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Abstract 

Building simulation tools are used in many domains for the evaluation of various 

performance criteria. Due to the uprising awareness of more efficient and greener 

buildings besides, the recent progress in computational techniques, this trend became 

easier to evolve than ever before. However, design problems cannot be completely 

explored merely through these tools. They are useful in the analysis and the evaluation 

of a specific design, or a limited number of alternatives, according to certain criteria. On 

the other hand, they are not efficient for evaluating a large number of solutions. Hence, 

the integration of parametric design with genetic algorithms as an optimization tool was 

investigated as an approach to overcome this problem. A focus of this integration was in 

conceptual design phase, which returns to the key impacts of decisions taken in this 

phase.  

In chapter one, an emphasis was on performance models and how “performance” issues 

were incorporated in different design models to serve as the driving engine for design 

exploration. By paying attention to the capabilities of generative models in capturing 

formal qualities, the integrated approach “generative Performative approach” was 

highlighted. Moreover, contributions of optimization algorithms in reaching high 

performance designs were investigated.  

In chapter two, the investigated performance criteria was set to be daylighting design.  

Daylighting is an important building aspect that needs concern from the early beginning 

of the design process. Still successful daylighting design is a challenging task due to the 

conflicting requirements to reach the balance between daylighting adequacy and visual 

comfort. Besides, the fluctuating nature of daylight along the day and year complicates 

the process. Hence, the significance of integrating optimization algorithms for efficient 

daylighting design was discussed. 

In chapter three, different generative systems were explored for pattern generation, 

focusing on cellular automata (CA). As a matter of fact, they lack the capability of 

meeting performance requirements without being guided by performance feedback. 

Thus, CA was integrated with Genetic Algorithms (GAs) to explore their effectiveness 

in solar screen formation. The designed solar screen was intended to meet daylighting 

performance requirements of a south oriented classroom in Cairo. An exhaustive search 

method was first applied and then was replaced by GAs.  

In chapter four, findings of the classroom case study were discussed. All investigated CA 

rules proved their applicability in reaching satisfactory solutions in terms of the assigned 

daylighting criteria. In addition, GAs revealed their robustness in finding satisfactory 

solutions with less computational demands than the exhaustive search method which 

could be impractical in other cases.  



 

 

The last chapter introduced the conclusions and recommendations. It elaborated the 

potentials of parametric design coupled with Genetic Algorithms (GAs) as an 

optimization tool in reaching highly efficient solutions. A workflow for utilizing 

generative performative design approach was suggested to meet designers’ subjective 

visual demands and the required performance criteria. At last, future research concerned 

with optimization studies for building design was suggested.  
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Daylighting Simulation- Genetic Algorithms- Cellular Automata- Parametric Design- 

Generative Systems- Solar Screen- Performative Design 

Software Used 

DIVA:   It is a simulation program which interfaces Radiance and Daysim engines for 

the daylighting calculations and EnergyPlus engine for thermal analysis. It stands for 

Design, Iterate, Validate, and Adapt. 

Galapagos: It is an evolutionary solver for optimization in Grasshopper which was used 

to represent Genetic Algorithms. 

Grasshopper:    It is a graphical algorithm editor as a plug-in Rhino 3-D modelling 

software for parametric modelling without the need for a prior experience in 

programming. 

Rabbit: it is a plug-in for Grasshopper which can explore pattern formations using 

Cellular Automata as a generative system. 

Rhino:   It is 3-D NURBs modelling software used for computer graphics and as 

computer aided design tool. 

Speed-Sim: It is a parallel simulation tool used for DIVA in Grasshopper. It exploits the 

number of cores in the computer to speed the simulation time. 

Other Software 

BEopt (Building Energy Optimization): It is an optimization software that can evaluate 

residential building designs which uses EnergyPlus for simulation analysis. 

DOE-2: It is a building program for energy analysis which can perform hourly simulation 

to predict energy use and cost. 

GenOpt®: it is an optimization tool for multi-dimensional problems which can be 

coupled with simulation programs like EnergyPlus (a whole energy simulation program). 

ParaGen: It is a tool that explore design alternatives combining parametric modeling, 

performance simulation software and genetic algorithms. 

TRNSYS: It is an energy simulation software package. 

GENE-ARCH: It is design tool that combines DOE-2 for the simulation analysis with 

Genetic Algorithms as the search engine. 



 

 

Important Definitions 

Algorithm: It is a number of steps to find a solution for a definite problem.  

Cellular Automata: It is a well-known generative system that imparts a sense of visual 

quality and guides form generation. 

Black count: It is the number of solid cells in the first row of the screen array. It controls 

the openness factor of the solar screen. 

Circadian System: It is acting as a biological clock in the human beings affecting sleep 

patterns and alertness level and it is regulated by daylight.  

Deterministic algorithms: They take predictable exact values as an input for the design 

variables thus, they do not accept the possibility of chance or probability 

Exhaustive enumeration method: An optimization method where all possible solutions 

are evaluated. They are most probably not practical due to computational time. 

Generative Design: It is a rule-based design process through which design forms are 

generated. 

Generative Performative Design: An integrated design approach that combines 

Performative design and generative systems.  

Genetic Algorithms (GAs): They are an evolutionary algorithm that are used widely in 

building optimization. They work on replacing a population of solution with another fitter 

population by simulating the genetic operators of reproduction, mutation and crossover. 

Heuristic methods: They are problem solving techniques that enable searching and 

discovering the design space.   

Optimization: To make something perfect, functional or effective as possible which 

could be by finding the maximum or minimum of a function. 

Parametric Design: It is a design process in which numerous design alternatives of 

building models can be generated through the identification of a set of relationships 

between the geometric entities. Interdependencies are governed by mathematical 

function(s).    

Pareto optimal/optimization: It is referred to multi-optimization problems where no 

objective can be better unless the other is negatively affected. 



 

 

Performative design: It is a design approach that combines form generation and 

performance, considering both through optimization algorithm and simulation 

techniques. 

Solar Screens: shading element that was used to be applied in the Middle East for privacy 

and shading intents. 

Solution space: It refers to all possible alternatives for problem solving which is formed 

by cross-referencing all design variables. 

Stochastic algorithms: are randomly determined algorithms where random variables are 

added to the optimization problem. Otherwise, randomness is introduced in the search 

process as in Genetic Algorithms. 
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Overview 
Building construction is from the largest and most important industries in the world. Its 

rapid increase has imposed the adoption of new approaches for building design.  The 

approach towards simulation-based optimization has been widely utilized from the early 

beginning of the design process. Optimization techniques have been developed to cope 

with the rising demand for more efficient buildings.  In spite of its challenges and 

limitations that hinder the replacement of conventional design methods, it is believed that 

it will become the norm in the near future. 

Many different optimization strategies and methods have been developed trying to 

confront the various optimization problems related to building performance. The 

selection of the appropriate optimization algorithm is not a straight forward method that 

could be applied through a generic rule. Instead, a number of considerations should be 

taken into account. Searching through the various types of algorithms and the extent to 

which it could be appropriate for optimizing daylighting performance, genetic algorithm 

was chosen.  

It is claimed that most of our time is spent in the indoor environment. Thus, that urges 

the realization of indoor spaces that comply with a high performance standards and the 

user satisfaction.  Daylighting design is a challenging process that could be so rewarding 

from that perspective. There are many approaches for achieving successful daylight, 

implementing different strategies that consider both quality & quantity. This can be more 

attainable if it is thought about from the early beginning of the design. Taking this in to 

consideration, the transition phase from the urban context to the architectural scale is the 

critical phase to concern about. Any further treatments in the later stages won't 

recompense the value of the early adjustments in the conceptual design. Hence, the need 

of integrating parametric design with optimization algorithm comes in the conceptual 

design phase. 

This study discusses the contributions of optimization algorithms in the field of the 

building design problems. The focus is on the combination of Genetic Algorithm (GAs) 

with parametric modeling and its potential to determine the set of best possible building 

geometry that fulfill a daylighting performance criterion.   
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Problem Definition 

Daylighting is a critical element that is most probably neglected in the conceptual design 

phase or in best cases is casually considered. Daylighting design is a difficult process due 

to its variations throughout the day and year, besides the possibility of accompanying 

excessive heat gain. In general, the traditional design process is a complicated and a 

tedious process when it faces a large number of parameters. Considering simultaneously 

different aspects of conflicting objectives - aspiring to reach the optimal solution- would 

lead to a lot of trials and errors.   

The question is: what is the approach that could impact the form generation in a way that 

meet both designers’ aspiration and the intended performance criteria? Besides, on what 

basis could be the selection of the optimization algorithm to be integrated with the 

parametric modeling? Then, how its effectiveness can be explored for this particular 

daylighting study? 

Hypothesis 

Adopting generative performative design is an approach that could be so rewarding from 

the daylighting point of view. The conceptual design phase, where form generation is 

settled, impacts the success of the design solution. Coupling Genetic Algorithms (GAs) 

with parametric design is the proper selection for approaching daylighting performance 

problem as optimal solutions can be obtained with a limited number of simulations. 

Research Objective 

The main objective of this study is identifying the implicit relationship between the 

geometrical screen patterns and daylighting efficiency through generative performative 

design.  

Secondary objectives 

 Identifying the transformation occurred in the architectural design process, and 

how performance was prioritized. 

 Highlighting the capabilities of generative systems in the formation of screen 

patterns that comply with a predefined criteria. 
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 Exploring the potentials of Cellular Automata (CA) as a generative tool in screen 

pattern formations for efficient daylighting performance. 

 Exploring the potentials and limitations of Genetic Algorithms (GA) as an 

optimization tool was intended aiming to reach an efficient daylighting 

performance for a classroom space.  

Research Methodology     
The research is divided into a number of sequential stages: 

 Theoretical study 

First, a theoretical study on building optimization algorithms and parametric modelling 

was carried out to find the their contributions in achieving highly efficient designs. With 

an emphasis on daylighting performance, an investigation was done on daylighting 

simulation tools and metrics. 

 Analytical Study 

Analysing the capabilities of generative systems (Cellular Automata in specific) in 

complying with the daylighting requirements. 

 Simulation/Optimization Analysis 

By focusing on a classroom space as a case study, a generative system (Cellular 

Automata) and an optimizaion algorithm (Genetic Algorithm) were applied to form and 

optimize a screen pattern for efficent daylighting performance. 

Research Structure 

Chapter1: Inception of Performance-based design 

It overviews the contributions of optimization algorithms in the building design 

particularly for daylighting design. It emphasizes the key role of the automation of the 

simulation process leading to the optimal design solutions, highlighting its potentials in 

comparison to the limited capabilities of the traditional design approach. Furthermore, it 

explores and classifies building optimization problems -performance based problems- 

and optimization algorithms, supporting the proper selection of an optimization algorithm 

for the daylighting performance criteria. 
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Chapter 2: Daylighting as a Performance Criteria 

It introduces daylighting visual and non-visual aspects. Then, an overview on daylighting 

simulation programs and metrics is presented. Finally, the significance of integrating 

optimization for efficient daylighting is highlighted.  

Chapter 3: Optimized Facades for Daylighting Performance: Classroom Case Study 

In this Chapter, a brief introduction on façade design treatments was given with an 

emphasis on solar screens as one of the well-known design treatments. Besides, an 

overview of different generative design systems was introduced to highlight their 

capabilities in pattern generation. Cellular Automata (CA) and Genetic Algorithms (GAs) 

were chosen for generating optimal solar screen design for a classroom space in the hot 

arid climate of Cairo. 

Chapter 4: Classroom Case Study: Results and Discussion 

Summing up with findings of the classroom case study, demonstrating the potentials of 

CA and GA in achieving the intended visual aspects and daylighting requirements 

efficiently. 

Chapter 5: Conclusions and Recommendations 

Highlighting the potentials of the adopted research methodology where generative 

performative approach was utilized, besides outlining the possible outcomes from 

expanding it to other research work. 
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1.1 Introduction  

Recently there has been a drift towards the utilization of building simulation tools for the 

evaluation of building performance. Different performance criteria have been adopted 

due to the uprising awareness of more efficient and greener buildings. Besides, the recent 

progress in computational techniques is making this trend easier to evolve than ever 

before.  

Many different simulation tools that are applied to building performance analysis have 

arisen. The increasing demand for these tools has imposed the development of more-

friendly user interfaces, working on decreasing the computational time, and other issues 

for the facilitation of their use. Through time and by practice, it was found that the design 

problem cannot be completely explored through these tools. They could be helpful in the 

analysis and the evaluation of a specific design alternative, or a limited number of 

alternatives, according to specified criteria. However, they are not efficient for evaluating 

a large number of solutions. This is could be an exhaustive process with a lot of trials and 

errors. Hence, the problem of design exploration comes which is suggested to be 

overcome by parametric design coupled with genetic algorithms. 

This chapter introduces the architectural design process, focusing on the conceptual 

design phase and its significance for the decision making. It also investigates the 

transformation occurs in the design thinking starting from the paper-based methods till 

reaching the digital design age. A classification of digital design methods is presented 

emphasizing on the performance models and how it is incorporated in different design 

models to serve as the driving engine for design exploration. Thus, contributions of 

optimization algorithms in reaching high performance designs was investigated.  

1.2 Design Process in the Architectural Practice 

The design process is a set of actions that are taken in a hierarchal order aiming to reach 

an intended final output based on specific design requirements and objectives.1 This set 

of actions is constantly changing through time trying to adapt with uprising design needs 

and respond to the demands of new design approaches.  

In conceptual phases of the design process, the paper-based methods have been adopted 

as the main design media for centuries.  It has not been so long since it was still believed 

                                                      
1 G. Broadbent and A. Ward, 1969. Design Methods in Architecture: Lund Humphries London. 
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that it is more efficient in such early phases where the input data is changing and may be 

conflicting.1 According to Schon and Wiggins, architectural practice based on these 

conventional methods like sketching and physical modelling is referred to as “reflective 

practice”. They develop the setting of their problem and create their own way towards its 

solution.2 As for the evaluation of their own crafted solutions, Schon argued that they 

could implicitly state their own qualitative judgments, which is a reflection of their own 

knowledge and experience, but that does not mean that their solutions could be explicitly 

stated against specific criteria.3  

However, a new approach has evolved which has changed the way of building design. 

Instead of depending on the designers' experience and knowledge in making design 

judgments, it can be made based on performance and generative criteria. This is what 

called a paradigm shift in design thinking.4 This has emphasized the significance of 

decision making in the conceptual phase instead of its delegation to later design phases.  

1.2.1 The Nature of the Architectural Design Process 

The Design process can be described as an iterative process where a number of dependent 

or interdependent design tasks are performed in sequence till reaching a desired goal.5 

The effectiveness of this process can be revealed through this loop of action and 

assessment (activity and reflection) that is highly reliable on the design media. Design 

tools and techniques used influence the problem representation and how it is perceived. 

Thus, they affect the designers conceptual thinking to develop ideas and reflect upon the 

results.6  

Design process can be described by four ways as shown in Figure 1-17:  

1. Linear sequence; It is a sequence of activity followed by a decision. It is a 

systematic way of thinking convenient for typical problems that are seldom used 

for innovative practice.   

                                                      
1I. Basa and B. Şenyapılı, (2005). "The (in) Secure Position of the Design Jury Towards Computer Generated 

Presentations." Design Studies 26, no. 3: 257-270 .  
2 D. A. Schon and G. Wiggins, (1992). "Kinds of Seeing and Their Functions in Designing." Design studies 

13, no. 2: 135-156. 
3  D. A. Schön, 1983. The Reflective Practitioner: How Professionals Think in Action. Vol. 5126: Basic 

books. 
4 R. Oxman, (2006). "Theory and Design in the First Digital Age." Design studies 27, no. 3: 229-265. 
5 Y. E. Kalay, (1999). "Performance-Based Design." Automation in construction 8, no. 4: 395-409. 
6J. Anderson, 2010. Basics Architecture 03: Architectural Design. Vol. 3: AVA Publishing. 
7 C. Gänshirt, 2007. Tools for Ideas: Introduction to Architectural Design: Walter de Gruyter. 
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2. Testing and scanning; the designer test the initial solution and if it doesn’t meet 

his desired outcome, he returns back to find another one.  

3. Systematic production of alternatives; in which the designer explores multiple 

design alternatives before making a decision. This variety of alternatives helps 

him in making his critical judgment and thus saving time possibly wasted in a lot 

of trials and errors. 

4. Forming alternatives in a multi-step process; this differs from the previous in 

imposing a number of constrains when exploring the alternatives, thus reducing 

the vast design space into smaller viable one, so that design solutions will be 

filtered to the most relevant ones. 

  

Figure 1-1: Schematic illustrations of four alternatives of the design processes 1) linear sequence 2) testing 

and scanning 3) systematic production of alternatives 4) Forming alternatives in a multi -step process1 

Architectural design problems are complex; they vary greatly according to various 

stimuli/ circumstances affecting them. Various scientific problems are complex problems 

that seek for one single solution or proving one theory that rejects the others. On the 

contrary, in architectural design problems, there is no one best solution or one correct 

                                                      
1 J. Anderson, 2010. Basics Architecture 03: Architectural Design. Vol. 3: AVA Publishing. 
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way to design, the perception of the problem, its representation and its solution are not 

confined to just one correct answer. Instead, multiple interpretations of each design 

problem are introduced. An empirical approach is followed for this problem solving.1  

Normally, no two designers have the same response towards the same problem each have 

his/her own design process; it differs according to their own perception and 

understandings of the design problem and thus, their judgments differ. Critical judgment 

is a way of thinking for making decisions facing the challenge of comparing and choosing 

from multiple possible solutions. 2  It reflects the designers own knowledge and 

experience so it’s a subjective assessment that’s vulnerable to their bias and preferences. 

From here, new approaches have emerged that is able to quantify the criteria upon which 

the design is assessed. This emphasizes the significance of decisions made in the 

conceptual design phase that has a pivotal impact on the later stages. 

1.2.2 Conceptual Design Phase 

In the conceptual design phase, design objectives are interpreted as different preliminary 

concepts that need to be analyzed and filtered down to those eligible for further 

enhancements.3 In other words, this phase represents two sub phases namely; divergent 

and convergent phases, where different alternatives are generated in the former, whereas 

in the latter they are grouped and nominated for selection according to specific criteria. 

The two steps are repeated sequentially till reaching promising concepts to be further 

developed in the modulation and the detailed phase. 4 

Decisions in the conceptual phase could be a turning point that transforms the design 

towards more efficiency in performance. In spite of applying high design standards is 

possible in further stages, this will not compensate the benefits of taking the right decision 

from the early beginning.5 This emphasizes the significance of exploring different design 

alternatives in this early phase, consequently enhancing decision making.  

Traditionally, in the early phases of design, where the design problem is represented, a 

set of solutions are suggested to meet the design requirements. The designer is constantly 

going back and forth between these alternatives coping with the uprising changes to best 

                                                      
1 Ibid. 
2 Ibid. 
3 G. Pahl et al., 2007. Engineering Design: A Systematic Approach. Vol. 157: Springer Science & Business 

Media. 
4Y.-C. Liu et al., (2003). "Towards an ‘Ideal’approach for Concept Generation." Design Studies 24, no. 4: 

341-355. 
5 M. Turrin et al., (2011). "Design Explorations of Performance Driven Geometry in Architectural Design 

Using Parametric Modeling and Genetic Algorithms." Advanced Engineering Informatics 25, no. 4: 656-675. 
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meet all required objectives. This set of actions is traditionally informed by functional 

and aesthetic aspects that rely on designer expertise and knowledge thus, leaving the 

performance and environmental issues to post design phases.1 Paying attention to these 

shortcomings, a new design approach has been rapidly developed and adopted in the 

architectural practice today. 

1.3 Transformation of the Conceptual Design Phase 

The dynamic nature of the design activity and the continuous increase of complexity, 

besides the need for more sustainable buildings have imposed the development of new 

approaches. The constantly uprising demands are confronted with these approaches and 

techniques. A holistic design approach has emerged in which different aspects affecting 

building performance such as building form, orientation, interior design and structure are 

considered in the design process from the early beginning. This necessitates collaboration 

between all stakeholders for efficient decision making especially in the early design 

phase;2 it is the necessity that always incites inventions.  

Design concepts such as morphogenesis, generative design, and performance-based 

design have replaced the conventional concepts in the design theory. Through digital 

design thinking, new venues have been opened for design exploration and creativity, 

departing from typological and deterministic environment to where formation, generation 

and performance are the driving design forces. 3  The formation of new form of 

knowledge, theoretical basis and models of design based on digital design are dominating 

the current architectural discourse. 

Developments in the computational technology have made it possible to support this shift 

in design thinking. Initially, computational design has been exploited as a complement 

of the paper-based methods; it has been used in visualization, drafting and 

documentation. The Computer-aided-design (CAD) models are considered as the first 

step towards digital design modelling. They have been used since the early 1980’s.4 First, 

they have been acting as descriptive models by which different graphical representations 

                                                      
1Ibid. 
2 Q. Zuo et al., (2010). "Integrating Performance-Based Design in Beginning Interior Design Education: An 

Interactive Dialog between the Built Environment and Its Context." Design Studies 31, no. 3: 268-287. 
3  R. Oxman, (2008). "Digital Architecture as a Challenge for Design Pedagogy: Theory, Knowledge, Models 

and Medium." Design Studies 29, no. 2: 99-120. 
4 R. Ramilo and M. R. B. Embi, (2014). "Critical Analysis of Key Determinants and Barriers to Digital 

Innovation Adoption among Architectural Organizations." Frontiers of Architectural Research 3, no. 4: 431-

451. 
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could be reached through modelling and rendering software.1 It is described to be an 

imitation of the conventional paper methods with a different representational 

environment. By estimating their contributions in the qualitative aspects of the design, 

relative to the conventional paper based methods, it is found to have a little impact.2  

Another direction has been evolved in which the use of computational tools is not 

confined to the representation or the visualization aspects. Instead, it is based on making 

use of the computational capabilities where simulations and calculations offer other 

methods and processes for design generation that could be based on performance 

aspects.3 Digital design tools have been converted from drafting to be actually acting in 

the design thinking process. This direction provides designers with the possibility to 

inform the design evaluation, thus converting the implicit cognitive process in the former 

direction to be explicit in this one.  

The digital design thinking imposes other demands regarding the knowledge of the 

updated technologies and their capabilities. Designers’ role includes acting as a tool 

maker and this is reflected in their interaction with computational mechanisms, besides 

the digital representation itself. The centrality of the designer is preserved with a high 

degree of control over the design media. Thus, facing the challenge of acquiring the 

needed knowledge to operate and manipulate different design media and being up to date 

with the technological and media developments is inevitable.4    

1.3.1 Emergence of Digital Design Models 

The digital design process is considered a unique set of actions rather than an alternative 

for the conventional process that differs in design media.5 Different digital design models 

have demonstrated the uniqueness of digital design thinking. Thus, supporting this 

transformation and emphasizing on its assets. Great implications have resulted from this 

transition; conventional concepts and principles have been replaced by other design 

concepts related to performance, generation and other issues. 6  Accordingly, digital 

design tools have been involved in design thinking rather than merely drafting.  

                                                      
1 R. Oxman, (2006). "Theory and Design in the First Digital Age." Design studies 27, no. 3: 229-265. 
2  Y. E. Kalay, 2004. Architecture's New Media: Principles, Theories, and Methods of Computer-Aided 

Design: MIT Press. 
3  Q. Zuo et al., (2010). "Integrating Performance-Based Design in Beginning Interior Design Education: An 

Interactive Dialog between the Built Environment and Its Context." Design Studies 31, no. 3: 268-287. 
4 Op. cit.: R. Oxman, (2006). 
5 Op. cit.: R. Oxman, (2006). 
6 R. Oxman, (2008). "Digital Architecture as a Challenge for Design Pedagogy: Theory, Knowledge, Models 

and Medium." Design Studies 29, no. 2: 99-120. 
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Digital design or computational architecture incorporate mathematical or logical 

processes for the exploration and manipulation of geometric forms. They are classified 

according to their underlying concepts into:1  

 Topological architecture; it represents a departure point from the typological 

Euclidean geometry to topological space where non-Euclidean geometry are 

represented through a Non-Uniform Rational B-Spline curves and surfaces 

(NURBS). Relationships between geometries are set by parametric functions.  

 Isomorphic architecture; another transition comes by isomorphic surfaces (Blobs 

and Metaballs) where fields of attraction and repulsion are formed. Objects are 

constantly interacting with each other reacting to any change in location or 

intensity.  

 Animate architecture; the role of the animation software is shifted to be the driver 

of the form generated rather than merely a visualization medium. Forces and 

motion are considered the incentive behind form generation. The bus terminal in 

NewYork by Greg Lynn is a well-known example of animate architecture where 

the movement of pedestrians, buses and cars are the driving force behind 

generating the roof shape and lighting scheme. 

 Metamorphic architecture; in this design model, geometrical forms undergo 

transformations by techniques like Keyshape animation and deformation of the 

modeling space. 

 Parametric architecture; forms are defined through parameters and their 

relationships and interdependencies are governed by mathematical function(s).  

A complete control on geometrical behavior is acquired through the manipulation 

of parametric values and equations.  

 Evolutionary architecture; generative rules are what define and control form 

generation. Emulating the nature’s evolutionary processes, it offers potentials for 

creativity and generation; unexpected forms are emerged and can be evaluated 

according to performance criteria. Genetic algorithms are considered to be ‘Key 

concept’ in evolutionary architecture. The critical part is not modeling the shape 

itself but the logic behind its generation. 

To clarify more these emerging digital concepts, another classification is represented in 

more detail where processes of formation, generation, performance are illustrated, 

highlighting performance as a key concern in the early design stages. 

                                                      
1 B. Kolarevic, (2000). "Digital Morphogenesis and Computational Architectures." Construindo n (o) espaço 

digital, PROURB, Universidade Federal do Rio de Janeiro, Rio de Janeiro: 98-103. 
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A framework suggested by Oxman in which she classifies digital design models into five 

models: CAD models, formation models, generation models, performance models, and 

integrated compound models.1 

 CAD models; they represent the early transition from paper based media to digital 

design media.  However, it could be considered an imitation of paper based 

design. They could be described through two subdivisions: descriptive CAD 

models and Predictive CAD models. In the former, modeling and rendering 

software provide designers with the graphical environment where interactions 

with geometric entities can occur. Whereas predictive CAD models enabled 

analytical evaluation where analysis and synthesis are performed sequentially on 

geometric models that are already developed.2 

 Formation models; they represent the actual start of the digital architectural 

design (DAD), which differs from the computer- aided- design (CAD); these 

models start to be liberated from the static formal representation of CAD models. 

Not as it was, where the concept of form is the concern, the concept of formation 

has dominated. New forms of representation have emerged where dynamic 

concepts can inform the formation process. Topological and non-deterministic 

processes have dominated over the convention typological and deterministic 

processes. Giving a high degree of interaction and control, responsive design can 

be acquired. Parametric design and animation are two subclasses of formation 

models that have brought in the concepts of topological variation and dynamic 

design. Animation can be employed as a driving force for form generation; form 

transformations are based on simulating the field of forces.3 In parametric design, 

interdependencies between parameters and the transformational logic of the 

geometric entities are defined rather than their static shape. Thus, by making use 

of the associative modeling, a large number of alternatives can be reached.4  An 

emphasis on parametric design will be illustrated in the next section. 

 Generative models; these models explicate the generative processes within the 

digital environment; formal digital representations are generated by a 

mechanism. These computational mechanisms, which are derived by a set of 

rules or relations, define the generative processes by which shapes and forms are 

generated. This is what differs them from formation models where formal 

                                                      
1 R. Oxman, (2006). "Theory and Design in the First Digital Age." Design studies 27, no. 3: 229-265. 
2 Ibid. 
3 Ibid. 
4 M. Stavric and O. Marina, (2011). "Parametric Modeling for Advanced Architecture." International 

journal of applied mathematics and informatics 5, no. 1: 9-16. 
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qualities are not predefined. It allows the designer intervention to guide the 

selection mechanisms to meet their goals. Not only one can interact with the 

digital representation but also with its operative part.1 Shape Grammars, Cellular 

Automata and Evolutionary Algorithms are well-known examples for generative 

models. The generative design model is described in Figure 1-2. 

 

Figure 1-2: Generative Design Model2 

 Performance models; It is agreed that decisions taken in the early design phases 

of building design has a great impact on the whole design. Mistakes result from 

wrong decisions in these phases may cause huge penalties especially in large 

projects. These decisions are influenced by the design media, tools, and 

techniques being used. In this design model, performance issues are what inform 

the decision making, instead of leaving the designers taking decisions based on 

their critical judgment that depends on their own knowledge,  understandings and 

representation of the problem.  

                                                      
1 R. Oxman, (2006). "Theory and Design in the First Digital Age." Design studies 27, no. 3: 229-265. 
2 S. Krish, (2011). "A Practical Generative Design Method." Computer-Aided Design 43, no. 1: 88-100. 
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Trying to support designers for making better decisions, Performance based design as a 

paradigm is first introduced by Kalay1.  He described the workflow as in Figure 1-3a the 

design iteration first starts with defining the performance requirements, and then an initial 

design is proposed that to be evaluated relative to the performance criteria. 2  Thus, 

simulation tools are integrated in the workflow for performance evaluation. They act as 

a guide to decide whether to stop the iterations or not; however, they don’t support the 

designer with active solutions if the criteria is not met.3 In case of rejected performance, 

the critical part is in identifying the required modification to meet a certain criterion 

without affecting another one negatively which has been already satisfied. This is a 

common act with inexperienced designers especially when facing novel situations. 

Accordingly, a large number of iterations is needed until reaching a satisfactory solution; 

that may lead to an endless loop of trials and errors. A modification on this work flow is 

suggested by Petersen and Svendsen4 to mitigate these limitations. A subtask is added 

within the work flow called “parameter variation” as shown in Figure 1-3b. This added 

the value of knowing the effect of varying different design parameters on the required 

performance. Thus, it facilitates the decision making process and reduces the number of 

design iterations. Parameter variations could be performed on one parameter at a time, so 

                                                      
1 Y. E. Kalay, (1999). "Performance-Based Design." Automation in construction 8, no. 4: 395-409. 
2 Ibid. 
3 S. Petersen and S. Svendsen, (2010). "Method and Simulation Program Informed Decisions in the Early 

Stages of Building Design." Energy and Buildings 42, no. 7: 1113-1119. 
4 Ibid. 
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it acts as differential sensitivity analysis; knowing how much the effect of each parameter 

on the performance prior taking any design action. However, it ignores the interaction 

between parameters; hence in other cases the effect of a combination of parameters can 

be explored.1 This method has proved its superiority upon the previous performance-

based design workflow. A survey have been conducted and found that the average 

number of design iterations is 2.8, which is definitely not enough number to reach the 

optimal solution due to the complexity of the design problems. This is the case because 

it is time consuming process, besides they tend to validate a certain design solution rather 

than exploring a number of alternatives.2  Hence an effective approach that directly 

automates this iterative process searching for the optimal desirable solutions has 

appeared. Another class of performance models differs from performance-based design 

which is the performance-driven design. This difference is discussed by Shi; the main 

difference is the incorporation of optimization technique in the workflow, as shown in 

Figure 1-4, to act as the driving engine for form generation.3  

 

Figure 1-4: The workflow in performance-driven design4- 5 

                                                      
1 Ibid. 
2 F. Flager et al., (2009). "Multidisciplinary Process Integration and Design Optimization of a Classroom 

Building." Journal of Information Technology in Construction 14: 595-612. 
3  X. Shi, (2010). "Performance-Based and Performance-Driven Architectural Design and Optimization." 

Frontiers of Architecture and Civil Engineering in China 4, no. 4: 512-518. 
4 S. Petersen and S. Svendsen, (2010). "Method and Simulation Program Informed Decisions in the Early 

Stages of Building Design." Energy and Buildings 42, no. 7: 1113-1119. 
5 Op. cit.: X. Shi, (2010). 
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In short, performance based models transform the implicit interrelation between the 

designer and the performative requirements to be explicated within the framework of the 

design process. They are driven either by analytical or generative simulations 

accordingly, they are categorized into performance-based formation models and 

performance-based generation models. In the former, performance acts as a formation 

technique in which analytical simulations of the desired performance drives the formation 

process. While in the latter, generative processes are driven by performance; simulations 

for synthesis and generation replace the conventional analytical simulations. The 

generative processes directly modify the form to meet the required design goals.1 

Pointing out that processes of formation, generation, and performance could be integrated 

within the digital design media,2 other approaches have been emerged. 

1.3.2 Generative Performative Design 

Based on the previously mentioned design models an integrated approach called 

“Generative Performative Design” has emerged. 3  Performative design alone is an 

approach derived from performance models. It amalgamates form generation and 

performance, considering both through optimization algorithm and simulation 

techniques. No longer are simulation tools utilized for analysis only, but they are used 

for both performing analysis and synthesis simultaneously; form is driven by generative 

processes guided by analytical simulation techniques that automatically modify the 

model. The concept of form making shifted to be form finding.4 Geometric models are 

needed to be formulated in a way that reacting to the stimulus of the evaluation process 

and complying with the modifications of the generative process can be in a consistent 

manner. Hence, parametric modeling is essential to support the generative process 

informed by the performance evaluation.5 In short, perfromative design as an important 

design paradigm in architecture intended mainly to meet building performance 

requirements. It needs three consecutive processes:  

 Parametric Modelling  

 Optimization Algorithm 

                                                      
1 R. Oxman, (2006). "Theory and Design in the First Digital Age." Design studies 27, no. 3: 229-265. 
2 Ibid. 
3  E. Fasoulaki, “Integrated Design: A Generative Multi-Performative Design Approach” (Massachusetts 

Institute of Technology, 2008.) 
4 R. Oxman, (2009). "Performative Design: A Performance-Based Model of Digital Architectural Design." 

Environment and planning. B, Planning & design 36, no. 6: 1026. 
5  R. Oxman, (2008). "Performance-Based Design: Current Practices and Research Issues." International 

journal of architectural computing 6, no. 1: 1-17. 
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 Simulation Technique 

On the other hand, generative design captures the aesthetics qualities of the design 

through a rule-based process that inform the generation of large range of solutions.  

Combining both models in one approach gives the advantage of reaching the aesthetic 

quality aspired while respecting the performance criteria needed. This would be through:  

 Parametric Modelling 

 Generative System  

 Optimization Algorithm 

 Simulation Technique 

1.4 Parametric Modelling 
Parametric modelling/design is a process in which numerous design alternatives of 

building models can be generated through the identification of a set of relationships 

between the geometric entities. Those entities are represented through variables and 

function(s) that relate them together. Thus, it offers the designer with the ability to change 

the variables values for creating a number of alternatives, avoiding the exhaustive 

traditional process.1 In the latter, the process requires repeating the design from scratch 

for every change.  On the other hand, in parametric modelling, the original design is 

defined by a number of predefined variables from which a whole set of alternatives can 

evolve. The critical part in setting a parametric model lies in defining the design 

constraints and the logic that controls parameters' modification.  

Parametric modelling gives the chance to generate different solutions of different 

attributes, but the problem appears when the search space is big, this arouses the issue of 

how this amount of alternatives could be evaluated and selected according to performance 

criteria. This is a cumbersome process that could last for a long time without reaching a 

satisfactory solution, therefore there is a need to assign an algorithm that aims to optimize 

the performance criteria. It is working on finding the link between geometric attributes 

and performance, accordingly it is aimed to minimize or maximize a given objective 

function to reach an optimal or near optimal solutions.2 

                                                      
1 M. Turrin et al., (2011). "Design Explorations of Performance Driven Geometry in Architectural Design 

Using Parametric Modeling and Genetic Algorithms." Advanced Engineering Informatics 25, no. 4: 656-675. 
2 Ibid. 
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There are large numbers of different optimization algorithms that are used in building 

performance design. A quick overview of these optimization methods with the most 

appropriate for approaching the daylighting problem will be held in the next section.   

1.4.1 Potentials and Limitations of Parametric Modelling 

A number of reasons have made parametric modeling adopted in large scale in the last 

few decades. They could be summarized as follows1: 

 The ability to generate a large set of alternatives that could be analyzed and 

evaluated based on predefined criteria. 

 Parameters manipulation allow the exploration of different, may be unexpected, 

configurations, hence, opening avenues for creativity and innovation. 

 The interaction of the designer have increased and facilitated, allowing him to 

visualize prompt variations on the 3D model. Thus, provides him a quick 

evaluation based on either predefined performance or aesthetic criteria or even a 

relative comparison between instances.  

 Another important benefit appears in interdisciplinary and decomposing 

complexity; based on the parameterization process itself in which the model 

structure is defined, it is accepted for different disciplines to share in the setup of 

the design strategies and subtasks. This setup explicates the hierarchical 

associations between geometries. 

Besides the potentials that contribute in this wide spread, there are a number of 

limitations. Sometimes limitations are faced when the need for high level of computation. 

This could imply decreasing the number of parameters forming a partial model (partial 

representation of geometric entities) by which the computation level can be overcome.2   

Another important problem appears when exploring large solution spaces. In this case, 

the complete success of the parameterization process depends on the selection of the 

appropriate range of solutions accordingly, depends on the search mechanism that satisfy 

the performance criteria.3 

1.4.2 Problem of Design Exploration 

Design exploration requires the study of the different parameters affecting performance, 

this is through parametric analysis that basically relies on building simulation tools, but 

                                                      
1 Ibid. 
2 Ibid. 
3 Ibid. 



… Chapter 1 

 

15 

 

at the same time this will not guarantee an optimization. Hence, optimization techniques 

are needed for exploring the solution space more efficiently and effectively.1 

The problem of exploration is interrelated with evaluation; constantly the feedback from 

the evaluation process supports the exploration process. It could be impossible to evaluate 

every possible solution; they are numerous so they will be time consuming and need a 

high computation level. On the other hand, if it is left to the designer's intuition or 

experience to choose the range of solution to be evaluated, it may work, but probably the 

results will be questionable. From here comes the need for a more digital support.  

The support of an optimization algorithm in the design process could be inevitable in 

some cases. The question here is when it should be coupled with parametric modeling, 

what could be appropriate for building performance analysis in general and what is more 

suitable for daylighting performance in particular.  

Mainly, optimization techniques play the role of a search mechanism to find the optimal 

or near the optimal values of parameters based on particular criteria.2 A number of factors 

affect the extent of the optimization technique fitness to a certain problem. Generally, an 

important issue is the range of solutions generated. According to Turrin et al. in design 

problems a range of solutions is needed for optimization instead of just one for avoiding 

the problem of discarding suboptimal solutions.3 Hence, a focus on the population based 

optimization algorithms are illustrated further on. 

1.5 Optimization Algorithms for Building Design Problems 

Building design is not a straight forward process that could be the same for all buildings 

even of the same type. Each has its own circumstances that could differ greatly depending 

on the purpose, the site, client, target group, etc.  The different parameters affecting their 

creation and their large range of possibilities have contributed in the complexity of the 

process. The selection of the best possible solution among a large solution space is a 

tedious task without applying an optimization algorithm. 

To optimize something means to make it perfect, functional or effective as possible. In 

mathematics and other sciences, optimization is a process in which the best possible 

                                                      
1 V. Machairas et al., (2014). "Algorithms for Optimization of Building Design: A Review." Renewable and 

Sustainable Energy Reviews 31: 101-112. 
2 M. Turrin et al., (2011). "Design Explorations of Performance Driven Geometry in Architectural Design 

Using Parametric Modeling and Genetic Algorithms." Advanced Engineering Informatics 25, no. 4: 656-675. 
3 Ibid. 
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solution is sought; by determining the maximum or minimum values of a specified 

function that is subjected to a set of constraints.1In building design problems it is not 

necessarily to find the optimum but it could be a solution near the optimum.2  

In building design, complex problems could be faced which need unconventional 

techniques to handle them. At that point, heuristic techniques could be vital.  They are 

problem solving techniques that enable searching and discovering the design space.  They 

can be used for optimization where reaching the optimum solution cannot be ensured, but 

they are promising methods for finding the near optimal. Evolutionary algorithms are the 

mostly used, they are stochastic population-based algorithms that mimic the principles of 

natural evolution, for each time step new solutions are generated and the poorest ones are 

eliminated. There are other methods that could be used instead of evolutionary 

algorithms; one popular method is the direct search methods. Direct search methods such 

as pattern search and linear and non-linear programming can be used, but their main 

limitation is getting stuck in a local optima.3  

Application areas of optimization algorithms in building design problems are constantly 

evolving.4 The challenge is in selecting the most suitable optimization methodology for 

a specific design aspect. Thus, there is a need for classifying Building Optimization 

Problems (BOP) and optimization algorithms to be the base in selecting the appropriate 

optimization algorithm for a certain building design problem. Besides, it can help in 

creating new strategies for approaching building optimization problems.5 

1.5.1 Classification of Building Optimization Problems (BOP)  

Areas of application related to building design and control that could make use of 

optimization techniques are vast; they include:6  daylighting performance, automated 

solar shading control, building layout and form, natural ventilation strategies, façade 

design, thermal comfort, geometry  position, density of fenestration, energy use, heating, 

ventilating and air conditioning (HVAC) systems sizing.  In addition, more than one 

                                                      
1 The dictionary, http://www.thefreedictionary.com/OPTIMIZE, last accessed: 10-10-2014 
2 A.-T. Nguyen et al., (2014). "A Review on Simulation-Based Optimization Methods Applied to Building 

Performance Analysis." Applied Energy 113: 1043-1058. 
3 R. Evins, (2013). "A Review of Computational Optimisation Methods Applied to Sustainable Building 

Design." Renewable and Sustainable Energy Reviews 22: 230-245. 
4 S. Attia et al., (2013). "Assessing Gaps and Needs for Integrating Building Performance Optimization Tools 

in Net Zero Energy Buildings Design." Energy and Buildings 60: 110-124. 
5 A.-T. Nguyen et al., (2014). "A Review on Simulation-Based Optimization Methods Applied to Building 

Performance Analysis." Applied Energy 113: 1043-1058. 
6 Op. cit.: S. Attia, (2013). 
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objective can be optimized simultaneously, e.g. simultaneous optimization of building 

envelope and HVAC elements. 

Building optimization problems can be classified as follows: number, nature and type of 

design variables, number and nature of objective functions, presence of constraints and 

their nature, and the problem domain. Most of BOP are constrained, these set of 

constraints define the solution space. If more than one domain is considered in the 

optimization, then it is a multidisciplinary optimization and it is much more complex than 

the single domain optimization. In general, BOP can be classified according to their 

variables (number, nature, and type) and their objective function (number and nature)1 as 

shown in Figure 1-5. If more than one variable exist then it is multi-dimensional 

optimization. The assigned variables could be independent or associated with each other 

with relationship to be in that case mutually dependent. They also can accept only discrete 

values or any real number (continuous values). 

 

Figure 1-5: Classification of building optimization problems 

Any optimization problem is represented by an objective function. In case there is more 

than one objective function then this problem needs a multi-objective optimization. There 

are two ways for approaching this type of problems: weighted sum function and pareto 

                                                      
1 A.-T. Nguyen et al., (2014). "A Review on Simulation-Based Optimization Methods Applied to Building 

Performance Analysis." Applied Energy 113: 1043-1058. 
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optimal.1 However, More than half the number of the building optimization studies is 

single objective according to Evins.2 

 Weighted- sum function 

For each objective a weight factor is assigned then integrated to form a single objective 

function. It is an efficient and easier way to implement, but it doesn't provide any 

information about how different objectives affect each other. Besides, there is a difficulty 

in assigning those weight factors due to the differences in their objectives, significance, 

and metrics; it requires prior knowledge for setting the right weight factors.   Another 

drawback is giving only one solution, however; to get through this, different factors can 

be assigned for getting different solutions.3  

 Pareto Optimal 

A solution is called Pareto optimal or is referred to Pareto optimization when a 

compromise between objectives is set in response to their contradictions. It is referred to 

multi-optimization problems where no objective can be better unless the other is worse. 

The diverse solutions formed are called Pareto frontier showing the trade-off between the 

objectives. In case of two objectives, the so-called "Pareto frontier" is represented by a 

curve as shown in Figure 1-6. The advantage of the Pareto solution is exploiting a 

diversity of solutions unlike the weighted sum. Due to the complexity of building 

optimization problems, most studies uses only two objective function. The critical part is 

the selection of the best solution from the Pareto front. 

                                                      
1 V. Machairas et al., (2014). "Algorithms for Optimization of Building Design: A Review." Renewable and 

Sustainable Energy Reviews 31: 101-112. 
2 R. Evins, (2013). "A Review of Computational Optimisation Methods Applied to Sustainable Building 

Design." Renewable and Sustainable Energy Reviews 22: 230-245. 
3 Ibid 
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Figure 1-6: A Prototype of a Pareto Optimal Problem Having Two Objectives1 

1.5.2 Classification of Optimization Algorithms 

The design problem itself is what affects the performance of the optimization method 

used; for each specific problem there should be a thorough selection for the appropriate 

optimization method. In case the optimization method is coupled with a building 

simulation program, the main problem faced is the computation time; simulations last 

from a few seconds to several hours or even days depending on several parameters.2 This 

is just for a single evaluation and the optimization method may require hundreds or even 

thousands number of evaluations and still cannot guarantee finding the optimal solution. 

Hence, there is a need for presenting the reasoning behind the optimization problem 

addressed and the corresponding optimization technique selected.  

In general, optimization algorithms used in building design problems can be classified 

into:3 

 Enumerative  

 Deterministic  

 Stochastic  

In the exhaustive enumeration methods, all possible solutions are evaluated thus, they are 

most probably not practical due to computational time. However, parallel computing can 

                                                      
1 V. Machairas et al., (2014). "Algorithms for Optimization of Building Design: A Review." Renewable and 

Sustainable Energy Reviews 31: 101-112. 
2 Ibid. 
3 S. Attia et al., (2013). "Assessing Gaps and Needs for Integrating Building Performance Optimization Tools 

in Net Zero Energy Buildings Design." Energy and Buildings 60: 110-124. 
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mitigate this problem. In a previous study, the exhaustive search method was utilized to 

find the true optimum among 1600 alternatives formed by all combinations of variables. 

It was a daylighting study where the huge computational time was overcome by a parallel 

simulation tool1 developed to enable the calculation engine-which was Radiance- to 

conduct multiple simulation runs at the same time. The potential of this method lies in 

showing the influence of each variable and their interaction on the overall performance. 

It can also be used to benchmark other possible methods that do not guarantee finding 

the optimal.2 

Deterministic algorithms take predictable exact values as an input for the design variables 

thus, they do not accept the possibility of chance or probability (e.g. direct search and 

sequential quadratic programming algorithms). These particular requirements may not be 

met in design performance problems with high constrains or multi objective functions. 

However, stochastic algorithms overcome these previously mentioned problems as they 

do not have mathematical restrictions and can deal with highly constrained problems.3  

In stochastic algorithms, which means randomly determined algorithms, random 

variables are added to the optimization problem. Otherwise, randomness is introduced in 

the search process as in Genetic Algorithms.4  Nguyen, Anh-Tuan et al.5 have estimated 

the use of various optimization algorithms in more than 200 building optimization studies 

and found that stochastic population-based algorithms are the mostly used. These 

algorithms cannot ensure the true optimal solution; however, they have high probability 

of obtaining good solutions. 6  

A well-known stochastic population based algorithm is the evolutionary algorithms. 

These algorithms can handle nonlinear problems without being stuck in local minima 

(where it is thought to be the best solution).  Genetic Algorithms (GAs) is an evolutionary 

algorithm that is used widely in building optimization. It imitates the principles of natural 

evolution where populations of solutions are created through the processes of 

reproduction, crossover and mutation that work on the survival of the fittest.7 The first 

                                                      
1  A. Wagdy, "Speedsim for Diva" http://www.aymanwagdy.com/#!speedsim/cjg9 (accessed 21-12-2015). 
2 A. Wagdy and F. Fathy, (2015). "A Parametric Approach for Achieving Optimum Daylighting 

Performance through Solar Screens in Desert Climates." Journal of Building Engineering 3: 155-170. 
3 S. Attia et al., (2013). "Assessing Gaps and Needs for Integrating Building Performance Optimization 

Tools in Net Zero Energy Buildings Design." Energy and Buildings 60: 110-124. 
4 Ibid. 
5 A.-T. Nguyen et al., (2014). "A Review on Simulation-Based Optimization Methods Applied to Building 

Performance Analysis." Applied Energy 113: 1043-1058. 
6 Ibid. 
7 V. Machairas et al., (2014). "Algorithms for Optimization of Building Design: A Review." Renewable and 

Sustainable Energy Reviews 31: 101-112. 
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population (generation) is randomly selected, then new solutions are created aiming to 

enhance their fitness against the specified objective criteria thus, forming new population 

better than the previous and so on. 

Other stochastic algorithms exist like Particle Swarm Optimization (PSO), and Simulated 

Annealing (SA) which are called heuristic, but their low contributions in building design 

problems, relative to Genetic Algorithms (GAs), is seemed to be. In cases their 

contributions in building design are found, daylighting was not considered in their 

application. PSO, the most common relative to others, was used by Rapone and Saro1 to 

optimize curtain wall facades for office buildings. 

These algorithms could be combined forming hybrid algorithms thus exploiting the 

potentials of both algorithms. An optimization study was carried out making use of hybrid 

algorithms (Particle swarm optimization (PSO) coupled with Generalized pattern search 

algorithm) to investigate energy performance of solar screen configurations. It was 

conducted through a generic optimization program called GenOpt. Results have shown 

the significance of the horizontal louvers depth on energy savings that could reach up to 

30.7%.2 Another study made use of another hybrid algorithms (Simulated Annealing 

(SA) with Sequential Quadratic Programming (SQP)) for layout design optimization. 

This method helps in finding a range of design alternatives and many local optima.3 

1.5.3 Genetic Algorithms for Building Performance Optimization 

Genetic Algorithms have been used in various fields within the building design problems, 

but the focus will be in its applications for environmental performance especially 

daylighting issues. The efficiency of using Genetic Algorithms for environmental 

performance aspects has been demonstrated through a verified methodology done by 

Caldas and Norford.4 The study combined Genetic Algorithm as a search engine with a 

simulation software DOE2.1E, searching for the optimal window sizes that best meet the 

thermal and lighting performance criteria required. 

                                                      
1 G. Rapone and O. Saro, (2012). "Optimisation of Curtain Wall Facades for Office Buildings by Means of 

Pso Algorithm." Energy and Buildings 45: 189-196. 
2 R. Arafa et al. (2013). Energy Efficient Configuration of Non-Conventional Solar Screens Using Hybrid 

Optimization Algorithm Optimizing Screen Depth, Perforation and Aspect Ratio. Proceedings: BESS-SB13, 

Building Enclosure Sustainability Symposium Sustainable Buildings Conference, Advancing Toward Net 

Zero. 
3 J. Michalek et al., (2002). "Architectural Layout Design Optimization." Engineering optimization 34, no. 

5: 461-484. 
4 L. G. Caldas and L. K. Norford, (2002). "A Design Optimization Tool Based on a Genetic Algorithm." 

Automation in construction 11, no. 2: 173-184. 
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Rakha and Nassar1 have used Genetic Algorithms to optimize the ceiling geometry for 

maximizing daylighting uniformity. An optimization method was demonstrated using a 

text programming language for finding a range of solutions that best meet daylighting 

criteria. Turrin et al.2 have combined parametric modeling and genetic algorithm with 

performance simulation software to explore various design solutions using ParaGen tool. 

A methodology was presented for designers and was more illustrated through two case 

studies; one of them is concerned with solar heat and daylighting transmission for a large 

span roof. He emphasized the importance of adopting this approach from the early 

beginning. 

Modifications can be done on Genetic Algorithms to suit multi-objective building 

problems for, not just used it its simplest form e.g. Non-dominated and crowding sorting 

genetic algorithm II (NSGAII), which was developed by Deb 3  and a tool for its 

implementation was developed by Chan- trelle et al. 4 In general, multi-objective GAs 

were used for environmental performance of buildings. A study by Caldas has presented 

seven applications of a generative design tool called GENE_ARCH which utilizes 

Genetic Algorithms as a search engine and DOE2.1E software for energy calculation. 

One application made use of Pareto GAs where a frontier with the best trade-offs between 

initial cost of materials and energy performance of building was provided. In another 

application the two conflicting objectives were daylighting use and thermal 

performance.5 

1.5.4 Potentials and Limitations of Genetic Algorithms for Building 

Optimization Problems 

The selection of the appropriate optimization algorithm for a specific design problem is 

a crucial step that affects the whole process. Finding this match is not based on a direct 

rule to be followed instead analyzing and classifying building optimization problems 

(BOP) and optimization algorithms is needed besides reviewing the previous works. 

In one study the needs of building performance optimization for net zero energy buildings 

were sought; 165 building optimization publications were reviewed and 28 international 

                                                      
1  T. Rakha and K. Nassar, (2011). "Genetic Algorithms for Ceiling Form Optimization in Response to 

Daylight Levels." Renewable Energy 36, no. 9: 2348-2356. 
2 M. Turrin et al., (2011). "Design Explorations of Performance Driven Geometry in Architectural Design 

Using Parametric Modeling and Genetic Algorithms." Advanced Engineering Informatics 25, no. 4: 656-675. 
3 K. Deb, 2001. Multi-Objective Optimization Using Evolutionary Algorithms. Vol. 16: John Wiley & Sons. 
4 F. P. Chantrelle et al., (2011). "Development of a Multicriteria Tool for Optimizing the Renovation of 

Buildings." Applied Energy 88, no. 4: 1386-1394. 
5  L. Caldas, (2008). "Generation of Energy-Efficient Architecture Solutions Applying Gene_Arch: An 

Evolution-Based Generative Design System." Advanced Engineering Informatics 22, no. 1: 59-70. 
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optimization experts were interviewed. It is concluded that evolutionary algorithms 

prevailed among others in solving highly constrained design and operation problems with 

an emphasis on genetic algorithms.1 It is obvious that GAs are the most commonly used 

and the most popular evolutionary algorithms. This returns to a number of reasons:2 

handling both types of variables; discrete and continuous, having parallel processing 

ability that helps in reducing computational time, handling both single and multi-

objective optimization problems. Besides, avoiding sticking in local optima; Wetter and 

Wright 3 have compared GAs with Hooke and Jeeves algorithm used for optimization 

building energy consumption and found the latter trapped in local optima unlike GAs.  

They have also compared 8 types of algorithms including GAs with the aim of reducing 

the number of cost function evaluation, and it is found that GAs got close to the best 

minimum.4  

An important factor for selecting GAs, which is also found in other evolutionary 

algorithms, is that defected solutions resulted from errors will not impede the 

optimization process as it works on eliminating failed solutions from the population 

showing high robustness to simulation failures.5 Tuhus Dubrow and Krariti have verified 

the superiority of Genetic Algorithms (GAs) upon particle swarm optimization (PSO) 

and sequential method in case there are more than ten parameters and GAs were the best 

in the computational time; it requires half the number of iterations needed by others to 

find the optimal solution.6 In the recent years, an increasing interest in GAs have been 

noticed; which can be considered the most efficient stochastic algorithm in many cases 

related to building design problems.7 

For a population based algorithm like GAs, stochastic operators are applied on a 

population of solutions; this doesn’t guarantee obtaining a good result. However, this 

could be overcome by adding predefined solutions to the initial population, the critical 

                                                      
1 S. Attia et al., (2013). "Assessing Gaps and Needs for Integrating Building Performance Optimization 

Tools in Net Zero Energy Buildings Design." Energy and Buildings 60: 110-124. 
2 A.-T. Nguyen et al., (2014). "A Review on Simulation-Based Optimization Methods Applied to Building 

Performance Analysis." Applied Energy 113: 1043-1058. 
3 M. Wetter and J. Wright (2003). Comparison of a Generalized Pattern Search and a Genetic Algorithm 

Optimization Method. Proceedings of the 8th International IBPSA Conference, Eindhoven, Netherlands. 
4  M. Wetter and J. Wright, (2004). "A Comparison of Deterministic and Probabilistic Optimization 

Algorithms for Nonsmooth Simulation-Based Optimization." Building and Environment 39, no. 8: 989-999. 
5 S. Attia et al. (2013). Computational Optimisation for Zero Energy Buildings Design: Interviews Results 

with Twenty Eight International Experts. Proceedings of the 13th Internationcal Conference of the IBPSA. 
6  D. Tuhus-Dubrow and M. Krarti, (2010). "Genetic-Algorithm Based Approach to Optimize Building 

Envelope Design for Residential Buildings." Building and environment 45, no. 7: 1574-1581. 
7 S. Attia et al., (2013). "Assessing Gaps and Needs for Integrating Building Performance Optimization 

Tools in Net Zero Energy Buildings Design." Energy and Buildings 60: 110-124. 
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part is choosing these solutions that are based mainly on the designers experience and 

still cannot ensure finding the optimal solution. For more refining, a local optimizer can 

be applied before the global searching of the Genetic Algorithms. They require the 

designers' interference to determine the initial solutions or otherwise it could be applied 

after the global search.1 

1.5.5 Optimization Tools 

Design optimization tools could be described as creativity support tools that make use of 

optimization algorithms integrated with performance simulation and parametric 

modeling software for generating, exploring, evaluating and modifying design solutions. 

Not only do these tools automate design generation, but also do enable the 

experimentation of the design space and explore the solution space. Thus, they provide 

more creative unexpected ideas.2 

Optimization tools are categorized according to Machairas, Vasileios et al. into:  

 Custom programmed algorithms 

 General optimization packages  

 Special tools for building design.  

The first category has high flexibility but it requires programming skills using C+, Java 

or Visual Studio, etc. The second category includes effective optimization algorithms and 

post processing capabilities. It is characterized by having graphical user interface (GUI). 

MatLab and GenOpt are examples of this category.3 The former is mentioned by its 

additional features that designers can make use of like, data analysis, link to excel. 

GenOpt is a generic optimization tool used in the field of building optimization problems. 

Simulation programs like Energy Plus, Radiance and DOE.2 can be coupled with them. 

Besides, it is provided with a number of algorithms like, PSO, GA, Hooke and Jeeves 

and others, moreover; it gives the possibility to add more to the library.4  

The last category, special tools for building design, mainly use GA as the optimization 

algorithm coupled with a simulation program. Turrin et al. discussed the optimization of 

                                                      
1 V. Machairas et al., (2014). "Algorithms for Optimization of Building Design: A Review." Renewable and 

Sustainable Energy Reviews 31: 101-112. 
2  E. Bradner et al. (2014). Parameters Tell the Design Story: Ideation and Abstraction in Design 

Optimization. Proceedings of the Symposium on Simulation for Architecture & Urban Design, Society for 

Computer Simulation International. 
3 Op. cit.: V. Machairas, (2014). 
4 M. Hamdy et al. (2009). Combination of Optimisation Algorithms for a Multi-Objective Building Design 

Problem. IBPSA: 11th International Building Performance Simulation Association Conference, Glasgow-

UK. 
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a large span roof structurally and environmentally using ParaGen tool, combining GA 

with parametric modeling and simulation software.1 BeOpt software2 uses sequential 

search method as the optimization algorithm and DOE-2 or EnergyPlus as the simulation 

engine; it is an easy to use tool with a graphical user interface supported with a number 

of training tutorials. Chantrelle FP et al. presented MultiOpt tool that uses NSGA II 

algorithm with TRNSYS as the simulation program.3 Caldas have applied GENE-ARCH 

which uses DOE-2 coupled with micro GA and Pareto GA.4 

It can be deduced that the first two categories are not user-friendly. Although the fast 

processing and the open source code provided by the coding language used in the first 

category, architects are not familiar with such codes to manipulate with. As for the second 

category, it included commercially optimization programs that are argued to have limited 

modeling capabilities. On the other hand, the third category uses geometric modeling 

programs as a platform. It provides powerful modeling capabilities with a high level of 

visualization and more familiar interface from the perspective of an architect.5 

The essential characteristics of an optimization tool can be summarized in its high level 

of performance, the provision of a graphical user interface (GUI), provision of multiple 

solutions and a parallel processing ability. Besides, their allowance for the designer to 

direct the search in the right way in order to minimize the search space thus, decreasing 

the computational time.6 

1.6 Simulation-based Optimization Approach 

Seeking towards optimal solutions needs the integration of the appropriate optimization 

tool with parametric modelling. Then, the implementation of the analytical simulation 

tools comes to fulfill this goal. 

                                                      
1 M. Turrin et al., (2011). "Design Explorations of Performance Driven Geometry in Architectural Design 

Using Parametric Modeling and Genetic Algorithms." Advanced Engineering Informatics 25, no. 4: 656-675. 
2 C. Christensen et al., 2006. Beopt Software for Building Energy Optimization: Features and Capabilities: 

National Renewable Energy Laboratory. 
3 F. P. Chantrelle et al., (2011). "Development of a Multicriteria Tool for Optimizing the Renovation of 

Buildings." Applied Energy 88, no. 4: 1386-1394. 
4  L. Caldas, (2008). "Generation of Energy-Efficient Architecture Solutions Applying Gene_Arch: An 

Evolution-Based Generative Design System." Advanced Engineering Informatics 22, no. 1: 59-70. 
5 X. Shi and W. Yang, (2013). "Performance-Driven Architectural Design and Optimization Technique from 

a Perspective of Architects." Automation in Construction 32: 125-135. 
6 V. Machairas et al., (2014). "Algorithms for Optimization of Building Design: A Review." Renewable and 

Sustainable Energy Reviews 31: 101-112. 
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Approaching a building design problem through "Parametric Simulation Method" was 

known to be beneficial for improving performance. Traditionally, a set of variables are 

varied one by one to see the effect of each on the outcome while keeping the others 

unchanged. Repeating this step iteratively for each variable is time consuming in 

addition, it ignores the interaction between variables. So, in best cases a partial 

improvement is achieved.1 Instead, "Simulation-based Optimization" can be adopted 

seeking for an optimal performance. 

What differs this approach is that it combines an optimization algorithm in the framework 

of the process by which an optimal or near optimal solution can be reached. This approach 

represents a shift from analytical simulations, where modifications on the design model 

are done after analyzing the performance of the design. Instead, algorithms and 

generative processes take the feedback from the simulation results to automatically 

generate and modify designs according to a certain performance criteria. This synergy 

between generative processes and performance is a significant distinction from the 

traditional simulation method. The operation sequence clarifies the difference between 

the two approaches as shown in Figure 1-7. In the conventional, the design model is 

formed first to be analyzed by the simulation program then it is evaluated according to a 

predefined criteria.  In contrast, in the simulation –based optimization, the simulation 

results feedback the optimization algorithm to manipulate the design variables forming 

the design model. 

 Most building research studies concerned with this approach have appeared since the 

late 2000s2 . As in Figure 1-8, it is easy to notice the increasing tendency towards 

optimization studies and the sharp increase since 2005. Increasing the research and 

development throughout the last decade have increased awareness and have highlighted 

the potentials of using such techniques. Even that building codes are more likely to be 

adjusted to suit this approach.3 In addition, high points given by the building rating 

systems, like LEED, have encouraged designers to use optimization techniques whether 

in their design or their researches. This approach has contributed powerfully in enhancing 

building performance. 

                                                      
1 A.-T. Nguyen et al., (2014). "A Review on Simulation-Based Optimization Methods Applied to Building 

Performance Analysis." Applied Energy 113: 1043-1058. 
2 Ibid. 
3 V. Machairas et al., (2014). "Algorithms for Optimization of Building Design: A Review." Renewable and 

Sustainable Energy Reviews 31: 101-112. 
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Figure 1-7: Sequence of processes: (upper part) in conventional analytical simulation, (lower part) in the 

simulation based optimization approach,  

Source: adapted from Oxman (2008) 

 

Figure 1-8: Yearly Publication of Optimization Studies, shows the increasing trend in the last decade1 

1.6.1 Main Phases for a Simulation-based Optimization Study 

Phase’s division in simulation based optimization studies differs from one to another; 

Nguyen, A.-T. et al. subdivided the process into three main phases: preprocessing, 

optimization phase and post processing.2  

                                                      
1 Ibid. 
2 A.-T. Nguyen et al., (2014). "A Review on Simulation-Based Optimization Methods Applied to Building 

Performance Analysis." Applied Energy 113: 1043-1058. 
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1. Preprocessing phase; the inception of a process is the first indicator of its success 

and here lies the significance of this phase. The critical part in this phase lies in 

the formulation of the optimization problem; describing the mathematical 

definition of the design problem. This implies abstracting the design problem in 

a quantifiable form regarding design objectives, setting up the design variables 

and parameters; understanding the logic that relates them together, adjusting their 

range or discrete values and their constraints, building up the model; deciding on 

the simulation program and the optimization algorithm with the consideration the 

platform that could combine them.1  

In abstracting the design problem, neither the low precision nor high one is good for the 

quality and quantity of solution space. Instead, a balance is needed to avoid poor solution 

space or a plethora of solutions that impede finding the best solutions. Understanding and 

predicting the interaction of different variables and their impact on the design 

performance is difficult even for skilled designer; this form as a challenge to understand 

the statistical correlation between them.2 

After identifying the parameters affecting the design problem, they will be confined to 

the most effective ones, thus avoiding insignificant ones. Their number depends on: the 

complexity of the problem and the selected optimization algorithm, but still there is no 

defined criteria for determining the appropriate number of parameters.3 In real world, 

building optimization problems (BOP) can have both continuous and discrete variables. 

Nguyen, Anh-Tuan et al. made a statistical study from ten arbitrary studies showing the 

number and type of variables used; more than half the studies were dealing with both 

types of variables. As for the number of variables, in average there were about 15 

variables with maximum of 24 and minimum of 8 variables. However, there is still no 

agreement on the recommended number of the variables. 4 

In addition, sensitivity analysis could be conducted to reduce the size of the search space, 

hence, increasing the efficiency of the process.5 Eisenhower et al. pointed out to the 

importance of sensitivity and uncertainty analysis for the reduction of computational time 

                                                      
1 V. Machairas et al., (2014). "Algorithms for Optimization of Building Design: A Review." Renewable and 

Sustainable Energy Reviews 31: 101-112. 
2  E. Bradner et al. (2014). Parameters Tell the Design Story: Ideation and Abstraction in Design 

Optimization. Proceedings of the Symposium on Simulation for Architecture & Urban Design, Society for 

Computer Simulation International. 
3 A.-T. Nguyen et al., (2014). "A Review on Simulation-Based Optimization Methods Applied to Building 

Performance Analysis." Applied Energy 113: 1043-1058. 
4 Ibid. 
5 Ibid. 
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as it works on reducing the search space size to include only the most effective 

parameters. They have proposed an approach to exclude ineffective, time consuming 

parameters in the optimization process.1 

2. Optimization phase; monitoring the process and detecting errors is what this 

phase is about. Estimating the computational time of the optimization algorithm 

to reach a satisfactory solution is not addressed in most studies. However, Wright 

and Ajlami have tried to compare different settings of GA and their effect on the 

speed of convergence2. They have tried three different population sizes: 5, 15, 

and 30 individuals per population and found that the least population size was 

the best in terms of speed and cost.3  

3. Post Processing Phase; This phase is concerned with analyzing the output data 

and extracting valuable information from the optimization process with the aid 

of tables, charts, or diagrams. Visualization and data plots are two ways that 

describe the solution space. They aid designers to analyze the impact of their 

design decision on different performance aspects. Pareto plots are example of 

data plots are used in multi-objective optimization; they provide the designer 

with information about the tradeoff between different objectives. 4 

Some useful methods can be used to verify results, such as sensitivity analysis that were 

used in a study by Tuhus-Dubrow and Krarti; they altered some design variables (weather 

files, utility rates and the operation strategies) to see their effect on the final output.5 It is 

useful to ensure the reliability of the results in this final phase.  

1.6.2 Building Simulation Tools 

In the last decade the use of building simulation tools have been widely used among 

designers. There is a time lag between its utilization in the architectural practice and 

between their existences, this returns to a number of reasons like its complexity to be 

used by non-experts, cost, long computation time and uncertainty in their results. 

                                                      
1 B. Eisenhower et al. (2012). Uncertainty-Weighted Meta-Model Optimization in Building Energy Models. 

IBPSA-England 1st Conference on Building Simulation and Optimization (BSO12). 
2 Convergence term indicates that the final solution reached by the algorithm. 
3 J. Wright and A. Alajmi (2005). The Robustness of Genetic Algorithms in Solving Unconstrained Building 

Optimization Problems. Proceedings of the 7th IBPSA Conference: Building Simulation, Montréal, Canada 

August. 
4  E. Bradner et al. (2014). Parameters Tell the Design Story: Ideation and Abstraction in Design 

Optimization. Proceedings of the Symposium on Simulation for Architecture & Urban Design, Society for 

Computer Simulation International. 
5  D. Tuhus-Dubrow and M. Krarti, (2010). "Genetic-Algorithm Based Approach to Optimize Building 

Envelope Design for Residential Buildings." Building and environment 45, no. 7: 1574-1581. 
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Nowadays, these limitations are overcome by continuous development of such tools; they 

are now available with user-friendly interfaces and training materials that facilities their 

use by designers, besides the advancement in the technicalities for more reliable results 

with much less amount of computation time.1 

There are three approaches that could be adopted for the building performance 

evaluation: 

 Simplified analytical models 

 Building performance surrogate models 

 Detailed building simulation models 

The first approach is applicable only for simple problems, the advantage of this approach 

is its instantaneous need of time for computing, thus it facilitates reaching the true optimal 

through searching the whole solution space by a specific algorithm or by using brute force 

technique. The second approach, the surrogate models or Meta models are statistical 

models which are based on machine learning; like artificial neural network and genetic 

programming. It is an effective approach for problems with large number of variables or 

large solution space and many local optima. The problem with these models is that they 

require an expert knowledge in the field of artificial intelligence; hence it is not 

commonly used for building design problems.2  

Detailed building simulation models represent the third approach; they imply simulation 

tools specifically designed for the evaluation of certain design issues. Machairas et al. 

have reviewed the methods and tools used in building design and it is noticed that the 

most commonly used simulation programs are TRNSYS, DOE-2, EnergyPlus, Ecotect, 

Radiance, and computational fluid dynamics (CFD) tools. These tools do the calculations 

taking: climatic data, building geometry, materials, occupancy, schedules, HVAC 

description and operation as the input data. Results are generated whether they are 

thermal analysis, energy consumption, daylighting utilization or any other measurement.3 

1.6.3 Barriers against the Integration of Optimization Methods with 

Building Simulation Tools 

The urging need of highly efficient buildings helps in the integration of optimization 

techniques with simulation programs. Not all of these techniques are flexible enough to 

                                                      
1 V. Machairas et al., (2014). "Algorithms for Optimization of Building Design: A Review." Renewable and 

Sustainable Energy Reviews 31: 101-112. 
2 Ibid. 
3 Ibid. 



… Chapter 1 

 

31 

 

be coupled with building performance simulation (BPS). According to Attia, S. et.al, less 

than 5% of the BPS tools presented in DOE website in 2012 allow optimization.1 Barriers 

that limit their spread in conventional building design practice could be summarized in: 
2 

 Coupling interfaces between BPS tools and optimization packages 

 The inevitable tradeoff between the required features in the optimization 

methods; flexibility versus visualization, efficiency versus time or cost. 

 The restriction of the computational speed. 

 Lack of government policies that urges high performance buildings. 

 The complexity of building optimization techniques; they encompass many 

fields for their development: mathematics, computer science, environmental 

science, engineering, etc. 

1.6.4 Steps for an Optimization Study 

To wrap up, there are a set of steps to be identified for the optimization of any design 

problem:  

 Defining the problem to be solved; this implies identifying the objective of the 

optimization and the factors affecting its achievement are set.  

 Selecting the simulation engine; it is responsible for the evaluation process. 

  Identifying variables and parameters; they should be set in a mathematical form 

to outline the objective function.  

 Constructing the geometrical model; making it ready for the last step which is 

 Selecting the optimization algorithm. 

The objective of this optimization study revolves around the environmental impact, 

particularly daylighting performance and solar control. The defined parameters should 

represent the geometrical entities affecting performance, forming the objective function 

which could be more than one and in this case a multi objective optimization is sought 

for. Influential parameters could be: the orientation, building shape, openings, window 

to wall ratio (WWR), depth to height ratio, glazing type, materials. Computational time 

consumed varies depending on: the simulation engine, adjustment settings, the 

optimization algorithm selected, and the complexity of the model that affects the size of 

                                                      
1 S. Attia et al., (2013). "Assessing Gaps and Needs for Integrating Building Performance Optimization Tools 

in Net Zero Energy Buildings Design." Energy and Buildings 60: 110-124. 
2 A.-T. Nguyen et al., (2014). "A Review on Simulation-Based Optimization Methods Applied to Building 

Performance Analysis." Applied Energy 113: 1043-1058. 
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the solution space. Typically it needs hundreds to thousands of simulation runs to reach 

a satisfactory solution.1 

The design process have changed dramatically owing to increasing environmental 

awareness and the advancement in the digital design tools. Simulation programs have 

been incorporated in the decision making process in the conceptual design phase. 

Besides, the continuous development of these tools has given the chance to incorporate 

optimization techniques as well. 

1.7 Summary 

The conceptual design is a critical phase where decisions made could transform the 

success of the design based on the methodology adopted. It is a key factor that influences 

the decision making in the whole design process.  

Changes occur constantly in the early phases of the design process. In conventional 

design work flow, sketching and physical models are the main elements through which 

design ideas are explored.  Nowadays, digital technologies have invaded the design 

practice where ideas are represented in the digital media for visualization and drafting 

until a final solution is reached, then it is yielded to another layer of refinement for a 

precise documentation. However, the problem is the disengagement of digital tools from 

the design thinking from the early beginning, thus a no-full use of the capabilities of 

digital technologies is confronted.  

The urging need of more efficient buildings imposes the investigation of new approaches 

and frameworks that make best use of the capabilities of these technologies. With the aid 

of the emerging digital design tools and techniques, unexpected unique forms and 

concepts have emerged. This is considered an important asset for the development of the 

digital design process. 

The implications of this paradigm shift: 1) the need of parametric modeling where a large 

number of design solutions can be automatically generated through representing 

geometric entities and their relationships by a number of parameters and functions. Thus, 

it offers the designer the possibility of numeric evaluations. The visualization of the form 

and its correlation with performance facilitate the designer interaction, thus enhancing 

the design process. 2) The selection of the appropriate optimization algorithm, which is 

                                                      
1 V. Machairas et al., (2014). "Algorithms for Optimization of Building Design: A Review." Renewable and 

Sustainable Energy Reviews 31: 101-112. 
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critical for ensuring a satisfactory performance, was recommended to be genetic 

algorithms. However, to ensure its robustness for this study, an exhaustive search was 

first applied. 3) The implementation of analytical tools is required for supporting 

performance evaluation. In this regard, a paradigm shift is experienced in which the new 

digital design process has evolved calling for a performative design. 4) The possibility to 

integrate generative systems to satisfy the designers’ visual aspiration, thus balancing 

between both performance and visual aspects through generative performative design 

approach 

In this study, a daylighting design problem was under investigation through this 

developed schematic diagram shown in Figure 1-9. 
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Figure 1-9: Schematic diagram suggested for approaching the daylighting simulation problem in the 

conceptual design phase, highlighting the adopted approach 
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2.1 Introduction 
The paradigm shift occurs in the design thinking imposes the use of analytical tools for 

performance evaluation. In this chapter daylighting adequacy was set to be the 

performance criteria under investigation. Daylighting is an important building aspect that 

needs concern from the early beginning of the design process. It is about the manipulation 

of natural light entering the space and controlling it according to the intended 

performance objective. 1  Its significant impact on occupants has been constantly 

emphasized in different studies; its impact on human health, productivity, and delight 

was discussed. Daylighting endows a remarkable ambience that effects our perception of 

the space. Actually, everyone has his own perception and attitude towards daylight so it 

is subjective to identify what is a “well daylit space”.  

 Many studies were conducted to ensure providing adequate daylight in the indoor 

environment while avoiding direct sunlight. Still successful daylighting design is a 

challenging task due to the conflicting requirements to reach the balance between 

daylighting adequacy and visual comfort. Besides, the fluctuating nature of daylight 

along the day and year complicates the process. 

Daylighting performance assessment was concerned with different calculation methods 

and tools. Over the years, different metrics and tools have evolved and are still being 

developed. The aim of these emerging metrics was to better represent daylighting 

performance. Besides, incorporating them within simulation tools to be easily integrated 

within the design workflow was intended. Increasing the accuracy of these tools was 

targeted for getting more reliable results that can inform the design process not only for 

daylighting requirements but also for energy savings. 

This chapter introduces daylighting visual aspects as well as the non-visual effects. In 

addition, an overview on daylighting simulation programs and metrics are presented. 

Finally, the significance of integrating optimization for efficient daylighting is 

highlighted.  

2.2 Daylighting Performance Aspects 
The prime concern in daylighting performance regards its adequacy for the intended 

visual task. Different indicators were developed for benchmarking daylighting 

                                                      
1 C. Reinhart, 2013. "Daylighting Handbook-Volume I." 
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performance inside the space. Static metrics appeared for evaluating daylighting 

performance. Paying attention to their drawbacks, dynamic daylight performance metrics 

(DDPM) have emerged to overcome the limitations of the former.1 However, daylighting 

performance is not confined to visual aspects, where it is concerned with other 

dimensions like energy savings, and indoor environmental quality. Thus, balancing all 

aspects that are possibly contradicting is a challenging problem to tackle. 

First, a definite set of objectives is needed to be defined for approaching the daylighting 

design. However, what is perceived “good lighting” by someone is not the same by the 

other, it is a subjective issue that cannot be definitely set.2 In an attempt to define 

daylighting as shown in Table 2-1, no specific definition was set, where different 

professions showed how it was differently conceived and handled to meet with various 

performance requirements. This study concerns with daylighting from the perspective of 

architectural definition.  

Table 2-1: Daylighting Definitions from different perspectives3 

Architectural 

 

“The interplay of natural light and building form to 

provide a visually stimulating, healthful, and productive 

interior environment.” 

 

Lighting Energy Savings 

“The replacement of indoor electric illumination needs 

by daylight, resulting in reduced annual energy 

consumption for lighting.” 

 

Building Energy 

Consumption 

“The use of fenestration systems and responsive electric 

lighting controls to reduce overall building energy 

requirements (heating, cooling, lighting).” 

 

                                                      
1 C. F. Reinhart et al., (2006). "Dynamic Daylight Performance Metrics for Sustainable Building Design." 

Leukos 3, no. 1: 7-31. 
2 C. Reinhart, 2013. "Daylighting Handbook-Volume I." 
3 C. Reinhart and A. Galasiu, (2006). "Results of an Online Survey of the Role of Daylighting in Sustainable 

Design." NRC-IRC Report 3, no. 1: 1-25. 
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Load Management 

“Dynamic control of fenestration and lighting to 

manage and control building peak electric demand and 

load shape.” 

Cost 

 

“The use of daylighting strategies to minimize operating 

costs and maximize output, sales, or productivity.” 

2.2.1 Visual Daylighting Aspects 

Traditionally, visual aspects like illumination, daylighting uniformity, glare, and 

luminance are the main indicators used for the assessment of daylighting performance. 

These indicators are concerned with daylighting quantity and quality to ensure that the 

recommended thresholds are met and visual comfort is attained. These aspects are 

interpreted into daylight metrics to be used in simulation programs for design evaluation. 

2.2.2 Non-Visual Daylighting Aspects 

In addition to visual aspects, efforts have been deployed to find out non-visual and 

perceptual aspects which complement the assessment of daylighting strategies. These 

aspects can have beneficial psychological and health effects that ranges from enhancing 

alertness, mood, and productivity to helping in a faster recovery of patients. A study has 

correlated a higher alertness level and better performance of occupants in an office space 

when exposed to daylight rather than electric ones.1  Other studies have promoted the 

provision of natural light in educational spaces for its positive impact on both students 

and staff members. It was proven to decrease the rate of absence, increase their 

productivity and their level of satisfaction with their learning environment.2-3 Being 

aware of these beneficial effects, a need for considering these aspects to support 

daylighting design exists.  

An attempt to incorporate the non-visual aspects in the design process was introduced by 

Andersen, M., et al.4 Apart from conventional visual aspects, this study presented a 

dynamic light-response model to predict health aspects within a framework for the 

                                                      
1 M. Münch et al., (2012). "Effects of Prior Light Exposure on Early Evening Performance, Subjective 

Sleepiness, and Hormonal Secretion." Behavioral neuroscience 126, no. 1: 196. 
2 L. Edwards and P. A. Torcellini, 2002. A Literature Review of the Effects of Natural Light on Building 

Occupants: National Renewable Energy Laboratory Golden, CO. 
3 G. Heath and M. J. Mendell (2002). Do Indoor Environments in Schools Influence Student Performance? 

A Review of the Literature. Proceedings of the 9th International Conference on Indoor Air Quality and 

Climate, Indoor Air 2002. 
4 M. Andersen et al. (2013). Beyond Illumination: An Interactive Simulation Framework for Non-Visual 

and Perceptual Aspects of Daylighting Performance. BS2013-13th International Conference of the 

International Building Performance Simulation Association. 
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Lightsolve simulation program. Besides, design intent-driven metrics were suggested for 

indicating the perceptual aspect of contrast and delight to act as a design factor.1  

Another study has suggested daylighting dashboard to help in the decision making 

process in the conceptual design phase. It is considered the first integrative approach to 

include 'circadian stimulus' as a design goal for daylighting design. The significance of 

circadian stimulus lies in its effect on physiological and biological processes -acting as a 

biological clock- in the human beings which is regulated by daylight. A twenty-four 

points scoring system is used to represent how much daylight is sufficient for circadian 

stimulation that accordingly affects sleep patterns and alertness level.2 

2.3 Daylighting Calculation Methods 

Measurements of visual aspects can be conducted using either physical scale models or 

mathematical formulas which were incorporated within simulation tools.3 About two 

decades ago, daylighting simulation programs notably started to replace the traditional 

techniques. These programs gained popularity due to its fast and efficient performance. 

It is easier and more flexible to integrate daylighting within the whole design process 

rather than using actual physical mock ups.  In addition, their wide spread usage returned 

also to the familiarity of computer applications in architectural and engineering 

education.4  Many studies have contributed in the developments of these simulation 

programs and their adoption from the early beginning of the design process 5-6-7. They 

were integrated within the design workflow to support the decision making concerned 

with daylighting strategies from the early beginning. 

2.3.1 Daylighting Simulation Algorithms 

Simulation needs a set of instructions that can effectively inform the calculation process 

for predicting actual conditions. These instructions are called simulation algorithms. In 

                                                      
1 Ibid. 
2 R. Leslie et al., (2012). "Conceptual Design Metrics for Daylighting." Lighting Research and Technology 

44, no. 3: 277-290. 
3 S. Kota and J. S. Haberl, (2009). "Historical Survey of Daylighting Calculations Methods and Their Use in 

Energy Performance Simulations." 
4 C. E. Ochoa et al., (2012). "State of the Art in Lighting Simulation for Building Science: A Literature 

Review." Journal of Building Performance Simulation 5, no. 4: 209-233. 
5 C. F. Reinhart and J. Wienold, (2011). "The Daylighting Dashboard–a Simulation-Based Design Analysis 

for Daylit Spaces." Building and environment 46, no. 2: 386-396. 
6  K. Lagios et al., (2010). "Animated Building Performance Simulation (Abps)-Linking 

Rhinoceros/Grasshopper with Radiance/Daysim." Proceedings of SimBuild. 
7 J. A. Jakubiec and C. F. Reinhart (2011). Diva 2.0: Integrating Daylight and Thermal Simulations Using 

Rhinoceros 3d, Daysim and Energyplus. 12th Conference of International Building Performance Simulation 

Association, Sydney. 
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general they can be classified into: view-dependent algorithms, and scene- dependent 

algorithms as shown in Figure 2-1. For daylighting simulation, the most well-known 

algorithms are ray-tracing and radiosity. 1  They were incorporated within many 

simulation tools like Radiance, Dialux, and spot. 

 

Figure 2-1: Classification of daylighting algorithms 

2.3.2 Radiance Simulation Program 

Radiance is a well-known lighting simulation engine that was developed in the 1990’s.2 

It is based on the backward ray tracing algorithm for daylighting calculations. Radiance 

has proven its efficiency in daylighting calculations and was validated in several studies 

                                                      
1 C. E. Ochoa et al., (2012). "State of the Art in Lighting Simulation for Building Science: A Literature 

Review." Journal of Building Performance Simulation 5, no. 4: 209-233. 
2  G. Ward and R. Shakespeare, (1998). "Rendering with Radiance." Waltham: Morgan Kaufmann 

Publishers. 
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1-2-3. It is argued to be the most flexible in comparison to other daylighting simulation 

tools.4 A survey was conducted by Reinhart and Fitz on “the use of daylight simulation 

in building design” and found that more than 50% of the used programs that employ 

Radiance as the simulation engine.5 It is considered the most prominent in the daylight 

simulation community and this may return to a number of reasons:6  

 Being validated in several studies. 

 Giving accurate daylighting representations not just for image rendering. 

 Having flexibility in dealing with reflection and transmittance materials with 

complex geometry besides the ability to simulate specular surfaces. 

 Being an open source program allowed a broad range of usage for various 

purposes. 

Many simulation programs employ Radiance as the simulation engine for their 

daylighting calculations. Daysim was among these Radiance-based daylighting 

programs.7 It was first introduced in a study by Reinhart and Herkel and proved its 

superiority upon other Radiance-based methods regarding simulation time and accuracy.8 

It calculates the annual daylight illuminance levels by combining the ray tracing 

algorithm of Radiance with the daylight coefficient method9 and Perez sky model10. A 

flow diagram describing the Daysim simulation method was introduced by Reinhart and 

Anderson as shown in Figure 2-2. 

                                                      
1 C. F. Reinhart and O. Walkenhorst, (2001). "Validation of Dynamic Radiance-Based Daylight Simulations 

for a Test Office with External Blinds." Energy and Buildings 33, no. 7: 683-697. 
2  C. F. Reinhart and M. Andersen, (2006). "Development and Validation of a Radiance Model for a 

Translucent Panel." Energy and Buildings 38, no. 7: 890-904. 
3 J. Mardaljevic, (1995). "Validation of a Lighting Simulation Program under Real Sky Conditions." Lighting 

research and Technology 27, no. 4: 181-188. 
4 R. Guglielmetti et al. (2010). On the Use of Integrated Daylighting and Energy Simulations to Drive the 

Design of a Large Net-Zero Energy Office Building. Proc. Fourth National Conference of IBPSA-USA, New 

York, NY. 
5 C. Reinhart and A. Fitz, (2006). "Findings from a Survey on the Current Use of Daylight Simulations in 

Building Design." Energy and Buildings 38, no. 7: 824-835. 
6 C. E. Ochoa et al., (2012). "State of the Art in Lighting Simulation for Building Science: A Literature 

Review." Journal of Building Performance Simulation 5, no. 4: 209-233. 
7 C. F. Reinhart et al., (2006). "Dynamic Daylight Performance Metrics for Sustainable Building Design." 

Leukos 3, no. 1: 7-31. 
8 C. F. Reinhart and S. Herkel, (2000). "The Simulation of Annual Daylight Illuminance Distributions—a 

State-of-the-Art Comparison of Six Radiance-Based Methods." Energy and Buildings 32, no. 2: 167-187. 
9 P. Tregenza and I. Waters, (1983). "Daylight Coefficients." Lighting Research and Technology 15, no. 2: 

65-71. 
10 R. Perez et al., (1993). "All-Weather Model for Sky Luminance Distribution—Preliminary Configuration 

and Validation." Solar energy 50, no. 3: 235-245. 
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Figure 2-2  Flow diagram of Daysim method1 

                                                      
1  C. F. Reinhart and M. Andersen, (2006). "Development and Validation of a Radiance Model for a 

Translucent Panel." Energy and Buildings 38, no. 7: 890-904. 
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The concept of daylight coefficient was first introduced by Tregenza to overcome the 

limitation of static daylight measurement. It is based on dividing the sky into a number 

of patches each contributes to the illuminance levels at each sensor point considering the 

dynamic nature of daylight along the day and year. Diffuse, ground, and direct daylight 

coefficients are calculated then coupled with sky luminance calculated by the all-weather 

Perez sky model.1 This sky model is among the widely used sky luminance distribution 

models besides CIE clear and overcast sky models. It takes direct and diffuse irradiance 

data to provide luminous distribution of different locations. 

2.4 Daylighting Performance Metrics 
For assessing the previous visual aspects using Radiance-based simulation, daylighting 

performance metrics come to act as ‘quality measures’. They are used for benchmarking 

building design performance relative to a predefined thresholds. They are also useful for 

giving an indication for the best design in evaluating and comparing different 

alternatives. These metrics can be classified into static and dynamic as shown in Figure 

2-3.  

Dynamic Daylight Performance Metrics (DDPM) have replaced static metrics which 

only account for a single sky condition. Daylight Factor (DF) was the most widely used 

static metric for measuring daylighting performance. However, it is rather an indicator 

for the minimum lighting requirement than an indicator for good daylighting. It follows 

the approach of "the more is better" without taking into account the building location, 

orientation, sky condition, time of day and season. Thus, problems of glare, energy 

consumption, and excessive heat gain can occur. First, a combined approach was 

proposed to mitigate some of these limitations in which daylight factor is compromised 

with direct sunlight avoidance. Still neither the climatic condition nor the building type 

is considered.2 

On the other hand, DDPM consider the annual climatic conditions, and the occupancy 

patterns with the varying sky conditions. This replacement has been facilitated through:3  

 The increase of computing capabilities of computers which are accessible to 

architectural firms and students;  

                                                      
1 Ibid. 
2 C. F. Reinhart et al., (2006). "Dynamic Daylight Performance Metrics for Sustainable Building Design." 

Leukos 3, no. 1: 7-31. 
3 Ibid. 
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 The common interest in the use of computer applications;  

 The friendly user interfaces that facilitate building the 3D model and the daylight 

simulation model required for performing DDPM.  

 

Figure 2-3: Daylight Performance Metrics 

Steps for developing a dynamic daylight performance analysis for a defined space 

encompasses the same input of Daysim method:1 

 Building the three-dimensional model with the assigned surface materials 

 Identifying the number and location of sensor points (typically, they form a grid 

of points located at the height of work plane) 

 Describing the site (modeling external obstruction if existed) 

 Importing the weather file data of its location 

                                                      
1 Ibid. 
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 Determining the time range which is based on occupancy patterns or the daylit 

hours of the year. 

 Identifying a daylight criteria for the assessment of daylighting adequacy. 

As for the last step, it is concerned with the selection of the daylighting metrics for 

evaluating the design performance. Several dynamic metrics, which are also referred to 

as climate based metric, were developed. They are based mainly on illuminance and 

luminous profiles for example:  

1) Daylight Autonomy; which represents measuring the illuminance levels at the 

work plane, gives a percentage of the occupied hours of the year that exceeds a 

minimum illuminance threshold. It indicates if there is sufficient daylight to rely 

on for the assigned task in the space without the need of supplementary lighting 

sources.1 

2) Continuous Daylight Autonomy (DAcon); it is a modified metric of the Daylight 

Autonomy where the difference lies in giving a partial count to the illuminances 

values that lies below the minimum threshold.2 

3) Maximum Daylight Autonomy; it represent the percentage of occupied hours 

when illuminance levels exceeds a maximum threshold; it is suggested to be ten 

times the recommended minimum.3 

4) Daylight Availability; it is a metric introduced by Reinhart and Wienold. 4 It have 

the same minimum threshold of the Daylight Autonomy besides adding a 

maximum threshold which is ten times the minimum. The space area is 

represented by three zones; ‘partially daylit’ where the minimum threshold 

(300lux) is received less than 50% of the occupied times; the ‘overlit’; where the 

maximum threshold is exceeded for more than 5% of the occupied times; and the 

‘daylit’ area. This last area, which is intended to be maximized, denotes the area 

receiving illuminance level between 300 and 3000 lux for 50% of the time. 

5) Useful Daylight Illuminance (UDI); it implies from its name a range of useful 

illuminance that is proposed to be from 100lux to 2000lux. So, it can be defined 

as the percentage of the occupied hours that lies in this range. What lies below 

the minimum threshold represent too dark area and signifies an increase in 

                                                      
1 Ibid. 
2 Z. Rogers, (2006). "Daylighting Metric Development Using Daylight Autonomy Calculations in the Sensor 

Placement Optimization Tool." Boulder, Colorado, USA: Architectural Energy Corporation: http://www. 

archenergy. com/SPOT/SPOT_Daylight% 20Autonomy% 20Report. pdf. 
3 Ibid. 
4 C. F. Reinhart and J. Wienold, (2011). "The Daylighting Dashboard–a Simulation-Based Design Analysis 

for Daylit Spaces." Building and environment 46, no. 2: 386-396. 
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electric energy consumption, while that above 2000lux signifies occupant 

discomfort.1 

The approved Illuminating Engineering Society (IES) method has provided two metrics 

mentioned in their report number LM-83-12.2  They are Spatial Daylight Autonomy 

(sDA) and Annual Sunlight Exposure (ASE) giving an absolute benchmark levels for the 

pass or fail criteria. The first metric (sDA300/50%) gives an indication about daylighting 

adequacy inside the space where a minimum illuminance of 300lux is meant to be reached 

50% of the occupied hours across at least 55% of the space area. However, it is preferred 

to reach at least 75% of space area according to the IES report. As for ASE1000/250hr, it 

indicates excessive sunlight exposure when receiving direct sunlight of 1000lux for more 

than 250 hours. It should not exceed 10% of the space area. However, it is preferred to 

reach a maximum value of 3% ASE to avoid possible visual discomfort due to sun 

penetration.  

Applying the aforementioned metrics give a clear picture about the daylighting 

performance for each specific case. However, the problem comes when evaluating a large 

number of alternatives in order to reach the optimal solution. Thus, a need for an 

optimization algorithm is inevitable. 

2.5 Integrating Daylighting Simulation programs with 

Optimization Algorithms 
Evaluating the potential of various daylight design strategies in achieving the required 

optimal or near optimal performance may be a cumbersome process. This is normally the 

case when there is a large number of parameters and thus a lot of trial and errors to reach 

the required performance. Sometimes environmental concerns are considered, but with a 

lack of knowledge and techniques. In this sense, form is driven by the designer’s own 

experience and sensibility, making it vulnerable to his prejudice. This lead to a 

questionable design from that perspective. 

Instead of using conceptual unquantifiable techniques or delegating daylighting issues to 

post design, optimization from the early beginning can be considered in the workflow. 

Optimization influences the design in a way that cannot be effectively compensated in 

the later design stages. Changes occur in later stages may cause penalties regarding cost 

                                                      
1  A. Nabil and J. Mardaljevic, (2005). "Useful Daylight Illuminance: A New Paradigm for Assessing 

Daylight in Buildings." Lighting Research and Technology 37, no. 1: 41-57. 
2 I. IESNA, (2012). "Lm-83-12." IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure 

(ASE). New York, NY, USA, IESNA Lighting Measurement. 
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or performance. Integrating parametric modeling with daylighting simulation tools and 

optimization algorithms have opened new venues for creativity and efficiency, besides 

generating new unexpected forms that comply with the required needs and imposed 

constraints. Incorporating an optimization algorithm in the design workflow is what 

distinguishes performative design, and hence allowing the direct generation of form 

based on daylighting performance requirements as shown in Figure 2-4. 

 

Figure 2-4 Performance-driven approach for daylighting design 
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2.6 Summary  
Daylighting performance has two different aspects: visual and non-visual aspects. 

Focusing on visual ones regarding illuminance levels, a number of daylight metrics were 

proposed to evaluate these aspects. Aiming to find the balance between adequate 

illuminance levels and visual comfort, the approved method of IES has introduced two 

complementary metrics: 1) spatial daylight autonomy (sDA) and 2) annual sunlight 

exposure (ASE). The first aims to ensure reaching a minimum of 75% of the space area 

to illuminance value of 300lux for at least 50% of the time. As high illuminance levels 

could mean excessive penetration of direct sunlight, the second metric comes to ensure 

its avoidance. Annual sunlight exposure (ASE) benchmarks the allowable direct sunlight 

penetration by 3% as a maximum percentage of the space that reach 1000lux for more 

than 250 hours. Meeting both criteria ensure daylighting adequacy without excessive 

sunlight exposure.  

These two metrics form the basis of evaluating the daylighting strategy adopted in the 

next chapter. As for the program used for daylighting calculations, Radiance-based 

simulation was found to be the most prominent daylighting simulation method. It was 

extensively validated and used in many studies1 thus, Radiance as a simulation engine 

was identified for daylighting performance prediction. However, still the problem of 

evaluation comes when a large number of alternatives is needed. Hence, an optimization 

algorithm was needed to be incorporated within the workflow to support the search 

process for a successful daylighting design strategy that meet the intended daylighting 

performance.

                                                      
1 C. F. Reinhart and M. Andersen, (2006). "Development and Validation of a Radiance Model for a 

Translucent Panel." Energy and Buildings 38, no. 7: 890-904. 
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3.1 Introduction 
Adopting a holistic design approach that takes environmental concerns into consideration 

from the early beginning is intended. Apart from the conventional design that only 

emphasizes the aesthetics or the functional aspects, generative performative design is 

sought. This approach was applied on a classroom space to explore the design capabilities 

of Cellular Automata (CA) in maintaining its visual/formal qualities while complying 

with daylighting performance requirements. 

In this chapter, a brief introduction on façade design treatments was given with an 

emphasis on solar screens as one of the well-known design treatments. Besides, an 

overview of different generative design systems was introduced to highlight their 

capabilities in pattern generation. Hence, they could be useful in solar screen formation 

in a way that meet daylighting performance requirements when integrated with 

optimization. Cellular Automata (CA) was chosen to be applied in designing solar screen 

for a classroom space in the hot arid climate of Cairo. As for the optimization technique 

used, the study was divided into three phases where exhaustive search and Genetic 

Algorithms (GAs) were applied. 

3.2 Façade Treatments for Daylighting Design 
Building facades mediate between the outside and the inside environment. They protect 

the indoor environment from the external harsh conditions; like excessive solar 

radiations, and high or low temperatures. Different techniques can be applied to façade 

design aiming to enhance its role in enhancing the indoor environment. Focusing on 

improving the daylighting performance, designers used to employ static and kinetic 

façade treatments endowing solar shading while still providing natural light. Solar 

screens, louvers, and light shelves were among the widely used techniques, besides other 

strategies concerned with massing, orientation and openings to control daylight 

provision. An overview of some of these techniques was followed by the contribution of 

solar screens in enhancing daylighting performance.  

3.2.1 Conventional Facade Treatments 

Traditionally, various daylighting techniques are being employed in the treatment of the 

façade design. In a clear sky condition, direct sunlight is a serious problem and shading 

devices need consideration. Different shading elements can be deployed for diffusing 

daylight inside the space. In the simplest way providing an appropriate glazing area with 
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a single shading element can control the amount of daylight. Louvers and blinds have 

also been widely used for this reason especially for direct sunlight and glare protection. 

However, they may not be efficient as they contribute in decreasing the illuminance levels 

inside the space. 1  Other daylighting techniques can resolve the conflict between 

providing a proper shading and maintaining adequate illuminance levels. Among these 

techniques which are sown in Figure 3-1 are: 2 

1. Light shelves: they consist of a horizontal overhang with a high reflective surface 

mounted on the upper part of the window dividing the window into two parts and 

still providing view to the outside. They are mainly used for providing light deep 

into the space and thus contributing in a more uniform distribution of the light. 

2. Prismatic panels: they are sawtooth acrylic panels that can be fixed on façade 

opening to redirect or refract direct sunlight and diffuse light. Considerations in 

the profile section should be taken for avoiding glare problems. 

3. Light-guiding shades: they are external fixed shades consisting of a glass 

aperture and two reflectors of high reflective materials to direct light rays into 

the ceiling of the space. They protect the space from direct sunlight and at the 

same time increase the illumination levels relative to conventional shades.  

4. Anidolic blinds: they are innovative solar blinds aiming to transmit low sun 

angles while preventing high solar altitude rays those of summer days. They form 

an array of parabolic concentrators that reflect light rays and thus controlling 

undesirable sunlight and glare. 

1

 

2

 

3

 

4

 

Figure 3-1: Illustration figures for Light shelve, Prismatic panel, Lighting-guiding shades, and Anidolic 

blinds3  

3.2.2 Solar Screens for Facade Treatments 

Another important shading element that was used to be applied in the Middle East for 

privacy and shading intents is the solar screen which is known as ‘Mashrabia’. A trend 

of their utilization in contemporary buildings has started to evolve. Trying to shift the 

                                                      
1 K. J. a. R. Watkins, Daylight in Buildings (United Kingdom: AECOM Ltd on behalf of the international 

Energy Agency, 2010). 
2 Ibid. 
3 Ibid. 
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emphasis from their aesthetic role to focus on its environmental impact, a study has 

investigated different perforation ratios on both energy saving and daylighting autonomy 

through an experimental simulation. It is found that perforations range between 30%, and 

50% are the best for reaching a good compromise between thermal and daylighting 

requirements. 1  In another study, an emphasis was on the impact of perforation 

percentages on daylighting adequacy. The space was divided into three zones; near, mid-

length and far, where the minimum perforation percentage for each zone at different point 

in time was recommended.2 

Besides perforation percentage, the rotation angle and the aspect ratio are two other 

effective screen parameters on the daylighting performance and solar radiation 

transmittance and they were investigated by Sherif et al.3 The study was conducted in 

three consecutive phases. Acceptable cases that meet the criteria of the three phases; 

daylight availability, annual daylight glare probability, and annual solar energy 

transmittance, were elected. In another study, the problem of daylight non-uniformity and 

heat gain was addressed for similar climatic and spatial conditions. The effectiveness of 

solar screens was investigated through different design configurations. 

Recommendations were given for each orientation regarding adding light shelves, 

changing rotation angle, changing screen height and aspect ratio.4  

According to the above literature fixed solar screen parameters were recommended to be 

used for hot arid climates. Also, dynamic solar screens were suggested. Understanding 

the possible limitation of static systems, a kinetic system inspired by the traditional 

mashrabiya was introduced in another study. A solar responsive system called ‘shape 

variable mashrabiya’ was proposed for maximizing daylight and view to the outside 

while minimizing solar gains. A logic for its operation was set with the objective of 

transforming direct sunlight into diffuse light for natural light provision while preventing 

                                                      
1 A. Batool and I. M.K. Elzeyadi (2014 of Conference). From Romance to Performance: Assessing the 

Impacts of Jali Screens on Energy Savings and Daylighting Quality of Office Buildings in Lahore, Pakistan. 

30th international PLEA conference, Ahmedabad, India. 
2 A. Sherif et al., (2012). "External Perforated Solar Screens for Daylighting in Residential Desert Buildings: 

Identification of Minimum Perforation Percentages." Solar Energy 86, no. 6: 1929-1940. 
3 A. Sherif et al., (2012). "The Impact of Changing Solar Screen Rotation Angle and Its Opening Aspect 

Ratios on Daylight Availability in Residential Desert Buildings." Solar Energy 86, no. 11: 3353-3363. 
4 H. Sabry et al., (2012). "Utilization of Combined Daylighting Techniques for Enhancement of Natural 

Lighting Distribution in Clear-Sky Residential Desert Buildings." 4, no. 5.20: 3.00. 
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solar gains. Results proved its effectiveness in achieving daylighting adequacy and 

uniform distribution thus proving its superiority over typical venetian blinds.1  

Besides all the previous contributions, more unrevealed geometric attributes and their 

effectiveness on the intended criteria can be explored resulting in a more innovative 

solutions. This was suggested by adding other dimensions for performance and relating 

them to the capabilities of generative systems. The above mentioned treatments have 

proven their effectiveness in enhancing daylight provision, but there was a need for 

integrating the subjective visual aspects without violating the performance. Hence, 

incorporating generative systems was suggested. 

3.3 Generative Systems for Façade Optimization 

The spread of computation and mathematical frameworks in many design aspects has led 

to a shift in notions and concepts that used to be standard. This shift has offered the 

designer with the power of applying generative systems in architectural design.  In façade 

designs, the use of generative systems can support design exploration in a way that form 

generation can be more performance oriented. This approach was introduced as 

‘Generative Performative Design’ where both form and performance requirements drive 

the generation process.2 

3.3.1 Generative Design Systems for Patterns Formation 

The concept of generative design implies the use of codes and rules often merged with 

parametric modelling tools. It is a rule-based design process through which design forms 

are generated. Geometric representations are manipulated through an algorithmic 

procedure that is controlling a number of parameters or variables in predefined ways -

according to a specified rules- so that they can behave in a certain pattern forming a range 

of design possibilities. Thus, they have the power to generate forms ranging from the 

simplest to the most complex. This could be through component-based software where 

no need of programming or scripting experience is required.3  

                                                      
1 B. Karamata (2014 of Conference). Concept, Design and Performance of a Shape Variable Mashrabiya as 

a Shading and Daylighting System for Arid Climates. 30th international PLEA conference, Ahmedabad, 

India. 
2 E. Fasoulaki, "Integrated Design: A Generative Multi-Performative Design Approach". 
3  S. Milena and M. Ognen (2010). Application of Generative Algorithms in Architectural Design. 

Proceedings of the 12th WSEAS international conference on Mathematical and computational methods in 

science and engineering, World Scientific and Engineering Academy and Society (WSEAS). 
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Generative design systems were borrowed from other disciplines to explore their 

capabilities in form generation and exploration. Among the well-known generative 

systems that have a significant impact on architectural design are: Genetic Algorithms 

(GAs), Cellular Automata (CA), L-systems, Shape Grammars (SG), and Voronoi 

diagram. In this section a brief overview on these generative systems was given.  

Genetic Algorithms (GAs): It was introduced previously in chapter one concentrating 

on its optimization role; however, it is also considered a form generation tool. Based on 

Darwinian principle of reproduction, which states that the survival for the fittest, GA 

works on replacing a population of solution with another fitter population by simulating 

the genetic operators of reproduction, mutation and crossover.1 

Cellular Automata (CA): It was first introduced by John Von Neumann in the 1940s as 

an abstract self-reproduction model. It was borrowed from biology to be used in the 

architecture practice. CA is an array of cells each has a state of two possible states (on or 

off) and this depends on its initial condition besides the state of its neighbor cells. For 

each time step (time=t), the state of the cells is updated according to its neighbors and its 

own previous state (time=t-1) and this is governed by a certain rule.2 A number of studies 

have integrated cellular automata (CA) as generative system to devise fenestration design 

strategies that comply with daylighting requirements.3-4-5 In these examples, daylighting 

as a performance criterion was the driving engine behind the formulation of shading 

systems for building facades, aided by the enhanced design exploration possibilities of 

CA. In Figure 3-2, different CA patterns were shown wrapped around a building.6 

                                                      
1 D. E. Golberg, (1989). "Genetic Algorithms in Search, Optimization, and Machine Learning." Addion 

wesley 1989. 
2 S. Wolfram, 2002. A New Kind of Science. Vol. 5: Wolfram media Champaign. 
3 J. Kim, (2013). "Adaptive Façade Design for the Daylighting Performance in an Office Building: The 

Investigation of an Opening Design Strategy with Cellular Automata." International Journal of Low-Carbon 

Technologies: ctt015. 
4 M. Zawidzki, (2009). "Implementing Cellular Automata for Dynamically Shading a Building Facade." 

Complex Systems 18, no. 3: 287. 
5 M. Zawidzki, 2010. A Cellular Automaton Controlled Shading for a Building Facade. Translated by. Vol. 

vols. ed., Edited by.: Springer. Reprint. 
6 K. Terzidis, 2006. Algorithmic Architecture: Routledge. 
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Figure 3-2: CA patterns wrapped on a building1 

 L-systems: They were first developed as a method to simulate the growth of plants and 

was named after its developer Lindenmayer. First, their geometric aspects were 

concerned for plant modelling. Then, their potential in generating unexpected patterns 

allowed their application in architectural design. The essence of this system lies in 

defining geometric elements through rewriting mechanism. The components of a 

rewriting system are a number of variables, initial string, and production rules. Starting 

with an initial string at t=0, the variables forming this string are changing iteratively based 

on the production rules that control this transformation, thus forming a new expanded 

string. Lindenmayer's L-system for modelling a plant growth can be exemplified where 

strings are built of two letters A and B (variables). The string starts with A (initial string) 

and is transformed through each time step according to the following two rules: A → AB, 

B → A (production rules) which produces at: 

t = 0: A 

t = 1: AB 

t = 2: ABA 

t = 3: ABAAB 

t = 4: ABAABABA 

                                                      
1 Ibid. 
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These letters are interpreted to geometric features in a way that reflects an emerging 

geometric pattern based on different possible variables, strings and rules. Examples of 

the possible generated patterns are shown in Figure 3-.1 

 

Figure 3-3 Patterns generated by L-system2 

Shape Grammars (SG): It is the first design-oriented generative system and was 

introduced by Stiny and Gips in the early 1970’s.3  It is a rule-based method by which 

various forms (design languages) can be generated through initial shapes (shape 

vocabulary) and a set of rules that control shape transformation (spatial relations). The 

rules articulate the designer’s ideas in a more explicit communicative way. Besides, it 

allows a plethora of design alternatives to be explored and evaluated. From the simplest 

shapes, complexity can arrive.4  Shape grammars were used to understand and analyze 

geometric patterns and to generate various designs having the same language. A study 

made use of this characteristic aiming to generate different Islamic patterns having the 

same geometric compositions using a shape grammar model. Two geometric templates 

were generated starting with the same initial shape and similar rule schema as shown in 

Figure 3-4.5  

                                                      
1  P. Prusinkiewicz and A. Lindenmayer, 2012. The Algorithmic Beauty of Plants: Springer Science & 

Business Media. 
2 Ibid. 
3 G. Stiny and J. Gips (1971). Shape Grammars and the Generative Specification of Painting and Sculpture. 

IFIP Congress (2). 
4 G. Stiny, (1980). "Kindergarten Grammars: Designing with Froebel's Building Gifts." Environment and 

planning B 7, no. 4: 409-462. 
5 U. Ebru (2009 of Conference). A Shape Grammar Model to Generate Islamic Geometric Pattern. 12th 

generative Art Conference. 
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Figure 3-4: Two design templates of Islamic Patterns having similar rule schema in a Shape Grammar 

Approach1 

Voronoi diagrams: As a generative tool in architecture, it is characterized by its non-

repetitiveness and modular patterns which endows its uniqueness. An example of a 

parametric design using Voronoi is shown in Figure 3-5. Unexpected interesting patterns 

and geometries can be generated thus making it tempting to designers for form finding. 

It is characterized by its inherent spatial relationships and neighborhoods that can be 

parametrically modeled.  

The emergent voronoi structure has the potential to produce a structure order. For 

instance, it was used for structural optimization as a computational means to explore more 

complex and adaptive geometries. Edges of the voronoi acted as structural members of a 

static system.  Then, optimizing the cell structure was assessed regarding its structural 

properties; stability and deformation using simulation software. 2  Another study 

combined the structural and environmental potentials of voronoi diagram in designing 

                                                      
1 Ibid. 
2 E. Friedrich, “The Voronoi Diagram in Structural Optimisation” (UCL (University College London), 2008). 
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double skin façade for mid-rise towers. Genetic Algorithms was utilized for optimization 

searching a diverse range of solutions that meet design requirements.1 

 

Figure 3-5: Prototype of a Voronoi Structure 

Generative system are not confined to the aforementioned systems. For instance, a study 

has addressed applying leaf venation algorithm as a generative system for façade design. 

In this algorithmic approach, leaf venation patterns were informed by a performance 

criteria where the analysis data controlled veins distribution and their densities as shown 

in Figure 3-6.2  

                                                      
1 O. O. Torghabehi and P. von Buelow (2014). Performance Oriented Generative Design of Structural Double 

Skin Facades Inspired by Cell Morphologies. Proceedings of the IASS-SLTE 2014 Symposium “Shells, 

Membranes and Spatial Structures: Footprints”, Brasilia, Brazil. 
2 S. Gokmen (2013). A Morphogenetic Approach for Performative Building Envelope Systems Using Leaf 

Venetian Patterns. eCAADe 2013: Computation and Performance–Proceedings of the 31st International 

Conference on Education and research in Computer Aided Architectural Design in Europe, Delft, The 

Netherlands, Faculty of Architecture, Delft University of Technology; eCAADe  
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Figure 3-6: Leaf venation pattern based on performance analysis showing its effect on changing veins 

distribution1 

Generative systems applications in façade design return to their significance in providing 

many possibilities of design patterns that can meet both designer’s intentions and the 

intended performance criteria. However, there is a need for optimization algorithm to 

make this process more efficient. 

3.3.2 Integrating Optimization with Generative Systems for Daylighting 

Design 

Both form and performance should be emphasized without the bias of one on the other. 

They are rather two complementary design principles by considering form not merely a 

geometric representation but a group of components having effects and behaviors.2 From 

here comes the need of ‘generative performative design’ approach to be adopted for 

generating building facades in a way that performance act as the driving engine behind 

the development of the generative technique. For instance, a study aimed to maintain the 

visual aspects while capturing the performative constraints of daylighting requirements 

through a responsive model. This model is represented by a matrix of square grid 

mounted on the south oriented elevation of a prototype house. It applied the rules of a 

                                                      
1 Ibid. 
2 E. Fasoulaki, "Integrated Design: A Generative Multi-Performative Design Approach". 
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shape grammar in a way that generative electrochromic façade patterns can comply with 

visual and daylighting illuminance needs.1  

Daylighting is an important building aspect that needs concern from the early beginning 

of the design process. The intended design performance when considered from the early 

beginning acquires a guiding rule that inform geometric elements how to be represented. 

For this reason, façade optimization was applied in a number of daylight studies. A study 

by Gadelhak M. investigated the integration of optimization algorithm with a simulation 

technique for static optimized facades 2 . Another studies were conducted for the 

development of kinetic façade design 3-4, and smart façade optimization5. In this sense, 

simulation techniques that are responsible for performance assessment feed the search 

method with the guiding information to best meet the required performance. In addition, 

exploiting the computational capabilities and integrating them with optimization 

algorithms have opened new venues in solar screen pattern designs.6  

This study intended to achieve adequate daylighting illuminance levels inside a 

classroom space in Cairo while preventing excessive sun exposure. Cellular automata 

(CA) was chosen to be explored in depth for its emergent behavior in generating various 

screen patterns. 

3.4 Cellular Automata for Optimized Screen Patterns: 

Classroom Case Study  

Cellular Automata is a well-known generative system that imparts a sense of visual 

quality and guides form generation.7 In this study, both designers’ subjective visual 

requirements and daylighting performance criteria govern the CA pattern generation. The 

                                                      
1 S. D. Kotsopoulos et al. (2012). A Visual-Performative Language of Façade Patterns for the Connected 

Sustainable Home. Proceedings of the 2012 Symposium on Simulation for Architecture and Urban Design, 

Society for Computer Simulation International. 
2 M. Gadelhak (2013). Integrating Computational and Building Performance Simulation Techniques for 

Optimized Facade Designs. eCAADe 2013: Computation and Performance–Proceedings of the 31st 

International Conference on Education and research in Computer Aided Architectural Design in Europe. 
3 K. Sharaidin et al. (2012). Integration of Digital Simulation Tools with Parametric Designs to Evaluate 

Kinetic Façades for Daylight Performance. Digital Physicality-Proceedings of the 30th eCAADe Conference. 
4 M. El Sheikh and D. Gerber (2011). Building Skin Intelligence. Proceedings of ACADIA. 
5 C.-S. Park et al. (2003). Daylighting Optimization in Smart Facade Systems. Proceedings of the Eighth 

International IBPSA Conference. 
6  F. Fathy et al. (2015). Cellular Automata for Efficient Daylighting Performance: Optimized Façade 

Treatment. roceedings of BS2015: 14th Conference of International Building Performance Simulation 

Association, Hyderabad, India, Dec. 7-9, 2015. 
7 S. Wolfram, 2002. A New Kind of Science. Vol. 5: Wolfram media Champaign. 
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form generation process complied with daylighting performance criteria using three main 

modules: a generative model, a simulation program, and an optimization algorithm. 

One-dimensional Cellular Automata (CA) was used to generate screen patterns for the 

façade of a classroom space, then a simulation was conducted to evaluate all possible 

generated forms through an exhaustive search method1. The first phase was concerned 

with exploring 18 CA rules under the repetitive class patterns exhaustively, which have 

the same potential in shading purposes. Then, only one rule (rule 210) was evaluated in 

more depth so that the efficiency of Genetic Algorithms (GAs) as an evolutionary search 

method can be explored in reaching optimal or near optimal solutions. This workflow 

was illustrated in Figure 3-7. 

 

Figure 3-7: Phases applied in the classroom case study 

For all phases, the width and height of the repetitive modular unit forming the screen (cell 

size) was fixed at 30cm as shown in Error! Reference source not found., which was 

selected as a suitable dimension for visual perception of screen pattern. Whereas, cell 

depth was varied. According to a previous study2, the convergence of solutions was found 

starting at 1:1 depth ratio (depth length divided by cell height). Hence, depth length was 

                                                      
1 J. Daintith and E. Wright, (2008). "A Dictionary of Computing." 
2  A. Wagdy and F. Fathy, (2015). "A Parametric Approach for Achieving Optimum Daylighting 

Performance through Solar Screens in Desert Climates." Journal of Building Engineering 3: 155-170. 
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varied within a range of average value 30cm. This range was enlarged with a larger 

increment at phase 1 and 2 because the main objective was to explore the performance of 

GAs in finding solutions and detecting successful range of variables. Thus, the range was 

intended to cover varied alternatives rather than confining them to the deduced successful 

limit. Similarly, the black count range–which is the number of solid cells in the first row 

of the array and this denote and control the ratio of solid to void area– differed to cover 

a range of hypothetically unsuccessful alternatives so that GAs can be evaluated more 

objectively. In addition, one other variable –which is displacement effect– was added to 

increase the solution space and detect its influence on daylighting performance. 

 

 

Figure 3-8: Modular Cell Configuration of the solar screen 

Rhinoceros 3D modelling software and its graphical algorithm editor Grasshopper1 were 

used as a common platform for CA pattern generation, daylighting simulation analysis, 

and optimization.  

                                                      
1 D. Rutten, "Grasshopper-Algorithmic Modeling for Rhino Software Version 0.9077"  (accessed 10-10 

2014). 
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3.4.1 Naming Logic of CA Rules 

Cellular Automata was formed by an array of modular cells, where each has two possible 

states (0 or 1). In one-dimensional CA, the state of each cell depends on its previous state 

and its two adjacent cells in the previous time step. Hence, for the subsequent time step, 

the cell becomes ‘off’ or ‘on’ based on 23 = 8 possible reference states, as shown in Figure 

3-9. The total possible arrangement of the cell states relative to the eight references is 28= 

256 cases or rules, ranging from rule 0 when all eight states are off, and rule 255 when 

all cell states are on. The naming logic of each rule returns to this arrangement. For 

instance, in rule 210 this was demonstrated where each ‘alive’ cell had a corresponding 

value that was added to form the rule name as shown in Figure 3-9. 

 

Figure 3-9: The naming Logic of rule 210 

3.4.2 Rule Selection 

According to Zawidzki1 eighteen one-dimensional CA rules were classified under the 

repetitive class, justifying their suitability for shading applications. In this set of rules as 

shown in Figure 3-10, the opacity level of the whole CA array is proportional to that of 

the initial row condition. This was controlled by assigning the number of solid cells to 

the void ones.  For instance in Figure 3-11, the initial black count, which was randomly 

set for rule 210, controls the opacity of the whole array. All of the eighteen generated 

patterns may have the same potential for diffusing daylight. Hence, they were all explored 

                                                      
1 M. Zawidzki, (2009). "Implementing Cellular Automata for Dynamically Shading a Building Facade." 

Complex Systems 18, no. 3: 287. 
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in the first phase to explore their pattern efficiency on a south oriented façade in such a 

clear sky of Cairo. However, in the second phase, only one rule (210) was examined. 

This rule was chosen based on a subjective visual intention, which was aimed to be 

prioritized without breaching the required performance criteria. 

 

Figure 3-10: The eighteen CA rules under the repetitive class1 

 

Figure 3-11: Pattern of rule 210 showing direct relation of screen openness factor with initial black count 

                                                      
1 Ibid. 
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3.4.3 Screen Modelling 

Rabbit plug-in for Grasshopper was used to simulate the emergent behavior of cellular 

automata in the process of generating the screen patterns.  CA was applied on a regular 

square grid. Each row represents a state of a time step forming an array of cells that shows 

the history of generations, as shown in Figure 3-11. For each CA rule, a number of 

parameters were identified to explore their variations on daylighting performance. In the 

first phase, cell size was fixed to 30 cm while, two parameters were varied across the 18 

rules: 

1.  Cell depth; it ranges from 25 to 35 cm with a 2.5cm increment. 

2.  Black count; it ranges from 1 to 12 black cells, which indicates openness factor that 

ranges from 4% to 48%.  

In previous studies concerned with solar screens -which were formed by merely 

horizontal and vertical intersecting louvers-, the results indicated the possibility of 

finding solutions with no black count.1 However, the limit was set high till 12 to create 

more visual interest and discover whether it could be applicable from the daylighting 

performance perspective. 

In the second and third phase (for rule 210), three parameters were varied, which are:  

1. Cell depth; it ranges from 15 to 45 cm with a 5cm increment. 

2. Black count; it ranges from 5 to 15 black cells, which indicates openness factor that 

ranges from 20% to 60%. 

3. Displacement value; which indicates the pattern shift in the X direction. The 

displacement ranges from 0 to 20 with an increment equal to 2 cell units. This 

variable could give an indication about the randomness effect of black count and 

whether the sequential order of black count –input in the first row– has an influence 

on daylighting performance or not. This range limits was set to cover the window 

width (8m) with varied patterns besides, the increment was set  by 2 unit cells so that 

variation could be recognized as shown in Figure 3-12. 

 

                                                      
1 A. Sherif et al., (2012). "External Perforated Solar Screens for Daylighting in Residential Desert Buildings: 

Identification of Minimum Perforation Percentages." Solar Energy 86, no. 6: 1929-1940. 
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Figure 3-12: Displacement effect 

3.4.4 Daylighting Evaluation Criteria 

Daylighting simulation analysis was conducted using Diva-for-Rhino; a plug-in for 

Rhino which acts as an interface for Radiance and Daysim for daylighting calculations. 

This study complied with the approved IES method (IES report number LM-83-12).1 

This method introduced two metrics, which are Spatial Daylight Autonomy (sDA300/50%) 

and Annual Sunlight Exposure (ASE1000/250hr), giving absolute benchmark levels for the 

pass or fail criteria.  

The first metric (sDA300/50%) gives an indication of daylighting adequacy inside the space, 

where a minimum illuminance of 300lux is meant to be reached at 50% of the occupied 

hours across at least 55% of the space area. The second metric (ASE1000/250hr) indicates 

excessive sunlight exposure when receiving direct sunlight of 1000lux for more than 250 

hours. This should not exceed 10% of the space area. For this study, optimal cases have 

to reach at least 75% sDA and a maximum value of 3% ASE to avoid possible visual 

discomfort due to sun penetration.2  

It is attempted to apply DIVA approach for the evaluation module which is an evidence-

based approach mentioned by Reinhart in his daylighting handbook3; which stands for, 

design, iterate, validate, and adapt. The four main steps in this approach are: 1) 

formulating design objectives (Performance requirements); 2) generating a number of 

alternatives as suggestions (Design exploration); 3) evaluating and assessing design ideas 

through a verified simulation program for achieving valid and reliable results 

(Performance prediction); 4) adapting the final solution to meet up with the predefined 

performance objectives (Optimization). These steps were interpreted in the form of a 

workflow as shown in Figure 3-13 showing the tools and methods used. 

                                                      
1 I. IESNA, (2012). "Lm-83-12." IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure 

(ASE). New York, NY, USA, IESNA Lighting Measurement. 
2 Ibid. 
3 C. Reinhart, 2013. "Daylighting Handbook-Volume I." 
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Figure 3-13 Design workflow proposed for daylighting optimization study 
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3.5 Classroom Configurations for Daylighting Design 
Focusing on classrooms for the case study stems from the aim of enhancing the learning 

environment that could have a significant impact on both the students and staff 

performance. Different studies have proved the correlation between the students/staff 

performance and daylighting adequacy inside classroom.1-2 It has a significant impact on 

the circadian system which is responsible for regulating some biological processes like 

sleeping and concentration. By taking a university classroom in one study, it is attempted 

to measure the quality of light in terms of its effect on the circadian system thus posing a 

new dimension for evaluating lighting quality.3 In another study, an increase of 14% of 

students’ performance is found to be in daylit schools and their rate of absenteeism has 

decreased by about 3.5 days per year.4 A recent study has emphasized the influence of 

daylighting and detected the students’ satisfaction with daylighting exposure. A 

questionnaire survey was conducted showing their tendency towards the perception of its 

significance in schools’ environment and on their performance.5  

A study was conducted that analyzes the condition of typical classrooms in the United 

Arab Emirates (UAE) in terms of visual performance. By focusing on different design 

aspects like, space size, depth to height ratio, orientation and desk position, it concluded 

with the necessity of the utilization of daylighting systems (i.e. solar shading) for 

mitigating the problems of glare and high solar radiation.6Another study intended to 

identify classroom configuration in a hot humid climate that meet with daylight 

performance criteria, regarding fenestration size and external louver configurations. 

Three windows to wall ratios were examined; 20%, 40%, and 60% ending with a 

recommendation of their corresponding shading louvers configurations.7  

                                                      
1 L. Edwards and P. A. Torcellini, 2002. A Literature Review of the Effects of Natural Light on Building 

Occupants: National Renewable Energy Laboratory Golden, CO. 
2 G. Heath and M. J. Mendell (2002). Do Indoor Environments in Schools Influence Student Performance? 

A Review of the Literature. Proceedings of the 9th International Conference on Indoor Air Quality and 

Climate, Indoor Air 2002. 
3 L. Bellia et al., (2013). "Lighting in Educational Environments: An Example of a Complete Analysis of the 

Effects of Daylight and Electric Light on Occupants." Building and Environment 68: 50-65. 
4 M. H. Nicklas and G. B. Bailey (1996). Analysis of the Performance of Students in Daylit Schools. 

Proceedings of the National Passive Solar Conference, American Solar Energy Society INC. 
5 T.-w. Kim et al., (2014). "Daylight Evaluation for Educational Facilities Established in High-Rise Housing 

Complexes in Daegu, South Korea." Building and Environment 78: 137-144. 
6 K. A. Al-Sallal, (2010). "Daylighting and Visual Performance: Evaluation of Classroom Design Issues in 

the Uae." International Journal of Low-Carbon Technologies 5, no. 4: 201-209. 
7 A. Pedrini and J. Carvalho (2014 of Conference). Analysis of Daylight Performance in Classrooms in 

Humid and Hot Climate. 30th international PLEA conference, Ahmedabad, India. 
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In a city like Cairo, hot arid climate is experienced most of the year. Without taking 

proper shading of large glazed areas into consideration, a conflict between excessive heat 

gain and daylighting adequacy is sustained. One way is blocking direct sunlight while 

allowing the indirect to diffuse into the space through ceiling reflections or solar shading. 

In general, the north and south orientation were the first preference so that direct sunlight 

penetration could be avoided. According to the sun path diagram, only diffuse sunlight 

enter the space most of the time over the year. Whereas in the south, the sun angle is high, 

which facilitates the window treatment through horizontal louvers. The second 

preference is the north east or the south west and louvres should be utilized in both cases.1 

Besides orientation there are other factors affecting daylighting performance in 

classrooms as shown in Figure 3-14.  

 

Figure 3-14 Classroom design factors affecting daylighting performance 

Area of classroom can be calculated according to the following equation: 

(Ca) = Ta + (Sn * Sa)2 

Where Ca is the classroom area, Ta is the teacher’s area, Sn is the number of the students, 

Sa is the area needed for each student. 

According to the authority of educational buildings in Egypt3, Ta ranges from 4.5 to 9m2 

and Sa ranges from 1.4 to 1.8m2, and for the basic education the number of students 

ranges from 20-75 student. No limitations were imposed on how the shape should be like, 

it is left for the architect, so any shape is acceptable if it complies with the required area 

and the good distribution of furniture.  

General terms imposed for classroom design can be summarized in: Common width not 

to be larger than 6m in case apertures are on one side of the room besides, length should 

                                                      
1 MOE., 1990, The Requirements of the General Authority for Educational Buildings for the Stage of Basic 

Education in Cairo. 
2 Allen, Robert L. et al. 1996, Classroom design manual, 3rd edition, Academic information Technology 

services, University of Maryland, USA. 
3 Op. Cit.: MOE., (1990). 
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not be more than 9m. Room height should not be less than half its width and the 

recommended range is between 3.1 and 4.3m. 

Based on the aforementioned requirements, this study was conducted on a generic south 

oriented classroom space located in the desert climate of Cairo, Egypt (30°6'N, 31°24'E, 

alt.75m) with no external obstruction. The classroom configuration and parameters for 

the classroom space, window and screen are shown in Figure 3-15 and Table 3-2 

respectively. Radiance parameters used for sDA and ASE calculations were set according 

to the Illuminating Engineering Society (IES) as shown in Table 3-3.  

For this case study, all window to wall ratios from 20% till 90% (with 10% increment) 

were evaluated, but none has passed the assigned criteria. Thus, after testing the 

daylighting conditions, it proved the necessity of implementing a design treatment for the 

openings. The main objective of this study is to find optimal solution that passes the 

daylighting performance criteria (sDA≥75% and ASE≤3%) through the suggested 

workflow of the CA screen pattern. This optimization study focused on the assigned 

parameters and variables (Screen Depth, Blackcount or the Opennes factor); However, 

other factors were neutralized like the internal material finishes, screen thickness, and 

external obstructions. 

 
Figure 3- 15: Classroom Configurations 
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Table 3-2: Parameters of the classroom, window and screen 

Space Parameters 

Floor Level floor (+365cm) st1 

Room Area 248m 

Floor Height 320cm 

Internal Surfaces Reflectance 

Ceiling White color paint with 80% reflectance 

Walls off-white color paint with50% reflectance 

Floor Wooden floor with 20% reflectance 

Window Parameters 

Window to wall ratio (WWR) 70% 

Sill 100cm 

Window height 220cm 

Window width 800cm 

Glazing Double Clear Pane (VT=80%) 

Window Frame Metal Diffuse 

Screen Parameters 

Screen Reflectivity 35% 

Cell Size 30cm 

 

Table 3-3: Radiance Parameters 

Evaluation Metrics Ambient Bounces Ambient Divisions Direct Threshold 

sDA 6 1000 0 

ASE 0 1000 0 
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3.6 Summary  
Increasing tendency towards the adoption of generative systems in architectural design 

returns to a number of reasons; its automated non-monotonic form generations; 

exploration capabilities of large design space; possibility of design optimization;  high 

efficiency; reduction of labor and time and hence decreasing cost.1 Besides, generative 

models offer a high level of interaction and control over the digital representation and 

their operative part.2 However, they lack the capability of modifying design elements to 

meet performance requirements without the feedback from the simulation tool. Thus, a 

generative performative approach was adopted where exhaustive search then Genetic 

Algorithms (GAs) was integrated with the generative system Cellular Automata (CA). 

Within this suggested workflow, Radiance (through Diva-for-Rhino) was utilized for 

daylighting performance prediction. 

In this study, the goal was to achieve adequate daylighting illuminance levels in a south 

oriented classroom space using CA patterns. The generative flexibility of CA was 

capitalized on in order to set the resulting design alternatives free from monotonous and 

static prototypes, where geometrical forms are defined by fixed numerical values to 

produce and evaluate multiple alternatives. The rules and instructions that govern the 

geometric attributes and their relationships were based on two main aspects: daylighting 

adequacy and avoiding direct sunlight. Thus, capturing performative constraints to 

encode them by using CA parameters that comply with the IES approved method while 

controlling visual aspects. 

  

 

                                                      
1 V. Singh and N. Gu, (2012). "Towards an Integrated Generative Design Framework." Design Studies 33, 

no. 2: 185-207. 
2 R. Oxman, (2006). "Theory and Design in the First Digital Age." Design studies 27, no. 3: 229-265. 
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4.1 Introduction 
Generative design systems have contributed in liberating the limits of design exploration, 

allowing designers to explore various design solutions. First, the 18 CA rules under the 

repetitive class were explored in terms of sDA and ASE values through an exhaustive 

search. Then, CA rule number 210 was specifically employed for form generation where 

847 different cases were examined. Having the performance of all possible 

configurations, it was possible to evaluate the performance of GA in reaching the optimal 

solutions. At last, genetic algorithm GA was utilized to examine its efficiency in reaching 

optimal solutions with an appropriate convergence velocity. Results of this study 

demonstrated the potential of CA and GA in achieving the intended visual aspects and 

daylighting requirements efficiently.  

4.2 Exploring CA Rules: Phase 1 
Cellular automata has proven its applicability in reaching a range of satisfactory solutions 

for static building facades. In this phase, 18 CA rules were explored which were classified 

under the repetitive class patterns and were considered appropriate for shading 

applications.1 For the assigned range of values, all possible combinations were explored 

forming 1080 cases. For each rule 60 alternatives were examined. Parameters were 

confined to cell depth and black count. For cell depth, the range of values started with 25 

cm to 35 cm with an increment of 2.5 cm. As for the black count, it ranged from1 to 12. 

The effect of black count and rule selection on CA pattern generation was explicated. 

Merely two random CA rules were given as shown in Table 4-1; as the rest showed a 

similar effect on the overall performance.  

It was noticed that for all CA rules the effect of black count in decreasing sDA which 

was magnified by large depth lengths. For instance, in rule 142, sDA remained at its peak 

value at depth length 35cm till black count 3 then it was subjected to a sharp decrease 

where it reached 20% at black count 12. On the other hand, at smaller depth lengths, the 

effect of black count was much smaller. For instance, at depth length 25cm, sDA was 

constant at its peak till black count 5, then a slight decrease was experienced till it reached 

80% at black count 12.  As for ASE, black count had no relevant effect on ASE values. 

They remained almost constant at all black counts; however, at small depth lengths, a 

slight decrease can be noticed with the black count increase.  

                                                      
1 M. Zawidzki, (2009). "Implementing Cellular Automata for Dynamically Shading a Building Facade." 

Complex Systems 18, no. 3: 287. 
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Table 4-1: Performance of screen patterns of rule 142 and rule 154 in terms of sDA and ASE showing their 

interaction with cell depths and black count 

Rule 142 

 

 

 
    sDA≥75% 

ASE≤3% 
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Rule 154 

 

 
 

 

  

sDA≥75% ASE≤3% 
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By comparing the performance of all rules, it is found that all rules showed promising 

results where both sDA and ASE passed the predefined criteria. This was demonstrated 

in Figure 4-1 and Figure 4-2, where all successful cases that passed the criteria: sDA 

≥75% and ASE≤ 3%, were highlighted. It can be noticed that solutions reached for all 

the18 rules were at depth length ranged from 30 to 35cm across all black counts.  
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Figure 4-1: sDA values for all screen configurations of the 18 CA rules highlighting the successful ones 

sDA≥75% 
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Figure 4-2: ASE values for all screen configurations of the 18 CA rules highlighting the successful ones 

ASE≤3% 
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4.3 Exploring CA Rule 210 by Exhaustive Search: Phase 2 

In this phase, one CA rule was chosen to be explored in more detail using the same 

exhaustive search method. Examining all possible combinations allowed for 

investigating the impact of each variable and their interaction on the required daylighting 

performance. One new variable was added which is the displacement value to see its 

effect on performance. It is intended to explore a larger range of depth length and black 

count values, where the range of depth length started from 15 to 45 cm with an increment 

equal 5. At the same time the range of black count was increased to reach 15; however, 

less than 5 black count was discarded for visual intentions. By combining all possible 

values for each variable, seven values for depth lengths, and eleven values for black count 

and displacement, 847 different cases were evaluated in total as shown in Figure 4-3. 

 

Figure 4-3: Values of the three investigating variables forming 847 different alternatives 

4.3.1 Cell Depth Effect 

A number of findings emerged from the simulation process. First, cell depth proved a 

large impact on daylighting performance. Both sDA and ASE decreased as the depth 

increased, as shown in Figure 4-4. However, it was required to decrease only ASE while 

increasing sDA. For large depths ranging from 35 to 45 cm, ASE succeeded to maintain 

its maximum threshold (3%); however, sDA did not exceed the minimum required value 

(75%). sDA exceeded 75% while maintaining the low ASE level only at a depth value of 
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35cm and by decreasing black count as illustrated in the adequate performance area. As 

for small depths ranging from 15cm to 25cm, sDA exceeded 75% at all black counts; on 

the other hand, ASE was too high reaching up to 46%.  A compromise between the 

advantage of large depths in decreasing ASE and small depths in increasing sDA was 

found at a depth value of 30cm. About 76% of the solutions were reached at this depth 

value. Since the cell size was fixed at 30cm, a correlation between cell size and cell depth 

was deduced, where the optimal results were realized mainly at depth ratio 1:1.  However, 

it needs more verification by varying and testing other cell sizes. Searching all 

possibilities, sDA and ASE passed their benchmarks at both cell depth of 30cm and 35cm, 

as shown in Figure 4-4. 

4.3.2 Black Count Effect 

Second, the black count, which denotes the openness degree of the whole array, showed 

its remarkable effect on decreasing sDA at large depth values, where it suffered a sharp 

decrease at large depth values. On the other hand, it had a little effect on ASE, where it 

appeared constant at large depth values, as shown in Figure 4-5 and Figure 4-6. For 

instance, at depth length 35cm, sDA decreased from 91% at black count 5 to 26% at black 

count 15, while ASE decreased by only 1%. Conversely, at small depth values, increasing 
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black count had a significant effect on decreasing ASE. However, it was not large enough 

to reach the required value. 

In contrast, sDA slightly decreased and still maintained its large values. For instance, at 

depth length 15cm, ASE decreased from 44% to 35% while sDA decreased by only 2% 

to reach 98% at a black count of 15. The only case where black count had no considerable 

impact on both sDA and ASE was at depth value of 45cm, where sDA was too low; even 

at the lowest openness where sDA reached only 26%. Besides, it had no impact on ASE 

at large depth values where ASE reached a bottom. In short, black counts ranging from 

5 to 13 showed a success in reaching a balance between the required low ASE value and 

large sDA value at depth values 30cm and 35cm, as shown in Figure 4-5and Figure 4-6. 

These values implied screen openness factor ranges from 20% to 50%.  

 

 

Figure 4-5: The effect of black count on ASE at all depth lengths showing successful cases at 

displacement 2 

5 6 7 8 9 10 11 12 13 14 15

15 44 46 44 43 41 39 34 36 38 34 35

20 30 31 29 29 28 26 21 26 28 26 23

25 20 19 17 17 16 14 11 11 13 10 10

30 4 4 3 2 2 2 2 3 3 3 2

35 1 1 1 1 1 1 1 1 1 1 0

40 0 0 0 0 0 0 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0 0 0
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4.3.3 Displacement Effect 

The last variable examined was pattern displacement. This variable showed no effect on 

daylighting performance, where 95 cases succeeded to pass the required criteria across 

all the eleven displacement values. Since they had a similar effect on daylighting 

performance, the previous analysis was concerned with explaining only one displacement 

value. In Table 4-2, one optimal solution with 100% sDA and the lowest possible ASE 

(1%) was exemplified to show the effect of screen configuration on daylighting 

distribution.  

Optimal solution was found to be at 6 black count, 30 cm depth length and 18 for the 

displacement value. To confirm the irrelevance of the displacement, a comparison is 

drawn between the performance of all cases having this black count and depth length but 

5 6 7 8 9 10 11 12 13 14 15

15 100 100 100 100 100 100 100 100 100 98 98

20 100 100 100 100 100 100 97 99 99 91 90

25 100 100 100 99 96 98 89 93 89 76 76

30 99 99 94 94 90 81 64 78 75 64 54

35 91 86 81 75 59 52 36 51 50 34 26

40 64 59 41 44 29 21 15 24 21 17 10

45 26 19 5 5 3 1 1 2 2 1 0
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Figure 4-6: The effect of black count on sDA at all depth lengths showing successful cases at 

displacement 2 
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with different displacement value as shown in Table 4-2. It is illustrated that displacement 

value showed a trivial impact on both sDA and ASE, where they ranges from 98% to 100 

% and 1% to 4 % respectively. 

Table 4-2: The effect of screen configuration on daylight distribution showing the optimal CA pattern of 

rule 210 
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Table 4-3: Performance of optimal configurations in terms of black count and depth length showing the 

indifference of displacement value 

Displace

ment 
sDA(%) ASE(%) 

Daylit 

(%) 

Partially

(%) 

Overlit 

(%) 

Black 

count 

Depth 

(cm) 

0 99 3 96 1 4 6 30 

2 99 4 94 1 5 6 30 

4 99 4 94 1 4 6 30 

6 98 2 94 2 4 6 30 

8 99 2 96 1 3 6 30 

10 99 1 97 1 2 6 30 

12 99 1 96 1 2 6 30 

14 99 2 95 1 4 6 30 

16 99 1 96 1 2 6 30 

18 100 1 99 0 1 6 30 

20 100 1 97 0 3 6 30 

 

To sum up, searching all possible alternatives could sometimes be impractical due to 

computational capabilities; however, it provided the advantage of finding a large range 

of solutions that can be further refined using any other criteria or constrains. Besides, it 

indicated the implicit relationship between geometric attributes and the intended 

performance criteria. In this phase, three parameters were varied: screen depth, opacity, 

and displacement. Through a predefined set of ranges and their correlation with 

daylighting performance, they were explicitly stated. 

Both screen depth and opacity proved their significant influence on daylighting and their 

interrelation in reaching a trade-off between the two conflicting objectives: providing 

sufficient daylight and avoiding direct sunlight. Displacement value however had no 

relevant effect on daylighting performance.  

For the following phase the exhaustive search method was replaced by genetic algorithm 

GA. By taking advantage of knowing performance of all solutions, GA robustness was 

evaluated. 

4.4 Exploring CA Rule 210 by Genetic Algorithm GA: Phase 3 
In this last phase, for the same variables and their range of values for rule 210, it is 

intended to explore the robustness of genetic algorithm GA search method in reaching 



Chapter 4 … 

 

87 

 

near optimal solutions. It is sought to find the optimal or near optimal solutions with a 

minimum number of simulations without the need for simulating all the 847 possibilities. 

A large number of iterations was needed in order to examine their performance and their 

improving rate. Besides, a small number of simulations was also sought, so the population 

size was set to only 5. Then, the number of iterations (generations) was set to 46 forming 

a total number of simulations equal 230. The robustness of GA was judged by its 

convergence along the 46 iterations and comparing the results with the true optimal found 

by the exhaustive search. Having to combine between maximizing sDA while minimizing 

ASE is not possible using a single objective function, so another daylighting metric was 

exploited. 

 

Figure 4-7: GA Optimization in Galapagos solver maximizing the ‘daylit’ area showing the performance of 

46 generations 

Daylight Availability (DA) was calculated to utilize the ‘daylit’ value as the fitness value 

to be maximized. It represents the area of space where illuminance levels exceeds 300Lux 

for more than 50% of the time while still a maximum threshold of 3000Lux more than 5 

% of the time. Thus, it is assumed that the increasing value of ‘daylit’ area signifies the 

higher sDA with lower ASE. Both sDA and ASE are the two intended metrics that have 

to pass the criteria: 75% or more for sDA and 3% or less for ASE.  

The interface of GAs solver in Grasshopper (Galapagos) was represented in Figure 4-7 

showing the fast convergence of GAs in reaching near optimal solutions starting from 

iteration 4. Average performance of selected solutions continued to increase till 

generation number 16, then it decreased constantly away from optimal till generation 29. 

Afterwards, average performance fluctuates, but couldn’t reach better solutions than what 

was found in generation 16. However, good solutions can still be found. The fitness of 

all solutions in the 46 generations regarding daylit area percentage and sDA and ASE are 

shown in Figure 4-8 and Figure 4-9 respectively and solutions that passed the benchmarks 

are represented in red colored circles.  

Generations 
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Average Fitness of Generations 
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Figure 4-8: Fitness value along the generations showing the average fitness for each generation 

 

Figure 4-9: sDA & ASE values along the generations showing the average fitness for each generation 
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For each generation, 5 solutions were generated representing 0.006 % of all solutions. 

So, it can be deduced that after 16 generations about 10% of the possible solutions were 

merely simulated. Thus, reaching near optimal solutions from the early generations 

highlighted the GA robustness in finding good solutions with adequate convergence 

velocity. In similar cases, a smaller number of generations can be enough to reach 

satisfactory solutions. 

4.5 Summary 
Results of this case study has contributed in revealing the potentials of the exhaustive 

search method in evaluating genetic algorithm in finding optimal or near optimal 

solutions. It can also be used in benchmarking other heuristic search methods; however, 

its applicability was limited. In this study, a parallel computing algorithm was exploited 

which was developed and applied in a previous study.1 This procedure, where multiple 

Radiance simulations can be run, have much reduced the computational burden. In the 

first phase, 18 CA rules under the repetitive class patterns were explored; all possible 

combinations in terms of cell depth and openness factor were examined. All rules have 

proven their applicability in reaching satisfactory solutions in terms of the assigned 

daylighting criteria. Since all rules were equally efficient regarding this criteria then, one 

rule which is rule 210 was chosen based on the designers’ visual intentions for further 

investigation. This rule was exhaustively examined in terms of the same parameters in 

addition to displacement effect. However, it showed to have no relevant effect afterwards. 

In this stage, 874 possible combinations were formed and their performance was 

explicated. Having all the results, optimal and near optimal solutions were identified and 

thus, any other search method can be judged based on reaching these predefined 

solutions. Indeed, genetic algorithm was detected. It proved its robustness in finding 

satisfactory solutions with less computational demands than the exhaustive search 

method which could be impractical in other cases.

                                                      
1 A. Wagdy and F. Fathy, (2015). "A Parametric Approach for Achieving Optimum Daylighting 

Performance through Solar Screens in Desert Climates." Journal of Building Engineering 3: 155-170. 
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5.1 Conclusions 

The conceptual design is an important design phase where many decisions are made so, 

it affects the whole design process. Making decisions based on the designers experience 

alone may lead to a lot of penalties and if they are made on performance only, the design 

may lack the sense of integrity. However, digital technologies have invaded the design 

practice in the early phases, where ideas are articulated in the digital media not only for 

visualization, but also for analysis and synthesis. The development of the digital design 

process implied a paradigm shift which imposes a number of requirements on the whole 

process: 

1. Parametric modeling; where a large number of design solutions can be 

automatically generated and controlled through a number of variables related to 

each other by a certain rule.  

2. Utilizing an appropriate optimization algorithm for finding optimal solutions. 

3. Implementing analytical simulation tools for performance evaluation.  

This study elaborated the potentials of parametric modelling coupled with Genetic 

Algorithms (GAs) as an optimization tool in reaching highly efficient solutions. 

According to the intended performance criteria -which was set in chapter two to be 

daylighting performance- multiple solutions can be found. The guiding approach aimed 

at reaching this result was ‘Performative design’, by which optimal solutions were 

reached through the feedback of the simulation engine. 

However, another aspect was needed to provide the interaction and flexibility of design, 

by controlling and modifying the rule algorithm in a way that meets designers’ visual 

aspirations. Thus, generative systems were explored and found to have potentials in 

articulating design ideas in a way that endows visual appeals. Integrating generative 

systems within the optimization work flow allows creating design variations that meet 

designers’ subjective visual intentions and the intended performance criteria as well. This 

approach -called ‘Generative Performative Design’- empowered the designers with a 

number of design possibilities underlying within their own crafted visual boundaries. 

Making use of this approach in a daylighting case study, has revealed the potentials and 

limitations of generative systems (in particular Cellular Automata) and optimization 

algorithms (Genetic Algorithms and exhaustive search) applied. In this case study, 

Radiance -the daylighting calculation engine- was found to be the most prominent 

daylighting simulation method as being validated and used in many studies for 

daylighting performance prediction.  
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Cellular Automata (CA), was employed for the generation of solar screen patterns 

mounted on a south oriented classroom space in Cairo. As a representative of generative 

systems; they revealed their characteristics and potentials through:  

1. The non-monotonic screen patterns generated.  

2. Exploring large design space where 1080 cases were explored in phase one then, 

847 cases in phase two and three. 

3. The possibility of design optimization; CA was integrated within the 

optimization workflow. 

4. High efficiency; CA succeeded to generate screen patterns that meet daylighting 

performance criteria and reaching optimal solutions. 

5. High level of interaction and control over the design variables and the rules 

relating them together. 

The CA patterned screen was considered a functional façade element that provides 

daylight shade without ignoring visual appeal. The goal of achieving efficient daylighting 

performance in a south oriented classroom space using was actually reached. Based on 

two main aspects: daylighting adequacy and avoiding direct sunlight, Radiance inform 

the optimizer (GAs) with the performance prediction, then  GAs were able to govern the 

CA variables in a way that best meet that criteria. Besides, the interaction of the designer 

was not violated where the rule selection was based on visual requirements after ensuring 

its performance validity. 

In particular, CA rule 210 was selected among the other 18 investigated rules after 

ensuring its high performance. It was exhaustively examined in terms of black count 

(openness factor), cell depth, and displacement effect. In this stage, 874 possible 

combinations were formed and their performance was explicated. Both screen depth and 

openness factor proved their significant influence on daylighting and their interrelation 

in reaching a trade-off between the two conflicting objectives: providing sufficient 

daylight and avoiding direct sunlight (sDA and ASE values). As for the displacement, 

despite showing no relevant effect, this proved the applicability of the random 

arrangement of black cells without adversely affecting the performance. By having all 

possible solutions and their level of performance, GA were then utilized to show their 

effectiveness in selecting optimal solutions among a diverse population of solutions. 

To sum up, the success of early decision making in the design process relies on paying 

attention to performance aspects without neglecting the subjective design requirements. 

These visual constraints could play an important role in guiding the selection criteria. 

Results of this study demonstrated the potential of combining Cellular Automata (CA) 

and Genetic Algorithms (GAs) in achieving the intended visual aspects and daylighting 
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requirements efficiently. GAs proved its robustness in finding satisfactory solutions 

among CA patterns with less computational demands than the exhaustive search method 

which could be impractical in other cases. The suggested workflow for such an 

optimization study to balance between performance and visual intentions is shown in 

Figure 5-1. 

 

Figure 5-1: Workflow suggested for a generative performative design approach 

Identifying Variables and Parameters 

Designing solar screen mounted on a 

south oriented classroom façade. 
It is intended to meet the IES 

daylighting requirements through the 

approved metrics: spatial Daylight 

Autonomy and Annual Sunlight 

Exposure (sDA>75% and ASE<3%) 

Selecting Simulation Engine and 

Optimization Algorithm  

Radiance which is the most prominent 

daylighting simulation engine was 

interfaced using DIVA-for-Rhino 
Genetic Algorithms for Optimization 

Screen size, depth, assigned material- 

openness factor 

  
Performance criteria 

(Generative Design) 
Designers’ Visual / aesthetic 

Demands 

Generating a wide range of 

possibilities through an automated 

mechanism allowing the designer to 

interact to guide the rule mechanism 

in a way that meets his design 

aspiration (aesthetic/visual 

requirement) 

Selecting Generative System 

Ex. Cellular Automata (CA) 

Rule selection-screen size- black 
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Rabbit add-on in GH for CA 

generation 

(Performative Design) 
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5.2 Recommendations 

Incorporating performance criteria in the design process have started with a trial and error 

approach to show the effect of a specific variable on the overall design objective. This 

process was inefficient especially when there is a large number of variables. Then, 

parametric modelling was introduced as a solution to reduce the design cycle latency. 

However, still the automated design workflow was required for design efficiency. This 

was overcome by incorporating optimization algorithms which transform the concept of 

performance based design to performative design. 

Still, performative design lacks sense of integrity as it disregards the designers’ own 

visual aspirations. So, to integrate both aspects without dominating one on the other, 

Generative Performative design was suggested. This could mean integrating the 

appropriate optimization algorithm with a generative system chosen based on the 

designer’s visual requirements. 

Genetic Algorithms (GAs) have been widely used for building performance optimization, 

this study is an additional contribution that emphasizes its suitability for building design 

problems. Thus, it is recommended to be used for finding optimal solutions for 

daylighting design through a limited number of simulation runs. However, further 

research is needed for evaluating other stochastic optimization methods to ensure its 

superiority for such kind of design problems.  

The enumeration exhaustive method can be exploited in benchmarking other 

optimization methods. It also provided a larger range of solutions that can be further 

refined using any other criteria or constrains.  In addition, it is recommended for 

understanding the effect of each variable and their interaction on the overall performance. 

It can clarify the implicit relationship between geometric attributes and the intended 

performance criteria. However, it could be impractical without the use of parallel 

simulation, which was used in this study through SpeedSim tool1. 

Introducing solar screens in façade designs controls daylighting provision through the 

space; their function go beyond being a decorative façade element. Basically, the success 

of this design element requires balancing between the functional performance and the 

designers’ subjective constrains. In essence, achieving this balance is the main objective 

behind introducing any design element. Thus, pattern mapping through generative 

systems was recommended. Generative patterns need to be evaluated, offering designers 

                                                      
1  A. Wagdy, "Speedsim for Diva".http://www.aymanwagdy.com/#!speedsim/cjg9 (accessed 21-12-2015). 
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a wide range of variations that could meet their aspirations. However, concern should be 

on screen depth, openness factor, and desired appearance. 

Particularly in this study, the generative system selected was Cellular Automata. The 

openness factor -which was controlled by the number of solid cells entered in the initial 

row (black count) - plays an important role in meeting the overall design objectives. From 

the daylighting perspective as well as visual aesthetic demands, the openness factor 

should range from 20% to 50%. This range could change when incorporating other 

constraints like: energy requirements, air circulations, or privacy needs. The degree of 

being more or less open differs when other performance criteria are integrated. The 

distribution of solid to void areas is also important even for the same openness factor, the 

uniform distribution is needed. The irregularity of solid distribution could cause problems 

of glare or high contrast inside the space. This is the case except if it was intended to 

endow a dramatic shadow/light effect throughout the space. 

5.3 Future Research 

Generally, future research related to optimization studies are suggested. The utilized 

optimization algorithms were exhaustive search and Genetic Algorithms (GAs). The 

exhaustive search -which is more efficient using parallel Radiance simulation 

(SpeedSim)- allows all possible solutions to be reached, so the performance of other 

heuristic algorithms can be evaluated and compared to GAs, whether for the same case 

study or other building optimization problems. It is suggested to employ the same 

methodology to benchmark other optimization algorithms. 

The generative system selected in the case study was Cellular Automata (CA). However, 

other generative systems such as L-systems, Shape Grammars, and Voronoi can be 

exploited for façade treatments. In terms of their capabilities in pattern mapping, a 

comparison study could be useful. This analysis can show the flexibility of each system 

in response to the required performance and the designers’ interaction level.  

Generative systems have a range of applications for building design which are not 

confined to pattern generation. Besides façade treatments, these systems can be utilized 

whether on the urban or building scale (ex. Layout Formation). 

Moreover, adding other aspects or constrains like energy consumption, fabrication, and 

cost would give another dimension to the selection criteria. Paying attention to 

performance priorities and how to balance them with the designers’ subjective demands, 

this methodology could be developed. 





 

 





References … 

 

97 

 

References 
 

Books 

Anderson, J., 2010. Basics Architecture 03: Architectural Design. Vol. 3: AVA Publishing. 

 

Broadbent, G. and Ward, A., 1969. Design Methods in Architecture: Lund Humphries London. 

 

Christensen, C., Anderson, R., Horowitz, S., Courtney, A. and Spencer, J., 2006. Beopt Software 

for Building Energy Optimization: Features and Capabilities: National Renewable 

Energy Laboratory. 

 

Deb, K., 2001. Multi-Objective Optimization Using Evolutionary Algorithms. Vol. 16: John Wiley 

& Sons. 

 

Edwards, L. and Torcellini, P. A., 2002. A Literature Review of the Effects of Natural Light on 

Building Occupants: National Renewable Energy Laboratory Golden, CO. 

 

Gänshirt, C., 2007. Tools for Ideas: Introduction to Architectural Design: Walter de Gruyter. 

 

Kalay, Y. E., 2004. Architecture's New Media: Principles, Theories, and Methods of Computer-

Aided Design: MIT Press. 

 

Pahl, G., Beitz, W., Feldhusen, J. and Grote, K.-H., 2007. Engineering Design: A Systematic 

Approach. Vol. 157: Springer Science & Business Media. 

 

Prusinkiewicz, P. and Lindenmayer, A., 2012. The Algorithmic Beauty of Plants: Springer Science 

& Business Media. 

 

Schön, D. A., 1983. The Reflective Practitioner: How Professionals Think in Action. Vol. 5126: 

Basic books. 

 

Terzidis, K., 2006. Algorithmic Architecture: Routledge. 

 

Wolfram, S., 2002. A New Kind of Science. Vol. 5: Wolfram media Champaign. 



… References  

 

98 

 

 

Zawidzki, M., 2010. "A Cellular Automaton Controlled Shading for a Building Facade." In 

Cellular Automata, 365-372: Springer. 

 

Reinhart, C., 2013. "Daylighting Handbook-Volume I." 

 

Journal Papers 

Al-Sallal, K. A., (2010). "Daylighting and Visual Performance: Evaluation of Classroom Design 

Issues in the Uae." International Journal of Low-Carbon Technologies 5, no. 4: 201-209. 

 

Attia, S., Hamdy, M., O’Brien, W. and Carlucci, S., (2013). "Assessing Gaps and Needs for 

Integrating Building Performance Optimization Tools in Net Zero Energy Buildings 

Design." Energy and Buildings 60: 110-124. 

 

Basa, I. and Şenyapılı, B., (2005). "The (in) Secure Position of the Design Jury Towards Computer 

Generated Presentations." Design Studies 26, no. 3: 257-270. 

 

Bellia, L., Pedace, A. and Barbato, G., (2013). "Lighting in Educational Environments: An 

Example of a Complete Analysis of the Effects of Daylight and Electric Light on 

Occupants." Building and Environment 68: 50-65. 

 

Caldas, L., (2008). "Generation of Energy-Efficient Architecture Solutions Applying Gene_Arch: 

An Evolution-Based Generative Design System." Advanced Engineering Informatics 22, 

no. 1: 59-70. 

 

Caldas, L. G. and Norford, L. K., (2002). "A Design Optimization Tool Based on a Genetic 

Algorithm." Automation in construction 11, no. 2: 173-184. 

Chantrelle, F. P., Lahmidi, H., Keilholz, W., El Mankibi, M. and Michel, P., (2011). 

"Development of a Multicriteria Tool for Optimizing the Renovation of Buildings." 

Applied Energy 88, no. 4: 1386-1394. 

 

Daintith, J. and Wright, E., (2008). "A Dictionary of Computing." 

 

Evins, R., (2013). "A Review of Computational Optimisation Methods Applied to Sustainable 

Building Design." Renewable and Sustainable Energy Reviews 22: 230-245. 

 



References … 

 

99 

 

Flager, F., Welle, B., Bansal, P., Soremekun, G. and Haymaker, J., (2009). "Multidisciplinary 

Process Integration and Design Optimization of a Classroom Building." Journal of 

Information Technology in Construction 14: 595-612. 

 

Golberg, D. E., (1989). "Genetic Algorithms in Search, Optimization, and Machine Learning." 

Addion wesley 1989. 

 

IESNA, I., (2012). "Lm-83-12." IES Spatial Daylight Autonomy (sDA) and Annual Sunlight 

Exposure (ASE). New York, NY, USA, IESNA Lighting Measurement. 

 

Kalay, Y. E., (1999). "Performance-Based Design." Automation in construction 8, no. 4: 395-409. 

 

Kim, J., (2013). "Adaptive Façade Design for the Daylighting Performance in an Office Building: 

The Investigation of an Opening Design Strategy with Cellular Automata." International 

Journal of Low-Carbon Technologies: ctt015. 

 

Kim, T.-w., Hong, W.-h. and Kim, H.-t., (2014). "Daylight Evaluation for Educational Facilities 

Established in High-Rise Housing Complexes in Daegu, South Korea." Building and 

Environment 78: 137-144. 

 

Kolarevic, B., (2000). "Digital Morphogenesis and Computational Architectures." Construindo n 

(o) espaço digital, PROURB, Universidade Federal do Rio de Janeiro, Rio de Janeiro: 

98-103. 

 

Kota, S. and Haberl, J. S., (2009). "Historical Survey of Daylighting Calculations Methods and 

Their Use in Energy Performance Simulations." 

 

Krish, S., (2011). "A Practical Generative Design Method." Computer-Aided Design 43, no. 1: 

88-100. 

 

Lagios, K., Niemasz, J. and Reinhart, C. F., (2010). "Animated Building Performance Simulation 

(Abps)-Linking Rhinoceros/Grasshopper with Radiance/Daysim." Proceedings of 

SimBuild. 

 

Leslie, R., Radetsky, L. and Smith, A., (2012). "Conceptual Design Metrics for Daylighting." 

Lighting Research and Technology 44, no. 3: 277-290. 

 



… References  

 

100 

 

Liu, Y.-C., Chakrabarti, A. and Bligh, T., (2003). "Towards an ‘Ideal’approach for Concept 

Generation." Design Studies 24, no. 4: 341-355. 

 

Machairas, V., Tsangrassoulis, A. and Axarli, K., (2014). "Algorithms for Optimization of 

Building Design: A Review." Renewable and Sustainable Energy Reviews 31: 101-112. 

 

Mardaljevic, J., (1995). "Validation of a Lighting Simulation Program under Real Sky 

Conditions." Lighting research and Technology 27, no. 4: 181-188. 

 

Michalek, J., Choudhary, R. and Papalambros, P., (2002). "Architectural Layout Design 

Optimization." Engineering optimization 34, no. 5: 461-484. 

 

Münch, M., Linhart, F., Borisuit, A., Jaeggi, S. M. and Scartezzini, J.-L., (2012). "Effects of Prior 

Light Exposure on Early Evening Performance, Subjective Sleepiness, and Hormonal 

Secretion." Behavioral neuroscience 126, no. 1: 196. 

 

Nabil, A. and Mardaljevic, J., (2005). "Useful Daylight Illuminance: A New Paradigm for 

Assessing Daylight in Buildings." Lighting Research and Technology 37, no. 1: 41-57. 

 

Nguyen, A.-T., Reiter, S. and Rigo, P., (2014). "A Review on Simulation-Based Optimization 

Methods Applied to Building Performance Analysis." Applied Energy 113: 1043-1058. 

 

Ochoa, C. E., Aries, M. B. and Hensen, J. L., (2012). "State of the Art in Lighting Simulation for 

Building Science: A Literature Review." Journal of Building Performance Simulation 5, 

no. 4: 209-233. 

 

Oxman, R., (2009). "Performative Design: A Performance-Based Model of Digital Architectural 

Design." Environment and planning. B, Planning & design 36, no. 6: 1026. 

 

Oxman, R., (2008). "Performance-Based Design: Current Practices and Research Issues." 

International journal of architectural computing 6, no. 1: 1-17. 

 

Oxman, R., (2008). "Digital Architecture as a Challenge for Design Pedagogy: Theory, 

Knowledge, Models and Medium." Design Studies 29, no. 2: 99-120. 

 

Oxman, R., (2006). "Theory and Design in the First Digital Age." Design studies 27, no. 3: 229-

265. 

 



References … 

 

101 

 

Perez, R., Seals, R. and Michalsky, J., (1993). "All-Weather Model for Sky Luminance 

Distribution—Preliminary Configuration and Validation." Solar energy 50, no. 3: 235-

245. 

 

Petersen, S. and Svendsen, S., (2010). "Method and Simulation Program Informed Decisions in 

the Early Stages of Building Design." Energy and Buildings 42, no. 7: 1113-1119. 

 

Rakha, T. and Nassar, K., (2011). "Genetic Algorithms for Ceiling Form Optimization in 

Response to Daylight Levels." Renewable Energy 36, no. 9: 2348-2356. 

 

Ramilo, R. and Embi, M. R. B., (2014). "Critical Analysis of Key Determinants and Barriers to 

Digital Innovation Adoption among Architectural Organizations." Frontiers of 

Architectural Research 3, no. 4: 431-451. 

 

Rapone, G. and Saro, O., (2012). "Optimisation of Curtain Wall Facades for Office Buildings by 

Means of Pso Algorithm." Energy and Buildings 45: 189-196. 

 

Reinhart, C. and Fitz, A., (2006). "Findings from a Survey on the Current Use of Daylight 

Simulations in Building Design." Energy and Buildings 38, no. 7: 824-835. 

 

Reinhart, C. and Galasiu, A., (2006). "Results of an Online Survey of the Role of Daylighting in 

Sustainable Design." NRC-IRC Report 3, no. 1: 1-25. 

 

Reinhart, C. F. and Andersen, M., (2006). "Development and Validation of a Radiance Model for 

a Translucent Panel." Energy and Buildings 38, no. 7: 890-904. 

 

Reinhart, C. F. and Herkel, S., (2000). "The Simulation of Annual Daylight Illuminance 

Distributions—a State-of-the-Art Comparison of Six Radiance-Based Methods." Energy 

and Buildings 32, no. 2: 167-187. 

 

Reinhart, C. F., Mardaljevic, J. and Rogers, Z., (2006). "Dynamic Daylight Performance Metrics 

for Sustainable Building Design." Leukos 3, no. 1: 7-31. 

 

Reinhart, C. F. and Walkenhorst, O., (2001). "Validation of Dynamic Radiance-Based Daylight 

Simulations for a Test Office with External Blinds." Energy and Buildings 33, no. 7: 683-

697. 

 



… References  

 

102 

 

Reinhart, C. F. and Wienold, J., (2011). "The Daylighting Dashboard–a Simulation-Based Design 

Analysis for Daylit Spaces." Building and environment 46, no. 2: 386-396. 

 

Rogers, Z., (2006). "Daylighting Metric Development Using Daylight Autonomy Calculations in 

the Sensor Placement Optimization Tool." Boulder, Colorado, USA: Architectural 

Energy Corporation: http://www. archenergy. com/SPOT/SPOT_Daylight% 

20Autonomy% 20Report. pdf. 

 

Sabry, H., Sherif, A. and Gadelhak, M., (2012). "Utilization of Combined Daylighting Techniques 

for Enhancement of Natural Lighting Distribution in Clear-Sky Residential Desert 

Buildings." 4, no. 5.20: 3.00. 

 

Schon, D. A. and Wiggins, G., (1992). "Kinds of Seeing and Their Functions in Designing." 

Design studies 13, no. 2: 135-156. 

 

Sherif, A., Sabry, H. and Gadelhak, M., (2012). "The Impact of Changing Solar Screen Rotation 

Angle and Its Opening Aspect Ratios on Daylight Availability in Residential Desert 

Buildings." Solar Energy 86, no. 11: 3353-3363. 

 

Sherif, A., Sabry, H. and Rakha, T., (2012). "External Perforated Solar Screens for Daylighting in 

Residential Desert Buildings: Identification of Minimum Perforation Percentages." Solar 

Energy 86, no. 6: 1929-1940. 

 

Shi, X., (2010). "Performance-Based and Performance-Driven Architectural Design and 

Optimization." Frontiers of Architecture and Civil Engineering in China 4, no. 4: 512-

518. 

 

Shi, X. and Yang, W., (2013). "Performance-Driven Architectural Design and Optimization 

Technique from a Perspective of Architects." Automation in Construction 32: 125-135. 

 

Singh, V. and Gu, N., (2012). "Towards an Integrated Generative Design Framework." Design 

Studies 33, no. 2: 185-207. 

 

Stavric, M. and Marina, O., (2011). "Parametric Modeling for Advanced Architecture." 

International journal of applied mathematics and informatics 5, no. 1: 9-16. 

 

Stiny, G., (1980). "Kindergarten Grammars: Designing with Froebel's Building Gifts." 

Environment and planning B 7, no. 4: 409-462. 

http://www/


References … 

 

103 

 

 

Tregenza, P. and Waters, I., (1983). "Daylight Coefficients." Lighting Research and Technology 

15, no. 2: 65-71. 

 

Tuhus-Dubrow, D. and Krarti, M., (2010). "Genetic-Algorithm Based Approach to Optimize 

Building Envelope Design for Residential Buildings." Building and environment 45, no. 

7: 1574-1581. 

 

Turrin, M., von Buelow, P. and Stouffs, R., (2011). "Design Explorations of Performance Driven 

Geometry in Architectural Design Using Parametric Modeling and Genetic Algorithms." 

Advanced Engineering Informatics 25, no. 4: 656-675. 

 

Wagdy, A. and Fathy, F., (2015). "A Parametric Approach for Achieving Optimum Daylighting 

Performance through Solar Screens in Desert Climates." Journal of Building Engineering 

3: 155-170. 

 

Ward, G. and Shakespeare, R., (1998). "Rendering with Radiance." Waltham: Morgan Kaufmann 

Publishers. 

 

Wetter, M. and Wright, J., (2004). "A Comparison of Deterministic and Probabilistic Optimization 

Algorithms for Nonsmooth Simulation-Based Optimization." Building and Environment 

39, no. 8: 989-999. 

 

Zawidzki, M., (2009). "Implementing Cellular Automata for Dynamically Shading a Building 

Facade." Complex Systems 18, no. 3: 287. 

 

Zuo, Q., Leonard, W. and MaloneBeach, E. E., (2010). "Integrating Performance-Based Design 

in Beginning Interior Design Education: An Interactive Dialog between the Built 

Environment and Its Context." Design Studies 31, no. 3: 268-287. 

 

Conference Proceedings 

Batool, A. and M.K. Elzeyadi, I. (2014 of Conference). From Romance to Performance: Assessing 

the Impacts of Jali Screens on Energy Savings and Daylighting Quality of Office 

Buildings in Lahore, Pakistan. In: ed.^eds. 30th international PLEA conference, 2014 of 

Conference Ahmedabad, India. 

 

Ebru, U. (2009 of Conference). A Shape Grammar Model to Generate Islamic Geometric Pattern. 

In: ed.^eds. 12th generative Art Conference, 2009 of Conference. 



… References  

 

104 

 

 

Karamata, B. (2014 of Conference). Concept, Design and Performance of a Shape Variable 

Mashrabiya as a Shading and Daylighting System for Arid Climates. In: ed.^eds. 30th 

international PLEA conference, 2014 of Conference Ahmedabad, India. 

 

Pedrini, A. and Carvalho, J. (2014 of Conference). Analysis of Daylight Performance in 

Classrooms in Humid and Hot Climate. In: ed.^eds. 30th international PLEA conference, 

2014 of Conference Ahmedabad, India. 

 

Andersen, M., Guillemin, A., Ámundadóttir, M. L. and Rockcastle, S. F. (2013). Beyond 

Illumination: An Interactive Simulation Framework for Non-Visual and Perceptual 

Aspects of Daylighting Performance.  BS2013-13th International Conference of the 

International Building Performance Simulation Association, 2013. 

 

Arafa, R., Sherif, A. and El-Zafarany, A. (2013). Energy Efficient Configuration of Non-

Conventional Solar Screens Using Hybrid Optimization Algorithm Optimizing Screen 

Depth, Perforation and Aspect Ratio.  Proceedings: BESS-SB13, Building Enclosure 

Sustainability Symposium Sustainable Buildings Conference, Advancing Toward Net 

Zero, 2013. 

 

Attia, S., Hamdy, M., O’Brien, W. and Carlucci, S. (2013). Computational Optimisation for Zero 

Energy Buildings Design: Interviews Results with Twenty Eight International Experts.  

Proceedings of the 13th Internationcal Conference of the IBPSA, 2013. 978-984. 

 

Bradner, E., Iorio, F. and Davis, M. (2014). Parameters Tell the Design Story: Ideation and 

Abstraction in Design Optimization.  Proceedings of the Symposium on Simulation for 

Architecture & Urban Design, 2014. Society for Computer Simulation International, 26. 

 

Eisenhower, B., Fonoberov, V. and Mezic, I. (2012). Uncertainty-Weighted Meta-Model 

Optimization in Building Energy Models.  IBPSA-England 1st Conference on Building 

Simulation and Optimization (BSO12), 2012. 

 

El Sheikh, M. and Gerber, D. (2011). Building Skin Intelligence.  Proceedings of ACADIA, 2011. 

170-177. 

 

Fathy, F., Mansour, Y., Sabry, H., Abdelmohsen, S. and Wagdy, A. (2015). Cellular Automata for 

Efficient Daylighting Performance: Optimized Façade Treatment.  roceedings of 

BS2015: 14th Conference of International Building Performance Simulation 

Association, Hyderabad, India, Dec. 7-9, 2015, 2015. 2705- 2711. 

 



References … 

 

105 

 

Gadelhak, M. (2013). Integrating Computational and Building Performance Simulation 

Techniques for Optimized Facade Designs.  eCAADe 2013: Computation and 

Performance–Proceedings of the 31st International Conference on Education and 

research in Computer Aided Architectural Design in Europe, 2013. 

 

Gokmen, S. (2013). A Morphogenetic Approach for Performative Building Envelope Systems 

Using Leaf Venetian Patterns.  eCAADe 2013: Computation and Performance–

Proceedings of the 31st International Conference on Education and research in Computer 

Aided Architectural Design in Europe, Delft, The Netherlands, 2013. Faculty of 

Architecture, Delft University of Technology; eCAADe  

 

Guglielmetti, R., Pless, S. and Torcellini, P. (2010). On the Use of Integrated Daylighting and 

Energy Simulations to Drive the Design of a Large Net-Zero Energy Office Building.  

Proc. Fourth National Conference of IBPSA-USA, New York, NY, 2010. 

 

Hamdy, M., Hasan, A. and Siren, K. (2009). Combination of Optimisation Algorithms for a Multi-

Objective Building Design Problem.  IBPSA: 11th International Building Performance 

Simulation Association Conference, Glasgow-UK, 2009. 

 

Heath, G. and Mendell, M. J. (2002). Do Indoor Environments in Schools Influence Student 

Performance? A Review of the Literature.  Proceedings of the 9th International 

Conference on Indoor Air Quality and Climate, Indoor Air 2002, 2002. 

 

Jakubiec, J. A. and Reinhart, C. F. (2011). Diva 2.0: Integrating Daylight and Thermal Simulations 

Using Rhinoceros 3d, Daysim and Energyplus.  12th Conference of International 

Building Performance Simulation Association, Sydney, 2011. 

 

Kotsopoulos, S. D., Casalegno, F., Carra, G., Graybil, W. and Hsiung, B. (2012). A Visual-

Performative Language of Façade Patterns for the Connected Sustainable Home.  

Proceedings of the 2012 Symposium on Simulation for Architecture and Urban Design, 

2012. Society for Computer Simulation International, 5. 

 

Milena, S. and Ognen, M. (2010). Application of Generative Algorithms in Architectural Design.  

Proceedings of the 12th WSEAS international conference on Mathematical and 

computational methods in science and engineering, 2010. World Scientific and 

Engineering Academy and Society (WSEAS), 175-180. 

 

Nicklas, M. H. and Bailey, G. B. (1996). Analysis of the Performance of Students in Daylit 

Schools.  Proceedings of the National Passive Solar Conference, 1996. American Solar 

Energy Society INC, 132-137. 



… References  

 

106 

 

 

Park, C.-S., Augenbroe, G. and Messadi, T. (2003). Daylighting Optimization in Smart Facade 

Systems.  Proceedings of the Eighth International IBPSA Conference, 2003. 

 

Sharaidin, K., Burry, J. and Salim, F. (2012). Integration of Digital Simulation Tools with 

Parametric Designs to Evaluate Kinetic Façades for Daylight Performance.  Digital 

Physicality-Proceedings of the 30th eCAADe Conference, 2012. 701-709. 

 

Stiny, G. and Gips, J. (1971). Shape Grammars and the Generative Specification of Painting and 

Sculpture.  IFIP Congress (2), 1971. 

 

Torghabehi, O. O. and von Buelow, P. (2014). Performance Oriented Generative Design of 

Structural Double Skin Facades Inspired by Cell Morphologies.  Proceedings of the 

IASS-SLTE 2014 Symposium “Shells, Membranes and Spatial Structures: Footprints”, 

2014 Brasilia, Brazil. 

 

Wetter, M. and Wright, J. (2003). Comparison of a Generalized Pattern Search and a Genetic 

Algorithm Optimization Method.  Proceedings of the 8th International IBPSA 

Conference, Eindhoven, Netherlands, 2003. 1401-1408. 

 

Wright, J. and Alajmi, A. (2005). The Robustness of Genetic Algorithms in Solving 

Unconstrained Building Optimization Problems.  Proceedings of the 7th IBPSA 

Conference: Building Simulation, Montréal, Canada August, 2005. 15-18. 

 

M.Sc and PhD. 

Fasoulaki, E., 2008. "Integrated Design: A Generative Multi-Performative Design Approach." 

Massachusetts Institute of Technology. 

 

Friedrich, E., 2008. "The Voronoi Diagram in Structural Optimisation." UCL (University College 

London). 

 

Websites 

Rutten, D., "Grasshopper-Algorithmic Modeling for Rhino Software Version 0.9077"  (accessed 

10-10 2014). 

 

Wagdy, A., "Speedsim for Diva" http://www.aymanwagdy.com/#!speedsim/cjg9 (accessed 21-

12-2015). 

http://www.aymanwagdy.com/#!speedsim/cjg9


References … 

 

107 

 

 

Govenmental Documents 

MOE., 1990. The Requirements of the General Authority for Educational Buildings for the Stage 

of Basic Education in Cairo. 

 

Watkins, K. J. a. R. Daylight in Buildings. United Kingdom: AECOM Ltd on behalf of the 

international Energy Agency, 2010. 

 

Online Dictionary 

Daintith and Wright, 2008. "Exhaustive Search." 'Oxford University Press'. 

 

 

 





 

 

 هيكل البحث:

 داء في التصميمنماذج الأالفصل الأول: بداية 

 و جوانب الأداء في المباني (Performance models) الأداء نماذج على التركيزتم  ،الأول فصلال في

موذج التوليدي الن .لاستكشاف بدائل مختلفة المحرك بمثابة لتكونالعملية التصميم  في يمكن إدراجها التي

(Generative modelهو ) فللجمع بين  هذه  ،من ضمن النماذج التصميمية و الذي له خصائص شكلية

 لأدائيا لتصميما" للتصميم المتكامل النهج على الضوء تسليط تم ،الخصائص مع ضمان الأداء الأمثل

 خوارزمياتال أهمية استكشاف تم ذلك، الى جانب. (Generative Performative design) "التوليدي

 .صول الى الحلول المثلى لتصمصم عالي الأداءالو في

 الفصل الثاني: الأداء من منظور الإضاءة الطبيعية

لتكون كفاءة اداء الاضاءة الطبيعية. تصميم الفراغ المعماري  الأداء معايير حديدت تم الثاني، الفصل في

. تصميمال عملية من المبكرة الاهتمام في المراحل يحتاج مهم جانب هو بناء على معايير الاضاءة الطبيعية

تحقيق و ذلك ل المتعارضة المتطلبات بسبب صعبة مهمة فإن النجاح في الوصول لهذه المعايير لا تزال

ضاءة للا المتغيرة الطبيعة فإن ذلك، على علاوة. البصرية والراحة كمية الاضاءة اللازمة بين التوازن

 مجد أهمية يناقشهذا البحث  وبالتالي،. التصميمية العملية دتعق والسنة اليوم مدار علىالطبيعية 

 .أداء الاضاءة الطبيعية لكفاءة للوصول للحلول المثلى الخوارزميات

 الفصل الثالث: التصميم الواجهات اللأداء الأمثل لللإضاءة الطبيعية: دراسة حالة لفصل دراسي

 على التركيز مع ،تشكيلية مختلفة نماطأ اديجلا مختلفةال ةتوليديال النماذج استكشاف تم ،الثالث الفصل في

تحقيق  على القدرة إلى تفتقر أنهابما (. Cellular Automata-CA) نموذج واحد و هي خلايا الاوتوماتا

 فعاليتها مدى لاستكشاف( GA) ةالجيني الخوارزميات مع (CA) خلايا الاوتوماتا دمج تم الأداء، كفاءة

 متطلبات يةتلب منها هو والمقصود. الشمسية و التي تشبه المشربياتأنماط مختلفة للكواسر  تشكيل في

 حثب تطبيق تم أولا، .القاهرة في اجنوبالموجهة  الفصول حدلأ الاضاءة الطبيعية داخل فراغ معماري

 (GA) ةالجيني استخدام الخوارزميات ثم ( لتقييم جميع البدائل التصميميةExhaustive Searchشامل)

 من أقل في وقت مرضية حلول إيجاد في تم استنتاج فعاليتهاو. في الوصول للحل الأمثللتقييم أداءه 

 .أخرى حالات في عملي غير يكون أن يمكن الذي الشامل البحث طريقة

 

 للفصل الدراسي الفصل الرابع: مناقشة نتائج دراسة الحالة

 لأهم العوامل و المتغيرات دراسة الحالة للفصل الدراسي وصولا نتائج تم عرض  الرابع، الفصل في

المؤثرة في أداء الإضاءة الطبيعية بالإضافة الي استكشاف كفاءة النهج التصميمي.  و اخيرا تحليل مدى 

 تطابق هذه النتائج مع الفرضية البحثية.

 

 الفصل الخامس: النتائج و التوصيات

 الأدائي النهج"مية النهج المتبع تم الوصول الى نتائج عامة و تسليط الضوء على أهفي الفصل الأخير، 

و ذلك مع  التشكيلية للمصمم. لتحقيق التوازن بين كفاءة أداء الإضاءة الطبيعية و المتطلبات  "التوليدي

 عرض بعض التوصيات للأبحاث المستقبلية.



 

 

 الأهداف الثانوية:

 .النهج الأدائي التركيز علي تم وكيف ،العملية التصميمية اتباع النهج المختلفة في في التحول استعراض• 

 تتوافق التيو   (Screen Pattern)لمعالجة المعماريةا أنماط تشكيل في هتوليديال نظمال قدرات إبراز •

 .مسبقا المحددة المعايير مع

 (Screen Pattern)ةلمعالجا نمطأ لتكوين  كأداة( CA) الخلوية الأوتوماتا اتيإمكان استكشاف •

 .ضاءة الطبيعيةأداء الإ كفاءةل وصولا

 .مثلىال حلولال إلى التوصل في( GA) الجينية الخوارزميات أداء تقييم •

 

 

 





 

 

 

  مقدمة

لاحتياج الى ل نظرا. للمباني المختلفة الأداء معايير لتقييم المجالات من العديد في المحاكاة أدوات تستخدم

و  ىمض وقت أي من اتطور تخداما واكثر اس الاتجاه هذا أصبح ،عالية كفاءة وذات للبيئة مباني صديقة

 مكني لا التصميم مشاكلفإن  ذلك، ومع. الحاسوبية التقنيات في مؤخرا أحرز الذي التقدم خاصة بعد

 عدد أو معين، تصميم وتقييم تحليل في مفيدة فهي. المحاكاة أدوات خلال من فقط بالكامل استكشافها

 دمجتم  لتالي،وبا. الحلول من كبير عدد لتقييم فعالة ليست هيولكن  معينة لمعايير وفقا البدائل من محدود

 هذه على للتغلب كنهج (Genetic Algorithms-GA) الجينية الخوارزميات مع البارمتري تصميمال

حيث انها المرحلة التي لها تأثير كبير  ،بدئيالم التصميم مرحلة في التكامل هذا محور وكان. المشكلة

 .ةيكون لها الصدى الاكبر على المراحل اللاحق المرحلة هذه في تتخذ التي قراراتعلى كفاءة التصميم، فال

 :المشكلة البحثية

 حلةمر فيإهماله  من المحتمل الذي هام في تصمصم الفراغات المعمارية و عنصر هي الإضاءة الطبيعية

 سببب صعبة مليةع هي فراغ معماري مبنيا على معاير الإضاءة الطبيعية تصميم. بدئيةالم التصميم

 لتقليديةا عمليةال عام، بشكل. الزائدة الحرارة اكتساب إمكانية جانب إلى والسنة، اليوم مدار على تغيراتال

 هدافالأ و جوانبال الأخذ في الاعتبار فان .تغيراتالم من كبير عدد واجهن عندما تكون معقدة التصميمفي 

 .والأخطاء التجارب من الكثير إلى يؤدي أن شأنه من الأمثل الحل إلى وصولا متعارضةال

 

عات تطل من كل تلبي بطريقة النواحي التشكيلية على ؤثري أن يمكن التي النهج هو ما: هو والسؤال

 الخوارزميات اختيار يكون أن يمكن أساس أي على ذلك، جانب الى ؟ةالمنشود الأداء ومعايير المصممين

أداء  ةلدراس فعالية هذا الاختيار استكشاف يمكننا كيف ثم، ؟التصميم البارامتري مع متكاملة لتكون

  الإضاءة الطبيعية؟

 

 :الفرضية

ايجابيا في  يكون أن يمكن (Generative Performative design) التوليدي الأدائي النهج استخدام

 صميمالت مرحلة و اتخاذ القرارات التصميمية في. على كفاءة الإضاءة الطبيعية داخل الفراغ التأثير

 تصميمال مع الجينية الخوارزميات اقتران و هكذا يكون .التصميم نجاح لها التأثير الأكبر على ،وليالأ

 الحصول مكني المثلى الحلول الإضاءة الطبيعية حيث ان مشكلة لتعامل معل السليم الاختيار هو البارمتري

 .المحاكاة عمليات من محدود عدد مع عليها

 

 

 :الرئيسية هدفالأ

  كأداة( GA) الجينية الخوارزميات ومحددات إمكانياتاستعراض  هو البحث هذا من الرئيسي الهدف

 الضمنية لعلاقةا تحديدبالإضافة الى  .الدراسية الفصول أمثل للإضاءة الطبيعية في أداء إلى للتوصل تهدف

 الأدائي متصمي خلال من يعيةو كفاءة الإضاءة الطب المقترحة معالجة المعماريةلل التشكيلية نماطالأ بين

 . التوليدي
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