green circle is the start point and
the orange circle is the target.

179
Fig.4-57 The search space is color coded with the distance

variable values increasing from green to orange.

 179
Fig.4-58 Main Arcade. 180
Fig.4-59 Train Platform. 180
Fig.4-60 Main steps for simulating the design of a ferry terminal. 180
Fig.4-61 Ferry Terminal plans. 181
Fig.4-62 Evening passenger flow. 181
Fig.4-63 The heat maps of three building variants that were

tested. 182
Fig.4-64 Geometry of the membrane-tensegrity structure, and

Dynamic Relaxation process.

 183
Fig.4-65 Digital stress-driven form evolution of membrane

tensegrity structures.

 183
Fig.4-66 Cross-Section showing the structure for the towers. 185
Fig.4-67 Structure system composed form a group Helical beams

combined together.

 186
Fig.4-68 The skin of a custard apple. 187
Fig.4-69 Skin-panel geometry: algorithmic differentiation. 189

LIST OF FIGURES

xxiii

CHAPTER 5: NEW METHODS IN ARCHITECTURAL DESIGN
BASED ON ALGORITHMS

Fig.5-1 People grouping according to thier performance. 197
Fig.5-2 Activity Grouping: separated or combined. 197
Fig.5-3 Service Grouping: separated or combined. 198
Fig.5-4 Hierarchy in spaces, authority,..etc, according to

function. 198
Fig.5-5 Priority according to users, position,..etc. 198
Fig.5-6 Variations in security controls according to situations. 199
Fig.5-7 Circulation of people in a museum. 199
Fig.5-8 Separating circulation between different kinds of users. 199
Fig.5-9 Main atriums could be an example for a mixed flow . 200
Fig.5-10 Relationship between spaces must be studied (either

direct or indirect). 200
Fig.5-11 Determine the spaces that should communicate with

others. 200
Fig.5-12 Studying the density for combining the masses of design

is essential.
201

Fig.5-13 Environmental controls by studying the climate and
decide how to make the atmosphere more comfort for
people. 201

Fig.5-14 Studying the relations with neighbors. 202
Fig.5-15 Studying spaces according to home base. 202
Fig.5-16 Orienting the building according to the function needs. 203
Fig.5-17 Access points should be studied. 203
Fig.5-18 How will the building look like? 203
Fig.5-19 Studying economical ideas to make the design meets the

available funds.

 204
Fig.5-20 Studying how the energy can be conserved. 205
Fig.5-21 Determine if the design meets the requirements or not. 205
Fig.5-22 Studying the methods to make the design flexible. 206
Fig.5-23 Studying the capability to divide the project into phases. 207
Fig.5-24 Steps for running a simple Interactive genetic algorithm

LIST OF FIGURES

xxiv

 to generate zoning (on the left side algorithmic steps, on
the right side architectural output)

 215
Fig.5-25 Final zoning generated by the Interactive genetic

algorithm. 217
Fig.5-26 Process of generating plans in each zone. 218
Fig.5-27 Steps for running a simple Interactive genetic algorithm

to generate Plan in each zone (on the left side
algorithmic steps, on the right side architectural output)

219
Fig.5-28 Final plan as generated form the previous algorithm. 220
Fig.5-29 Steps for running a simple Voronoi algorithm to

generate the main form (on the left side algorithmic
steps, on the right side architectural output).

222
Fig.5-30 Final form generated from the voronoi algorithm.

225
Fig.5-31 Steps for adding and studying circulation for the design

by using a* algorithm.
228

Fig.5-32 Algorithm used for making permutations for a certain
generated form (algorithm for generation + Iteration) 231

Fig.5-33 Steps for studying permutations of a plan to study the
adaptability by using an interactive genetic algorithm
(on the left side algorithmic steps, on the right side
architectural output).

234
Fig.5-34 Genetic algorithm runs to optimize building with respect

to environment.
237

Fig.5-35 Genetic algorithm runs to optimize building with respect
to value (on the left side algorithmic steps, on the right
side architectural output).

239
Fig.5-36 Swarm algorithm runs to simulate the building with

respect to safety precautions (on the left side algorithmic
steps, on the right side architectural output).

243

CHAPTER 6: APPLYING COMPUTATIONAL DESIGN METHODS.

Fig.6-1 The design matrix for the Museum. 254
Fig.6-2 Main zones in the museum. 254

LIST OF FIGURES

xxv

Fig.6-3 The main plan for the museum as generated from the
zoning step. 255

Fig.6-4 Main spaces represented as spheres.
256

Fig.6-5 Centers of spheres are the main points for generating the
voronoi algorithm. 256

Fig.6-6 Generated form for the exhibition part consists of:
- Units represent main spaces of galleries
- Other units as skylight source.

257
Fig.6-7 Generated main gallery spaces as voronoi units. 258
Fig.6-8 The form generated by the voronoi algorithm. 258
Fig.6-9 Offspring for the design alternatives .

259
Fig.6-10 Offspring for the design alternatives.

260
Fig.6-11 Offspring for the design alternatives. The selected form

is surrounded by a box. 261
Fig.6-12 Parameters represent the dimensions of the column.

262
Fig.6-13 Simple steps represent the optimization algorithm.

263
Fig.6-14 Final plan for the project. 264
Fig.6-15 Section in the exhibition part shows the voronoi cells.

264
Fig.6-16 Final form for the exhibition zone. 265
Fig.6-17 Final form for the exhibition zone. 265
Fig.6-18 Final form for the exhibition.

267
Fig.6-19 Final form for the exhibition. 269
Fig.6-20 Final form for the exhibition. 271

LIST OF TABLES

xxvi

LIST OF TABLES

xxvii

LIST OF TABLES

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE

Tab.2-1 Geometric measures of node in minimum-path

graph. 33

CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE

Tab.3-1 Support for algorithmic form generation. 58

CHAPTER 4: APPLICATIONS OF ALGORITHMS IN
ARCHITECTURE.

Tab.4-1 GA and exhaustive searches for optimal control

schedule, as a function of population size, number
of generations, and weighting function. The
weighting function now includes a weight on
electricity demand. 165

Tab.4-2 Stationary and mobile objects. 173

CHAPTER 5: NEW METHODS IN ARCHITECTURAL DESIGN
BASED ON ALGORITHMS

Tab.5-1 The design matrix showing the new design method

based on algorithms. 208
Tab.5-2a Aspects for designing function. 208
Tab.5-2b Aspects for designing form. 208
Tab.5-2c Aspects for Economical studies. 208
Tab.5-2d Aspects for designing with respect to time. 209

LIST OF TABLES

xxviii

Tab.5-2e Matrix for applying algorithms to design
architectural design. 192

Tab.5-3 Algorithms that can be used to generate each aspect
in design. 212

Tab.5-3a Algorithms that can be used to generate each aspect
in design. 212

Tab.5-3b Algorithms that can be used to generate each aspect
in design. 212

Tab.5-3c Algorithms that can be used to generate each aspect
in design. 212

Tab.5-3d Algorithms that can be used to generate each aspect
in design. 213

Tab.5-4 Explaining the algorithmic steps for running an
Interactive Genetic Algorithm to generate zoning. 216

Tab.5-5 Explaining the previous voronoi diagram. 224
Tab.5.6 Algorithms that can be used to permutate each

aspect in design. 225
Tab.5.6a Algorithms that can be used to permutate each

aspect in design. 226
Tab.5.6b Algorithms that can be used to permutate each

aspect in design. 226
Tab.5.6c Algorithms that can be used to permutate each

aspect in design. 226
Tab.5.6d Algorithms that can be used to permutate each

aspect in design. 227
Tab.5.7 Algorithm that can be used to permutate circulation

in design. 230
Tab.5.8 Making permutations by using a voronoi algorithm

and iterations.

233
Tab.5.9 Algorithms that can be used to optimize each aspect

in design.

235
Tab.5.9a Algorithms that can be used to optimize each aspect

in design.

235
Tab.5.9b Algorithms that can be used to optimize each aspect

in design.

235
Tab.5.9c Algorithms that can be used to optimize each aspect

in design.

236

LIST OF TABLES

xxix

Tab.5.9d Algorithms that can be used to optimize each aspect
in design.

236

Tab.5.10 Optimizing a design to reach best environmental
performance for the building.

238

Tab.5.11 Making optimization to reach the maximum market
value for the building.

241

Tab.5.12 Algorithms that can be used to Simulate each aspect
in design.

241

Tab.5.12a Algorithms that can be used to Simulate each aspect
in design.

242

Tab.5.12b Algorithms that can be used to Simulate each aspect
in design.

242

Tab.5.12c Algorithms that can be used to Simulate each aspect
in design.

242

Tab.5.12d Algorithms that can be used to Simulate each aspect
in design.

242

Tab.5.13 Simulating a design to test the safety precautions. 244
Tab.5.14 Algorithms that can be used to transform each

aspect in design. 245
Tab.5.14a Algorithms that can be used to transform each

aspect in design. 245
Tab.5.14b Algorithms that can be used to transform each

aspect in design. 245
Tab.5.14c Algorithms that can be used to transform each

aspect in design. 246
Tab.5.14d Algorithms that can be used to transform each

aspect in design. 246

GLOSSARY

xxx

GLOSSARY

xxxi

GLOSSARY

A* (pronounced “A star”) is a best-first, graph search algorithm that finds
the least-cost path from a given initial node to one goal node (out of one or
more possible goals)

Algorithm: is a well-ordered collection of unambiguous and effectively
computable operations that when executed produces a result and halts in a
finite amount of time.
Algotecture is a term to denote the use of algorithms in architecture. This
term differs from the popular terms CAD or computer graphics in the sense
that algorithms are not necessarily dependent on computers whereas the
former are, at least, by definition. This distinction is very important as it
liberates, excludes, and disassociates the mathematical and logical processes
used for addressing a problem from the machine that facilitates the
implementation of those processes. Such a use involves the articulation of a
strategy for solving problems whose target is known, as well as to address
problems whose target cannot be defined.
Allele is one member of a pair or series of different forms of a gene. Usually
alleles are coding sequences, but sometimes the term is used to refer to a
non-coding sequence. An individual's genotype for that gene is the set of
alleles it happens to possess. In diploid organisms (two copies of each
chromosome) including humans, two alleles make up the individual's
genotype.

Artificial intelligence (AI) is a branch of computer science concerned with
the problem of how to simulate human intelligence. AI is as old as the
invention of the first computer, or, to be more precise, of the first counting
machine.

Artificial intelligence is a branch of computer science concerned with the
problem of how to simulate human intelligence. AI is as old as the invention
of the first computer, or, to be more precise, of the first counting machine.

GLOSSARY

xxxii

cellular automaton (plural: cellular automata) is a discrete model studied
in computability theory, mathematics, theoretical biology and
Microstructure Modeling. It consists of a regular grid of cells, each in one of
a finite number of states. The grid can be in any finite number of
dimensions. Time is also discrete, and the state of a cell at time t is a
function of the states of a finite number of cells (called its neighborhood) at
time t

−1.

A chromosome (also sometimes called a genome) in a genetic algorithm is
a set of parameters which define a proposed solution to the problem that the
genetic algorithm is trying to solve. The chromosome is often represented as
a simple string, although a wide variety of other data structures are also
used.

A Crossover (in a genetic algorithm) is a genetic operator used to vary the
programming of a chromosome or chromosomes from one generation to the
next. It is analogous to reproduction and biological crossover, upon which
genetic algorithms are based.

Embedded programming language
A Fitness function is a particular type of objective function that quantifies
the optimality of a solution (that is, a chromosome) in a genetic algorithm
so that that particular chromosome may be ranked against all the other
chromosomes. Optimal chromosomes, or at least chromosomes which are
more optimal, are allowed to breed and mix their datasets by any of several
techniques, producing a new generation that will (hopefully) be even better.

Fractal is an object or quantity that displays self-similarity on all scales
with non-integer dimensions. The object need not exhibit exactly the same
structure at all scales, but the same “type” of structures must appear on all
scales.

Genetic algorithms attempt to find solutions to problems by mimicking
biological evolutionary processes, with a cycle of random mutations
yielding successive generations of "solutions". Thus, they emulate
reproduction and "survival of the fittest". In genetic programming, this
approach is extended to algorithms, by regarding the algorithm itself as a
"solution" to a problem.

The Genotype is the genetic constitution of a cell, an organism, or an
individual (i.e. the specific allele makeup of the individual) usually with
reference to a specific character under consideration.

GLOSSARY

xxxiii

Heuristic is an adjective for methods that help in problem solving in turn
leading to learning and discovery. These methods in most cases employ
experimentation and trial and error techniques. A heuristic method is
particularly used to rapidly come to a solution that is reasonably close to the
best possible answer, or 'optimal solution'

A High-level programming language is one which has a relatively high
level of abstraction, and manipulates conceptual structures in a semi-
naturalistic manner. A low-level programming language is one like
assembly language that contains rudimentary microprocessor commands.

Interactive genetic algorithm (IGA) is defined as a genetic algorithm that
uses human evaluation. These algorithms belong to a more general category
of Interactive evolutionary computation. The main application of these
techniques include domains where it is hard or impossible to design a
computational fitness function, for example, evolving images, music,
various artistic designs and forms to fit a user's aesthetic preferences.
Interactive computation methods can use different representations, both
linear (as in traditional genetic algorithms) and tree-like ones (as in genetic
programming).

Lindenmayer System is a formal grammar that was initially conceived as a
theory of plant growth. L-Systems can generate complex forms with
relatively few simple rules. L-Systems consist of two parts: a generative and
an interpretative process. The main concept of the generative process is
string rewriting, in which the letters that comprise an initial string are
replaced by other letters according to pre-defined rules. The replaced letters
form a new generation of string which is then subject to the established
replacement rules. This string rewriting process is usually repeated for
several generations.

Parametric design is turning design into a set of principles encoded as a
sequence of parametric equations. The equations are used to express certain
quantities as explicit functions of a number of variables. By changing any
parameter in the equation new forms and new shapes could be generated.
The parameters are not just numbers relating to Cartesian geometry, they
could be performance based criteria such as light levels or structural load
resistance, or even a set of aesthetic principles.

GLOSSARY

xxxiv

A Phenotype is any observable characteristic or trait of an organism: such
as its morphology, development, biochemical or physiological properties, or
behavior.
Pseudo code (derived from pseudo and code) is a compact and informal
high-level description of a computer programming algorithm that uses the
structural conventions of programming languages, but omits detailed
subroutines, variable declarations or language-specific syntax. The
programming language is augmented with natural language descriptions of
the details, where convenient.

Rasterization or Rasterisation is the task of taking an image described in a
vector graphics format (shapes) and converting it into a raster image (pixels
or dots) for output on a video display or printer, or for storage in a bitmap
file format.The term rasterization can in general be applied to any process
by which vector information can be converted into a raster format. In
normal usage, the term refers to the popular rendering algorithm for
displaying three-dimensional shapes on a computer.

Recursion or iteration: A recursive algorithm is one that invokes (makes
reference to) itself repeatedly until a certain condition matches, which is a
method common to functional programming. Iterative algorithms use
repetitive constructs like loops and sometimes additional data structures like
stacks to solve the given problems. Some problems are naturally suited for
one implementation or the other.

A Scripting language, script language or extension language is a
programming language that allows some control of a single or many
software application(s). Languages chosen for scripting purposes are often
much higher-level than the language used by the host application. "Scripts"
are often treated as distinct from "programs", which execute independently
from any other application. At the same time they are distinct from the core
code of the application, which is usually written in a different language, and
by being accessible to the end-user they enable the behavior of the
application to be adapted to the user's needs. Scripts are often, but not
always, interpreted from the source code or "semi-compiled" to bytecode
which is interpreted, unlike the applications they are associated with, which
are traditionally compiled to native machine code for the system on which
they run. Scripting languages are nearly always embedded in the application
with which they are associated.

GLOSSARY

xxxv

Stochastic search is defined as a random search in space until a given
condition is met. Stochastic optimization methods are optimization
algorithms which incorporate probabilistic (random) elements, either in the
problem data (the objective function, the constraints, etc.), or in the
algorithm itself (through random parameter values, random choices, etc.), or
in both

Swarm intelligence (SI) is an artificial intelligence based on the collective
behavior of decentralized, self-organized systems . SI systems are typically
made up of a population of simple agents interacting locally with one
another and with their environment. Although there is no centralized control
structure dictating how individual agents should behave, local interactions
between such agents lead to the emergence of global behavior. Natural
examples of SI include ant colonies, bird flocking, animal herding, bacterial
growth, and fish schooling

Transformation or morphing is a process in which an object changes its
form gradually in order to obtain another form. The operation of
transformation consists basically of the selection of two objects and the
assignment of n, the number of in-between steps. The first object then
transforms into the second in n steps.

Turing machines: are extremely basic abstract symbol-manipulating
devices which, despite their simplicity, can be adapted to simulate the logic
of any computer that could possibly be constructed. They were described in
1936 by Alan Turing. A Turing machine consists of an infinite one-
dimensional tape divided into cells, a movable read-write head with a
specified starting position, and a table of transition rules. Each cell of the
tape contains one symbol, either 0 or 1, and the head can move along the
tape to scan one cell at a time and perform three different activities:
• READ: read the content of the cell,
• WRITE: change the content into the opposite, and
• MOVE: advance to the next cell to the right or left along the tape.
A table of transition rules serves as the program for the machine.

GLOSSARY

xxxvi

Voronoi diagram is the partitioning of a plane with points into convex
polygons such that each polygon contains exactly one generating point and
every point in a given polygon is closer to its generating point than to any
other. A Voronoi diagram is sometimes also known as a Dirichlet
tessellation. The cells are called Dirichlet regions, Thiessen polytopes, or
voronoi polygon.

Search algorithm, broadly speaking, is an algorithm that takes a problem
as input and returns a solution to the problem, usually after evaluating a
number of possible solutions. Most of the algorithms studied by computer
scientists that solve problems are kinds of search algorithms. The set of all
possible solutions to a problem is called the search space.

GLOSSARY

i

THESIS STRUCTURE

Results and Recommendations

Part I: ALGORITHMS AND HISTORY OF ALGOTECTURE.

Chapter 1: INTRODUCTION TO ALGORITHMS.

Chapter 2: A BRIEF HISTORY OF ALGOTECTURE.

Chapter 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE.

Part II: IMPLEMENTED ALGORITHMS IN CONTEMPORARY
ARCHITECTURE.

Chapter 4: APPLICATIONS OF ALGORITHMS IN
ARCHITECTURE.

Chapter 5: NEW METHODS IN ARCHITECTURAL DESIGN
BASED ON ALGORITHMS.

Part III: ARCHITECTURAL DESIGN BASED ON ALGORITHMS.

Chapter 6: APPLYING COMPUTATIONAL DESIGN METHODS.

PART I : ALGORITHMS AND HISTORY CHAPTER 1: INTRODUCTION TO ALGORITHMS.
OF ALGOTECTURE.

1

PART I

ALGORITHMS AND HISTORY OF
ALGOTECTURE

CHAPTER 1: INTRODUCTION TO ALGORITHMS. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

2

PART I : ALGORITHMS AND HISTORY CHAPTER 1: INTRODUCTION TO ALGORITHMS.
OF ALGOTECTURE.

3

CHAPTER 1:

INTRODUCTION TO ALGORITHMS

CHAPTER 1: INTRODUCTION TO ALGORITHMS. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

4

PART I : ALGORITHMS AND HISTORY CHAPTER 1: INTRODUCTION TO ALGORITHMS.
OF ALGOTECTURE.

5

CHAPTER 1:

INTRODUCTION TO ALGORITHMS

1-1 Definition.

An algorithm is a well-ordered collection of unambiguous and
effectively computable operations that when executed produces a
result and halts in a finite amount of time1.

In mathematics, computing, linguistics, and related disciplines, an
algorithm is a finite list of well-defined instructions for
accomplishing tasks that, given an initial state, will terminate in a
defined end-state.

1-2 Explanation

Algorithms can be explained as follows:

a. It is a process of addressing a problem in a finite number of
steps. It is an articulation of either a strategic plan for
solving a known problem or a stochastic search towards
possible solutions to a partially known problem. In doing
so, it serves as a codification of the problem through a
series of finite, consistent, and rational steps.

b. While most algorithms are designed with a specific solution

in mind to a problem, there are some problems whose
solution is unknown, vague, or ill-defined. In the latter case,
algorithms become the means for exploring possible paths
that may lead to potential solutions.

1 Schneider, M. and J. Gersting (1995), An Invitation to Computer Science, West Publishing
Company, New York, NY, p. 9.

CHAPTER 1: INTRODUCTION TO ALGORITHMS. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

6

c. Theoretically, as long as a problem can be defined in logical

terms, a solution may be produced that will address the
problem’s demands. An algorithm is a linguistic expression
of the problem and is composed of linguistic elements and
operations arranged into spelling, and grammatically and
syntactically correct statements. The linguistic articulation
serves the purpose not only to describe the problem’s steps
but also to communicate the solution to another agent for
further processing. In the world of computers, that agent is
the computer itself.

d. An algorithm can be seen as a mediator between the human

mind and the computer’s processing power. This ability of
an algorithm to serve as a translator can be interpreted as bi-
directional: either as a dictation to the computer how to go
about solving the problem, or as a reflection of a human
thought into the form of an algorithm1.

e. Traditionally, algorithms were used as mathematical or

logical mechanisms for resolving practical problems. With
the invention of the computer, algorithms became
frameworks for implementing problems to be carried out by
computers2.

f. An algorithm is a set of instructions given by a human to be

performed by a computer. Therefore, an algorithm can
describe either the way a problem is to be addressed as if it
would be resolved by a human or the way it should be
addressed to be understood by a computer (the notion of
“understanding” here refers to the capacity the computer
has to process information given by a human and not to its
conscious interpretation of that information).

g. An algorithm becomes a rationalized version of human

thinking. As such it may be characterized as being precise,

1 Terzidis, Kostas (2006). Algorithmic Archtecture. Architectural Press, Elsevier.
2 Ibid.

PART I : ALGORITHMS AND HISTORY CHAPTER 1: INTRODUCTION TO ALGORITHMS.
OF ALGOTECTURE.

7

definite, and logical, but at the same time may also lack
certain unique qualities of human expression such as
vagueness, ambiguity, or ambivalence1.

h. Algorithms are especially important to computers because

computers are really general purpose machines for solving
problems. But in order for a computer to be useful, we must
give it a problem to solve and a technique for solving the
problem. Through the use of algorithms, we can make
computers "intelligent" by programming them with various
algorithms to solve problems. Because of their speed and
accuracy, computers are well-suited for solving tedious
problems such as searching for a name in a large telephone
directory or adding a long column of numbers. However,
the usefulness of computers as problem solving machines is
limited because the solutions to some problems cannot be
stated in an algorithm.

1-3 Etymology

 Al-Khwarizmi, Persian astronomer and mathematician, wrote a
treatise in Arabic in 825 AD, On Calculation with Hindu
Numerals, which was translated into Latin in the 12th century as
Algoritmi de numero Indorum,2 which title was likely intended to
mean "Algoritmi on the numbers of the Indians", where
"Algoritmi" was the translator's rendition of the author's name; but
people misunderstanding the title treated Algoritmi as a Latin
plural and this led to the word "algorithm" (Latin algorismus)
coming to mean "calculation method". The intrusive "th" is most
likely due to a false cognate with the Greek αριθμος (arithmos)
meaning "number".

1-4 Formalization of algorithms.

 Algorithms are essential to the way computers process
information, because a computer program is essentially an

1 Ibid.
2 Daffa', Ali Abdullah al- (1977). The Muslim contribution to mathematics. London: Croom
Helm.

CHAPTER 1: INTRODUCTION TO ALGORITHMS. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

8

algorithm that tells the computer what specific steps to perform (in
what specific order) in order to carry out a specified task, such as
calculating employees’ paychecks or printing students’ report
cards. Thus, an algorithm can be considered to be any sequence of
operations that can be performed by a Turing-complete system1.
Fig. 1.1.

 "an algorithm is a computational process defined by a
Turing machine."2

Figure 1-1 Visualization of Turing-machine.

A table of transition rules serves as the program for the machine.
Each such rule is a quadruple <stateactual,symbol,action,statenext >
which means if the machine is in stateactual and the current cell
contains symbol then take action MOVE or WRITE and move
into statenext. Thus, the transition rules are labeled as staten and the

1 Turing machines : are extremely basic abstract symbol-manipulating devices which,
despite their simplicity, can be adapted to simulate the logic of any computer that could
possibly be constructed. They were described in 1936 by Alan Turing. A Turing machine
consists of an infinite one-dimensional tape divided into cells, a movable read-write head
with a specified starting position, and a table of transition rules. Each cell of the tape
contains one symbol, either 0 or 1, and the head can move along the tape to scan one cell at a
time and perform three different activities: READ: read the content of the cell, WRITE:
change the content into the opposite, andMOVE: advance to the next cell to the right or left
along the tape.A table of transition rules serves as the program for the machine.
2 Yuri Gurevich, Sequential Abstract State Machines Capture Sequential Algorithms, ACM
Transactions on Computational Logic, Vol 1, no 1 (July 2000), pages 77–111.

PART I : ALGORITHMS AND HISTORY CHAPTER 1: INTRODUCTION TO ALGORITHMS.
OF ALGOTECTURE.

9

execution of the program consists of the successive transition
between one state and another. Furthermore, the program
terminates if it reaches a situation in which there is not exactly one
transition rule specified for execution1. Fig. 1.2

Figure 1-2 algorithmic description of program

Typically, when an algorithm is associated with processing
information, data are read from an input source or device, written
to an output sink or device, and/or stored for further processing.
Stored data are regarded as part of the internal state of the entity
performing the algorithm. In practice, the state is stored in a data
structure, but an algorithm requires the internal data only for
specific operation sets called abstract data types.

For any such computational process, the algorithm must be
rigorously defined: specified in the way it applies in all possible
circumstances that could arise. That is, any conditional steps must
be systematically dealt with, case-by-case; the criteria for each
case must be clear (and computable).

Because an algorithm is a precise list of precise steps, the order of
computation will almost always be critical to the functioning of
the algorithm. Instructions are usually assumed to be listed
explicitly, and are described as starting 'from the top' and going
'down to the bottom', an idea that is described more formally by
flow of control.

1 Barker-Plummer, David: Turing Machines, in Edward N. Zalta (ed.): The Stanford
Encyclopedia of Philosophy (Spring 2005 Edition), http://plato.stanford.edu/archives/
spr2005/entries/turing-machine/

CHAPTER 1: INTRODUCTION TO ALGORITHMS. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

10

1-5 Expressing algorithms.

Algorithms can be expressed in many kinds of notation, including
natural languages, pseudocode, flowcharts, and programming
languages and can be explained in details as follows1:-

1-5-1 Natural language:-

 In the philosophy of language, a natural language (or ordinary
language) is a language that is spoken, written, or signed (visually
or tactilely) by humans for general-purpose communication,
which is distinguished from formal languages (such as computer-
programming languages or the "languages" used in the study of
formal logic, especially mathematical logic).

When writing algorithms, several choices are available of how the
algorithm will be specified. One option is to write the algorithm
using plain English. Although plain English may seem like a good
way to write an algorithm, it has some problems that make it a
poor choice. First, plain English is too wordy. When the algorithm
is written in plain English, it must include many words that
contribute to correct grammar or style that have nothing to do to
help to communicate the algorithm. Second, plain English is too
ambiguous. Often an English sentence can be interpreted in many
different ways. Remember that the definition of an algorithm
requires that each operation must be unambiguous.

Natural language expressions of algorithms tend to be verbose and
ambiguous, and are rarely used for complex or technical
algorithms.

For example an Algorithm written in plain English can be written
in one of the two ways as follows (replace the oil of your):-

- First way:
First, place the oil pan underneath the oil plug of your car.
Next, unscrew the oil plug and drain the oil. Now, replace the

1 Sipser, Michael (2006). Introduction to the Theory of Computation. PWS Publishing
Company.p.157

PART I : ALGORITHMS AND HISTORY CHAPTER 1: INTRODUCTION TO ALGORITHMS.
OF ALGOTECTURE.

11

oil plug. Once the old oil is drained, remove the oil cap from
the engine and pour in 4 quarts of oil. Finally, replace the oil
cap on the engine.

- Second way:

1. Place the oil pan underneath the oil plug of your car.
2. Unscrew the oil plug.
3. Drain oil.
4. Replace the oil plug.
5. Remove the oil cap from the engine.
6. Pour in 4 quarts of oil.
7. Place the oil pan underneath the oil plug of your car.
8. Unscrew the oil plug.
9. Drain oil.
10. Replace the oil plug.
11. Remove the oil cap from the engine.
12. Pour in 4 quarts of oil.
13. Replace the oil cap.

Each of these examples is an algorithm, a set of instructions for
solving a problem. Once the algorithm is created there is no need
to think about the principles on which the algorithm is based. For
example, once you have the directions to John's house, you do not
need to look at a map to decide where to make the next turn. The
intelligence needed to find the correct route is contained in the
algorithm. All you have to do is follow the directions. This means
that algorithms are a way of capturing intelligence and sharing it
with others. Once you have encoded the necessary intelligence to
solve a problem in an algorithm, many people can use your
algorithm without needing to become experts in a particular field.

1-5-2 Pseudo code:-

CHAPTER 1: INTRODUCTION TO ALGORITHMS. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

12

 Pseudo1 code (derived from pseudo and code) is a compact and
informal high-level description of a computer programming
algorithm that uses the structural conventions of programming
languages, but omits detailed subroutines, variable declarations or
language-specific syntax. The programming language is
augmented with natural language descriptions of the details,
where convenient.

Pseudocode is structured way to express algorithms that avoid
many of the ambiguities common in natural language statements,
while remaining independent of a particular implementation
language.

An example of how pseudocode differs from regular code is
below.

Regular code (written in PHP):

<?php
if (is_valid($cc_number)) {
 execute_transaction($cc_number, $order);
} else {
 show_failure();
}
?>

Pseudocode:

if credit card number is valid
 execute transaction based on number and order
else
 show a generic failure message

1 In common parlance, the prefix pseudo is used to mark something as false, fraudulent, or
pretending to be something it is not, as in pseudoscience or pseudophilosophy. It also
identifies something as superficially resembling the original subject; a pseudo pod resembles
a foot, and pseudorandom numbers simulate numbers generated by truly random events, but
are in fact produced by an algorithm.

PART I : ALGORITHMS AND HISTORY CHAPTER 1: INTRODUCTION TO ALGORITHMS.
OF ALGOTECTURE.

13

end if

1-5-3 Flowchart:-

 Flowchart (also spelled flow-chart and flow chart) is a
schematic representation of an algorithm or a process.

 Flowcharts are structured ways to express algorithms that avoid
many of the ambiguities common in natural language statements,
while remaining independent of a particular implementation
language.

Figure 1-3 A simple flowchart algorithm for replacing a lamp.

1-5-4 programming language:-

Another option for writing algorithms is using programming
languages. These languages are collections of primitives (basic
operations) that a computer understands.

CHAPTER 1: INTRODUCTION TO ALGORITHMS. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

14

Programming language is an artificial language that can be used to
control the behavior of a machine, particularly a computer.
Programming languages, like human languages, are defined
through the use of syntactic and semantic rules, to determine
structure and meaning respectively. They are used to facilitate
communication about the task of organizing and manipulating
information, and to express algorithms precisely. Some authors
restrict the term "programming language" to those languages that
can express all possible algorithms, sometimes the term "computer
language" is used for more limited artificial languages.

Programming languages are primarily intended for expressing
algorithms in a form that can be executed by a computer, but are
often used as a way to define or document algorithms.

1-6 Levels of Representing an Algorithm

There is a wide variety of representations possible and one can
express a given Turing machine program as a sequence of
machine tables as flowcharts (see more at state diagram), or as a
form of rudimentary machine code or assembly code called "sets
of quadruples" (see more at Turing machine).

Sometimes it is helpful in the description of an algorithm to
supplement small "flow charts" (state diagrams) with natural-
language and/or arithmetic expressions written inside "block
diagrams" to summarize what the "flow charts" are
accomplishing.

Representations of algorithms are generally classed into three
accepted levels of Turing machine description1:

1-6-1 High-level description:

"...prose to describe an algorithm, ignoring the
implementation details. At this level we do not need to
mention how the machine manages its tape or head"1

1Sipser, Michael (2006). Introduction to the Theory of Computation. PWS Publishing
Company. P.157.

PART I : ALGORITHMS AND HISTORY CHAPTER 1: INTRODUCTION TO ALGORITHMS.
OF ALGOTECTURE.

15

1-6-2 Implementation description:

"...prose used to define the way the Turing machine uses its
head and the way that it stores data on its tape. At this level
we do not give details of states or transition function"2

1-6-3 Formal description

Most detailed, "lowest level", gives the Turing machine's
"state table".

1-7 Implementation

Most algorithms are intended to be implemented as computer
programs. However, algorithms are also implemented by other
means, such as in a biological neural network (for example, the
human brain implementing arithmetic or an insect looking for
food), in an electrical circuit, or in a mechanical device.

Example,

One of the simplest algorithms is to find the largest number in an
(unsorted) list of numbers. The solution necessarily requires
looking at every number in the list, but only once at each. This
problem can be solved by simple algorithm, which can be stated
as follows :

English prose:

1. Assume the first item is the largest.

2. Look at each of the remaining items in the list and if it is
larger than the largest item so far, make a note of it.

3. The last noted item is the largest in the list when the
process is complete.

1 Ibid.
2 Ibid.

CHAPTER 1: INTRODUCTION TO ALGORITHMS. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

16

(Quasi-) Formal description: Written in prose but much closer to
the high-level language of a computer program, the following is
the more formal coding of the algorithm in pseudocode :

Algorithm LargestNumber
 Input: A non-empty list of numbers L.
 Output: The largest number in the list L.

 largest

← L0
 for each item in the list L≥1, do
 if the item > largest, then
 largest

← the item
 return largest

 "

←" is a loose shorthand for "changes to". For
instance, "largest

← item" means that the
value of largest changes to the value of item.

 "return" terminates the algorithm and outputs
the value that follows.

1-8 Classes

There are various ways to classify algorithms, each with its own
merits.

1-8-1 Classification by implementation

One way to classify algorithms is by implementation means.

 Recursion or iteration: A recursive algorithm is one that
invokes (makes reference to) itself repeatedly until a certain
condition matches, which is a method common to
functional programming. Iterative algorithms use repetitive
constructs like loops and sometimes additional data
structures like stacks to solve the given problems. Some
problems are naturally suited for one implementation or the
other.

PART I : ALGORITHMS AND HISTORY CHAPTER 1: INTRODUCTION TO ALGORITHMS.
OF ALGOTECTURE.

17

 Logical: An algorithm may be viewed as controlled logical
deduction. This notion may be expressed as:

Algorithm = logic + control.

The logic component expresses the axioms that may be
used in the computation and the control component
determines the way in which deduction is applied to the
axioms. This is the basis for the logic programming
paradigm. In pure logic programming languages the control
component is fixed and algorithms are specified by
supplying only the logic component. The appeal of this
approach is the elegant semantics: a change in the axioms
has a well defined change in the algorithm.

 Serial or parallel or distributed: Algorithms are usually
discussed with the assumption that computers execute one
instruction of an algorithm at a time. Those computers are
sometimes called serial computers. An algorithm designed
for such an environment is called a serial algorithm, as
opposed to parallel algorithms or distributed algorithms.
Parallel algorithms take advantage of computer
architectures where several processors can work on a
problem at the same time, whereas distributed algorithms
utilize multiple machines connected with a network.
Parallel or distributed algorithms divide the problem into
more symmetrical or asymmetrical sub problems and
collect the results back together.

• Deterministic or non-deterministic: Deterministic
algorithms solve the problem with exact decision at every
step of the algorithm whereas non-deterministic algorithm
solve problems via guessing although typical guesses are
made more accurate through the use of heuristics.

 Exact or approximate: While many algorithms reach an
exact solution, approximation algorithms seek an
approximation that is close to the true solution.
Approximation may use either a deterministic or a random

CHAPTER 1: INTRODUCTION TO ALGORITHMS. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

18

strategy. Such algorithms have practical value for many
hard problems.

1-8-2 Classification by design paradigm

Another way of classifying algorithms is by their design
methodology or paradigm. There is a certain number of
paradigms, each different from the other. Furthermore, each of
these categories will include many different types of algorithms.
Some commonly found paradigms include:

 Divide and conquer: A divide and conquer algorithm
repeatedly reduces an instance of a problem to one or more
smaller instances of the same problem (usually recursively),
until the instances are small enough to solve easily. One
such example of divide and conquer is merge sorting.
Sorting can be done on each segment of data after dividing
data into segments and sorting of entire data can be
obtained in conquer phase by merging them. A simpler
variant of divide and conquer is called decrease and
conquer algorithm. An example of decrease and conquer
algorithm is binary search algorithm1.

 Dynamic programming: When a problem shows optimal
substructure, meaning the optimal solution to a problem can
be constructed from optimal solutions to sub problems, and
overlapping subproblems, meaning the same subproblems
are used to solve many different problem instances, a
quicker approach called dynamic programming avoids
recomputing solutions that have already been computed.
For example, the shortest path to a goal from a vertex in a
weighted graph can be found by using the shortest path to
the goal from all adjacent vertices.

1 A binary search algorithm (or binary chop) is a technique for finding a particular value in
a sorted list. It makes progressively better guesses, and closes in on the sought value, by
comparing an element halfway with what has been determined to be an element too low in
the list and one too high in the list.

PART I : ALGORITHMS AND HISTORY CHAPTER 1: INTRODUCTION TO ALGORITHMS.
OF ALGOTECTURE.

19

• The greedy method: A greedy algorithm is similar to a
dynamic programming algorithm, but the difference is that
solutions to the subproblems do not have to be known at
each stage; instead a "greedy" choice can be made of what
looks best for the moment.

• Reduction. This technique involves solving a difficult
problem by transforming it into a better known problem for
which we have (hopefully) asymptotically optimal
algorithms. The goal is to find a reducing algorithm whose
complexity is not dominated by the resulting reduced
algorithm's.

• Search and enumeration. Many problems (such as playing
chess) can be modeled as problems on graphs. A graph
exploration algorithm specifies rules for moving around a
graph and is useful for such problems. This category also
includes search algorithms1, branch and bound2
enumeration and backtracking3.

 The probabilistic and heuristic paradigm. Algorithms
belonging to this class fit the definition of an algorithm
more loosely.

 Probabilistic algorithms are those that make some
choices randomly (or pseudo-randomly); for some

1 A search algorithm, broadly speaking, is an algorithm that takes a problem as input and
returns a solution to the problem, usually after evaluating a number of possible solutions.
Most of the algorithms studied by computer scientists that solve problems are kinds of search
algorithms. The set of all possible solutions to a problem is called the search space.

2 Branch and bound (BB) is a general algorithmic method for finding optimal solutions of
various optimization problems, especially in discrete and combinatorial optimization.

3 Backtracking algorithms try each possibility until they find the right one. It is a depth-
first search of the set of possible solutions. During the search, if an alternative doesn't work,
the search backtracks to the choice point, the place which presented different alternatives,
and tries the next alternative. When the alternatives are exhausted, the search returns to the
previous choice point and tries the next alternative there. If there are no more choice points,
the search fails.

CHAPTER 1: INTRODUCTION TO ALGORITHMS. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

20

problems, it can in fact be proven that the fastest
solutions must involve some randomness.

 Genetic algorithms attempt to find solutions to
problems by mimicking biological evolutionary
processes, with a cycle of random mutations yielding
successive generations of "solutions". Thus, they
emulate reproduction and "survival of the fittest". In
genetic programming, this approach is extended to
algorithms, by regarding the algorithm itself as a
"solution" to a problem.

 Heuristic algorithms, whose general purpose is not to
find an optimal solution, but an approximate solution
where the time or resources are limited. They are not
practical to find perfect solutions.

1-8-3 Classification by field of study

Every field of science has its own problems and needs efficient
algorithms. Related problems in one field are often studied
together. Some example classes are search algorithms, sorting
algorithms, merge algorithms, numerical algorithms, graph
algorithms, string1 algorithms, computational geometric
algorithms, combinatorial2 algorithms, machine learning,
cryptography3, and data compression algorithms.

Fields tend to overlap with each other, and algorithm advances in
one field may improve those of other, sometimes completely
unrelated, fields. For example, dynamic programming was
originally invented for optimization of resource consumption in

1 In computer programming and some branches of mathematics, a string is an ordered
sequence of symbols. These symbols are chosen from a predetermined set or alphabet.
2 Combinatorics is a branch of pure mathematics concerning the study of discrete (and
usually finite) objects. It is related to many other areas of mathematics, such as algebra,
probability theory, ergodic theory and geometry, as well as to applied subjects in computer
science and statistical physics.
3 Cryptography (or cryptology; from Greek κρυπτός, kryptos, "hidden, secret"; and γράφω,
gráphō, "I write", or -λογία, -logia, respectively) is the practice and study of hiding
information. In modern times, cryptography is considered a branch of both mathematics and
computer science, and is affiliated closely with information theory, computer security, and
engineering.

PART I : ALGORITHMS AND HISTORY CHAPTER 1: INTRODUCTION TO ALGORITHMS.
OF ALGOTECTURE.

21

industry, but is now used in solving a broad range of problems in
many fields.

1-8-4 Classification by complexity

Algorithms can be classified by the amount of time they need to
complete compared to their input size. There is a wide variety:
some algorithms complete in linear time relative to input size,
some do so in an exponential amount of time or even worse, and
some never halt. Additionally, some problems may have multiple
algorithms of differing complexity, while other problems might
have no algorithms or no known efficient algorithms. There are
also mappings from some problems to other problems. Owing to
this, it was found to be more suitable to classify the problems
themselves instead of the algorithms into equivalence classes
based on the complexity of the best possible algorithms for them.

1-9 General characteristics of algorithms.

Characteristics of algorithms can be identified as follows:-

1-9-1 Algorithms are well-ordered.

Since an algorithm is a collection of operations or instructions, we
must know the correct order in which to execute the instructions.
If the order is unclear, we may perform the wrong instruction or
we may be uncertain which instruction should be performed next.
This characteristic is especially important for computers. A
computer can only execute an algorithm if it knows the exact
order of steps to perform.

1-9-2 Algorithms have unambiguous operations.

Each operation in an algorithm must be sufficiently clear so that it
does not need to be simplified. Given a list of numbers, you can
easily order them from largest to smallest with the simple
instruction "Sort these numbers." A computer, however, needs
more detail to sort numbers. It must be told to search for the
smallest number, how to find the smallest number, how to

CHAPTER 1: INTRODUCTION TO ALGORITHMS. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

22

compare numbers together, etc. The operation "Sort these
numbers" is ambiguous to a computer because the computer has
no basic operations for sorting. Basic operations used for writing
algorithms are known as primitive operations or primitives. When
an algorithm is written in computer primitives, then the algorithm
is unambiguous and the computer can execute it.

1-9-3 Algorithms have effectively computable operations.

Each operation in an algorithm must be doable, that is, the
operation must be something that is possible to do. Suppose you
were given an algorithm for planting a garden where the first step
instructed you to remove all large stones from the soil. This
instruction may not be doable if there is a four ton rock buried just
below ground level. For computers, many mathematical
operations such as division by zero or finding the square root of a
negative number are also impossible. These operations are not
effectively computable so they cannot be used in writing
algorithms.

1-9-4 Algorithms produce a result.

In our simple definition of an algorithm, we stated that an
algorithm is a set of instructions for solving a problem. Unless an
algorithm produces some result, we can never be certain whether
our solution is correct. Have you ever given a command to a
computer and discovered that nothing changed? What was your
response? You probably thought that the computer was
malfunctioning because your command did not produce any type
of result. Without some visible change, you have no way of
determining the effect of your command. The same is true with
algorithms. Only algorithms which produce results can be verified
as either right or wrong.

1-9-5 Algorithms halt in a finite amount of time.

Algorithms should be composed of a finite number of operations
and they should complete their execution in a finite amount of

PART I : ALGORITHMS AND HISTORY CHAPTER 1: INTRODUCTION TO ALGORITHMS.
OF ALGOTECTURE.

23

time. Suppose we wanted to write an algorithm to print all the
integers greater than 1. Our steps might look something like this:

1. Print the number 2.
2. Print the number 3.
3. Print the number 4.

While our algorithm seems to be pretty clear, we have two
problems. First, the algorithm must have an infinite number of
steps because there are an infinite number of integers greater than
one. Second, the algorithm will run forever trying to count to
infinity. These problems violate our definition that an algorithm
must halt in a finite amount of time. Every algorithm must reach
some operation that tells it to stop.

CHAPTER 1: INTRODUCTION TO ALGORITHMS. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

24

PART I : ALGORITHMS AND HISTORY CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE.
OF ALGOTECTURE.

25

-Conclusion

- An algorithm is a well-ordered collection of unambiguous
and effectively computable operations that when
executed produces a result and halts in a finite amount of time.

- An algorithm can be seen as a mediator between the

human mind and the computer’s processing power. This
ability of an algorithm to serve as a translator can be
interpreted as bi-directional: either as a dictation to the
computer how to go about solving the problem, or as a
reflection of a human thought into the form of an algorithm

- Algorithms can be expressed in many kinds of notations,

including natural languages , pseudocode, flowcharts, and
programming languages

- Levels of Representing an Algorithm are high level

description, implementation description, formal description.

- Algorithms can be classified by the following :

by Implementation: Iteration, logical, serial, ..etc.
by design paradigms: Divide, dynamic programming,..etc.
by field of study: numerical, string,…etc.
by complexity.

- General characteristics of algorithms:

Algorithms are well ordered,
Algorithms have unambiguous operations,
Algorithms should produce results,
Algorithms halt in a finite amount of time.

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

26

PART I : ALGORITHMS AND HISTORY CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE.
OF ALGOTECTURE.

27

CHAPTER 2:

A BRIEF HISTORY OF ALGOTECTURE

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

28

PART I : ALGORITHMS AND HISTORY CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE.
OF ALGOTECTURE.

29

CHAPTER 2:

A BRIEF HISTORY OF ALGOTECTURE

 “Algotecture is a term coined here to denote the use of
algorithms in architecture. This term differs from the popular
terms CAD or computer graphics in the sense that algorithms are
not necessarily dependent on computers whereas the former are, at
least, by definition. This distinction is very important as it
liberates, excludes, and disassociates the mathematical and logical
processes used for addressing a problem from the machine that
facilitates the implementation of those processes. Such a use
involves the articulation of a strategy for solving problems whose
target is known, as well as to address problems whose target
cannot be defined.”1

 Within the realm of computer graphics, solutions can be built for
almost any problem whose complexity, amount, or type of work
justifies the use of a computer. For instance, in architectural
practice, inputting data points, calculating structural elements, or
printing large line drawings are tasks, or problems, that require the
use of the computer even though they can be performed manually.
Yet, there are some problems whose complexity, level of
uncertainty, ambiguity, or range of possible solutions required a
synergetic relationship between the human mind and a computer
system. Such a synergy is possible only through the use of
algorithmic strategies that ensure a complementary and dialectic
relationship between the human mind and the machine.

1 Terzidis, Kostas (2006). Algorithmic Archtecture. Architectural Press, Elsevier. P. 37,
op.cit.

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

30

This chapter will discuss the history of applying algorithms in
architecture (in other words, history of using computers-through
programming- in creating architectural designs and not in
drafting)

Figure 2.1. Applications of computers in architecture.

The history of applying computers in architecture can be
explained in the next three successive steps (by appearance) and
some of these applications can be classified as an algotecture
while others are not, these steps are as follows1 (Fig 2.1):-

a. Automated design systems, represent the first step in
applying algorithms in architecture.

b. Augmented design systems, represent the second step for
applying computers in architecture and it is not an
algotecture. This step is only using computers in drafting or
presentation. (out of scope)

c. Formalistic design, represents the second step in applying
algorithms in architecture.

In the next part, the Automated design systems and formalistic
design are going to be discussed as a brief history for applying
algorithms in architecture.

1 Ibid, p. 40.

PART I : ALGORITHMS AND HISTORY CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE.
OF ALGOTECTURE.

31

2-1 Automated design Systems.

 In the early 1960s, Alexander 1published a highly influential
book titled “Notes on the Synthesis of Form”. In this book
Alexander quotes the need for rationality in the design process. If
design, he argues, is a conceptual interaction between form and
context, there may be a way to improve it by making an abstract
picture of the problem, which will retain only its abstract
structural features. As a mathematician, he introduced set theory,
structural analysis, and the theory of algorithms as tools for
addressing the design problem. He asserted that even quality
issues can be represented by binary variables. If a misfit occurs,
the variable takes the value 1; if not, 0.

The previous paragraph reflects the ideology at that time and
represents the initiation of using algorithms through computers in
architectural design. In the next part, the types of Automated
design systems will be stated.

2-1-1 Linguistic approach.

 An approach to solve design problems is that of linguistics (at
1957) Here, the designer attempts to structure the problem by
grouping the constraints into thematic areas (e.g. zoning,
circulation), and then the designer determines each group of
constraints more or less independently. This information is
converted into linguistic structures through the use of
transformational rules. Then, the designer represents these
linguistic structures in the form of sentences2, these sentences
represent specific sets of design elements, which include not only
the elements but also the rules which allow a designer to combine
them into feasible and meaningful compositions. The aim of this
approach became one of writing algorithms for the generation of
feasible and meaningful design "sentences."

1 Alexander, C., Notes on the Synthesis of Form. Cambridge:Harvard University Press, 1967.
2 Chomsky , N., Syntactic Structures, The Hague: Mouton & Company, 1957.

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

32

2-1-2 Graph Theory

In 1964 'Levin'1 used an analytical tool box available for the study
of complex systems that is rooted in a powerful subfield of
mathematics, called "graph theory", which originated in the
eighteenth century work of 'Euler'2.

The system of elements that interact or regulate each other (a
network) can be represented by a mathematical object called a
graph. A graph is a collection of nodes and edges: the interacting
components of the system are reduced to a set of nodes, and the
interactions among the components are represented by edges. A
Graph can represent any kind of relationship, and architecture is a
certain kind of relationship, thus, could be explained suitably by
graph. Since then, graph theory has been implemented using
algorithms to analyze potentials of individual spaces that compose
together a wider system of space3.

The next figure and table describe basic concept of graph and its
geometry. (Fig. 2.2, Table 2.1).

Fig. 2.2 Linear graph diagram.

1 Levin, P. H.: Use of Graphs to Decide the Optimum Layout of Buildings. Architect, 14, p.p
809–815, 1964.

2 Leonhard Paul Euler (15 April 1707 – 18 September [O.S. 7 September] 1783) was a pioneering
Swiss mathematician and physicist who spent most of his life in Russia and Germany.Euler made
important discoveries in fields as diverse as calculus and graph theory. He also introduced much of the
modern mathematical terminology and notation, particularly for mathematical analysis, such as the
notion of a mathematical function.

3 Kalay, E.Y.: Modeling Objects and Environment, John Wiley & sons, 1987.

PART I : ALGORITHMS AND HISTORY CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE.
OF ALGOTECTURE.

33

Tab. 2.1: Geometric measures of node in minimum-path graph1.

Researchers suggested that the application of this formalism
would permit established graph theory algorithms to be
implemented within layout generation systems.

Figure 2.3 illustrates this representation scheme. In this
illustration, a set of adjacency requirements is initially provided
by the user (Fig. 2.3a). Based on these requirements, a graph is
constructed where the spaces are represented as nodes and the
adjacency requirements are represented as links between the nodes
(Fig. 2.3b).

1 Nophaket N.: The Graph Geometry for Architectural Planning. Journal of Asian
Architecture and Building Engineering, May 2004.

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

34

Fig. 2.3: Generating a relationship graph from a relationship matrix.

The graph contains no intersecting links, given this condition.
Graph theories prove that all relationships can be accommodated
in a 2-dimensional plane. Given the planar requirements graph, a
series of potential layouts may be generated which satisfy the
spatial requirements (Fig. 2.4a).

Finally, a second graph representation, referred to as a dual graph,
characterizes the layout adjacencies and common walls by
distinguishing the north-south adjacency links from the east-west
adjacency links (Fig. 2.4b)1.

1 Chinowsky, P. S.: The CADDIE Project: Applying Knowledge-Based Paradigms to
Architectural Layout Generation. Ph.D. thesis, department of civil engineering, Stanford
University, May 1991.

PART I : ALGORITHMS AND HISTORY CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE.
OF ALGOTECTURE.

35

Fig. 2.4: Layout alternatives and a dual graph representation.

2-1-3 Machine Learning.

 Some theorists have argued that many problems cannot be solved
algorithmically, either because the procedure leading to their
solution is ill-defined or because not all the information needed to
solve them is available or accurate1. Such problems make it
necessary to use heuristic2 and adaptive decision procedures.
Heuristic methods typically rely on trial-and-error techniques to
arrive at a solution. Such techniques are, by definition, much
closer to the search-and-evaluate processes used in architectural
design. In adaptive procedures, the computer itself learns by
experience, as in Negroponte's "architecture machine" at 1970,
which could follow a procedure and, at the same time, could
"discern and assimilate" conversational idiosyncrasies. This
machine, after observing a user's behavior, could reinforce the
dialogue by using a predictive model to respond in a manner
consistent with personal behavior and idiosyncrasies. The
dialogue would be so intimate, "that only mutual persuasion and
compromise would bring about ideas."3 The role of the machine

1 Terzidis, K., Algorithmic Architecture, Architectural Press, 2006, p.19.
2 Heuristic (hyu-ˈris-tik) is an adjective for methods that help in problem solving in turn leading to
learning and discovery. These methods in most cases employ experimentation and trial and error
techniques. A heuristic method is particularly used to rapidly come to a solution that is reasonably close
to the best possible answer, or 'optimal solution'.
3Negroponte, N., The Architecture Machine. Cambridge: MIT Press, 1970. p.13

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

36

would be that of a close and wise friend assisting in the design
process.

2-1-4 Automated design.

In the 1970s with the introduction of the first relatively complex
computers, theorists investigated into the possibility of self-
designing machines. They thought that one of the areas where the
computer could be helpful to a designer could be in automatic
design, that is, in finding a large number of possible schemes at a
sufficiently early stage of the design process, and choosing the
best one for further development. An early attempt was MIT's
BUILD system1 which could be used to describe spaces that might
go into a building, indicating their dimensions, their arrangement,
and their materials. The computer then arranged the spaces
solving the problem. This approach has been used extensively for
solving complex design problems that are related to arranging
parameters in optimum locations2. These approaches focus on the
functionality of the end design product and do not take into
account aesthetic or artistic parameters. In fields such as design of
computer chips, nuclear plants, or hospitals automatic spatial
allocation plays a very important role today.(Fig.2.5)

1 Dietz, A. , Dwelling House Construction Cambridge: MIT Press, 1974.p.18
2 Eastman C. M. and Henrion M., M. GLIDE: Language for a Design Information System.
Pittsburg: Carnegie-Mellon University, Institute of Physical Planning, 1967.

PART I : ALGORITHMS AND HISTORY CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE.
OF ALGOTECTURE.

37

Figure 2.5 Space allocation process: (a) grid (b) site (c) program (d) relationship table
(f) solution

2-1-5 Expert Systems

"Expert systems" are subset of Artificial Intelligence1 (AI) tools.
In these systems, design knowledge is represented within the
condition-action formalism of rules. The rules capture the specific
conditions under which designers reach decisions for a limited
design domain, together with the actions a designer takes when
these conditions are present. For example, the following rules
capture a design focusing on the placement of two spaces with a
required adjacency2:

1 Artificial intelligence (AI) is a branch of computer science concerned with the problem of
how to simulate human intelligence. AI is as old as the invention of the first computer, or, to
be more precise, of the first counting machine.
2 Chinowsky, P. S.: The CADDIE Project: Applying Knowledge-Based Paradigms to
Architectural Layout Generation. Ph.D. thesis, department of civil engineering, Stanford
University, May 1991. op.cit.

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

38

This use of previous design information includes the adaptation of
design concepts, design methodologies, forms, and goals. As
designers gain more experience in a given area, successful
solutions to previous design problems become prototypes for
future problems. Once these prototypes are developed, a designer
rarely develops new prototypes due to the extensive knowledge
which exists in previous prototypes (Fig. 2.6)1.

Fig. 2.6: Prototypes refinement rules select appropriate prototypes based on layout

conditions.

2-2 Formalistic design.

Formalistic design is viewed as an activity, which entails
invention and exploration of new forms and their relations.
Various methods of analysis have been employed in the search of
new forms: formal analysis involves the investigation of the
properties of a formal subject. Composition, geometrical
attributes, and morphological properties obeying Galilean and
Newtonian principles are extracted from figural appearances of an

1 Ibid.

PART I : ALGORITHMS AND HISTORY CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE.
OF ALGOTECTURE.

39

object. In contrast, structural analysis deals with the derivation of
the motivations and propensities which are implicit within form
and which may be used to define the limit between what it is and
all other possibilities.

2-2-1 Shape Grammars

The Shape Grammars1 approach was developed as an architectural
theory to analyze and synthesize architectural schemes. Although
initially developed to carry out spatial computations visually, it
was later on extended to explain design phenomena, such as
stylistic changes2, and to simulate behavioral patterns of design,
such as languages of design3.

A Shape Grammar consists, in general terms, of an initial shape,
and a set of production rules. The rules apply to the initial shape
and to shapes produced by previous rules applications, to generate
designs. All designs generated by the rules comply with the
language generated by a grammar. A shape grammar has four
components:

1. S is a finite set of shapes;
2. L is a finite set of symbols;
3. R is a finite set of rules of the form a “ b, where a is a labeled
shape in (S, L)+”, and “b is a labeled shape in (S, L)*”; and,
4.I is a labeled shape in (S, L)+ called the initial shape.

Thus, after establishing a vocabulary in the form of a finite set of
shapes and symbols, the shape grammar formalism makes
possible to define a set of production rules with them (see figure
below). A rule in this sense is not a restriction but rather a

1 Stiny, G., "Computing with Form and Meaning in Architecture", Journal of Architectural
Education 39, 1985, pp. 7-19.
2 Knight, T. W., Transformations of Languages of Design, Ph.D.Dissertation. Los Angeles:
University of California, 1986.
3 Flemming, U., "The Role of Shape Grammars in the Analysis and Creation of Design",
Proceedings of Symposium on Computability of Design at SUNY Buffalo, (December
1986).

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

40

representation of actions to be performed when specific conditions
are met. The right side of the rule represents the conditions to be
met for the rule to be applied, and the left side represents the
action to be taken if the conditions are present. The grammar thus
defined allows transforming a shape or configuration into another
shape or configuration by applying one rule at a time. This is done
by replacing “marked” instances of the shape on the lefthand side
of the rule, with the shape or shapes in the right hand side. A
special symbol such as a dot (.) is used to identify and distinguish
“marked” instances of a shape, and an implementation arrow to
separate the right from the left-hand sides of the rule. All shapes
on the left-hand side of the rule definition must be marked while
the shapes in the right hand side may or may not be marked. If the
shape or shapes on the right side are not marked, the instance of
the application of that particular rule cannot be further
transformed, since only marked shapes can be affected by rules.
Figure 2.7 shows a simple six-rule grammar derived from a
vocabulary of two primitive shapes, and two basic symbols.

Fig. 2.7: Sample shape grammar.

The dot on the left side of rules 1 and 4 indicates an empty shape.
Rules like these are used to start the production process by adding

PART I : ALGORITHMS AND HISTORY CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE.
OF ALGOTECTURE.

41

the initial shape to a layout (shape being created by the grammar).
Rules 2 and 5 are typical production rules that add a new shape to
the layout. In this grammar, both rules “unmark” the shape to
which they were applied (base shape of the rule), and add a
“marked” new shape so that further rules can be applied to it.
Rules 3 and 6 “unmark” shapes A and B respectively. In this
particular grammar, any application of rule 3 to shape A or rule 6
to shape B, will terminate the production process since in both
cases the only marked shape left will be unmarked, eliminating
the possibility of further rule applications (see figure below ,
where the number of rule applications is limited to 5 rules only).

Fig. 2.8: Sample layout using the Shape grammar.

Shape Grammars provide a theoretical framework for
understanding designs, for constructing languages of designs and
for explaining phenomena of design such as stylistic changes1.

Furthermore, as a theory of architecture, Shape Grammars provide
mechanisms for understanding shapes as designs, by first
appealing to compositional styles characterized by languages

1 Knight, T. W., Transformations of Languages of Design, Ph.D. Dissertation. Los
Angeles: University of California, 1986.

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

42

defined by grammars, and then to languages of descriptions to
provide accounts to designs in terms of their function, meaning,
etc.

Fig. 2.9: Various 3d forms generated with Shape grammars.

2-2-2 Generative Systems.

An interesting variation of shape grammars is that of fractal1
generative systems. Based on a scheme, formulated by the
German mathematician Von Koch, a fractal process consists of an
initial shape (the base) and one or more generators. From a
practical point of view, the generator is a production rule: each
and every line segment of the base is replaced by the shape of the

1 Fractal is an object or quantity that displays self-similarity on all scales with non-integer
dimensions. The object need not exhibit exactly the same structure at al l scales, but the same
“type” of structures must appear on all scales.

PART I : ALGORITHMS AND HISTORY CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE.
OF ALGOTECTURE.

43

generator1. The implementation of an interactive computer
program has been reported by Yessios that allows the fractal to be
generated one at a time or at multiple increments, backwards or
forwards. As described by Yessios, “a building typically has to
respond to a multiplicity of processes, superimposed or
interwoven.

Therefore, the fractal process has to be guided, to be constrained
and to be filtered. The fractal process has to be ‘mutated’ by the
utilitarian requirements of the functionality of a building. 2

Figure 2.10 A generative theme.

The example below shows how a 2D vector-base fractal can be
transformed into 3D vector-base fractal. Yessios’s3 implemented a
fractal generation that was highly interactive and allowed a fractal
to be developed one iteration at a time or at multiple increments.
At the same time, generators could be changed, replaced, deleted,
or inserted, at any iteration. The generation process could go
forward and backward allowing the designer to return to an earlier
state.

In (Fig. 2.11a) the base and the generator are one and the same
shape. The fractal generated after 30 steps (Fig. 2.11b). It has been

1 Yessios C. "A Fractal Studio", ACADIA 87 Proceedings, North Carolina State University,
1987.
2 Ibid p.7.
3 Yessios, C.I.: A Fractal Studio. In ACADIA ’87 Workshop Proceedings.1987, op.cit.

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

44

filtered and transformed into a structured drawing (floor plan)
which next becomes the base for generating a 3D building model.
An interior model is shown in (Fig. 2.11c) and two views of the
exterior model are shown in (Fig. 2.11d) and (Fig. 2.11e).

 Fig. 2.11: Assigning height to a 2d vector-base fractals.

2-2-4 Transformation (Morphing)

Transformation or morphing is a process in which an object
changes its form gradually in order to obtain another form. The
operation of transformation consists basically of the selection of
two objects and the assignment of n, the number of in-between
steps. The first object then transforms into the second in n steps.
This process is illustrated in the figure below. The transformation
preserves the structural integrity of the objects involved, that is, an
object changes into another object as a single entity. There are
many possible ways an object can be transformed. By matching
pairs of points, edges, or faces, one of each object, the
transformation process can be altered.

Orchestration is a term used to describe the actions of selecting,
assigning, directing and evaluating the performance of objects,
which participate in a transformation. Transformations can happen
concurrently and/or in different speeds. The result is a moving

PART I : ALGORITHMS AND HISTORY CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE.
OF ALGOTECTURE.

45

image the behavior of which becomes the responsibility of the
user. As in an orchestra performance the designer/composer
selects a number of objects he wants to include, assigns the proper
transformation paths and speeds, and then directs the performance
through time, form and color.

The essence of such transformational design is not that much in
the final form but rather in the intermediate phases these
transformations pass through, as well as, in the extrapolations
which go beyond the final form. The user has the capability,
through the system, to modify and control the flow of the
compositional evolution and replay it many times by varying
some or all of the transformational parameters.

Fig. 2.12: The transformation process.

One interesting exploration of shape transitions has been reported
by Yessios (1987). According to him an initial shape A can be
transformed to a target shape B by applying any number of in-
between steps. All the points of shape A are mapped onto shape B
and vice-versa. Furthermore, once the rules of transition have
been established, the transition can be allowed to continue beyond
its target, to infinity1.

1 Yessios C. "A Fractal Studio", ACADIA 87 Proceedings, North Carolina State
University, 1987.

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

46

Transformations involves two important principles of form:
stability and change1. A transformation is not exactly a form-
making procedure because the subject of transformation must
already be complete. In a transformation, only relations change.
No new elements can be introduced or removed; bits cannot be
added or taken away. However, the illusion of movement, often
described as "frozen movement", has been argued to have a high
formal value. It illustrates the forces designers have referred to, as
“punctured volumes,” “compressed planes,” “interpenetrating
spaces,” or “agitated surfaces.”2(Fig.2.13,2.14)

Figure 2.13: Various examples for transformation processes.

Figure 2.14 A process of morphing a box into a sphere.

1 Eisenman P., "The Futility of Objects", Harvard Architecture Review 3, (1984), p.66.
2 Evans, R. ,"Not to be Used for Wrapping Purposes", AAFiles 10, (1987), p. 70.

PART I : ALGORITHMS AND HISTORY CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE.
OF ALGOTECTURE.

47

2-2-5 Parametric Variations

Parametric design is turning design into a set of principles encoded
as a sequence of parametric equations. These equations are used to
express certain quantities as explicit functions of a number of
variables1.

By changing any parameter in the equation new forms and new
shapes could be generated. The parameters are not just numbers
relating to Cartesian geometry, they could be performance based
criteria such as light levels or structural load resistance, or even a
set of aesthetic principles. Parametric design refers to Cartesian
geometry and the ability to modify the geometry by means other
than recomposition.

Thus the term "parametric design" is more accurately referred to
as "associative geometry". Each time a value for any parameter
changes, the model simply regenerates to reflect the new
geometry.

A parametric description of form provides high potentiality to
generate complex curves and ruled surfaces. Ruled surfaces2 are
able to accomplish high levels of form complexity, especially by
their intersections when assembled. Ruled surfaces have been
extensively applied in architecture to generate unordinary forms.

It is possible to create a simple parametric system to generate an
almost complete set of building types based on ruled surfaces.\
Parametric design systems can generate a wide variety of
buildings in a very simple way.

1Kolarevic, B.: Digital Morphogenesis. In B. Kolarevic, (Ed) Architecture in the Digital Age,
Design and Manufacturing. New York: Spon Press, 2003.

2 Ruled surface is a surface swept out by a straight line L moving along a curve b.Such a
surface thus always has a parameterization in ruled form x(u,v)=b(u)+v d(u), where b is the
base curve and d is the director curve.

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

48

Restaurant Los Manantiales in Mexico was generated using
parametric equations, the values of the parameters are presented in
12x n matrices. where n is the number of surfaces. Active
parameters of each surface take a real or integer number value,
otherwise they are set to 0.

Each surface of the building can be expressed using six
parameters, three for the base curve and three for the director
curve.
Next, all surfaces had to be assembled in the common framework
of the composition. This required a set of transformations
(translation and rotation around each axis) to be applied to every
surface in order to orient and locate it in the general framework
and create the network of interrelated surfaces.

When all n surfaces are indexed, a 12x n matrix can represent a
building1.

 Where:

tx : translation of surface around X axis
ty : translation of surface around Y axis

1 Ibid. p.35.

PART I : ALGORITHMS AND HISTORY CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE.
OF ALGOTECTURE.

49

tz : translation of surface around Z axis
rx : rotation of surface around Z axis
ry : rotation of surface around Z axis
rz : rotation of surface around Z axis
n: total number of surfaces that compose the represented building.

Fig. 2.15: Los Manantiales represented parametrically in a defined matrix.

CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE. PART I : ALGORITHMS AND HISTORY
 OF ALGOTECTURE.

50

PART I : ALGORITHMS AND HISTORY CHAPTER 2: A BRIEF HISTORY OF ALGOTECTURE.
OF ALGOTECTURE.

51

-Conclusion

- Algotecture is a term used here to denote the use of
algorithms in architecture.

- Algotecture is applied in architecture through the use of
computers in the form of designing and thinking in the
architectural design.

- The history of using algorithms in architectural design
can be summarized in the following figure.

History of Algotecture

Automated design systems Formalistic design

Using algorithms in architecture to
automatically generate designs
(Mainly plans and relationships
between elements)

Using algorithms in architecture
to generate only forms based on
certain rule done by the
architect.

1- Linguistic approach.

2- Graph Theory.

3- Machine learning.

4- Automated design (Build
system).

5- Expert systems.

1- Shape Grammars.

2- Generative systems.

3- Transformation.

4- Parametric Variations.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

53

PART II

IMPLEMENTED ALGORITHMS IN
CONTEMPORARY ARCHITECTURE

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

54

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

55

CHAPTER 3:

MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

56

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

57

CHAPTER 3:

MAIN ALGORITHMS APPLIED IN

CONTEMPORARY ARCHITECTURE

 Introduction.

This next section is to explain how architectural algorithms are
created by computers to help in architectural design.

 Generally, creating a design using digital processes can be done
by two methods, either using previously designed software for
modeling forms which make the architect only draws his form, or
writing an algorithm using programming languages which helps
the designer in thinking by creating designs (a small design
program that executes design).

 The use of algorithms creates new forms for buildings, which
respects the rules previously verified by the architect. Architects
begin to create algorithms that can help them in their designs.
Algorithmic design can produce significantly different and more
unexpected designs than conventional CAD software, since the
algorithms make the computers think and take decisions with the
architect.

 Despite the power of industrial strength 3D modelers such as
CATIA and Maya, but these modelers still only a drawing tool
and not a design tool to think with the designer. Algorithmic form
generation is familiar in the engineering design disciplines: civil
and aeronautical engineering and naval architecture, where three-
dimensional shapes are more strictly dictated by functional
requirements expressed as mathematical equations.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

58

If a designer wants to run an algorithm to help him in design, he
must decide between two main alternatives1 :

 Macro facilities and scripting languages within CAD
modelers are relatively easy to learn, but they inherently
limit the programs one can write (and hence the forms one
can generate).

 Programs created by programming languages such as C and
Java are powerful but they require more effort to learn, and
generating 3D geometry also requires attention to many
language features that have no direct bearing on form.

3-1 Methods of running an algorithm for designing
architecture:

 The following table 3.1 distinguishes five levels of support for
algorithmic design provided by CAD modelers.

Tab. 3.1 Support for algorithmic form generation.2

1 Gross, Mark D., FormWriter A Little Programming Language for Generating Three-
Dimensional Form Algorithmically, CAAD futures 2001.p.578
2 Ibid p.578.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

59

3-1-1 The simplest modelers provide no support at all for
algorithmic generation: models can be constructed directly
using the geometric primitives and operations provided on
the CAD modeler's menus. Most CAD modeling programs
offer macro facilities or scripting language. Although a
macro facility serves simple tasks well (such as repetitive
window patterns or stairs), it is difficult to program more
complex operations using only macros. Scripting languages,
which have gained wide acceptance in other domains
(witness JavaScript and Flash), provide considerably more
power than macros but coding more sophisticated tasks
becomes quite complex, requiring a specialist programmer.

3-1-2 An embedded programming language, like a scripting

language, enables the programmer to control and command
the modeler from an environment within the CAD program,
and allows more powerful constructs than the typical
scripting language. Many CAD programs now include an
embedded language, and advanced users of these CAD
programs use it. AutoLisp 1 is the best known example.
Although the underlying Lisp language is extremely elegant
and powerful, Autodesk’s implementation was a weak one
and the programming environment for developing AutoLisp
routines is weak by the modern standards.

3-1-3 Programming languages such as C or Java can be used to

run algorithms for architecture design but it requires more
expertise than most designers need to commit to acquiring,
but with these languages produce the best results.

3-2 Most popular algorithms applied in architectural design.

 In the previous decade many algorithms (infinite) are
implemented in architectural design with their wide applications,
some of these algorithms are more common than others, others are
created for solving certain problems in certain designs, and others
are used for generating certain forms.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

60

The following part of this chapter is going to discuss the most
popular algorithms used in contemporary architecture such as
Voronoi, A*, L-Systems, Swarm,…etc, In addition to other
examples for special algorithms to generate forms.

3-2-1 Voronoi Algorithms.

3-2-1-1 Definition

Voronoi diagram1 is the partitioning of a plane with points into
convex polygons such that each polygon contains exactly one
generating point and every point in a given polygon is closer to its
generating point than to any other. A Voronoi diagram is
sometimes also known as a Dirichlet tessellation. The cells are
called Dirichlet regions, Thiessen polytopes, or Voronoi
polygons2. (Fig.3.1)

Figure 3.1 Dividing a plane with a set of points (S) into a voronoi diagram, the left
picture shows the main points (voronoi points or cells) and the circled points are the
generated voronoi nodes. The right figure shows the voronoi diagram generated based
on the voronoi points.

In the simplest case, we are given a set of points S in the plane,
which are the Voronoi sites. Each site s has a Voronoi cell, also
called a Dirichlet cell, V(s) consisting of all points closer to s than

1 In mathematics, a Voronoi diagram, named after Georgy Voronoi, also called a Voronoi
tessellation, a Voronoi decomposition, or a Dirichlet tessellation (after Lejeune Dirichlet), is
a special kind of decomposition of a metric space determined by distances to a specified
discrete set of objects in the space, e.g., by a discrete set of points.
2 Aurenhammer, Franz (1991). Voronoi Diagrams - A Survey of a Fundamental Geometric
Data Structure. ACM Computing Surveys, 23(3):345-405, 1991.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

61

to any other site. The segments of the Voronoi diagram are all the
points in the plane that are equidistant to two sites. The Voronoi
nodes are the points equidistant to three (or more) sites.1 (Fig. 3.1)

Figure 3.2 Main definitions concerning any Voronoi diagram.

The diagram created by connecting the voronoi points are called
Delaunay Triangulation. (Fig. 3.2)

3-2-1-2 Explanation.

1. A 2D lattice gives different tessellations depends on the
voronoi nodes. The tessellations varies according to the
distribution of points. (Fig. 3.3)

1 Ibid.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

62

Figure 3.3 Shows different voronoi diagrams due to variations in the voronoi cells.

2. A voronoi diagram is modified by modifying any point or

set points in the voronoi sites. (Fig. 3.4)

Figure 3.4 A simple Voronoi diagram with 5 points is modified by moving one point.

3. In a Voronoi diagram the common segment between any

two-voronoi cells bisects the distance between the centers
of these cells. (Fig. 3.5)

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

63

Figure 3.5 Segments bisect the distances between cells.

4. Naturally Occurring Voronoi (3d) : The voronoi geometry
is an organizational phenomena that is sometimes referred
to as “nature’s rule.” It re-occurs at a variety of scales,
materials, and life forms. Different examples are found in
biology, mineralogy of formation principles geometry, and
construction such as foams, sponges, bone structures and
crystals1. (Fig. 3.6)

Figure 3.6 Voronoi diagrams in biology and mineralogy of formation principles,
geometry, spatial effect and construction such as foams, sponges, and bone structures.

1 http://www.m-any.org/index.php?option=com_content&task=view&id=14&Itemid=34

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

64

5. Voronoi diagram in 3d has the following characteristics1:-

- Every 3d cell is defined by one point at its center.
- The common face between any two voronoi cells bisects
the distance between these cells.
-All boulders share a face.
-They fit together perfectly.
- distributing points in a volume is enough to generate a 3d

voronoi diagram. (Fig. 3.7)
- The 3d voronoi diagram represents a good structural

system since the load distribution is good.

Figure 3.7 Different voronoi diagrams due to the variations in points distribution.

3-2-1-3 Simple Voronoi Algorithm.

The following steps is the simplest form of a voronoi algorithm (
in the form of a natural language) 2 :-

1. Take a set of points.
2. Construct a bisector between one point and all the others.
3. The voronoi cell is bounded by the intersection of these

bisectors.
4. Repeat for each point in the set.

1 Aranda, Benjamin/Lasch, Chris, Pamphlet Architecture 27: Tooling(2005),Princeton
Architectural Press. P.52
2 Ibid P.53.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

65

3-2-1-4 General Applications.

A point location data structure can be built on top of the Voronoi
diagram in order to answer nearest neighbor queries, where
anyone wants to find the object that is closest to a given query
point. Nearest neighbor queries have numerous applications. For
example, if you want to find the nearest hospital, or the most
similar object in a database.

 Voronoi diagram is useful in polymer physics. It can be used to
represent free volume of the polymer.

 It is also used in derivations
of the capacity of a wireless network. Informal use of Voronoi
diagrams can be traced back to Descartes in 1644. Dirichlet used
2-dimensional and 3-dimensional Voronoi diagrams in his study
of quadratic forms in 1850. British physician John Snow used a
Voronoi diagram in 1854 to illustrate how the majority of people
who died in the Soho cholera epidemic lived closer to the infected
Broad Street pump than to any other water pump1

.

3-2-1-5 Architectural Applications.

Voronoi diagram lately are becoming useful in architectural
design. There are many reasons, which make the voronoi diagram
useful in architectural design, for example (Fig. 3.8):

a. Their structural properties, both in 2d and 3d.
b. As a way to subdivide/organize space, based on
proximity/closest neighbor.
c. The fact that they can describe many natural formations, like
soap bubbles, sponges or bone cells, with their minimal enclosure
system of bubbles.
d. Its expansion in three dimensions organizes a constructive
expansion toward infinity in all directions without any gaps.

1 http://mathworld.wolfram.com/VoronoiDiagram.html

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

66

Figure 3.8 Methods of applying voronoi diagrams in architecture by starting with

certain points in a volume.

The distribution of points is relative to the architectural program
requirements. It will be more interesting to use voronoi diagrams
in relation to a growing process such as cellular automata or l-
systems1. That could produce dynamic voronoi diagrams, and at
the same time would be closer to their mathematical/algorithmic
nature.

Examples:-

1- National Kaohsiung Performing Arts, Kaohsiung, Taiwan.
 by Zaha Hadid:-

Figure 3.9 Right: the main layout. Left: the stages of generating the layout starting

from the points to the final form.

 In this project, the architect distributed points in the main
envelope to create the main form. The overall form of the building

1 Will be discussed in detail in the following sections.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

67

itself seems to grow out of the voronoi patterned landscape,
merging at the top, to form a canopy that shades the public plaza
below. The main form was created by the Nurbs geometry then it
was divided by the voronoi algorithm (Fig. 3.9). 1. (Fig. 3.10-3.12)

Figure 3.10 The main façade of the performing arts center.

Figure 3.11 Various interior pictures represents the entrance and the main hall.

Figure 3.12 The public plaza. constructed from the voronoi diagram.

1 Leen, yun jung and others, Digital diagram architecture + interior (2007), Jeong, Kwang .
p.215.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

68

2- Water Cube, National Swimming Center, Beijing, China. By
PTW architects/John Bilmon:-

Water Cube, Swimming Center, Beijing, China.Water Cube, Swimming Center, Beijing, China.

Figure 3.13 Right: the main building reflects the use of voronoi diagram, Left : using

the envelope to .optimize the building performance.

Figure 3.14 Interior picture shows the surface constructed by a voronoi diagram.

This is a building all about water. Water becomes a profound
‘building material’ that dematerializes the building in a
meaningful way. That is the molecular structure of water in its
foam state is magnified into the structure of the building in the
form of a voronoi diagram. The structure of water softens and
dissolves all the boundaries, and gives the sophisticated ‘micro’
details to the monolithic totality. The sophistication of the
components and the simplicity and monumentally of the whole
gives the building an interesting duality1.(Fig. 3.13,3.14)

1 Ibid p.143.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

69

3-2-2 A * Algorithm1

3-2-2-1 Definition.

In computer science, A* (pronounced “A star”) is a best-first,
graph search algorithm that finds the least-cost path from a given
initial node to one goal node (out of one or more possible goals).2
(Fig. 3.15)

Figure 3.15 Examples showing the shortest path between two points selected by an A*

algorithm.

It uses a distance-plus-cost function (usually denoted f(x)) to
determine the order in which the search visits nodes in the tree.
The distance-plus-cost is a sum of two functions: the path-cost
function (usually denoted g(x)) and the distance to the goal
(usually denoted h(x)). The path-cost function g(x) is the cost
from the starting node to the current node. F(x)=g(x)+h(x).

Since the h(x) part of the f(x) function must be an admissible
heuristic3, it must underestimate the distance to the goal. Thus for
an application like routing, h(x) might represent the straight-line

1 The algorithm was first described in 1968 by Peter Hart, Nils Nilsson, and Bertram
Raphael. In their paper, it was called algorithm A. Since using this algorithm yields optimal
behavior for a given heuristic, it has been called A*.
2 Pearl, Judea (1984). Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley.
3 Heuristic is an adjective for methods that help in problem solving, in turn leading to
learning and discovery. These methods in most cases employ experimentation and trial and
error techniques. A heuristic method is particularly used to rapidly come to a solution that is
reasonably close to the best possible answer, or 'optimal solution'. In more precise terms,
heuristics stand for strategies using readily accessible, though loosely ap plicable, information
to control problem-solving in human beings and machines

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

70

distance to the goal, since that is physically the smallest possible
distance between any two points (or nodes for that matter).

3-2-2-2 Explanation.

• A* incrementally searches all routes leading from the
starting point until it finds the shortest path to a goal. Like
all informed search algorithms, it searches first the routes
that appear to be most likely to lead towards the goal.

• An example of A star (A*) algorithm in action (nodes are
cities connected with roads, h(x) is the straight-line distance
to target point). The function for every step is
generated.(Fig.3.16)

Figure 3.16 Steps done by an A* algorithm to compare paths from green node (upper
right) to blue node (bottom left).1

1 http://en.wikipedia.org/wiki/File:AstarExample.gif , Encyclopedia.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

71

• The algorithm traverses various paths from start to goal. For
each node x traversed, it maintains 3 values:

g(x): the actual shortest distance traveled from initial node to
current node

h(x): the estimated (or “heuristic”) distance from current node to
goal

f(x): the sum of g(x) and h(x)

Starting with the initial node, it maintains a priority queue of
nodes to be traversed, known as the open set. The lower f(x) for a
given node x, the higher its priority. At each step of the algorithm,
the node with the lowest f(x) value is removed from the queue, the
f and h values of its neighbors are updated accordingly, and these
neighbors are added to the queue. The algorithm continues until a
goal node has a lower f value than any node in the queue (or until
the queue is empty). (Goal nodes may be passed over multiple
times if there remain other nodes with lower f values, as they may
lead to a shorter path to a goal.) The f value of the goal is then the
length of the shortest path, since h at the goal is zero in an
admissible heuristic.

3-2-2-3 Simple A* Algorithm.
 A simple A* algorithm can be summarized and simplified in the
following steps :-

1- Start the path by computing the f(x) for the first node in
the first path.

2- Calculate the f(x) for the first node in the next path.

3- The lower f(x) value is removed from queue and get a
higher priority.

4- Calculate the f(x) for the third node and compare with the
node in the step 3.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

72

5- Repeat the previous steps 1-3 until the first node
representing the main path is selected.

6- The previous steps are repeated for every node in the
selected path until the goal is achieved.

3-2-2-4 General Applications.
In general, the A* (A-Star) algorithm is used in most games to
realize the way finding of game characters. For this purpose, the
whole game world is divided into little squares, and for each of
these a value is stored, which defines whether the square is easy –
more difficult – or impossible to be walked on. (Fig. 3.17)

Figure 3.17 In the two pictures above, the red squares mark regions, where it’s not
possible to walk. The blue squares are the data copied and recalculated for the figure
which is walking. To find out, which way is the best, some free squares are observed
(“expanded” in technical terminology). Those squares are the yellow ones.

3-2-2-5 Architectural Applications.

The use of A* algorithms in architecture can be explained as
follows1;-

1- Simulating the motion of the users in a certain
building, which could help in solving many design
problems.(Fig. 3.18)
2- Urban design based on pedestrian’s movement.

Using A* algorithms in urban has proven to be effective in
predicting patterns of pedestrian and vehicular movement and

1 http://www.vr.ucl.ac.uk/depthmap/, UCL Bartlett school of Graduate studies.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

73

levels of space use in urban areas. Using this technique, the
probable outcome of design decisions can be forecasted during the
design process. Designs can then be modified so they will achieve
levels of movement and space use appropriate to the functions
desired on the site, i.e. high levels of movement for retail streets
or lower levels for residential ones1. (Fig. 3.18)

Figure 3.18 A* algorithm used in studying circulation in a certain plan.

3-2-3 Stochastic Search

3-2-3-1 Definition:

A stochastic search is defined as a random search in space until a
given condition is met2.

1 Ibid.
2 Terzidis, Kostas (2006). Algorithmic Architecture. opcit, p.86.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

74

Stochastic optimization methods are optimization algorithms
which incorporate probabilistic (random) elements, either in the
problem data (the objective function, the constraints, etc.), or in
the algorithm itself (through random parameter values, random
choices, etc.), or in both1.

3-2-3-2 Explanation:

• The implemented Stochastic Process is a search algorithm
that iterates over a given spatial structure assigning
alleatory architectural elements to specific spots until a set
of conditions defined by the rules is met. The alleatory
nature of the algorithm is intended to make evident the
distinction between the rule-building and a non-
deterministic form-making process, therefore showing to
what extent in computer-oriented design problem
interpretation, rule-building and evaluation are important
design acts.

• It shows how a clear division between the rule-building

process and the actual production of form fosters an active
dialogue between the computer and the human. The
Stochastic Search Algorithm plays the role of the form-
maker, whereas the human designer plays the role of the
rule-builder and evaluator.

• For example: The placement of toys in a playpen so that

each toy does not overlap another and they all fit within the
limits of the playpen can be addressed with a stochastic
search. The algorithm will work as follows (Fig. 3.19);2

While(no more toys left to place){
Choose randomly a position (rx,ry) within the playpen
Compare it with all previous toy locations
Is there an overlap? (if no the place the toy at (rx,ry))}

1 Spall, J. C. (2003). Introduction to Stochastic Search and Optimization. Wiley.
2 Terzidis, Kostas (2006). Algorithmic Architecture. opcit, p.87

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

75

Figure 3.19 Using a stochastic search to distribute toys without any overlaps in a
certain area.

This algorithm can be used to place objects within a site so
that there is no overlap (or some other criterion issatisfied).

• Stochastic Search as an optimization method is sometimes

computationally inefficient. It requires a large number of
calculations to provide a solution, and the chances of not
finding a solution are increased as the search space is
reduced.

3-2-3-3 Simple Stochastic Search Algorithm.

The following steps represent stochastic search :-

1- Determine the main rules that make the form of a building,
such as distributing certain elements in a certain envelope.
2- Start distributing elements, the first element, then the
second,…,etc. Each element is distributed by applying the
rules and by checking its relation with the previous elements.
3- Test the result and check it form the architectural point of
view.
4- If the results do not meet the architectural needs, start again
with step 2 until the result meets the needs.

3-2-3-4 Architectural Applications

Stochastic search can provide an unlimited number of variations
in the architectural form while following the same set of
constraints. The interpretation of the problem and the rule setting

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

76

process play a major role in the production of meaningful form.
stochastic search represents the shifting role of human designers
from form-makers to rule-builders in a computation-oriented
design endeavor.

Examples:

1- Accumulata : organizing a certain façade for office building
based on stochastic search. By Gyoscope1.

Figure 3.20 Office building façade based on stochastic search.

Stochastic search was used in this example to make an impressive
façade by using a certain unit (a box and changing its scale) and
this unit is distributed according to certain rules. (Fig. 3.20, 3.21)

1 http://www.gyoscope.com/

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

77

Figure 3.21 Various iterations for the façade.

2-A Library: generated by the research group of Harvard Graduate
School of Design.

This project is generated by using a stochastic search to generate
the architectural design. Every space is represented as a box and is
distributed according to certain architectural functional rules
within an area of 30*30 unit square site.

The algorithm employs an XY coordinate system that generates a
square range to accommodate available positions for the program
units. The architectural programs of a library could be satisfied by
accumulating a certain number of such modular units, each of
them has its uniqueness in X and Y values as a spatial entity and
its Z value is determined by the connectivity between each other.
So in one program and its subprograms within, or in several
programs which share their intimacy, their Z values will be the
same thus architecturally being placed on the same floor level.
Otherwise, they will be at different levels and connected only by
the vertical circulation.1the following diagram shows the program
of spaces.

1 Terzidis, Kostas (2006). Algorithmic Architecture. opcit, p.127

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

78

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

79

Figure 3.22 Steps in the process of allocating program spaces recursively within a 30 ×

30 unit square site.

Figure 3.23 Library generated by the stochastic search algorithm.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

80

3-2-4 L-systems.

3-2-4-1 Definition:

A Lindenmayer System is a formal grammar that was
initially conceived as a theory of plant growth. L-Systems
can generate complex forms with relatively few simple
rules1.

3-2-4-2 Explanation:

1. L-systems are a special kind of string rewriting2
grammars introduced by A.Lindenmayer in 1968 for
modeling plants. They rewrite a given string (a
sequence of symbols) according to a grammar, i.e. a
set of rules. To give an example, the single rule:

 a

→ b a b

 transforms the string:

 a b a c

 into

 b a b b b a b c

L-Systems consist of two parts: a generative and an
interpretative process. The main concept of the generative
process is string rewriting, in which the letters that
comprise an initial string are replaced by other letters
according to pre-defined rules. The replaced letters form a

1 Rozenberg,Grzegorz and Salomaa,Arto . The mathematical theory of L systems,Academic
Press, New York, 1980.
2 In computer science and mathematics a Semi-Thue system (also called a string rewriting
system) is a type of term rewriting system which covers a wide range of potentially non-
deterministic methods of replacing sub-terms of a formula with other terms. What is
considered are rewrite systems which, in their most basic form, consist of a set of terms,
plus relations on how to transform these terms.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

81

new generation of string which is then subject to the
established replacement rules. This string rewriting
process is usually repeated for several generations.

2. In the second part of the L-System, the letters of one or
multiple generations of string are interpreted and
visualized. For instance, letters of a string can be
visualized by mapping them to attributes of objects or
alternatively by interpreting them as turtle graphic
commands1.

- For example: A variant of the Koch curve which uses
only right-angles.

 variables : F

 constants : +

−

 start : F

 rules : (F

→ F+F

−F−F+F)

 Here, F means "draw forward", + means "turn left 90°",
and - means "turn right 90°" (see turtle graphics).

 n = 0:

 F

 n = 1:

 F+F-F-F+F

 n = 2:

F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-
F+F+F+F-F-F+F

1 Ibid.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

82

 n = 3:

F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-
F+F+ F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-
F-F+F- F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-
F+F+F+F-F-F+F- F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-
F-F+F+F+F-F-F+F+ F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-
F+F-F-F+F+F+F-F-F+F

Figure 3.24 Various generations for Koch Curve.

- Another example:The Sierpinski triangle1 drawn using an L-
system.

variables : A B
constants : +

−

1 http://en.wikipedia.org/wiki/L-systems

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

83

start : A
rules : (A

→ B

−A−B),(B → A+B+A)
angle : 60°

Here, A and B mean both "draw forward,” + means "turn left by
angle,” and

− means "turn right by angle" (see turtle graphics).
The angle changes sign at each iteration so that the base of the
triangular shapes are always in the bottom (they would be in the
top and bottom, alternatively, otherwise).

Evolution for n = 2, n = 4, n = 6, n = 9

There is another way to draw the Sierpinski triangle using an L-
system.
variables : F G
constants : +

−
start : F

−G−G
rules : (F

→ F

−G+F+G−F),(G → GG)
angle : 120°
F and G both mean "draw forward", + means "turn left by angle",
and

− means "turn right by angle".

Figure 3.25 Various generations for Sierpinski triangle.

3. The power of L-Systems as generators of form appears
to lie in the extreme reduction of inputs relative to the
scope and complexity of the output.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

84

4. Much of this power is derived from the fact that inputs
can incorporate processes, i.e. there is no formal
distinction between the two.

5. While there is no single type of form intrinsic to L-
Systems, forms that include branching, recursion, and
modularity are particularly easy to construct.

6. L-system structure: The recursive nature of the L-
system rules leads to self-similarity and thereby
fractal-like forms which are easy to describe with an
L-system. Plant models and natural-looking organic
forms are similarly easy to define, as by increasing the
recursion level the form slowly 'grows' and becomes
more complex. Lindenmayer systems are also popular
in the generation of artificial life.

3-2-4-3 Simple Algorithm.
The following steps represent a simple algorithm for L-systems:

1- Determine the variables that are going to drive the form.
Which are Variable, constraints, Rules.
2- Determine the types of mapping that are going to be

assigned to variables.
3- Assign the maps to the variables and start running the

algorithm.
4- Check the evolutions generated.
5- if the resultant form does not meet the specifications go to

step 1 (change variables or rules).

3-2-4-4 General Applications.

As a biologist, Lindenmayer1 worked with yeast and filamentous
fungi and studied the growth patterns of various types of algae,
such as the blue/green bacteria Anabaena catenula. Originally the
L-systems were devised to provide a formal description of the
development of such simple multicellular organisms, and to

1 Aristid Lindenmeyer (November 17, 1925 – October 30, 1989) was an Hungarian biologist.
In 1968 he developed a formal language that is today called L-systems or Lindenmeyer
Systems. Using those systems Lindenmeyer modelled the behaviour of cells of plants. L-
systems nowadays are also used to model whole plants.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

85

illustrate the neighborhood relationships between plant cells. Later
on, this system was extended to describe higher plants and
complex branching structures.

3-2-4-5 Architectural Applications:

Throughout the history of architecture great interest has been
taken in the models for structure that nature offers. This interest
can explained through history as follows:-

- Stone branched constructions are found in Gothic stone masonry.
(Fig. 3.26. (a))

-At the end of the twentieth century, technological advances and
research by some architects and engineers has made it possible to
build lighter structures as branched constructions on the same
bases as those of the natural world. One of the greatest
achievements in the fields of architectures are Antonio Gaudi
(Fig.3.26. (b)), Frei Otto (Fig. 3.26. (c)), Enric Miralles (Fig. 3.26.
(d)), Santiago Calatrava (Fig.3.26. (e)), etc.

Figure 3.26 Various examples for using structure similar to nature structures.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

86

L-systems represent mainly the contemporary method for creating
architectural forms from nature, especially tree like structure.
Nowadays, L- Systems are used to generate an infinite variety of
tree like structures and patterns.

Example :

1- Inverted skyscraper by Cheng Pan.

In this example l-systems are used to generate the structure of
the skyscrapers. The idea is to cultivate skyscrapers to create
urban clusters (in inside skyscrapers) from a small area on the
ground. (Fig. 3.27-3.30)

 Figure 3.27 Final elevation for the skyscrapers.

 Figure 3.28 Perspective shows the benefits for the inverted skyscrapers (connected
urban clusters).

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

87

Figure 3.29 Structure System for one of the skyscrapers

Figure 3.30 Using L-systems to generate structure (studying of plans relative to
structure)1

1 Leen, yun jung and others, Digital diagram architecture + interior (2007), Opcit . p.305.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

88

2- Fake Plastic Trees at the Schindler House, Hollywood,

California, United States.

"Fake Plastic Trees" is an attempt to investigate the formal,
spatial and atmospheric potential of a vertically sustainable
garden in synch with the most advanced technology for plant
growth by using l-Systems. The garden is composed of a
branching circuitry network made of plastic PVC tubes. These
tubes circulate and distribute water with a nutrient solution that
cultivates aerial vegetation of different kinds. (Fig. 3.31- 3.33)

Figure 3.31 Fakeplastic trees made from plastic PVC tubes.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

89

Figure 3.32 Fakeplastic trees main form.

Figure 3.33 Cross-section showing the flow of water.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

90

3-The Grand Egyptian Museum, Giza, Egypt.

Heneghan Peng used Sierpinski's system in the design of the
translucent alabaster cladding of the front facade of the grand
Egyptian museum. (Fig. 3.34)

Fig. 3.34: Sierpinski set was used in designing the translucent alabaster cladding of the
grand Egyptian museum's façade.

3-2-5 Cellular Automata

3-2-5-1 Definition.

A cellular automaton1 (plural: cellular automata) is a discrete
model studied in computability theory, mathematics, theoretical
biology and Microstructure Modeling. It consists of a regular grid
of cells, each in one of a finite number of states. The grid can be
in any finite number of dimensions. Time is also discrete, and the
state of a cell at time t is a function of the states of a finite number
of cells (called its neighborhood) at time t

−1. These neighbors are

1 In 1970 the concept of the cellular automata was brought to the attention of a wide audience
through the introduction of a simple ecological model, called “Game of Life”, by the British
mathematician John Horton Conway.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

91

a selection of cells relative to the specified cell, and do not change
(though the cell itself may be in its neighborhood, it is not usually
considered a neighbor). Every cell has the same rule for updating,
based on the values in this neighborhood. Each time the rules are
applied to the whole grid a new generation is created1.(Fig 3.35)

Figure 3.35 An Eight Neighborhood.

3-5-2 Explanation:
1- Before creating a cellular automata the following points

should be determined :- (Fig. 3.36)
 - Cells.
 -State of cells.
 - Neighborhood of a cell.
 - Transition rules.

Figure 3.36 Basic cellular automata terminology.

2-One way to simulate a two-dimensional cellular automaton is
with an infinite sheet of graph paper along with a set of
rules for the cells to follow. Each square is called a "cell"
and each cell has two possible states, black and white. The

1 Krawczyk, R.J.: Architectural Interpretation of Cellular Automata. Illinois Institute of Technology,
USA, Generative Art 2002.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

92

"neighbors" of a cell are the 8 squares touching it. For such
a cell and its neighbors, there are 512 (= 29) possible
patterns. For each of the 512 possible patterns, the rule table
would state whether the center cell will be black or white on
the next time interval. The first rule is “game of life” and
was stated by John Horton Conway. (Fig. 3.37)

Figure 3.37 Game of life by John Conway1.

3- The three-dimensional universe, of cellular automata

consists of an unlimited lattice of cells. Each cell has a
specific state, occupied or empty, represented by a marker
recording its location. The transitional process begins with
an initial state of occupied cells and progresses by a set of
rules to each succeeding generation. The rules determine
who survives, dies, or is born in the next generation. The
rules use a cell’s neighborhood to determine its future. The
neighborhood can be specified in a number of ways.
According to the designer need. (Fig 3.38)

1 The rule of the Game of Life is as follows: a dead cellsurrounded by exactly three living
cells comes back to life. On the other hand, a living cell surrounded by less than two or more
than three neighbours dies, as if by loneliness or overcrowding respectively. In the case of
the Game of Life, each cell is affected by the state of its eight neighbours, which are the cells
that are directly horizontally, vertically, or diagonally adjacent.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

93

Figure 3.38 Game of life by John Conway (Reproduction Phase)1

3-2-5-3 Simple Algorithm.

A simple cellular automata algorithm can be explained in the
following steps :-
1- Define the size of the grid.

1 Clarke, Cory & Anzalone, Phillip. Architectural applications of complex adaptive systems,
Proceedings of ACADIA Conference 2003.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

94

2- Start with certain cells in the grid (based on certain
architectural point of view).
3- State the rule defining the next generation.
4- Test the result and make loop of iterations until the result is
accepted.

3-2-5-4 General Applications:

The general applications for CA can be explained as follows :

1-lattice models for solidification and aggregation structural
mechanics.
2-modeling of biological systems.
3-modeling of simple behavior, functioning of organisms, and
study of chemical and physical turbulence.
4-study of problems in number theory, tapestry design Forestry.

3-2-5-5 Architectural Applications

While cellular automata (CA) were developed originally to
describe organic self-replicating systems, their structure and
behavior were also useful in addressing architectural, landscape,
and urban design problems. From vernacular settlements and
social interaction to material behavior and air circulation, CA may
provide interesting interpretations of urban and architectural
phenomena. The basic idea behind CA is not to describe a
complex system with complex equations, but to let the complexity
emerge by the interaction of simple individuals following simple
rules. Typical feature of CA include: absence of external control
(autonomy), symmetry breaking (loss of freedom/heterogeneity),
global order (emergence from local interactions), adaptation
(functionality/tracking of external variations), complexity (
multiple concurrent values or objectives), and hierarchy (multiple
nested self-organized levels).(Fig 3.39)

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

95

Figure 3.39 Cellular automata as an LCD display wrapped around a building (class
project by N. Anderson for course GSD2311 taught by Kostas Terzidis in Fall 2005 at
Harvard University)1

Example;

1- Cero9 examined the generative design potential of cellular
automata by applying them to the re-modeling of the northern
style housing competition in Aomori/Japan 2001. (Fig. 3.40)
shows the adaptation of CA in the design process. (Fig. 3.40, 3.42)
shows the final design.

1 Terzidis, Kostas (2006). Algorithmic Architecture. opcit, p.98

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

96

3.40 CA adaptation into the design process of the housing competition re-modeling.

Fig. 3.41: The final outcome of the northern style housing competition re-modeling

Aomori/Japan 2001 using CA.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

97

Fig. 3.42: Variations in outcome.

3-2-6 Swarm Intelligence

3-2-6-1 Definition:

Swarm intelligence (SI) is an artificial intelligence based on the
collective behavior of decentralized, self-organized systems1. SI
systems are typically made up of a population of simple agents
interacting locally with one another and with their environment.
Although there is no centralized control structure dictating how
individual agents should behave, local interactions between such
agents lead to the emergence of global behavior. Natural examples
of SI include ant colonies, bird flocking, animal herding, bacterial
growth, and fish schooling2.

1 The expression was introduced by Gerardo Beni and Jing Wang in 1989, in the context of
cellular robotic systems.
2 Aranda, Benjamin/Lasch, Chris, Pamphlet Architecture 27: Tooling(2005),Princeton
Architectural Press.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

98

Fig. 3.43: Natural examples of SI include ant colonies, bird flocking, and fish schooling.

The application of swarm principles to robots is called swarm
robotics, while 'swarm intelligence' refers to the more general set
of algorithms.

The term swarm is applied to fish, insects, birds and
microorganisms, such as bacteria, and describes a behavior of an
aggregation of animals of similar size and body orientation,
generally cruising in the same direction. This is a partial list of
animals that swarm: Ants, Birds, Eels, Honey bees and Termites.

The social insect metaphor for solving problems has become a hot
topic in the last five years. The number of its successful
applications is exponentially growing in combinatorial
optimization, communications networks and robotics. More and
more researchers are interested in this new exciting way of
achieving a form of artificial intelligence based on swarm
intelligence (the emergent collective intelligence of groups of
simple agents).

3-2-6-2 Explanation:

1- A very influential simulation of bird flocking was published by
Craig Reynolds1 in 1987. Reynolds assumed that flocking birds
were driven by local forces :
 -collision avoidance,

1 Craig Reynolds (born March 15, 1953), is an artificial life and computer graphics expert,
who created the Boids artificial life simulation in 1986. Reynolds worked on the film Tron
(1982) as a scene programmer, and on Batman Returns (1992) as part of the video image
crew. He is the author of the OpenSteer library.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

99

 -velocity matching,
 -flock centering.
 - pull away before they crash into one another
 - try to go the same speed as their neighbors in the flock
 - try to move toward the center of the flock as these perceive
it1. (Fig. 3.44)

Fig. 3.44: Diagram of the swarm. Arrows represent each agent’s heading, dotted lines

their closest neighbors.
3- A typical example of a natural swarm system is an ant colony.
Each ant follows only simple local rules, but through the
interaction of a large number of ants, the colony as a whole acts
like a super-organism: it acquires food, competes for foraging
areas, grows, and maintains a highly complex spatial as well as
social organization.(Fig.3.45)

Fig. 3.45:Ant Colony as a natural swarm system.

1Pablo Miranda Carranza & Paul Coates, Swarm modeling: The use of Swarm Intelligence to generate
architectural form.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

100

2- Benefits and Disadvantages of Swarm Systems

Benefits: Adaptable, Evolvable, Resilient, Boundless and Novelty

Apparent Disadvantages: No-optimal, Non-controllable, Non-
predictable, Non-understandable and Non-immediate.

3-2-6-3 Simple Algorithm.

 Algorithm for Flocking1

- For each agent, for each increment of time :
a) Avoid crowding local flockmates. Steer to keep a minimum

distance between each agent and the ones around it.2
b) Align towards the average heading of local flockmates.
c) Cohere to the flock, move toward the center mass3 of local

flockmates.(Fig. 3.46)

Fig. 3.46:Main items in creating a flocking algorithm4

.
3-2-6-4 General Applications.
The general applications for swarm intelligence can be explained
as follows :-
1- The U.S. military is investigating swarm techniques for
controlling unmanned vehicles.
2- NASA is investigating the use of swarm technology for
planetary mapping.

1 Aranda/Lasch, Tooling, Pamphlet architecture, Princeton Architectural Press, 2006.
2 In flocking models, a boid reacts only to flockmates within a certain neighborhood around
itself; there is no global steering intelligence. The neighborhood is defined by a distance
from the center of boid and an angle around it, measured from its direction of travel.
3 The "center mass" is the average position of all agents.
4 Ibid.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

101

3- A 1992 paper by M. Anthony Lewis and George A. Bekey
discusses the possibility of using swarm intelligence to control
nanobots1 within the body for the purpose of killing cancer
tumors.
4- Artists are using swarm technology as a means of creating
complex interactive systems or simulating crowds. Batman
Returns was the first movie to make use of swarm technology for
rendering, realistically depicting the movements of a group of
penguins.

3-2-6-5 Architectural Applications

Swarm architecture is a true transarchitecture since it builds new
transaction spaces, which are at the same time emotive,
transactive, interactive and collaborative. When we look at an
urban environment from the point of view of Swarm Architecture
we no longer see isolated objects, instead we see objects which
have a relation with each other. Swarm-based urban planning is an
intriguing and very dynamic design game. It is really challenging
for the designer to find the rules that generate excitement in the
cities.

Swarm intelligence represents an excellent method to test the
interaction between the user and the building, to study alternatives
of design based on the interactions of users. (Fig. 3.47-3.49)

1 Nanorobotics is the technology of creating machines or robots at or close to the
microscopic scale of a nanometres (10-9 metres). More specifically, nanorobotics refers to
the still largely hypothetical nanotechnology engineering discipline of designing and
building nanorobots. Nanorobots (nanobots, nanoids or nanites) would be typically devices
ranging in size from 0.1-10 micrometers and constructed of nanoscale or molecular
components. As no artificial non-biological nanorobots have so far been created, they remain
a hypothetical concept at this time.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

102

Fig 3.47 Paths of pedestrian exploration driven by space syntax architectural concepts
based on swarm intelligence1.

Fig. 3.48 Breaking of a corridor doorway into two helps in lane formation and avoid
door clogging and oscillation.

1 Space Syntax Architectural tool is used to study circulation based on swarm intelligence
and a* algorithm.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

103

Fig 3.49 Simulation of a ship evacuation, using the tool EXODUS based on swarm

intelligence.

3-2-7 Genetic Algorithms

3-2-7-1 Definition

Genetic Algorithm is an artificial intelligence procedure. It is
based on the theory of natural selection and evolution.1

Genetic algorithms were developed in an attempt to explain the
adaptive processes of natural systems and to design artificial
systems based upon these natural systems.

 GAs are widely used in optimization of design in many
engineering fields, to improve a previous design, or to create new
design form scratch. GAs show great power in design fields due to
its ability of creating a wide range of alternatives in design, in a

1 Bentley. P.: Evolutionary Design by Computers. Morgan Kaufmann publishers, 1999.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

104

very short time, which can help the designer in decision making.
The idea of the GAs is based mainly on the genetic rules, similar
to the genetic rules of the living creatures.

Fig.3.50 Evolutionary computation has its roots in computer science and evolutionary

biology.
GAs are widely used in optimization of design in many
engineering fields, to improve a previous design, or to create new
design from scratch. GAs show great power in design fields due to
its ability of creating a wide range of alternatives in design, in a
very short time, which can help the designer in decision making.

The idea of the GAs is based mainly on the genetic rules, similar
to the genetic rules of the living creatures.

3-2-7-2 Explanation

1- Genetic algorithms use two separate spaces: the search space
and the solution space1 (Fig. 3.51).

i. The search space is space of coded solutions to the
problem.

ii. The solution space is the space of actual solutions.

Coded solutions, or genotypes must be mapped as actual
solutions, or phenotypes, before the quality or fitness of
each solution can be evaluated.

1 Ibid.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

105

Fig 3.51: Mapping genotypes in the search space to phenotypes in the solution space.

2- In GA each individual element (in the phenotype) in the
solution space, takes a code (a binary code depends on its
properties) in the search space (in the genotypes). Phenotypes
usually consist of collections of parameters; Genotypes consist of
coded versions of these parameters. A coded parameter is
normally referred as a gene, with the values a gene can be known
as alleles. A collection of genes in one genotype is often held
internally as a string, and is known as a chromosome (Fig. 3.52,
3.53).

Fig. 3.52: The behavior of the crossover operator. The vertical line shows the position of

the random crossover point.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

106

Fig. 3.53: Four generations of evolving house designs using a population

 size of four. Parents of the next generation are circled.

3-The use of evolutionary computation by (GAs) to generate
designs has taken place in many different fields over the last 20 or
25 years.

Designers optimize selected parts of their designs using evolution,
artists use evolution to generate aesthetically pleasing forms,
architects evolve new building plans from scratch, and computer
scientists evolve morphologies and control systems of artificial
life1.

In general, these types of evolutionary design by (GAs) can be
classified into many categories the most important are as follows:
Evolutionary design optimization, Evolutionary art, Evolutionary
artificial life forms, and Creative evolutionary design2 (Fig. 3.54).

Fig. 3.54: Classifications of evolutionary design by GAs.

1 Bentley. P.: Evolutionary Design by Computers. Morgan Kaufmann publishers, 1999.
op.cit.

2 Ibid, P.35

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

107

i- Evolutionary Design Optimization(For example, Evolutionary
optimization of a table) (Fig. 3.55).

Fig. 3.55: Evolutionary optimization of a table.

ii- Conceptual evolutionary design.

For example, Conceptual evolutionary design of table.(Fig. 3.56).

Fig. 3.56: Conceptual evolutionary design of a table.

iii- evolving artistic tables (Fig. 3.57).

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

108

Fig. 3.57: Evolving artistic tables.

Iv-Generative evolutionary design of a table (Fig. 3.58)

Fig. 3.58: Generative evolutionary design of a table.

4- GAs spread widely in industrial design but so far slowly in
architecture design. One of the famous uses in industry is furniture
design. The design criteria id translated into genotypes and the
products are left to an autonomous process. After generating
sufficient alternatives, form selection can be made according to
the user needs, material criteria, or an expert decision. Structural
and functional details will be elaborated after the selection. (Fig.
3.59)

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

109

Fig. 3.59: Generated chairs using 'CongGen' software.

3-2-7-4 Simple Genetic algorithm.

The simplest form of a GA is summarized in (Fig. 3.60). This
genetic algorithm can be explained in the following points1:

i. The genotype of every individual in the population is
initialized with random alleles.

ii. The main loop of the algorithm then begins, with the
corresponding phenotype of every individual in the
population being evaluated and given a fitness value
according to how well it fulfils the problem objective or
fitness function.

iii. These scores are then used to determine how many copies
of each individual are placed into a temporary area often
termed the ‘mating pool’ (i.e. the higher the fitness, the
more copies that are made of an individual).

iv. Two parents are then randomly picked from this area.
v. Offspring are generated by the use of the crossover

operator, which randomly allocates genes from each
parent’s genotype to each offspring’s genotype. For
example, given two parents: ‘ABCDEF’ and ‘abcdef’, can
create a new generation of ‘ABcdef’ and ‘abCDEF’, and
another new generation can be created by ‘ABcdef’ and
‘abCDEF’, and so on…..

1 Ibid.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

110

vi. This entire process of evaluation and reproduction then
continues until, either a satisfactory solution emerges or the
GA will run for more generations.

Fig. 3.60: The simplest genetic algorithm1.

3-2-7-5 Architectural application

The previous types of GA applications (evolutionary design
optimization, creative evolutionary design, etc.), can be applied in
form finding problems, and in studying alternatives for generating
plans.

GA proposed the evolutionary model of nature as the generating
process for architectural form. The creative power of natural
evolution is done by generating virtual architectural models.
Architecture by a GA is considered as a form of artificial life.

The use of genetic algorithms to manufacture forms and
relationships is the main process in creating an evolutionary

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

111

architecture. These genetic algorithms can be used to generate
complex spatial models, which can then be filled, punched, and
stretched to meet other functional or aesthetic criteria.

Architectural concepts in evolutionary architecture are expressed
as1:

-Generative rules, so that their evolution and development can be
accelerated and tested by the use of computer models. Computer
models are used to create the development of prototypical forms
that are then evaluated on the basis of their performance (or
aesthetic) in a simulated environment. The best models become
(according to their performance) the parents, which are going to
create better models in the new offspring. These new evolutionary
steps (offspring) can be generated in a short space of time and the
emergent forms are often unexpected.

-Genetic language that produces a code script (Genotype at search
space) of instructions for form-generation.

Example;

- Hybrid house (using crossover)

In nature, when two individuals mate, each parent passes half of
its paired chromosomes onto its common offspring. The
chromosomes combine to form new pairs, which lead to a unique
new individual with phenotypes inherited from both parents.
Individuals with more adapted genotypes will survive in the
evolution process while others will eventually be eliminated.

Inspired by this nature analog, five building units were designed
using the CAD program and exported them into Maya. Then, a
program was written in MEL language to execute Genetic

1 Frazer, J., Frazer, J., Liu, XY., Tang, MX. and Janssen, P.: Generative and Evolutionary
Techniques for Building Envelope Design. GA2002 (Generative Art and Design Conference,
Politecnico di Milano University, Italy , Milan 11-12-13 December 2002).

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

112

algorithm and produced 3125 offspring in the first generation, by
an exhaustive combination of five original units’ genotype. From
these 3125 samples, only five ideal spatial arrangement solutions
were selected by reviewers and then used as the genotype for the
next generation.

In the third generation, three nonlinear deformation nodes (bend,
twist, and wave) were evolved independently in the evolution and
then explicitly added to the five units to yield a more complex
layout potential. As a result, a high degree of complexity was
generated.

In this process, GA demonstrated itself with great power and
unlimited potential of form reproduction driven from sets of
genetic parameters. The reviewers selected the desired spatial
layouts that survived and reproduced them to create the new
generation.

In the fourth generation, a central courtyard was introduced into
the evolution as a “void unit” and blended with the selected
layouts. Another input variable, time, as the 4th dimension, was
also added to freeze all the layout possibilities into a motion.(Fig.
3.61-3.62).

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

113

Fig. 3.61: Two generations with their samples.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

114

Fig. 3.62: The animation was captured from 3125 spatial
arrangement solutions crossed four generations.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

115

3-2-8 Examples for other kinds of algorithms.

3-2-8-1 cracking

This algorithm divides a certain objects to smaller particles by
cracking it. By recalling its source shape recursively, cracking
generates a geometry of self-similarity. For instance, a river delta
has variously scaled “triangles” that are each “cracked” by the
iterative and aggregate process of fluvial erosion. The crack
patterns in dry mud or paint show a similar recursion of shapes in
at least two visible scales. Whether it is the dynamics of water
channeling through sediment to produce a delta or heat and
dryness causing paint to peel, cracking is a distinct action
performed through materials. (Fig. 3.63)

Fig. 3.63:Natural cracks found in nature.

- Simple Algorithm for Cracking1 (Fig. 3.64)

1. Choose a shape to be cracked.
2. Find its centroid.
3. Create subsidiary shapes by connecting the centroid to each end

of one edge of the parent shape.
4. Repeat steps 2 and 3 for each new shape.2
5. Continue until a limit is reached. Choose an iteration of the

1 This algorithm produces a construction in which each edge is shared by exactly two shapes
and each edge is continuous—connected to an edge which is connected to an edge, and so
on—no matter how dense the mesh becomes.
2 If one were to localize the cracking—crack more in one part of the structure than another—
one could create patches made up of a higher number of shorter members.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

116

algorithm whose subsidiary shapes will be left whole.1

Fig. 3.64:Steps for cracking a certain object.

The cracking algorithm used in these sketches is one that takes a
shape and divides it according to a value set by the user. In each
instance, the shape is being recurred to another set of self-similar
shapes. 2.(Fig.3.65)

Fig. 3.65 Cracked objects by using the cracking the algorithm.

1 Each iteration contains an exponentially greater number of shapes than the one before it.
Each iteration takes an exponentially longer time to process.

2 Aranda/Lasch, Tooling, Pamphlet architecture, Princeton Architectural Press, 2006, Opcit.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

117

3-2-8-2 Packing

Packing is a powerful organizational method in which an
element’s position in regard to its neighbors is determined by
certain rules—not too close, no overlapping, etc. Packing
encourages a sense of democracy where one element’s inclusion
implies either an understanding of every other element or possibly
a readjustment of the entire population. Whether it is studied as
self-organized structuring in cells or as a behavioral trope in
crowds, packing can be observed as a collective and emergent
sense of space—close, but not too close.(Fig. 3.66)

-Simple Algorithm for Packing

1.Create a shape1 of a random size.
2.Pick a random point.
3. a) If the shape is inside another shape2, or overlaps another
shape, throw it away and go back to step 13

b) If not, place it. Go to step 1.

Fig. 3.66 Oscillatory packing.

1 Spheres (circles) are naturally stable shapes. When packed together, they create a very
strong construction, owing to the sphere’s inherent stability and tendency for a collection of
spheres to produce multiple points of tangency.
2 If the distance between the circles is less than the suns of their radii, then they overlap.
3 Obviously, as more circles are placed, it gets harder and harder to place a new one. This is
a brute force method.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

118

Beyond serving as a dynamic system for producing flat
organizations, packing also offers rich three-dimensional and
material strategies when combined with other operations. (Fig.
3.67)

Fig. 3.67 Various forms generated by packing.

3-2-8-3 Spiraling

Whether stars, storm clouds, or petals of a flower, the spiral is
only detectable by observing the things caught in its wake.
Droplets of Ferro-liquid placed in a polarized solution reveal that
magnetic energy naturally distributes itself in a spiral
manifestation. The form is also inherent in plant growth patterns,
which allow the maximum number of petals to grow in the least
amount of space. The spiral is not so much a shape as the evidence
of a shape in formation. (Fig. 3.68)

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

119

 Fig. 3.68 spiral as a path for objects.

Fig. 3.69 Parameters for generating a spiral.

Simple algorithm for Spiraling (Fig. 3.69):

1. Pick an angle (d).
2. imagine a circle. Plot one point on this circle at d degrees
from the origin.1
3. Plot another point at d degrees from the last point on a
concentric circle that is slightly bigger than the circle before it.
4. Repeat step 3.2

1 The coordinates of the kth point in a spiral lattice with divergence d and expansion

parameter G are given by (Gk cos(kd), Gk sin(kd)).
2 In a spiral lattice, the eye tends to connect nearest points into spirals. These spirals within
the spiral arc called parastichies. In plants, the number of d=137.5 these visible spirals are
most often two successive elements of the Fibonacci sequence: one in which each number is
the sum of the previous two.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

120

A series of points placed on concentric circles with a constant
divergence angle between them is called a spiral lattice. These
experiments use a three-dimensional spiral lattice to project a
structured envelope. The spiral lattice is promising as a formal
proposition because there is a seemingly infinite number of
spiral/sub-spiral configurations available from the finite set of
shared points plotted in the original lattice. Within any of these
configurations it is easy to find multiple points of intersection to
develop stability. (Fig. 3.70)

Fig. 3.70 Examples for spirals generated by the algorithm.

3-2-8-4 Weaving.

Weaving is the synthesis of two different systems, interlocking in
order to give self-supporting form to their combined whole.
Traditionally referred to as a “warp” and a “weft” pattern, neither
could support themselves alone, but together they become strong.
The endless variety of weaving seen in basket, net, rope, and
textile design proves that procedural techniques and cultural
practices are not mutually exclusive. Most surprising about a
woven construction is that it is actually harder to unravel than to
weave in the first place. (Fig. 3.71)

This model is typically used to describe Phyllotaxis (Greek phyio, leaf + taxis, arrangement),
a naturally occurring plant growth pattern that governs the arrangement of leaves, flower
petals, pine cones, etc.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

121

Fig. 3.71 Various types for weaving.

Simple algorithm for Weaving1

 1. Start drawing a sin curve: a line that goes around a circle at a
steady rate, spread out over time.2
2. Loop the curve by adding a term—a mathematical function, like
cos ()—that speeds up and slows down the line as it goes around
the circle.3
3. Add more terms to create more loops, overlaps, and squiggles.
4. Mirror the curve for a denser, interlocking figure.4

These sketches use a parametric equation to organize a series of
sine and cosine curves in space. The weave is a crossing pattern, a
“soft” structure of loops and knots wherein the shape of the
construction is determined less by the properties of the materials
themselves than by the pattern through which two sets of materials
interact.(Fig.3.71)

1 Ibid
2 The components of the equation are scale, frequency, and amplitude. These mathematical
attributes replace the traditional knotmaking procedures of translation, turning, and
reflection. Either one of these sets of attributes can produce an endless variety of forms that
are traceable back to simple rules.
3 Adding a cos () term in the x portion of the equation affects the horizontal
expansion of the points that make up the curve. The x term pushes or pulls
these points along the “time’ line (t) until the curve begins to loop back on
itself. Adding a z term gives a three-dimensional aspect to the curve.
4 Many traditional weaving patterns make use of symmetry because it provides guaranteed
points of overlap that help to structure the weave.

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

122

Fig. 3.72 Forms generated by weaving algorithm.

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

123

CHAPTER 3: MAIN ALGORITHMS APPLIED IN PART II : IMPLEMENTED ALGORITHMS IN
 CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

124

PART II : IMPLEMENTED ALGORITHMS IN CHAPTER 3: MAIN ALGORITHMS APPLIED IN
CONTEMPORARY ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

125

-Conclusion

- The following methods can support running algorithms
for architectural design: using Scripting languages, or
Embedded programming languages, or external programming
language

- Many algorithms are applied in contemporary
architecture. The following diagram shows these algorithms :-

Algorithms applied in contemporary architecture

I- Special algorithms (about infinity) designed for certain designs or
problems.

II-Most popular algorithms used in contemporary architecture.

Voronoi Algorithm

A* Algorithm

Stochastic Search

L-Systems

Cellular Automata

Swarm Intelligence

Genetic Algorithms

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

127

CHAPTER 4:

APPLICATIONS OF ALGORITHMS IN
ARCHITECTURE.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

128

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

129

CHAPTER 4:

APPLICATIONS OF ALGORITHMS IN

ARCHITECTURE

What method, what system, does an architect use to design a
building? how are programmatic needs and context- with their
degrees of freedom and constraints – translated into architectural
design?

Regardless of their complexity, the tasks and decisions involved
can be formalized as an algorithm. As such, algorithms provide a
framework for articulating and defined both input data and
procedures. This formalization can promote structure and
coherency, while systematically maintaining full traceability of all
input data.

In recent years, algorithms in architecture have been able to go
beyond their role as frameworks of formalization and abstraction.
This has been made possible in a large part by the integration of
scripting language into CAD programs. Algorithms' output can
now be directly visualized, enabling their use as a generative
design tool. Since algorithms provide the benefits of scalability
and premutability, multiple variations of a scheme are easily
generated. A slight change of inputs or process leads to an instant
adaptation of output. Algorithms' generative processes can further
be enhanced by evaluation procedures to enable an automated
optimization.

A large number of algorithms can be used in architecture (
about infinity). The algorithms already discussed in the
previous chapter (the most famous) in addition to any other
algorithms designed for special design needs.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

130

All algorithms applied in architecture (about infinity) can be
classified according to their applications in architectural
design into five applications.

The following chapter will discuss the five approaches of using
algorithms in architecture, ranging from their function as
simulation and optimization tools to their development as a
generative design language1.

These approaches are as follows:-

1- Generation.
2- Permutation.
3- Optimization.
4- Simulation.
5- Transformation.

The discussion is going to be mainly through examples of
applying algorithms in certain problems in architectural design.

4-1 Generation.

The algorithm in this case generates design from scratch. The
generated design is based on the type of algorithm used and its
rule. The generation algorithms can generate alternatives for the
design functions. (either forms or plans)

Generation is the most popular application of using algorithms
due to the capability of algorithms to generate stunning forms with
simple codes.

4-1-1 algorithms used in generation.

The algorithms used in generating a design are :
- for generating forms : Voronoi, Cellular automata, stochastic
search, L-systems, …etc. (nearly most of the algorithms)

1 Hansmeyer, Micheal, Algorithms in architecture,http://www.mh-
portfolio.com/indexH.html.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

131

- for generating function (plans) : Interactive genetic algorithms,
or stochastic search.

4-1-2 Generating architecture design.

The following examples represent good examples for generating
an architectural design (will be discussed in details) :-

1- Generating a transportation node and shopping mall
downtown, St. Louis, Greece by Dimitris Gourdoukis.

2- Generating a high rise building.

4-1-2-1 Transportation node + Shopping mall downtown St.
Louis., Greece, 2007-2007, by Dimitris Gourdoukis.

The process that will be described is employed in the design of a
transportation node and shopping mall downtown St. Louis. The
‘node’ connects two metro stations and the train station and at the
same time hosts a shopping mall. The building is developed as an
analogy for the human body (Organs, bones,and skin):-

- Organs become the enclosed spaces.
- The bones become the structure system.
- The skin becomes the outer membrane.

 The project is employing the latest building technology with a
fiber-carbon structure and ETFE pillows for the outer skin1.

 In this example, a cellular automaton script is used with the
voronoi algorithm to generate the form. This example shows two
algorithms used to generate the project. (Fig. 4.1)

1http://www.worldarchitecture.org/world-buildings/world-buildings-
detail.asp?position=detail&country=Greece&no=2432 at 10-2-2009

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

132

Figure 4.1 Exterior perspective for the final form.

The process used in developing the project can be summarized in
the following steps :

a. 2d cellular automaton script is executed, with a random or
pre-defined initial configuration of cells. (Fig. 4.2-4.3)

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

133

Figure 4.2 Automaton cells generation (1-6).

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

134

Figure 4.3 Automaton cells generation (7-10).

b. Every generation of the CA is stacked on top of the previous
one creating a 'progression' for the active cells. (Fig. 4.4-4.6)

Fig 4.4 The previous generated Automaton cells.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

135

Fig 4.5-4.6 Connecting the cellular cells together.

c. The centers of the active CA cells are used in order to generate

the voronoi diagram. The limit of that diagram is defined by
the limits of the outer active cells of each generation of the CA.
(Fig 4.7-4.9)

Fig 4.7 Generating the voronoi diagram from the cellular cells.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

136

Fig 4.8-4.9 Smoothing the voronoi diagram.

d. The edges of the voronoi cells are used as the structural system.
(Fig. 4.10-4.11)

Fig 4.10 Successive sections show the generated voronoi diagram.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

137

Fig 4.11 Section shows the generated voronoi diagram.

d. A smoothed version of the voronoi cells is used in order to

define enclosed space. (Fig. 4.12-4.16)

Fig.4.12 Final form shows the generated smoothed voronoi.

Fig.4.13-4.14 Final form shows the generated unit and interior shot.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

138

Fig.4.15 Escalator surrounded by the voronoi diagram.

4-1-2-2 Generating a high rise building.

This tower is created using certain algorithms based on Voronoi
diagram1. In the tower, the created 3d polygons represent the
architectural spaces which will be used in the project.

The design is generated through the following steps:-

stage one: Specifying the Voronoi points in 3d based on the
design program, and the context. (Many studies were done to
study the generated points relative to the site entrance,
orientation,..etc).(Fig. 4.16-4.18)

1 Voronoi is the partitioning of a plane with points (The initial set of points that is in this
project is based on program requirements) into convex polygons such that each polygon
contains exactly one generating point and every point in a given polygon is closer to its
generating point than to any other.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

139

Fig.4.16-4.17 Specifying the points in space to generate the form based on Voronoi

diagram.

Fig.4.18 Studying the form relative to the context.

stage two: Smoothing the outlines of the tower created from the
voronoi diagram. (Fig.4.19)

Fig.4.19 Smoothing the outline of the tower.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

140

stage three: Studying the architectural spaces created and the
generated voronoi diagram. (Fig. 4.20-4.21)

Fig.4.20-4.21 Studying the generated spaces.

Fig.4.22 Clusters generated by voronoi cells resembles the relation of bones to organs.

The edges of the voronoi cells become the structure, while the
voronoi cells are used (in a 'smoothed' version) as clusters of
spaces in a configuration that resembles the relation of bones to
organs.(Fig. 4.22)

stage four: Depicting the final form. (Fig. 4.23-4.24)

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

141

Fig.4.23 Final form for the building.

Fig.4.24 Main Façade for the building.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

142

4-2 Permutation

In permutations, the algorithms used in this case generate
permutations for the design without optimizing the design.
Usually permutations are used to study wide range of alternatives
to make the architect take decisions in his design. Permutations
are mostly applied in architectural design through creating
alternatives for the forms, or by creating alternatives for the plans.
Permutations are used to generate only alternatives without any
optimization.

4-2-1 Algorithms used in Permutation.

Algorithms used in permutations are mainly interactive genetic
algorithms1, and any other algorithms used with iterations (such as
stochastic search, and generation algorithms with iterations).

4-2-2 Permutations in architectural design.

In the following section, examples for using permutations in
architecture will be explained, these examples are as follows :-

1- Making permutations for a certain plan.
2- A residential tower (by the design studio of Columbia

university in the USA).
3- Great court roof museum, London, UK, by Norman Foster.
4- Serpentine pavilion, London, UK, by Toyo Ito.

1 An interactive genetic algorithm (IGA) is defined as a genetic algorithm that uses human
evaluation. These algorithms belong to a more general category of Interactive evolutionary
computation. The main application of these techniques include domains where it is hard or
impossible to design a computational fitness function, for example, evolving images, music,
various artistic designs and forms to fit a user's aesthetic preferences. Interactive computation
methods can use different representations, both linear (as in traditional genetic algorithms)
and tree-like ones (as in genetic programming).

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

143

4-2-2-1 Making permutations for a certain plan. 1

This example will discuss the use of an Interactive Genetic
Algorithm to make permutations for a house plan.

 A house is considered to be composed of a number of zones, such
as living zone, entertainment zone, bed zone, utility zone, etc.
Each zone is composed of a number of rooms (or spaces), such as
living room, dining room, bedroom, hall, bathroom, etc. Each
room is composed of a number of space units.

 Generally, in a design such as a house, the space unit will be
constant. The scale (level of abstraction) of the space unit depends
on the precision required in differences between various possible
room sizes. The smaller the unit, the longer the genotype for a
given size of room but the greater the shape alternatives. But first
some criteria must be described for a thorough understanding.

- The Design Grammar

In this example, the generation of spaces, basically comes down to
locate spatial component units for that level. At the room level,
the component unit is a fundamental unit of space. At the zone
level, the component unit is a room and at the house level the
component unit is a zone2.

The design grammar used here is based on the method for
constructing polygonal shapes represented as closed loops of edge
vectors3. The grammar is based on a single fundamental rule
which states that any two polygons, Pi and Pj, may be joined
through the conjunction of negative edge vectors, V1 and V2,
(equal in magnitude and opposite in direction). The conjoining of

1 Rosenman, M.A. and Gero, J.S.: Evolving Designs by Generating Useful
Complex Gene Structures. In P. Bentley (ed.), Evolutionary Design by
Computers, Morgan Kaufmann, London, pp. 345-364. 1999.
2 Ibid.
3 Rosenman, M. A. (1995). An edge vector representation for the construction of 2-
dimensional shapes, Environment and Planning B:Planning and Design, 22:191-
212.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

144

these vectors results in an internal edge and a new polygon, Pk.
This rule ensures that new cells are always added at the perimeter
of the new resultant shape.

The fundamental conjoining rule can be specialized for different
types of geometries. Orthogonal geometries are based on the
following four vectors of unit length: W = (1, 90), N = (1, 0), E =
(1, 270), S= (1, 180) so that the two pairs of negative vectors are
N - S and E - W. These two pairs of negative vectors allow for the
generation of all polyminoes. Orthogonal geometries will be used
in this example without loss of generality. Other (sub) rules may
be formed for other geometries.(Fig.4.25)

- Genotype and Phenotype

A polygon is described by its sequence of edge vectors. A suffix is
used to identify individual edges of the same vector type. Thus,
the square cell is described as (W1, N1, E1, S1). The sequence of
edge vectors for a shape is the phenotype providing the
description of that shape’s structure. The genotype for any
generated polymino is the sequence of the two subshapes
(polyminoes) used and the two edges joined. An example of the
generation of a trimino is shown in1 (Fig. 4.25).

 Figure 4.25 shows a basic unit or cell, P1, which provides a
starting point for the generation of polyminoes. Each generated
shape is accompanied by its genotype and phenotype.

The generation of these polyminoes occurs from a random
selection of edges in the first shape conjoined with a random
selection from equal and opposite edges in the second shape. At
each step in the generation, the phenotype is reinterpreted to
generate a new edge vector description and the conjoining (sub)
rules applied.

The genotype for the generated trimino is given as (P2, P1,
N2|S1). This can be expanded as ((P1, P1, E1|W1), P1, N2|S1).

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

145

When the same units are used for generation, the unit can be
omitted and the genotype represented as the sequence of edge
vector conjoining. That is P3(g) = (E1|W1, N2|S1). The length of
the genotype depends on the size of the polymino to be generated,
that is on the area of the polymino. This corresponds to required
room sizes.

Fig. 4.25: Generation of a Trimino.(Each generated shape is accompanied by its

genotype and phenotype).
Once a population of different rooms is generated for each room
type in a given zone, the zone can be generated through the
conjoining of rooms in a progressive fashion. Because of the cell-
type structure of the polygons, the conjoining may occur at any
appropriate pair of cell edges. Therefore, a large number of
possible zone forms can be generated from two rooms. An
example of some possibilities arising from the conjoining of two
polyminoes is given1. (Fig. 4.26)

Fig. 4.26: Some Examples of Conjoining Two Polyminoes.

1 Ibid.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

146

The two polyminoes, P1 and P2, represent instances of two
different room types and the polyminoes resulting from the
joining of the two rooms represent instances of a particular zone
type. When one pair of edges are conjoined other edges may also
be conjoined, e.g. P4, P5 and P6. In the case of overlap, as in P6,
the resultant shape is discarded.

The same process used for generating zones is used to generate
houses. The joining of different instances of different zone types
generates different instances of houses.

The above grammar can be used to generate initial populations for
each level in the spatial hierarchy. Each such initial population is
then evolved, as necessary, so that solutions are ‘adapted’ to
design requirements1.

- The Evaluation Criteria (Fitness Functions).

At each level, different fitness functions apply according to the
requirements for that level. While the requirements for designs of
houses involve many factors, many of which cannot be quantified
or adequately formulated in a fitness function2, some simple
factors have been used initially to test the feasibility of the
approach. For this example, the fitness function for rooms consists
of minimizing the perimeter to area ratio and the number of
angles.

This requirement tends to produce compact forms, useful as
rooms. For zones, the fitness function consists of minimizing a
sum of adjacency requirements between rooms reflecting
functional requirements.

At the house level, the fitness function consists of minimizing a
sum of adjacency requirements between rooms in one zone and
rooms in other zones. This has the tendency to select those
arrangements of zones where adjacency interrelations are required

1 Ibid.
2 For this reason the used genetic algorithm is classified as Interactive Genetic Algorithm.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

147

between rooms of different zones. In addition to these quantitative
assessments, qualitative assessments will be made subjectively
and interactively by a user/designer (because it is Interactive
genetic algorithm).

The aim is to direct the evolutionary process to produce
populations of good solutions either as components for higher
levels or at the final level itself. So that, even though the global
optimum solution for the shape of a room using the above criteria,
may be known, this may not be the optimum solution at the zone
and house levels. By selecting other non-optimal but good
solutions, according to the given criteria, good unexpected results
may be achieved for the overall design1.

- Propagation (Crossover).

Simple crossover is used for the production of 'child' members
during the evolution process. Looking first at the room level to see
the effect of such a crossover process, crossover can occur at any
of the four sites as shown in (Fig. 4.27 a) with two results as
shown in (Fig. 4.27 b). Since the cells are always of the same
space unit, the cell identification in the genotype representation
has been omitted for simplicity2.

1 Ibid.
2 Ibid.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

148

Fig. 4.27: Crossover at Room Level; (a) initial rooms R1 and R2 generated

from unit square cell U1, (b) crossover at site 4.

At the zone level, crossover occurs as shown in (Fig. 4.28). Two
initial instances of living zones, Z1 and Z2 are shown in (Fig. 4.28
a). Each zone has one instance of each of living room, dining
room and entrance. (Fig. 4.28 B) shows crossover for one of the
four possible sites. A similar process is followed at the house
level.

Fig. 4.28: Zone Crossover; (a) rooms and initial zones, Z1 and

Z2, (b) crossover at Site 2.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

149

- Implementations

A computer program written in C++ and Tcl-Tk under the Sun
Solaris environment has been implemented using the simple
criteria described previously. Each evolution run, for all levels,
tends to converge fairly quickly to some dominant solution.
Rather than use a mutation operator to break out of such
convergence, it was found that a more efficient strategy was to
generate multiple runs with different initial randomly generated
populations. This produces a variety of gene pools thus covering a
more diverse area of the possible design space. Users can
nominate the population size, number of generations for each run
and select rooms, zones and houses from any generation in any
run as suitable for final room, zone or house populations. These
selections are made interactively by users as solutions appear
which are judged favorable, based perhaps on factors not included
in the fitness function. Such selections may therefore not be
optimal according to the given fitness function1.
Results are shown in the following figures (Fig. 4.29 – Fig. 4.32)
for room, zone and house generation.

Fig. 4.29: Results of Living Room Generation after the 17th generation (The left side

shows the solutions selected by the architect).

1 Ibid.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

150

Fig. 4.30: Results of Living Zone Generation.

Fig. 4.31: Results of Bed and Living zones Generation.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

151

Fig. 4.32: Results of House Generation.

(Fig. 4.29) shows the 17th generation of the evolution of this
population of 60 members. A fifth room shape was selected at the
14th generation and two more room shapes (Room Numbers 1 and
41) are being selected. The upper line in the graph shows the
evolution of the best solution while the lower line shows the
evolution of the population average.

Other rooms were generated in a similar way. The room areas
generated were: (a) Living Zone: Living Room 24; Dining Room
15; Kitchen 9; Entrance 4; (b) Bedroom Zone: Master Bedroom
15; Bedroom 12; Bathroom 6; Hall 3. (Fig. 4.28) shows the results
of the Living Zone generation. The initial population of 50 Living
Zones at run 1 was randomly generated by selecting rooms from
the final selections for the Living Room, Dining Room, Kitchen
and Entrance. Twenty Living Zones have been selected by the
user. (Fig. 4.31) shows the set of Bedroom and Living Zones
selected. (Fig. 4.32) shows the final set of houses generated in this
example.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

152

4-2-2-2 A residential tower (by the design studio of Columbia
university in the USA).

This project explores generating permutations through algorithms.
It examines how a fixed process with fixed rules can produce
heterogeneous variants through adjustment in the values of its
outputs.

Two approaches are considered. The first is an additive process
which uses the random positioning of offices in a 3-dimensional
grid to derive a connecting structure. This process is eventually as
its output does not produces sufficient heterogeneity unless the
user intervenes at each iteration to manually adjust the input
values and the construction rules themselves1.

The second process is subtractive: a giant block corresponding to
the site ‘s envelope is carved into distinct spaces connected by a
central core. Specifically, rays that emanate from the center of the
block carve void into it; the movement and the path of the rays
determine the final form of the building and its clusters. Several
dozen permutations of form are computed, from which one is
chosen for further development according to aesthetic preference.
The values of the ray movement rules are then tweaked until the
floor area distribution among the clusters corresponds to the
needs.(Fig. 4.33)

Fig. 4.33:Main steps in generating the form.

1 http://www.mh-portfolio.com/Algorithms_Architecture/p8s.html at 10-2-2009

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

153

1- Volume aggregation algorithm: (an additive process)

The algorithm generates a building through an additive process : it
populates a 3-dimensional field bottom up with multi-story units.
The range of unit dimensions and buffer spaces between them are
set in advance. In addition, voids in the field can be specified in
which growth is not allowed, thus influencing the building’s
form1. (Fig 4.34)

One the field is saturated or the specified numbers of units have
been allocated, a structure is calculated to support the units based
on variable specifications.

Fig. 4.34:Volume aggregation algorithm.

1 Hansmeyer, Micheal, Algorithms in architecture, Opcit.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

154

2- Volume-division algorithm: (Subtractive process)

While the first algorithm generates shapes by aggregating
volumes, this algorithm takes an opposite approach: subtraction
and division.1

Rays emanating from the building’s core cut voids into each
floorplan and divide it into segments. The rays’ torque shifts the
floorplans’ outer boundaries. The movement and path of the rays
determine the building’s final form.(Fig.4.35)

Fig. 4.35: Volume division algorithm.

1 Ibid.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

155

The volume aggregation algorithm is used to produce several
dozen permutations of the building. For each permutation, the
algorithm chooses new values for ray movement from within
predefined ranges1.

One variant (2g) is selected according to aesthetic preference for
further development. The values of its ray movement are tweaked
until the floor area distribution among the clusters corresponds to
the needs defined in the design brief. At this point the algorithm
provides the plans for each of the buildings floors. (Fig. 4.36)

Fig. 4.36: Selection of a Variant.

1 Ibid.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

156

Fig. 4.37: Final form for the project.

4-2-2-3 Great Court Roof Museum. , British, London, UK, 1999-
2000 by Norman Foster and Partners:

By using an algorithm based on algebraic equations, (parametric
algorithm) permutations for the roof were generated1. (Fig.4.38-
4.39)

1 Kotonik, Toni, Algorithmic extension of architecture, master degree at ETH ARCH/CAAD,
Zurich, 2006.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

157

Fig. 4.38 Using algorithm based on mathematical equations to generate the mesh.

Fig. 4.39 Final roof as generated by the algorithm.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

158

4-2-2-4 Serpentine Gallery Pavilion, London, UK, 2002 by Toyo
Ito

Fig. 4.40 Permutations for the form of the gallery based on special algorithm.

Fig. 4.41 Final form for the gallery.

 Serpentine Gallery Pavilion permutations are created using a
special algorithm which makes complex weave out of repeated
nesting of rotated squares and extension into field of intersecting
lines.(Fig.4.40-4.41)

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

159

4-3 Optimization

The algorithm in this case is run to optimize the design to fulfill
extra needs in design. Usually these needs are extra characteristics
for the design such as cost, budget, performance,...etc.

The algorithm is used here to optimize the design performance for
aspects such as lighting, acoustics,..etc. Optimization is done only
for aspects that are based on calculations (fully automated process
without any human interaction).

Usually the algorithm iterates thousands of times to reach the
optimum performance for a certain aspect previously determined
by the architect.

4-3-1 Algorithms used in Optimization.

 The algorithms used in optimization are the genetic algorithms,
which start with a certain design and generate new designs in
every offspring. The previous steps are repeated until the optimum
solution is met.

4-3-2 Optimizing the design.

Generally, the evolutionary model requires that a design concept
must be described in a genetic code. The code is then mutated and
developed in a computer program into a series of models in
response to a simulated environment. The models are then
evaluated (using a fitness code) in the simulated environment and
the code of successful models is selected. The selected code (by
computer) is then used to repeat the cycle until a particular stage
of development is selected for prototyping in the real world.

A number of large-scale optimization problems may be
appropriate for GAs: sitting of buildings to optimize the use of
wind driven ventilation and daylight, optimal control of HVAC
equipment in an aggregate of buildings to minimize electrical

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

160

power during peak-demand periods, and more work on the
generation of building form.

The following examples will show some cases for the
optimization of designs :-

1- Optimizing a building to make it with the maximum market
value.(by the design studio of Columbia university in the
USA)

2- Optimizing a building related to energy.
3- Optimizing the Beijing stadium relative to certain needs. By

Herzog and de Meuron.

4-3-2-1 Optimizing a building to make it with the maximum
market value. (by the design studio of Columbia university in the
USA)

The goal of the algorithm is to design a building - specifically to
determine the placement and configuration of a core, corridors and
individual apartments within an envelope so that the building’s
market value is maximized. The algorithm has three fixed inputs:
A specific site and its attributes a catalog of apartment types of
different sizes, and the apartments’ price sensitive's to various
factors. The process’ variable input are the actual construction
rules that determine the placement of the building’s components.
Parameter ranges for these rules are defined. These include, for
Instance, the possible lengths of corridors, the number of corridors
that can emanate from the core at each level, and whether
corridors are single or double loaded.

Fig. 4.42The algorithm (based on GA) used in optimizing the building.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

161

The calculations consist of two steps. First a building variant is
constructed based on the construction rules and the values chosen
from within their parameter ranges. Second, the variant is
evaluated by calculating the combined market value of its
apartments. A genetic algorithm plug-in changes the values of the
construction parameters after each iteration in an attempt to find a
better solution than the previous variant This process is repeated
thousands of times until no better combination of construction
parameters to Increase market value can be found. At this point,
the algorithm produces a script to visualize the optimal variant In
a CAD program. It also produces bundling specifications that can
form an Input for further algorithms.(Fig.4.43)

Fig. 4.43 Steps for generating the design.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

162

Fig. 4.44: A building variant is assembled out of pre-defined apartment types based on

a series of construction rules.

Fig. 4.45 Number of iterations relative to the value, with examples to show the form of the

buildings after number of iterations.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

163

Fig. 4.46 The construction rule parameters are altered recursively with the goal of increasing

the building value.
The following points are clear in the previous example:-
• The algorithm in this project both generates and evaluates a
building and does so recursively.

• Approximately 40,000 Iterations are required until a near
optimum is reached. (Fig.4.45)

• The algorithm produces not only the market value of the
building which acts as a reference point for further iterations, but
It also provides detailed building specifications that can constitute
inputs for further secondary algorithms (such as the calculation of
a structural system) (Fig.4.46)

• While the optimization leads to generation of the building’s
form, this shape is limited by the construction rules and their
parameter ranges, which in this case prescribe an assembly of pre-
defined unit

4-3-2-2 Optimization of Building Form. (related to energy)

Genetic algorithms were employed to change building form to
optimize the exchange of lighting and heating energy.

The starting point for this study was a two-story structure with
four equal-area square zones on each floor. The GA manipulated

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

164

the size and shape of each zone and could tilt the roofs of each
zone. A penalty was applied to the objective function to inhibit the
GA from excessively reducing the size of the zones. Figure 4.45
shows the energy exchange relative to building forms and Fig.
4.46 shows the forms in more detail1.

The best solution for heating energy is a single, compact, large
space facing northeast, with thin, sunspace-like, all-glazed south
and west elements surrounding it. This happens both in the first
and second floors. The best solution for lighting is formed by
small spaces easily penetrated by daylight. The south-facing large
glazing areas still exist in this solution, in long and thin rooms
facing south. The intermediate solutions show the transformation
from one end-point solution to the other. Solutions 4 and 5 are
interesting, showing very long and thin south-facing elements and
a number of smaller, north-facing space

Fig. 4.47 Two views are shown for each solution, from the southwest and northeast, and
for every solution the values for energy are stated relative to the lighting and heating
factors.

1 Caldas, L. G. and L. K. Norford. 2003. "Genetic Algorithms for Optimization of Building
Envelopes and the Design and Control of HVAC Systems." ASME J. Solar Energy
Engineering 125(3):343-51.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

165

Fig. 4.48 Solution 1 represents the best building shape in terms of heating. Solution 6 is
the best building shape in terms of lighting. The other images represent intermediate
solutions.

Tab. 4.1 GA and exhaustive searches for optimal control schedule, as a function of
population size, number of generations, and weighting function. The weighting function
now includes a weight on electricity demand.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

166

GAs have been successfully applied to a number of problems
concerning building energy use and HVAC systems. They can
readily handle large problems, such as simultaneous optimization
of the building envelope and the design and operation of a HVAC
system, and duct design to minimize first and operating costs over
a range of operating conditions and electricity prices1.

GAs will be more widely used when there are publicly available
and easy-to-use interfaces with energy-simulation codes. While
GAs can and have been used with such codes, it has been
necessary to develop a custom interface, to convert the GA’s
specified value for a given variable to an appropriate input value
in the simulation code. An interface is also required to obtain
output from the simulation package and form the objective
function.

4-3-2-3 Optimizing roof of Beijing Stadium, Beijing, China,
2002-07, by Herzog & de Meuron

The design of the roof is generated by using an algorithm to
generate the main mesh. The generated surface has a certain
problem which is the in-between space. A certain algorithm is
used to optimize the roof by minimizing the in-between spaces in
the roof. (Fig. 4.49-4.50)

1 Ibid p.350.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

167

Fig. 4.49 A certain algorithm is used to rotate the beams to generate forms and iterates
until the resultant meet the architect needs.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

168

Fig. 4.50 Steps of optimizing the surface of the stadium by minimizing the in-between
spaces (colored red).

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

169

4-4 Simulation

The algorithm in this case neither generates form, nor modifies it;
it is purely an evaluative tool to test functionality under multiple
scenarios. Despite the fact that varieties of software are already
prepared for users to simulate their designs without the need of
algorithms, but these software are limited to few applications1.

Usually the simulation algorithms are used to show the defects of
any design to be a guide for the designer to improve his design.
The simulation algorithms are mostly used in large-scale buildings
to make studies related to the design such as: evacuation during
any disaster (especially with the lack of building codes), or to
facilitate the passenger flows, or in environmental studies, etc….

4-4-1 Algorithms used in simulation.

 The most important algorithms used in simulations are A*
Algorithms (A* Algorithm is usually used to study the paths
through buildings), Swarm intelligence (swarms are used to study
the behaviors of users in certain buildings or urban spaces). Other
algorithms designed specially for studying certain problems are
used in simulation (architectural firms specialized in certain
architectural designs usually create their own algorithms).

4-4-2 Simulating the architectural design.

The following examples will show cases for using simulation
algorithms in certain projects:

1- Simulation of pedestrians in Pennsylvania train station
(based on A* algorithm).

2- Simulation of pedestrians in a ferry terminal (based on
special algorithm includes some iterations).

1 Hansmeyer, Micheal, Algorithms in architecture, Opcit.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

170

3- Simulation of Structure membrane.

4-4-2-1 Pedestrians simulations of passengers in Pennsylvania
train station. (based on A* algorithms)

The following example simulates the design of Penn train station
by studying the paths for evacuating the passengers.

Simulation of Penn train station (similar to other simulations
based on A* algorithm) needs first a virtual environment which is
represented by a hierarchical collection of data structures,
including :

a- A topological map.

b- Two types of maps for perception (Stationary and mobile

maps).

c- Two types of maps for path planning and a set of

specialized environment objects.

With each of these data structures specialized for different
purposes, the combination is able to support accurate and
efficient environmental information storage and retrieval1.
(Fig. 4.51)

1 Shao, Wei & Terzopoulas, Demetri, Environmental Modeling for Autonomous Virtual Pedestrians,
Symposium on human design modeling for design and engineering, 2005.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

171

Fig. 4.51 Hierarchical World Model.

A virtual environment contains the followings maps as seen in the
figure:-

a- Topological Map

A graph serves to represent the topological relations between
different parts of a virtual world. In this graph, nodes correspond
to environmental regions and edges between nodes represent
accessibility between regions.(Fig.4.51)

A region is a bounded volume in 3D-space (such as a room, a
corridor, a flight of stairs or even an entire floor) together with all
the objects inside that volume (for example, ground, walls, ticket
booths, benches, vending machines, etc.). It is assumed that the
walkable surface in a region may be mapped onto a horizontal
plane without loss of essential geometric information, such as the
distance between two locations. Consequently, a 3D-space may be
adequately represented by several planar maps, thereby enhancing

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

172

the simplicity and efficiency of environmental queries, as will be
described momentarily1.

Another type of connectivity information stored at each node in
the graph is “path-to-via” information. Suppose L(A,T) is the
length in number of edges of the shortest path from a region A to a
different target region T, and P(A,T) is the set of paths from A to
T of length L(A,T) and L(A,T) + 1. Then PT(A,T), the “path-to-
via” of A associated with T, is a set of pairs defined as follows:
PT(A,T) = { (region B, cost CB) | exists p in P(A,T) & CB =
length of p & B is next to A on p }.

As the name suggests, if (B,CB) is in PT(A,T), then a path of
length CB from A to T via B exists. In other words, PT(A,T)
answers the question “To which region shall I go, and what cost
shall I expect if I am currently in A and want to reach T”? Given a
graph, the “path-to-via” information is computed offline in
advance using A* algorithm2.

1 Ibid.
2 Given G(N,E), a graph with N nodes and E edges:

1. Initialization:
for each node A
for each target node T
if (A == T)
then PT(A,T) = {(A,0)}
else PT(A,T) = {}

2. Collect information associated with paths of length L based on the information
associated with paths of length L-1:
for length L=1 to N-1
for each node A
for each target node T
for every neighbor node B of A
if (X,L-1) is in PT(B,T) (Note: X can be any node in G.)
then add (B,L) in PT(A,T)

3. Keep only low cost entries:
for each node A
for each target node T
let Cmin be the minimal cost in PT(A,T)
for each entry E(Y,C) in PT(A,T) (Y can be any node in G.)
if (C > Cmin + 1)
then remove E from PT(A,T)

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

173

b- Perception Maps

Two types of maps support perception queries, one for stationary
objects and one for mobile objects. The following table
summarizes their similarities and differences and the next two
subsections present the details.(Tab. 4.2, Fig. 4.52)

Fig. 4.52 Perception maps : Stationary, and Mobile.

Tab. 4.2 stationary objects and one for mobile objects.

Note that after Step 3 only those entries are stored whose cost is minimal or (minimal + 1). In
this way we can avoid paths with cycles. To understand this, consider PT(A,C) for the graph
in Fig. 1. C is a direct neighbor of A; so (C,1) is clearly an entry of PT(A,C).

(B,3) is another entry as A-B-A-C is also a possible path from A to C. Obviously, A-B-A-C
is not desired as it contains a cycle. Such paths will automatically be removed from the
“path-to-via” set after Step 3.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

174

Stationary Objects

The definition of a region assumes that a region can effectively
map its 3D space onto a horizontal plane. By overlaying a uniform
grid on that plane, each cell is made corresponding to a small area
of the region and store in that cell identifiers of all the objects that
occupy that small area. Thus, the grid defines a rasterization1 of
the region. This rasterized floor plan simplifies visual sensing.
The sensing query shoots out a fan of line segments whose length
reflects the desired perceptual range and whose density reflects
the desired perceptual acuity. Each segment is rasterized onto the
grid map2.

Grid cells along each line are interrogated for their associated
object information. (Fig. 4.53)

Fig. 4.53 Visual Sensing. Left: Sensing stationary objects by examining map entries
along rasterized eye rays. Right: Sensing mobile objects by examining (color-coded)
tiers of the sensing fan.

Mobile Objects

A 2D grid map is used for sensing mobile objects (typically other
pedestrians). Rather than storing one map per region, this time a

1 Rasterization or Rasterisation is the task of taking an image described in a vector graphics format
(shapes) and converting it into a raster image (pixels or dots) for output on a video display or printer, or
for storage in a bitmap file format.The term rasterization can in general be applied to any process by
which vector information can be converted into a raster format. In normal usage, the term refers to the
popular rendering algorithm for displaying three-dimensional shapes on a computer.

2 Shao, Wei & Terzopoulas, Demetri, Environmental Modeling for Autonomous Virtual Pedestrians,
Opcit.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

175

single global grid map suffices for the entire environment. In this
map, each cell stores and updates identifiers of all the pedestrians
currently within its area. The main purpose of the map is to enable
the efficient query by a given pedestrian of nearby pedestrians that
are within its sensing range1.

The sensing range here is defined by a fan as illustrated in the
right part of Fig. 4.53. On the mobile object perception map, the
set of cells wholly or partly within the fan are divided into subsets,
called “tiers”, based on their distance to the pedestrian. Closer
tiers will be examined earlier. Once a maximum number
(currently set to 16) of nearby pedestrians are perceived, the
sensing is terminated. This is intuitively inspired by the fact that
usually people can pay attention at one time only to a limited
number of other people, especially those in close proximity.

Once the set of nearby pedestrians is sensed, further information
can be obtained by referring to finer maps, by estimation, or
simply by querying a pedestrian of interest. Given the sensing fan
and the upper bound on the number of sensed pedestrians, this is a
constant time operation.

c-Path maps

Goal-directed navigation is one of the most important abilities of a
pedestrian, and path planning enables a pedestrian to navigate a
complex environment in a sensible manner. To facilitate fast and
accurate online path planning, two types of maps are used with
different data structures—grid maps and quadtree maps.(Fig. 4.54)

1 Ibid.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

176

Fig. 4.54 Path maps : Grid, and Quadtree.

Grid Map

Grid maps, which are useful in visual sensing, are also very useful
for path planning. Using the well-known A* graph search
algorithm, we can always find a shortest path on a grid map if one
exists. In this system, grid path maps are used whenever a detailed
path is needed1.

Quadtree Map

The quadtree map supports fast online path planning. Each
quadtree map comprises a list of nodes, the number of different
node cell sizes appearing in the map, and a pointer to an
associated grid map with small cell sizes. Each node of the
quadtree stores information about its level in the quadtree, the
position in the world of the region represented by the node, the

1 Suppose D is the direct distance between pedestrian H and his target T. Then a detailed path is
needed for H if D is smaller than a user-defined constant Dmax and there are obstacles between H and
T. This occurs, for instance, when one wants to move from behind a chair to its front and sit on it.
Clearly, the accuracy of the path in this instance depends on the size of the cells in the grid path maps.
A small cell size results in a large search space and, likely, low performance.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

177

occupancy type (ground, obstacle, seat, etc.), and pointers to
neighboring nodes, as well as information for use during path
planning, such as a distance variable (indicating how far the
region represented by the node is from a given start point) and a
congestion factor (the portion of the region of the node that is
occupied by pedestrians).

As Fig. 4.55 illustrates, the algorithm for constructing the quadtree
map first builds the list of map levels containing nodes
representing increasing cell sizes, where the cell size of an upper
level node is twice as large as that of lower level nodes. Higher
level nodes, which aggregate lower level nodes, are created so
long as the associated cells are of the same occupancy type, until a
level is reached where no more cells can be aggregated.

Usually quadtree maps contain a large number of lower level
nodes which cover only a small portion of the entire region. Such
nodes significantly increase the search space for path planning.
Thus, in the final stage of construction, these nodes will be
excluded from the set of nodes that will participate in online path
planning. As the area that they cover is small, their exclusion does
not cause significant accuracy loss1.

Fig. 4.55 Constructing a quadtree map.

1 Ibid.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

178

- Running the A* algorithm after specifying the previous maps .

Independent virtual pedestrians are capable of automatically
planning paths around static and dynamic obstacles in the
environment. When creating grid maps, special care must be taken
to facilitate efficient updates and queries.

Each pedestrian executes a path planning algorithm whose main
phases are as follows:

1) Insert a target into the quadtree map and expand the target if
necessary.

2) From a given start node, try to find any node of the expanded
target using one of several available search schemes.

3) If the search reaches an expanded target node, then backtrack
through the visited nodes to construct an initial path back to the
start node.

4) Repeat the previous steps for every path to compute the final
simulation map.

For quadtree maps, the search schemes employ several variations
of the A* search algorithm. In the conventional A* algorithm, the
search procedure iteratively gets an unvisited (ground) node from
a queue, visits it, marks it as visited, adds its neighbors to the
queue, and repeats until the target is reached or the algorithm fails
to reach the target. As the algorithm progresses, it updates a
distance variable in each node which indicates the approximate
distance of the node from the start point.

After the search succeeds, the distance tags of all the visited nodes
form a distance field, which back-tracking uses to find a shortest
path along the distance gradient from the target point back to the
start point.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

179

Fig. 4.56 Visualization of the quad-tree map of the concourse’s upper level in the Penn
Station environment model. The white quads denote ground nodes and the blue ones
denote obstacles. The green circle is the start point and the orange circle is the target.

Fig. 4.57 The search space is color coded with the distance variable values increasing
from green to orange.

Visualization of the quad-tree map of the concourse’s upper level
in the Penn Station environment model. The white quads denote
ground nodes and the blue ones denote obstacles. The green circle
is the start point and the orange circle is the target. Comparison of
path planning algorithms on quad-tree maps. The search space is
color coded with the distance variable values increasing from
green to orange.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

180

 Fig. 4.58 Main Arcade. Fig. 4.59 Train Platform.

4-4-2-2 Simulating the design of a ferry Terminal at the world
Financial Center in New York City (by the design studio of
Columbia university in the USA)

Fig. 4.60 Main steps for simulating the design of a ferry terminal.

The goal of the simulation is to test the building's design for safety
and efficiency regarding passenger movement. Several scenarios
can be simulated, such as a morning or evening rush hour, or
extensive ferry delays. Each simulated passenger has a preferred
route, often with multiple destinations (e.g. ticked office-
newsstand- waiting hall) and a preferred speed. If a passenger's
ideal path is blocked or too crowded, he will deviate slightly so
that he can reach his next destination in the quickest time possible.
The output of the simulation is a heat-map of building's plan that
shows where crowding takes place, as well as general parameters
that describe its overall efficiency.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

181

Fig. 4.61 Ferry Terminal plans.

Fig. 4.62 Evening passenger flow.

Based on interpretation of the output one can manually adjust
the building's design to address deficiencies. The passenger

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

182

flows can be simulated on the new design, and this process can
be repeated until satisfactory results are achieved.

Fig. 4.63 the heat maps of three building variants that were tested.

Fig.4.61 shows the heat maps of three building variants that were
tested, and a brief description of each variant's main
characteristics as well as its evaluative parameters. Each heat map
shows the results for two scenarios: a morning rush hour (in red),
and a Friday evening rush hour (In Cyan).(Fig.4.63)

4-1-2-3 Simulation of a structure membrane, by Emergent
technologies and design studio.

 Emergent Technologies and design studio studied the physics and
self-organization characteristics of tensioned membranes and used
MEL scripting to reproduce a stress-relaxation simulation in the
Maya Dynamics Environment. Maya was extended to make it a
tool capable of simulating the process of a membrane settling to a
minimum energy shape when fixed in a number of points in space.
Simulating this process for membranes with different starting
cutting patterns proved a valuable tool during the manufacturing
of a series of physical prototypes of the membrane-tensegrity
structural system.(Fig.4.64-4.65)

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

183

Fig. 4.64 Geometry of the membrane-tensegrity structure, and Dynamic Relaxation

process.

Fig. 4.65 Digital stress-driven form evolution of membrane tensegrity structures.

4-5 Transformation

The algorithms in this case do not generate form, or evaluate it,
but it modify the design based on certain results from simulation.
The algorithms used in transformation are related mainly to the
results generated from the simulation algorithms.

For example, by making simulation for a certain hall with respect
to acoustical performance, a certain algorithm will modify it (or
transforms the design) to fulfill the acoustical needs.

4-5-1 Algorithms used in simulation.

Usually the algorithms used in transformation are algorithms
designed especially for solving certain problems appeared due to
the simulation.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

184

 Sometimes the transformation algorithms (special algorithms) are
used as controllers for certain mechanical fixations to make
certain tasks automatically based on input data from simulation
algorithms, for example, in a façade with moving louvers a
transformation algorithms can be used to control the louvers
movements to improve the façade performance.

4-5-2 Example for algorithms used in transformation.
- Twin towers project, by Emergence and design group.

In the following case the transformation is done to the envelope
after studying the whole design by simulation.

The project is composed of two towers. Two notions dominate the
traditional approach of engineering to the design of structure:
stiffness and efficiency. Stiffness implies that structural members
are optimized so that they do not easily bend, and members are
arranged into whole structures that are rigid and inflexible.
Efficiency characterizes the preferred mode of achieving
structural stiffness with a minimum amount of material and
energy. In this approach, any elasticity of the material from which
it is made must be minimized, and elastic deformation of the
structure under load is carefully calculated1. (Fig.4.66)

1 Hensel, Micheal & other, Emergence: morphogenetic design strategies, Wiley-Acadmey,
Vol. 74 No. 3 May/June 2004, p.40-47.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

185

Fig. 4.66 Cross-Section showing the structure for the towers.

The structure system of the towers composed of two parts: the
core, and the outer envelope for the towers 1. The outer envelopes
are composed of a group of helical steel beams combined together
to resist other forces such as wind pressure and others. (Fig. 4.67)

1 Ibid.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

186

Fig. 4.67 Structure system composed form a group Helical beams combined together.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

187

The development of the design is driven by exposure of the
geometry to environmental forces (by simulation), a process that
encourages twins, multiples, and aggregations of forms that
increase structural capacity by sharing and distribution of loads —
not speciation but variation within one population of geometries.

The building envelope was developed from a digital study and
finite element analysis of the tessellated surface geometry of a
custard apple. The skin of the fruit must maintain its structural
integrity, resisting the pressure of the swelling material inside.
The panels all have the same form but size is varied, and
tessellation results in a surprisingly low number of variations
required for the complex double curvatures. (Fig. 4.68)

Fig. 4.68 The skin of a custard apple.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

188

The building envelope is considered as an integral system of
structure and environmental regulator-panels that are adaptive in
geometry and performance. The differentiation of the geometry of
the panels follows a similar logic to the differentiation of the
helices — all have the same form and geometric logic but the size
is varied through a limited number of parametric changes. These
few parametric changes allow the form of the panel to adapt to the
changing curvature and varying density of the helical structure
through a simple algorithm. The organization of the structural
interface, the connection between the helices and panel regions, is
local. This maintains coherence between the different geometric
hierarchies and has the capacity to adjust to global changes in
geometry.

The skin is activated by a micro-pneumatic structure. It achieves
its kinetic capacities through differential pressure in a capillary
system of pneumatic actuator cells that are distributed between the
inner, centre and outer membranes. Differential pressure in
capillary layers triggers the change from convex to concave
geometry by the differential expansion and contraction of Layers.
Synchronized changes from convex to concave geometry in a
panel allow the regulation of Light reflection between the inner
and outer membrane, and the insulating volume of the enclosed air
space1. (Fig. 4.69)

This example shows the applications of the transformation
algorithms in their two forms:-

- Transforming the outer panels using a parametric
algorithm to allow the form of the panel to adapt to
the changing curvature.

- Transforming the outer skin by making special

algorithms control the micro-pneumatic structure to
control the light inside the building.

1 Ibid, p.45.

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

189

Fig. 4.69 Skin-panel geometry: algorithmic differentiation.

CHAPTER 4: APPLICATIONS OF PARTII: MAIN ALGORITHMS APPLIED IN
ALGORITHMS IN ARCHITECTURE. CONTEMPORARY ARCHITECTURE.

190

PART II:MAIN ALGORITHMS APPLIED IN CHAPTER 4: APPLICATIONS OF
CONTEMPORARY ARCHITECTURE. ALGORITHMS IN ARCHITECTURE

191

-Conclusion

Algorithms applied in contemporary architecture

I- Special algorithms (about infinity).

II-Popular algorithms used in contemporary
architecture.

Voronoi Algorithm

A* Algorithm

Stochastic Search

L-Systems

Cellular Automata

Swarm Intelligence

Genetic Algorithms

Through the following applications

 Generation

Permutation.

Optimization.

Simulation.

Transformation.

PART III: ARCHITECTURAL DESIGN CHAPTER 6: APPLYING COMPUTATIONAL
BASED ON ALGORITHMS. DESIGN METHODS.

251

CHAPTER 6:

APPLYING COMPUTATIONAL DESIGN
METHODS.

CHAPTER 6: APPLYING COMPUTATIONAL PART III: ARCHITECTURAL DESIGN
DESIGN METHODS. BASED ON ALGORITHMS.

252

PART III: ARCHITECTURAL DESIGN CHAPTER 6: APPLYING COMPUTATIONAL
BASED ON ALGORITHMS. DESIGN METHODS.

253

CHAPTER 6:

APPLYING COMPUTATIONAL DESIGN

METHODS

In the following chapter, the new design method is going to be
used in designing a museum (with a certain focus on the
exhibition part).

This museum will be designed through following steps (These
steps are clear on the matrix in Fig. 6.1):

- Step 1: Generation.

To generate the museum with an impressive form a Voronoi
algorithm will run to achieve certain items in design such as
generating an impressive form based on structure, making the
form fulfills certain lighting needs (various lights for monuments,
lights for paths), and easy to be fabricated.

- Step 2: Permutations.

In the second step, an Interactive genetic algorithm will run to
make permutations for the design. Each offspring will generate
various alternatives for the design to make the architect selects the
most suitable design.

- Step3: Optimization.

In the third step, a discussion will be done concerning how the
design can be optimized using computational algorithms.

CHAPTER 6: APPLYING COMPUTATIONAL PART III: ARCHITECTURAL DESIGN
DESIGN METHODS. BASED ON ALGORITHMS.

254

6-1 Generation (Voronoi algorithm).

 The museum consists of the following spaces;-

1- Various exhibition halls for the monuments.
2- Separated halls for special monuments.
3- Outdoor spaces for exhibiting the monuments.
4- A cultural center consists of items such as a library, and two

conference halls.
5- Cafeteria (Indoor, and outdoor).

The design methodology will focus mainly on the first two items
(the exhibition and the separated halls).

The following steps are the main steps before running the voronoi
algorithm:-

-First step is making zoning for the main elements in the museum
(Fig. 6.2)

Fig. 6.2 Main zones in the museum.

PART III: ARCHITECTURAL DESIGN CHAPTER 6: APPLYING COMPUTATIONAL
BASED ON ALGORITHMS. DESIGN METHODS.

255

-Second step is translating the previous zones into masses with
suitable areas. (Fig. 6.3)

Fig. 6.3 The main plan for the museum as generated from the zoning step.

6-1-1 Preparing for generating the voronoi diagram.

In this step, the design is generated by using the voronoi
algorithm1 based on the previous steps.
The museum is generated by using the voronoi algorithm through
the following steps (verifying the main points for the voronoi
algorithm):-

1- Verify the main points that are going to generate the main
spaces (main Voronoi units) . Every space is supposed to

1

 The algorithm used in this step is a voronoi algorithm written as a script under 3dsmax,
with a language called Maxscript (more details are found at the Appendix)

CHAPTER 6: APPLYING COMPUTATIONAL PART III: ARCHITECTURAL DESIGN
DESIGN METHODS. BASED ON ALGORITHMS.

256

be a sphere with area equal to its real area. Then the centers
of spheres will become the main points for generating the
voronoi algorithm. (Fig. 6.4-6.5)

Fig. 6.4 Main spaces represented as spheres.

2- Verify the points that are going to determine the voronoi

units for the sky light, and indirect-light.(Fig 6.5)

Fig. 6.5 Centers of spheres are the main points for generating the voronoi algorithm.

PART III: ARCHITECTURAL DESIGN CHAPTER 6: APPLYING COMPUTATIONAL
BASED ON ALGORITHMS. DESIGN METHODS.

257

6-1-2 Running the voronoi algorithm.

After preparing the main points (for running the algorithm), the
Voronoi algorithm runs to create the voronoi diagram based on the
main points, and the skylight points.

The exhibition halls are now generated each as a voronoi cell, and
the sky light systems generated as various types of voronoi cells.
The following figures show the exhibition halls, and lighting units
as Voronoi cells, and the final form generated by the voronoi
algorithm. (Fig. 6.6-6.7), (Fig.6.8 shows the final generated form)

Fig. 6.6 Generated form for the exhibition part consists of :
- Units represent main spaces of galleries
- Other units as skylight source.

CHAPTER 6: APPLYING COMPUTATIONAL PART III: ARCHITECTURAL DESIGN
DESIGN METHODS. BASED ON ALGORITHMS.

258

Fig. 6.7 Generated main gallery spaces as voronoi units.

Fig. 6.8 The form generated by the voronoi algorithm.

6-2 Permutations
In this step, the Interactive genetic1 algorithm generates
alternatives for the architect to select the most suitable alternative

1

 The algorithm used in this phase is an Interactive Genetic algorithm written as a script
under the Maya, in a language called Maya Embedded Language.

PART III: ARCHITECTURAL DESIGN CHAPTER 6: APPLYING COMPUTATIONAL
BASED ON ALGORITHMS. DESIGN METHODS.

259

for the design. The alternatives are based on the deformation of
the outer form of the exhibitions halls. (Fig.6.9-6.10)

Fig. 6.9 Offspring for the design alternatives .

CHAPTER 6: APPLYING COMPUTATIONAL PART III: ARCHITECTURAL DESIGN
DESIGN METHODS. BASED ON ALGORITHMS.

260

Fig. 6.10 Offspring for the design alternatives.

PART III: ARCHITECTURAL DESIGN CHAPTER 6: APPLYING COMPUTATIONAL
BASED ON ALGORITHMS. DESIGN METHODS.

261

Fig. 6.11 Offspring for the design alternatives. The selected form

 is surrounded by a box.

CHAPTER 6: APPLYING COMPUTATIONAL PART III: ARCHITECTURAL DESIGN
DESIGN METHODS. BASED ON ALGORITHMS.

262

6-3 Optimization

This step represents only the explanation of how this project can
be optimized using a special algorithm to optimize the structure.

The first step in this process can deal with the definition of the
profiles for all the beams. The choice is based part on aesthetics,
part on structural properties and part on the construction ability.

The goal of the algorithm can be optimizing the load bearing
structure, and this can be done through studying the following
situations:- (Fig.6.12)

1. Optimize profile Height.
2. Optimize profile Depth.
3. Optimize profile Thickness.

Fig. 6.12 Parameters represent the dimensions of the column.

The optimization algorithm can optimize the structure based on
certain criteria such as maximum displacement, and maximum
stresses in the material.

PART III: ARCHITECTURAL DESIGN CHAPTER 6: APPLYING COMPUTATIONAL
BASED ON ALGORITHMS. DESIGN METHODS.

263

This algorithm can be written easily by any script language
embedded in any modeling software such as Maxscript, or
MelScript to show the output as a 3d model automatically1. (the
script will run another external problem for calculations, this
calculations will be as an input for the script to draw the model)

Fig. 6.13 Simple steps represent the optimization algorithm.

6-4 Final design

The following images show the final design for the museum
concerning the exhibition part (Fig. 6.14-6.20)

1

 A script written under Maya is able to perform this optimization process. It works
using an external program to do the calculations: OASYS - GSA. This program
accepts text based input files which makes communicating with Maya very easy. In
the script you can define the loads, constraints and sections. This data is, combined
with the geometrical data, exported to a text file. Combined with the generated
Command file GSA can run “silent” and output a text file with the results. This file
is automatically loaded into Maya. Based on the results and the constraints Maya
decides for each profile if the initial dimensions are sufficient. If not it changes it.
The script runs again and the process repeats itself until the results meet the criteria
or the maximum number of iterations is reached.

CHAPTER 6: APPLYING COMPUTATIONAL PART III: ARCHITECTURAL DESIGN
DESIGN METHODS. BASED ON ALGORITHMS.

264

Fig. 6.14 Final plan for the project.

Fig. 6.15 Section in the exhibition part shows the voronoi cells.

PART III: ARCHITECTURAL DESIGN CHAPTER 6: APPLYING COMPUTATIONAL
BASED ON ALGORITHMS. DESIGN METHODS.

265

Fig. 6.16-6.17 Final form for the exhibition zone.

CHAPTER 6: APPLYING COMPUTATIONAL PART III: ARCHITECTURAL DESIGN
DESIGN METHODS. BASED ON ALGORITHMS.

266

PART III: ARCHITECTURAL DESIGN CHAPTER 6: APPLYING COMPUTATIONAL
BASED ON ALGORITHMS. DESIGN METHODS.

267

Fig. 6.18 Final form for the exhibition

CHAPTER 6: APPLYING COMPUTATIONAL PART III: ARCHITECTURAL DESIGN
DESIGN METHODS. BASED ON ALGORITHMS.

268

PART III: ARCHITECTURAL DESIGN CHAPTER 6: APPLYING COMPUTATIONAL
BASED ON ALGORITHMS. DESIGN METHODS.

269

Fig. 6.19 Final form for the exhibition.

CHAPTER 6: APPLYING COMPUTATIONAL PART III: ARCHITECTURAL DESIGN
DESIGN METHODS. BASED ON ALGORITHMS.

270

PART III: ARCHITECTURAL DESIGN CHAPTER 6: APPLYING COMPUTATIONAL
BASED ON ALGORITHMS. DESIGN METHODS.

271

Fig. 6.20 Final form for the exhibition

CHAPTER 6: APPLYING COMPUTATIONAL PART III: ARCHITECTURAL DESIGN
DESIGN METHODS. BASED ON ALGORITHMS.

272

CONCLUSIONS & RECOMMENDATIONS

273

CONCLUSIONS & RECOMMENDATIONS

Conclusions:

-With Respect to the applications of Algorithms in

architecture :-

1-The dominant mode for using computers in architecture today is
a combination of manually driven design decisions and formally
responsive computer applications. The problem with this
combination is that neither the designer is aware of the
possibilities that computational schemes can produce nor the
software packages are able to predict the moves, idiosyncrasies, or
personality of every designer. Designers often miss the
opportunity opened up to them through digital tools, merely
because of lack of understanding that computation can be part of
the design process as well, and can be achieved through
algorithms.

2- An algorithm is not about perception or interpretation but rather
about exploration, codification, and extension of the human mind.
Both the algorithmic input and the computer’s output are
inseparable within a computational system of complementary
sources. In this sense, synergy becomes the keyword as an
embodiment of a process obtainable through the logic of mutual
contributions: that of the human mind and that of the machine’s
extendibility

3- Applying algorithms in architecture redefines the use of
information technology in architecture, from only a presentation
tool to a counterpart to human imagination, a source of ideas, and
a portal into another world new to the human mind.

CONCLUSIONS & RECOMMENDATIONS

274

4- Paradoxical as it may appear, architects today have become
capable of exceeding their own intellect. Through the use of
intricate algorithms, complex computations, and advanced
computer systems, designers are able to extend their thoughts into
an unknown and unimaginable world of complexity.

5- What distinguishes using algorithms in “problem-solving” is
that their behavior is often non-predictable and that frequently
they produce patterns of thought and results that amaze even their
own creators. Herzog the architect of the Beijing stadium makes a
quite revealing statement about using algorithms in his designs: he
says that he (and his partner), did not seek to create forms or
patterns, He just discovered them1.

6-

7- Using algorithms is a way of conceiving and embracing the
unknown. At its very best, programming goes beyond developing
commercial applications (commands available in the interfaces). It
becomes a way of exploring and mapping our own way of
thinking. It is the means, by which one can extend and experiment
with rules, principles, and outcomes of traditionally defined
architectural processes.

8- Programming (through algorithms) involves more than simple
problem solving, because it is the only way to use the computer to
its full capacity, and for challenging known facts. Programming is
the vehicle for obtaining new knowledge, for seeing things that
cannot be seen, and for taking your fate, as a designer and
architect, in your own hands.

9- The problem with algorithmic logic in design is that fixed
interrelationships between numbers and concepts appear to some
designers as too deterministic. In fact, many designers are not

1

 Terzidis, Kostas . Algorithmic Architecture. Architectural Press, Elsevier, 2006, p.141.

CONCLUSIONS & RECOMMENDATIONS

275

interested in the mathematics of a design composition but rather in
the composition itself.

11- Applying algorithms in architecture design makes the architect
needs to learn other realms (computer science), which has nothing
to do with the architecture itself that makes the architect
dependable on a computer programmer.

12- Exploring algorithms in form generation, highlights the
importance of rule based systems as an integral part of the design
process and rules.

13- Algorithms can be used in nearly most of the aspects in the
architectural design.

14-In reality, there is an unraveling relationship between the needs
of a designer/architect and the ability of a specific program to
address these needs at all times (and that is what algorithms offer
to the architect).

-With Respect to the new design methodology (Design
matrix):-

1- This design method (through the matrix) facilitates the realm of
algorithms to architects, and this will help them to take decisions
in using algorithms in their designs.

2- The second form (Applying only the algorithms related to the
form) of applying the architectural design method is the easiest
form of applying the methodology of design.

3- The fourth form (Applying algorithms to solve certain
problems) of applying the architectural design method is the most
important application for the design methodology, because it is

CONCLUSIONS & RECOMMENDATIONS

276

easy to be applied and powerful in solving certain design
problems, especially when these problems are related to certain
calculations.

4- The first form (Applying all the algorithms in the matrix) of
applying the architectural design method is the most complicated
form, and sometimes it is not applicable.

Advantages

5- It is perfect in designing projects with certain goals related to
calculations such as; optimum performance, minimum cost,…,etc.

6- It is a good method to be used in designing certain projects with
complicated situations.

7- It is an excellent method when the architect determines the
problem statement in his design and according to this problem he
can select his way in the design matrix to achieve his goal (selects
certain algorithms and neglects others).

8- Its output is unpredictable which makes it interesting from the
architectural point of view.

Disadvantages

9- It is hard to be applied in many architectural problems.

10- It can be applied only in large architectural firms.
11- Sometimes certain designs need their own algorithms that are
designed specially for these designs and cannot be used in others
designs.

12- It needs a computer programmer beside the architect.

CONCLUSIONS & RECOMMENDATIONS

277

13- Sometimes it is difficult to determine the type of algorithm to
be used for certain problems, and this makes the architect designs
special algorithms rather than designing the building itself.

14- The problem in applying this design method is the wide
variations and needs of designers, which make applying a certain
method differs from project to another due to the variations in the
use of algorithms, and the difficulties in applying certain rules.

-With respect to the computer engineers:-

15- The computer programmer should design certain software that
run the most popular algorithms in an easy and applicable way.

16- Genetic algorithms (because of their wide applications in
architecture) must be implemented in certain software with an
easy interface that includes all the architectural applications.

17- Algorithms such as A* algorithms and swarm intelligence can
be implemented in one software to test the circulation in the
building under certain circumstances.

18- Algorithms that concern with form generation should be
implemented in software that makes this form modifications
related to certain architectural problems.

19- Programmers should design for the architects programmable
languages (with a computational power equal to the low level
languages)that are easy to be used rather than scripting since the
latter are high-level languages(very slow and sometimes useless).

Recommendations

CONCLUSIONS & RECOMMENDATIONS

278

1- Architectural schools should teach students not only how to use
CAD tools, and how to play around with applications, but also the
language, structure, philosophy, and power of programming
through algorithms.

2-Architects should explore computational techniques in the
context of architectural design.

3- Architects should cooperate with programmers in the
architectural design to achieve new architectural designs.

4- Every architectural firm should design their algorithms to
achieve new designs and wide range of alternatives in no time.

5-“Within the next few years, a few large software developers will
dominate the CAD market, treat libraries of shape construction
procedures as proprietary intellectual property, and thus define the
shape universes that architects can explore. Under this scenario,
designers become consumers of standardized, centrally developed
and marketed software products, and architectural historians of the
future will characterize bodies of architectural work in terms of
the software releases that generated them.
Alternatively, architects might create design procedures for
themselves through algorithms (in decentralized way), and share
them freely within open-source communities, and thus sustain a
broad-based, vibrant culture of critical thought and innovation.

6- The vision to information technology with respect to
architecture has to be changed form only a presentation and
modeling tools, to an extension for the architect’s brain in
architectural design.

REFERENCES

279

REFERENCES

Alexander, C., Notes on the Synthesis of Form. Cambridge:Harvard
University Press, 1967.

Aranda, Benjamin/Lasch, Chris, Pamphlet Architecture 27:
Tooling,Princeton Architectural Press.2005.

Aurenhammer, Franz. Voronoi Diagrams - A Survey of a
Fundamental Geometric Data Structure. ACM Computing Surveys,
1991.

Barker-Plummer, David: Turing Machines, in Edward N. Zalta
(ed.): The Stanford Encyclopedia of Philosophy (Spring 2005
Edition),

Bentley. P.. Evolutionary Design by Computers. Morgan Kaufmann
publishers, 1999. op.cit.

Caldas, L. G. and L. K. Norford. "Genetic Algorithms for
Optimization of Building Envelopes and the Design and Control of
HVAC Systems." ASME J. Solar Energy Engineering, 2003.

Chinowsky, P. S.: The CADDIE Project: Applying Knowledge-
Based Paradigms to Architectural Layout Generation. Ph.D. thesis,
department of civil engineering, Stanford University, May 1991.

Chomsky , N., Syntactic Structures, The Hague: Mouton &
Company, 1957.

REFERENCES

280

Clarke, Cory & Anzalone, Phillip. Architectural applications of
complex adaptive systems, Proceedings of ACADIA Conference
2003.

Daffa', Ali Abdullah al- . The Muslim contribution to mathematics.
London: Croom Helm, 1977.

Dietz, A. , Dwelling House Construction Cambridge: MIT Press,
1974.p.18

Eastman C. M. and Henrion M., M. GLIDE: Language for a
Design Information System. Pittsburg: Carnegie-Mellon University,
Institute of Physical Planning, 1967.

Eisenman P., "The Futility of Objects", Harvard Architecture
Review 3,1984.

Evans, R. ,"Not to be Used for Wrapping Purposes", AAFiles 10,
1987.

Flemming, U., "The Role of Shape Grammars in the Analysis and
Creation ofDesign", Proceedings of Symposium on Computability of
Design at SUNYBuffalo, (December 1986).

Frazer, J., Frazer, J., Liu, XY., Tang, MX. and Janssen, P.,
Generative and Evolutionary Techniques for Building Envelope
Design. GA2002 (Generative Art and Design Conference, Politecnico
di Milano University, Italy , Milan 11-12-13 December 2002).

REFERENCES

281

Gross, M.D., FormWriter: A Little Programming Language for
Generating Three-Dimensional Form Algorithmically. Computer
Aided Architectural Design Futures 2001, Kluwer Academic
Publishers, 2001.

Gurevich, Yuri , Sequential Abstract State Machines Capture
Sequential Algorithms, ACM Transactions on Computational Logic,
Vol 1, no 1 (July 2000).

Hansmeyer, Micheal, Algorithms in architecture,http://www.mh-
portfolio.com/indexH.html.

Imperiale, Alicia, New Flatness: Surface Tension in digital
architecture, Birkhauser, 2000.

Kalay, E.Y., Modeling Objects and Environment, John Wiley &
sons, 1987.

Knight, T. W., Transformations of Languages of Design, Ph.D.
Dissertation. Los Angeles: University of California, 1986.

Knight, T. W., Transformations of Languages of Design, Ph.D.
Dissertation. Los
Angeles: University of California, 1986.

Kolarevic, Branko, Architecture in the digital age: Design and
manufacturing, Published by Taylor& Francis group, 2003.

Kolarevic,B.,Digital Morphogenesis. In B. Kolarevic, (Ed)
Architecture in the Digital Age, Design and Manufacturing. New
York: Spon Press, 2003.

Krawczyk, R.J.: Architectural Interpretation of Cellular Automata.
Illinois Institute of Technology, USA, Generative Art 2002.

REFERENCES

282

Leen, yun jung and others, Digital diagram architecture + interior,
Jeong, Kwang , 2007.

Levin, P. H.. Use of Graphs to Decide the Optimum Layout of
Buildings. Architect, 14, p.p 809–815, 1964.

Negroponte, N., The Architecture Machine. Cambridge: MIT Press,
1970.

Nophaket N., The Graph Geometry for Architectural Planning.
Journal of Asian Architecture and Building Engineering, May 2004.

ONeill, B., Elementary Differential Geometry. New York: Academic
Press, 1966.

Oosterhuis, Kas, Hyper bodies: Towards an E-motive architecture,
Birkhauser, 2003.

Pablo Miranda Carranza & Paul Coates, Swarm modeling: The
use of Swarm Intelligence to generate architectural form.

Pearl, Judea. Heuristics, Intelligent Search Strategies for Computer
Problem Solving. Addison-Wesley, 1984.

Prousalidou, E., A Parametric System of Representation Based on
Ruled Surfaces. Master of Science in Adaptive
Architecture&Computation,Bartlett School of Graduate Studies,
University College London, September 2006.

Rosenman, M. A. An edge vector representation for the
construction of 2-dimensional shapes, Environment and Planning
B:Planning and Design, 1995.

REFERENCES

283

Rosenman, M.A. and Gero, J.S., Evolving Designs by Generating
Useful Complex Gene Structures. In P. Bentley (ed.), Evolutionary
Design by Computers, Morgan Kaufmann, London,1999.

Rozenberg,Grzegorz and Salomaa,Arto, The mathematical theory
of L systems,Academic Press, New York, 1980.

Schneider, M. and J. Gersting, An Invitation to Computer Science,
West Publishing Company, 1995.

Shao, Wei & Terzopoulas, Demetri, Environmental Modeling for
Autonomous Virtual Pedestrians, Symposium on human design
modeling for design and engineering, 2005.

Sipser, Michael, Introduction to the Theory of Computation. PWS
Publishing Company, 2006.

Spall, J. C., Introduction to Stochastic Search and Optimization.
Wiley, 2003.

Stiny, G., Computing with Form and Meaning in Architecture,
Journal of
Architectural Education 39, 1985.

Terzidis, Kostas . Algorithmic Archtecture. Architectural Press,
Elsevier, 2006.

Yessios C., A Fractal Studio, ACADIA 87 Proceedings, North
Carolina State University, 1987.

Non Published References;

REFERENCES

284

El Iraqi, Ahmed, Form generation in architecture "using tools based
on evolutionary and mathematical functions", Master degree at Ain
Shams University, 2008

Kotonik, Toni, Algorithmic extension of architecture, master degree
at ETH ARCH/CAAD, Zurich, 2006.

Internet Sites

http://www.gyoscope.com/

http://en.wikipedia.org/wiki/L-systems

http://www.worldarchitecture.org/world-buildings/world-
buildings-detail.asp?position=detail&country=Greece&no=2432

http://www.mh-portfolio.com/indexH.html.

http://mathworld.wolfram.com/VoronoiDiagram.htm l

http://www.m-
any.org/index.php?option=com_content&task=view&id=14&Ite
mid=34

http://en.wikipedia.org/wiki/File:AstarExample.gif,

http://www.vr.ucl.ac.uk/depthmap/

